
Runtime Variability Management for
Energy-Efficient Software by

Contract Negotiation

Sebastian Götz, Claas Wilke, Sebastian Cech, and Uwe Aßmann

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
sebastian.goetz@acm.org,

{claas.wilke, sebastian.cech, uwe.assmann}@tu-dresden.de

Abstract. Improving the energy efficiency of software systems requires
runtime adjustments and explicit knowledge about the system’s vari-
ability. Component-based software has inherent variability in terms of
multiple implementations for components. These implementations uti-
lize hardware resources, which are direct energy consumers, leading to
a further dimension of variability: the mapping of implementations to
resources. The performance modes of hardware resources span a third
dimension of variability. Hence, to realize energy-efficient software sys-
tems the central question is: which implementations should run on and
utilize which resources in which performance mode to serve the user’s
demands? This question can only be answered at runtime, as it relies on
the runtime state of the system. In this paper, we show how combined
hard- and software models can be utilized at runtime to determine valid
system configurations and to identify the optimal one.

1 Introduction

Component-Based Software Development (CBSD) [15] has become a major de-
velopment approach for software systems. Although both functional and non-
functional properties of component-based software systems have been consid-
ered, only few approaches focus on energy consumption as a non-functional re-
quirement. Within the research projects CoolSoftware1 and QualiTune2 we are
developing a model-driven CBSD approach for software systems that can be op-
timized w.r.t. their provided quality and energy consumption at runtime. We
call this approach Energy Auto Tuning (EAT) [8]. Since the energy consump-
tion of software components depends on the utilized hardware, our component
model requires a modeling of both: software components having multiple imple-
mentations and hardware components (for simplicity called resources). Notably,

1 http://www.cool-software.org/
2 http://www.qualitune.org/



components do not only impose energy consumption by being executed on hard-
ware. For example, energy consumption due to sending data using a network
device strongly depends on the kind of network device utilized. While resources
can vary in their energy consumption and provided qualities (e.g., CPU speed
or memory size), software components can vary in their required hardware re-
sources (e.g., different sort algorithms require different amounts of memory) and
their required and provided qualities (e.g., a software component can require
another component’s service of a certain quality and/or can provide services in
different qualities to other components).

As models comprising only few components, can already describe different
component implementations and deployment locations (e.g., servers), they span
a solution space that describes all possible configurations of modeled software
systems on modeled hardware landscapes. The problem we address in this pa-
per is, how to select the most appropriate configuration from this solution space
specified by models w.r.t. minimum energy consumption at runtime. Thus, we
first have to compute all configurations that are valid (i.e., which fulfill require-
ments of involved components such as dependencies, required resources and pro-
vided qualities). Second, we have to select the variant requiring the minimum
energy consumption whilst still serving the user’s non-functional requirements.
We use contracts to model quality dependencies between components and call
the determination of the optimal configuration contract negotiation, following
the definition of Quality-of-Service-level contracts by Beugnard et al. [2] along
with Meyer’s design by contract principle [10].

The process of contract negotiation has to take place at runtime, which im-
poses the need to utilize our aforementioned models at runtime, too. E.g., the
available hardware infrastructure is represented by a model describing each ex-
isting resource along with its properties. This model changes over time, e.g., due
to failing or added resources. The same holds for our software models, which
need to be kept up to date, e.g., due to added components. The runtime data
represented by these models is collected by resource or energy managers. Both
processes, hence, work on runtime models.

The remainder of this paper is structured as follows: We introduce the Cool
Component Model (CCM) which is the basis for our CBSD architecture in Sect. 2
using a simple video server example. Furthermore, we present the Energy Con-
tract Language (ECL), that describes provided and required qualities of soft-
ware and hardware components. We describe our contract negotiation approach
in Sect. 3. Afterwards, in Sect. 4 we present and demarcate from related work.
Finally, in Sect. 5 we discuss future work and conclude this paper.

2 Background / Context

To capture EAT systems, we developed the energy-aware component model CCM
and the contract language ECL. The CCM provides concepts to model hierar-
chical system architectures and covers both software components and hardware
resources, because software consumes energy only in an indirect manner (i.e.,



VideoPlayer Decoder DataProvider
playVideo getStream loadData

VLC QT Free Com. File URL

framerate : fps dataRate : MB/s dataRate : MB/s

ComponentType

non-functional propertiesImpl.

provided port

required port

Legend:

Fig. 1. VideoPlayer SW-Component Types and Implementations.

the energy is consumed by physical resources which are utilized by the soft-
ware). ECL provides concepts to express dependencies between CCM compo-
nents based on non-functional properties. This implies dependencies between
software components as well as software and hardware components. In this sec-
tion we introduce CCM and ECL, by means of a video application scenario. In
Sect. 3 we use the scenario to explain our contract negotiation approach.

2.1 Capturing Software Components and Resources

The CCM distinguishes between modeling of the system structure of hardware
resources, software components and variants of both. In our project’s scope,
variants are concrete hardware resources as well as software component imple-
mentations. The system structure defines how a system may look like and, thus,
represents type declarations for specific variants. For instance, consider the up-
per part of Figure 1 that shows the types of a video application. It consists
of several software component types, namely a VideoPlayer, a Decoder and a
DataProvider3. Each type may have one or more port types representing an
interface of the component. Port types can be used to connect different compo-
nents. A set of connected components describes the software part of a system.

Concrete implementations (i.e., variants) of a software component (shown in
the lower part of Figure 1) have to correspond to the component’s type. In our
example there are two variants of the type Player, the VLC and Quicktime
(QT) implementation. For the Decoder type a free (Free) and a commercial
(Com.) implementation are available. Finally, the DataProvider is implemented
as a local file reader (File) and a remote URL reader (URL).

To capture types available in the hardware landscape, resource types have
to be specified. Figure 2(a) defines resource types of a hardware landscape on
which our video application shall be executed. The Infrastructure consists of
one or more Servers, whereas each server contains one or more CPUs, network
interfaces (Net), RAM chips and hard disks (HDD). For reasons of simplicity, we
omit port types of resource types in the given example.

For each component type (software and hardware) non-functional properties
can be defined. For instance, the software component type Player defines a

3 We denote component types using typewriter and variants of them using italic font.



Server

NetCPU RAM HDD

frequency : GHz
performance : GFLOPS
cpuLoad : percent

free : MB = total – used
used : MB
total : MB
throughput : GB/s

bandwidth : Mb/s free : GB = total – used
used : GB
total : GB
throughput : MB/s

1..*

1..* 1..* 1..* 1..*

(a) CCM Structure Model for Hardware Landscapes.

Server 1 : Server

Net_S1 : NetCPU_S1 : CPU

RAM_S1 : RAM HDD_S1 : HDD

frequency = 3 GHz
performance = 45 GFLOPS

free = 402 MB
used = 110 MB
total = 512 MB
throughput = 3 GB/s

bandwidth = 100 Mb/s

free = 170 GB
used = 150 GB
total = 320 GB
throughput = 20 MB/s

Server 2 : Server

Net_S2 : Net CPU_S2 : CPU

RAM_S2 : RAM HDD_S2 : HDD

frequency = 1,5 GHz
performance = 24 GFLOPS

free = 1500 MB
used = 512 MB
total = 2048 MB
throughput = 4 GB/s

bandwidth = 54 Mb/s

free = 170 GB
used = 150 GB
total = 320 GB
throughput = 20 MB/s

(b) CCM Variant Model of a Hardware Landscape Comprised of 2 Servers.

Fig. 2. CCM Hardware Structure and Variant Model.

property framerate in frames per second (fps) whereas the resource type HDD
defines a property used (disk space) in GB. Such properties play an important
role for specifying ECL contracts and are the basis for contract negotiation.

Figure 2(b) shows a concrete hardware landscape of the resource type system
mentioned above. It consists of two servers with specific resources according to
the definitions at the type level. The servers are connected by their network
devices as depicted by the solid line between Net S1 and Net S2. Consider that
properties defined at type level are available at variant level with concrete values.
Furthermore, each hardware resource variant has to provide a behavior model
that defines its energy consumption w.r.t. its utilization. These behavior models
have to be provided as templates for each resource type and are instantiated for
each concrete resource using the values determined by our resource managers
at installation time (i.e., the first time the resource is registered at the runtime
environment). We derive the implied energy consumption for a given system
configuration (i.e., the distribution of SW components in the infrastructure)
and user request by simulating these models. Since the energy consumption
computation is not part of contract negotiation, these details are omitted here.
The general idea is described in [7].

Notably, variant models are not defined by the developer, but generated at
runtime by our Three Layer Energy Auto Tuning Runtime Environment (THE-
ATRE) in accordance to the structural models for HW and SW. THEATRE
consists of three layers: the user-, software- and resource layer. Each layer is
controlled by a global manager; the Global User Manager (GUM), Global En-
ergy Manager (GEM) and Global Resource Manager (GRM). The GEM has the
central role of retrieving information from the GUM and GRM to initiate the



process of contract negotiation and, based on the result, to perform a system re-
configuration. The GUM knows about the details of user requests and associated
non-functional requirements of the respective users. Finally, the GRM knows the
details about the currently available hardware by monitoring it. These managers
generate the respective variant models and keep them up-to-date. Distributed
servers are handled by local managers for each layer. E.g., in a 2-server scenario,
the first server takes the lead by hosting the global managers, whereas the second
server hosts local managers only. Each server, which is part of the system, runs
a Local Resource Manager, which registers the server and all its resources at
the GRM and sends notifications whenever a property (i.e., the frequency of a
CPU) changes. It is important to note that we include subsymbolic information
into our variant models (i.e., concrete numbers) and postpone symbolization un-
til contract negotiation. The information required to derive symbols from the
values of non-functional properties is encapsulated in our contracts, which are
described in the following subsection.

2.2 Specification of ECL Contracts

ECL is used to define dependencies between CCM components using contracts,
which are specified for each variant. Therefore, an ECL contract represents a spe-
cific view of a variant regarding its dependencies to other types. A contract may
define one or more modes, whereas each mode defines dependencies to other com-
ponents. Software components can depend on other software components as well
as hardware resources, whereas hardware resources can depend on other hard-
ware resources only. Each dependency relates to a component type and defines
bounds for required values of properties at runtime. In addition to constraints
expressing required properties, provided properties are specified as well.

Listing 1 shows a contract for the VLC video player as a concrete implemen-
tation of the VideoPlayer component. It defines that the player can be used
in two modes: high- and lowQuality. For highQuality the contract specifies
that a CPU and a Net device are required. The CPU needs to be utilized at most
to 50% and needs to have a frequency of 2 GHz at least.4 The Net device has
to offer at least a 10 MBit/s bandwidth. Furthermore, a Decoder component is
required. Any implementation of that software component type, which is able
to provide a data rate of at least 50 KB/s can be used. Finally, the contract
defines that in the highQuality mode a minimum framerate of 25 fps and a res-
olution of 1024x768 pixels is provided. To determine the hardware requirements,
micro-benchmarks written by the component developer, which address the non-
functional properties of interest, are used. As each software component variant
is defined by one contract, there exist six contracts specifying SW/HW depen-
dencies in total. The remaining contracts not shown in Listing 1 are similarly
structured.

4 To ease comprehensibility, we use frequency instead of a performance property mea-
sured in instructions per second.



1 contract VLC implements VideoPlayer {
2 mode highQuality {
3 //required resources
4 requires resource CPU {
5 max cpuLoad = 50 percent
6 min frequency = 2 GHz
7 }
8 requires resource Net {
9 min bandwidth = 10 MBit/s

10 }
11 //dependencies on other SW components
12 requires component Decoder {
13 min dataRate = 50 KB/s
14 }
15 //what is provided in turn
16 provides min frameRate 25 Frame/s
17 provides min imageWidth 1024 Pixel
18 provides min imageHeight 768 Pixel
19 }
20 mode lowQuality { ... }
21 }

Listing 1. Example Contract for VLC Video Player.

1 contract StandardRAM implements resource RAM {
2 mode low {
3 provides max free: 0.1*total MB
4 }
5 ...
6 }

Listing 2. Example Contract for Memory Resource.

In addition to contracts for software components, we allow to define contracts
for resources, too. Such contracts suitably illustrate, that the modes of contracts
are symbols, which are derived from the resources’ properties. E.g., a contract
for the resource RAM could define the modes HIGH, MEDIUM and LOW as
indicated in Listing 2.

In summary, a system modeled with CCM and ECL is highly variable in
terms of multiple implementations of component types, multiple quality modes
of each implementation and, according to resource requirements of each quality
mode, multiple possible mappings of implementations to hardware resources.

3 Contract Negotiation

There are three different kinds of variability captured by CCM/ECL. First, mul-
tiple implementations may exist for each software component type. Second, in



an IT infrastructure with more than one server, variability exists in the decision
on how to distribute the software components on this IT infrastructure. Finally,
the different quality modes specified in ECL denote the third kind of variability.
To utilize this variability at runtime for increasing energy efficiency, an approach
to determine the optimal system configuration in this regard is required.

This determination can be seen as a special kind of constraint solving op-
timization problem (CSOP). The goal is to identify the configuration, which
implies the lowest energy consumption whilst still serving the user’s request and
demands. Thus, resource employment (cost) has to be negotiated against the
gained utility, where the connection between cost and utility can be expressed as
constraints. Hence, constraint programming in general can be applied to solve
the CSOP. Because our particular problem is a tradeoff negotiation, express-
ible using linear constraints, we can use linear programming, which allows the
employment of more efficient solving algorithms. To express mappings of com-
ponents to resources, we need to constrain the domain of this kind of variables
to be of Boolean type, i.e., only the integer values 0 and 1 are permitted. Thus,
our problem can be classified as a mixed integer linear program (MILP).

An ILP consists of an objective function, a set of constraints and variables be-
ing used in both [12]. The objective function is either maximizing or minimizing.
In our special case, the objective is to minimize the energy-rated resource usage.
Energy-rated means, that there is a factor, which translates between resource
usage and energy consumption. This normalizes the different resource usage do-
mains, which else would not be comparable (e.g., size of RAM versus frequency
of CPU). A naive approach to determine these factors is to use the standard
energy consumption rate, which usually can be found in the resource specifica-
tion. A more sophisticated approach takes energy-saving and performance modes
of resources into account. In this case, factors can be computed using profiling
approaches, like Süttner presented in [14].

Our ILP comprises four kinds of variables. Variables expressing resource us-
age are the first kind, e.g., usage#Server1#RAMS1#size. This variable de-
notes the size used of the main memory on Server 1. The second kind of variable
expresses the mapping selection. E.g., b#FreeDecoder#fast#Server2 denotes
whether or not the FreeDecoder implementation in fast mode has to be mapped
to Server 2 (the initial b is meant to indicate that this variable is of Boolean
type). Software-related properties, like framerate, form the third kind of vari-
able. Finally, the server baseload consumption forms the forth kind of variable.

The objective function of our ILP is shown in Equation 1. The goal is to
minimize the sum of all resource usage variables and the server baseload con-
sumption. The resource usage variables are normalized by a respective factor,
which translates resource usage into power consumption and is determined by
our resource managers the first time a resource registers at the system.

min
∑

(factorxyz × usage#serverx#resourcey#propertyz) + (1)∑
baseload#serveri



The constraints of the ILP can be divided into four classes: (i) selection
criterias, (ii) resource usage and server baseload, (iii) implied values for non-
functional properties and (iv) user demands. The first class corresponds to the
information present in the structural model, that is, which (and how many)
components are required. In our example, one implementation of each software
component is required. The requirement, that exactly one implementation of
a component type t has to be chosen, can be expressed by constraints of the
following form. ∑

x,y,z

(b#implx,t#modey#serverz) = 1.0; (2)

The second class of constraints describes the boundaries of resource usage
variables and how they correlate to the mapping of implementations to resources.
For each resource usage variable a constraint for the upper bound (3) and the
lower bound (4) is introduced. The values for these boundaries are extracted
from the hardware variant model.

usage#Server1#RAMs1#size <= 512.0; (3)

usage#Server1#RAMs1#size >= 0.0; (4)

The baseload of servers (determined by the local resource managers) is re-
flected by constraints for each mapping variable as depicted in Equation 5.

baseload#serveri = b#implx#modey#serveri (5)

The impact of mapping an implementation to a resource can be extracted
from ECL contracts and can be represented in constraints like exemplary de-
picted in Equation 6. Here, e.g., the first addend of the sum, states that the
FreeDecoder implementation requires 512 MB of RAM to operate in fast mode.
The same statement holds for any other server, but the example equation refers
to RAM usage of Server 1 only.

usage#Server1#RAMs1#size =

512.0 ∗ b#FreeDecoder#fast#Server1 +

256.0 ∗ b#FreeDecoder#slow#Server1 +

128.0 ∗ b#CommercialDecoder#slow#Server1 + (6)

512.0 ∗ b#CommercialDecoder#fast#Server1 +

1536.0 ∗ b#CommercialDecoder#ultrafast#Server1

The same principle is applied for software-related non-functional properties,
which are the third class of constraints as shown exemplary in Equation 7. It
states, among others, that the throughput will be five bit per second, if the
URLReader is mapped to Server 1 and configured to run in URL mode.



throughput = 5.0 ∗ b#URLReader#url#Server1 +

20.0 ∗ b#FileReader#file#Server2 + (7)

5.0 ∗ b#URLReader#url#Server2 +

20.0 ∗ b#FileReader#file#Server1

Finally, the user demands have to be integrated as a constraint, too. Such
a user request, like playing a video with a framerate of at least 20 frames per
second, can be integrated as a constraint in a straightforward way:

framerate >= 20.0; (8)

The ILP as a whole is generated at runtime, whereby the required informa-
tion is extracted from the runtime model of the current hardware infrastructure
and software configuration (software variant model), as well as from the ECL
contracts. To solve the ILP a variety of free-to-use solvers exists. For our proto-
type we have chosen LP Solve 5.55—one of the mature, stable solvers. LP Solve
allows to solve linear programs (LP), too.

The key difference between LP and ILP is that an ILP restricts its variables
to be integers instead of floating reals. In our scenario we need floating reals for
the resource usage and property variables, but integers for our mapping selection
variables. In consequence, the ILP presented above is a mixed integer linear pro-
gram (MILP). The need for the integer restriction can be easily illustrated: if the
variables b#V LC#highQuality#Server1 and b#V LC#highQuality#Server2
are allowed to be floating reals the LP’s solution could be, to map 33% of the VLC
to Server 1 and the remaining 67% to Server 2, which is obviously not possible.

The most commonly used algorithm to solve a MILP is the simplex algo-
rithm [12]. The major drawback of simplex is its exponential runtime. But, im-
portantly for our scenario, it is an iterative approach. That is, once an MILP
has been solved, slight changes to it do not require to perform the whole compu-
tation again, but only parts of it. Thus, unless the system significantly changes,
our optimization approach will benefit from this property of the algorithm. We
plan to measure the energy consumption of solving our ILPs to derive a model
for the prediction of the energy required to compute the optimal configuration.

The solution of the example introduced throughout the paper is that the
VLC implementation should run in highQuality mode on Server 1, the Com-
mercialDecoder should run in slow mode on Server 2 and the URLReader in
URL mode on Server 1. The Decoder implementation is mapped to Server 2
instead of Server 1, due to the CPU performance requirements. If all implemen-
tations run on Server 1, the resulting energy consumption will be lower, but the
framerate of at least 20 fps cannot be ensured. Furthermore, the solution of the
ILP tells us amongst other details, that we need the CPU of Server 1 to operate
at 1.5GHz and the CPU of Server 2 at 800 MHz. Thus, we could force the CPUs

5 http://lpsolve.sourceforge.net/5.5/



to operate slower than usual by exploiting the application knowledge in terms
of the ILP to save energy whilst ensuring the requested user utility.

Notably, if a new server, with a more powerful CPU, is added to the infra-
structure, the ILPs solution is to map all three implementations to that new
server, which requires a system reconfiguration: all implementations have to be
migrated from Server 1 or 2 to Server 3. In general, changes in the infrastructure
as well as to (the available) component implementations are propagated to our
variant models at runtime, which are then used to generate an ILP to derive the
optimal system configuration. Finally, the system has to perform a reconfigura-
tion, which is a sequence of migration steps.

4 Related Work

Within the research project COMQUAD, a component model was developed that
separated components into their specifications and implementations [6], similar
to the component types and component implementations of the CCM. Addition-
ally, the contract language CQML+ [13] was developed to describe required and
provided non-functional properties of software components. The enhancement of
our approach is the more detailed modeling and monitoring of resources.

During the research project SPEEDS and its successor CESAR, the HRC
metamodel [16] was developed. It allows for component-based development of
embedded systems, which includes capabilities to describe hard- and software
components and their behavior. CESAR focuses on a multi-viewpoint, multi-level
development process for embedded systems. Contracts are a central concept in
HRC models which are organized in behavior, safety and real-time viewpoints.
Contracts capture functional and non-functional assumptions and promises of
HRC components. They are used to reason about the consistency of a given
HRC model. In contrast to our approach, SPEEDS and CESAR focus on contract
negotiation at development time and not at runtime. Thus, the HRC metamodel
and its successor CSM support variability at development time, whereas the
CCM focuses on runtime. In addition, neither SPEEDS nor CESAR explicitly
consider energy consumption or EAT.

In the MADAM research project and its successor MUSIC, a component
model for self-adaptive applications on mobile devices has been developed [5].
It supports modeling of non-functional properties and implementation variants.
Although, energy optimization is possible in general, in contrast to our approach,
MADAM/MUSIC do not focus on complete hardware landscapes.

The DIVA research project focused on the management of dynamic adap-
tive systems with special focus on the problem of exponential growth of poten-
tial system configurations by combining methods from aspect-oriented program-
ming/modeling [9] and Model-Driven Software Development (MDSD) [11]. The
DIVA approach allows to automatically adapt a system at runtime supporting
goal-based optimization of non-functional properties as well as rule-based recon-
figuration of the system [4]. The major difference to our approach is the level
of abstraction regarding the values of non-functional properties. DIVA symbol-



izes the impact of implementations on non-functional properties (i.e., the free
size of memory is represented by symbols like LOW, MEDIUM and HIGH and
the impact of an implementation can only be expressed as being low, medium
and so on, too). Our approach allows to consider subsymbolic information in
addition (i.e., the actual value of free size of memory in MB). We encapsulate
symbolization in our contracts, as was shown in Sect. 2.2. Though, reasoning on
subsymbolic information is less efficient, due to the raised complexity, it allows
to derive finer-grained configurations. E.g., a configuration could include not
just the information which CPU to use, but the (optimal) frequency this CPU
should have. Such fine-grained information allows to reduce energy consumption
in addition to the coarse-grain decision of which resources to use. Current hard-
ware is usually far from being energy-proportional [1], which is reflected by a
very high baseload electricity and a narrow working area. Imagine, for example, a
server consuming 100W being idle and 120W at full load. In consequence, energy
savings can mostly be achieved by selecting or turning off the right resources.
In such a scenario symbolic reasoning, as in DIVA, is feasible. But especially
for the next generation of hardware, which is supposed to be more and more
energy-proportional [3] there is a need for finer-grained energy optimizations.

5 Conclusion

In this paper we introduced our contract negotiation approach, which allows to
identify the most energy-efficient mapping of software component implementa-
tions to resources serving a user’s request and demands.

We showed how to formulate this optimization problem as an integer linear
program (ILP) and presented a mechanism using models at runtime to generate
the ILPs in accordance to the current hard- and software as well as the current
users requests and demands. This allows to optimize even dynamic systems,
whose hard- and software entities can supervene, disappear or change over time.

Our approach allows for runtime subsymbolic reasoning, which demarcates
us from existing approaches. Notably, energy efficiency is just one quality which
benefits from subsymbolic reasoning. E.g., optimizations in systems integrating
the physical and virtual world (like robot swarms) require the support for floating
point numbers, too.

In the future we plan to improve the approach to consider more complex
relations between resource usage and energy consumption and will evaluate our
approach in a real world scenario. Furthermore, we plan to investigate how our
approach can be applied to systems integrating the physical and virtual world.

Acknowledgement

This research has been funded by the European Social Fund and Federal State of

Saxony within the project ZESSY #080951806, by the Federal Ministry of Education

and Research within the project CoolSoftware #FKZ13N10782, part of the Leading-

Edge Cluster ”Cool Silicon” within the scope of its Leading-Edge Cluster Competition

and by the collaborative research center 912 (HAEC), funded by the DFG.



References

1. L. A. Barroso and U. Hölzle. The case for energy-proportional computing. IEEE
Computer, 40(12):33–37, 2007.

2. A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Contract aware components, 10
years after. In Electronic proceedings in theoretical computer science, number 37,
pages 1–11, 2010.

3. S. Borkar and A. A. Chien. The future of microprocessors. Communications of the
ACM, 54:67–77, May 2011.

4. F. Fleurey and A. Solberg. A domain specific modeling language supporting spec-
ification, simulation and execution of dynamic adaptive systems. In Proceedings
of the 12th International Conference on Model Driven Engineering Languages and
Systems, MODELS ’09, pages 606–621, Berlin, Heidelberg, 2009. Springer-Verlag.

5. K. Geihs, M. U. Khan, R. Reichle, A. Solberg, S. Hallsteinsen, and S. Merral.
Modeling of component-based adaptive distributed applications. In SAC ’06: Pro-
ceedings of the 2006 ACM Symposium on Applied Computing, pages 718–722, New
York, NY, USA, 2006. ACM.

6. S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD component model -
enabling dynamic selection of implementations by weaving non-functional aspects.
In Proceedings of the 3rd international conference on aspect-oriented software de-
velopment, Lancaster, UK, March 22 - 24, 2004, volume 3, pages 74–82, New York,
NY, USA, March 2004. ACM Press.

7. S. Götz, C. Wilke, M. Schmidt, and S. Cech. THEATRE resource manager inter-
face specification. Technical Report TUD-FI10-0X, Technische Universität Dreden,
Dresden, Germany, 2010.

8. S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann. Towards energy auto tun-
ing. In Proceedings of First Annual International Conference on Green Information
Technology (GREEN IT), pages 122–129. GSTF, 2010.

9. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
ECOOP’97 - Object-Oriented Programming, volume 1241 of LNCS, pages 220–
242. Springer Berlin / Heidelberg, 1997.

10. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
11. B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel. Taming dynamically adaptive

systems using models and aspects. In Proceedings of the 31st International Con-
ference on Software Engineering, ICSE ’09, pages 122–132, Washington, DC, USA,
2009. IEEE Computer Society.

12. G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience, New York, NY, USA, 1988.

13. S. Röttger and S. Zschaler. CQML+: Enhancements to CQML. In Proceedings of
the 1st International Workshop on Quality of Service in Component-Based Software
Engineering, pages 43–56, Toulouse, France, 2003. Cépaduès-Éditions.

14. P. Süttner. Abstract behavior description of CCM software components (Abstrakte
Verhaltensbeschreibung von CCM Softwarekomponenten). Master’s thesis, Tech-
nische Universität Dresden, Mar. 2011.

15. C. Szyperski, D. Gruntz, and S. Murer. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley and ACM Press, 1999.

16. The SPEEDS Consortium. D.2.1.5 SPEEDS L-1 Meta-Model.
http://speeds.eu.com/downloads/SPEEDS Meta-Model.pdf, May 2009.


