*

Non-Rigid Morphological Image Registration

M. Droske!, M. Rumpf' and C. Schaller?

! Numerical Analysis and Scientific Computing
University of Duisburg
Lotharstr. 65, 47048 Duisburg, Germany
Email: {droske,rumpf}@math.uni-duisburg.de
2(linic for Neurosurgery
University of Bonn
Sigmund-Freud-Str. 25, 53105 Bonn, Germany

Email: carlo.schaller@ukb.uni-bonn.de

Abstract. A variational method to non rigid registration of multi-modal
image data is presented. A suitable deformation will be determined via
the minmimization of a morphological, i.e., contrast invariant, matching
functional along with an appropriate regularization energy.

1 Introduction

Various different image acquisition technologies such as computer tomography
and magnetic resonance tomography and a variety of novel sources for images,
such as functional MRI, 3D ultrasound or densiometric computer tomography
(DXA) deliver a range of different type of images. Due to different body po-
sitioning, temporal difference of the image generation and differences in the
measurement process the images frequently can not simply be overlayed. Indeed
corresponding structures are situated at usually nonlinearly transformed posi-
tions. In case of intra-individual registration, the variability of the anatomy can
not be described by a rigid transformation, since many structures like, e. g., the
brain cortex may evolve very differently in the growing process. Frequently, if
the image modality differs there is also no correlation of image intensities at
corresponding positions. What still remains, at least partially, is the local image
structure or “morphology” of corresponding objects.

In the context of image registration, one aims to correlate two images — a
reference image R and a template image T — via an energy relaxation over a set
of in general non-rigid spatial deformations.

Let us denote the reference image by R : {2 — R and the template image
by T : {2 — R. Here, both images are supposed to be defined on a bounded
domain 2 € R? for d = 1,2 or 3 with Lipschitz boundary and satisfying the
cone condition (cf. e. g. [1]). We ask for a deformation ¢ : 2 — £2 such that
T o ¢ is optimally correlated to R.
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The congruence of the shapes instead of the equality of the intensities is the
main object of the registration approach presented here. At first, let us define
the morphology M[I] of an image I as the set of level sets of I:

M) = {M(|c € R}, (1)

where M! := {z € 2|I(z) = ¢} is a single level set for the grey value c. lLe.
My oIl = M[I] for any reparametrization v : R — R of the grey values. Up
to the orientation the morphology M[I] can be identified with the normal map
(Gauss map)
VI
Ni:2 =R gy —— . (2)
V1]
Let us call two images Iy and Iy morphologically equivalent if M[I;] = M|[I].
Morphological methods in image processing are characterized by an invariance
with respect to the morphology [9]. Now, aiming for a morphological registration
method, we will ask for a deformation ¢ : {2 — {2 such that

M[T o ¢] = M[R].

Thus, we set up a matching functional which locally measures the twist of the
tangent spaces of the template image at the deformed position and the deformed
reference image or the defect of the corresponding normal fields.

2 A morphological registration energy

In this section we will construct a suitable matching energy, which measures the
defect of the morphology of the reference image R and the deformed template
image T'. Thus, with respect to the above identification of morphologies and
normal fields we ask for a deformation ¢ such that

NT0¢||N1(§7 (3)

where N}ﬁ is the transformed normal of the reference image R on %(x)qb(./\/lg(x))

at position ¢(z). From the transformation rule for the exterior vector product
Do u A Dgv = Cof Dp(u A w) for all v,w € Tx/\/lﬁ(x) one derives

s _ Cof D¢ Ng
7 ]| Cof D¢ NE||

where Cof A = det A - A=T for invertible A € R%?, In a variational setting,
optimality can be expressed in terms of energy minimization. We thus consider
the following type of matching energy

E,.[¢] := /go(VT o0 ¢, VR, Cof D¢) dp. (4)
0
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where g is a 0-homogenous extension of a function g : S9=1 x §4~1 xR%4 5 R+,
i. e, go(v,w,A) := 0if v = 0 or w = 0 and go(v,w, A) := g(ﬁ, Hth_H’ A)
otherwise. As a first choice for the energy density g let us consider If we want to
achieve invariance of the energy under non-monotone grey-value transformation,
the following symmetry condition

glv,w, A) = g(—v,w, A) = g(v, —w, A) . (5)

has to be fulfilled. A useful class of matching functionals F,, is obtained choosing
functions g which depend on the scalar product v-u or alternatively on (I—v@wv)u
(where T—v®wv = (d;; —v; vj);; denotes the projection of u onto the plane normal

_ -1 ;
to v) for u = AT and v,w € S i.e.,

g(v,w,A):ﬁ((]I—v(}bv)Hj—ZH) . (6)

Let us remark that ¢((II— v ® v)u) is convex in u, if § is convex. With respect to
arbitrary grey value transformations mapping morphologically identical images
onto each other, we might consider §(s) = ||s||” for some v > 1.

3 Regularization

Suppose a minimizing deformation ¢ of E,, is given. Then, obviously for any
deformation ¢ which exchanges the level sets M of the image R, the con-
catenation ¥ o ¢ still is a minimizer. But ¢ can be arbitrarily irregular. Hence,
minimizing solely the matching energy is an ill-posed problem. Thus, we consider
a regularized energy

E[¢] = Em[¢] + Ereglo]- (7)

We interprete {2 as an isotropic elastic body and suppose that the regularization
energy plays the role of an elastic energy while the matching energy can be
regarded as an external potential contributing to the energy. Furthermore we
suppose ¢ = 1l to represent the stress free deformation.

Ereld] == / al[DGI5 + bl|Cof D4 + I'(det Do) dy (8)
kp;

with I'(D) — oo for D — 0,00, e.g., I'(D) = yD?—§1n D. In nonlinear elasticity
such material laws have been proposed by Ogden and for p = ¢ = 2 we obtain
the Mooney-Rivlin model [3].

4 An existence result
Let us introduce a corresponding set of functions
@) ={1:0-® ‘ [e€CH2),3D;C 25.t.VI#0o0n 2\Dy,

u(B(Dr) o}
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We then have the following result [5].

Theorem 1 (Existence of minimizing deformations) Supposed =3, T, R €
Z(£2), and consider the total energy for deformations ¢ in the set of admissible
deformations

A:={¢:02— 2| ¢eH"(12),Cof D € LU(£2),
det D¢ € L"(£2),det D¢ > 0 a.e. in £2,¢ =1 on 002}

where p, ¢ > 3 and v > 1. Suppose W : R>3 x R®3 x Rt — R is convez and
there exist constants 3,s € R, 8 > 0, and s > (12_—‘13 such that

W(A,C, D) > B(|[All; +IC]); + D"+ D™*) ¥A,C €R*, DeR*  (9)

Furthermore, assume that go(v,w, A) = g(ﬁ, ﬁ

[
5?7 x §7 x B33 — Rg’, which is continuous in ﬁ, |7va_||’ conver in A and for a

,A), for some function ¢ :

constant m < ¢ the estimate
g(v,w, A) — g(u,w, A) < Cy [l —ul| (1+]]4]3)

holds for all u,v,w € S* and A € R33, Then E[] attains its minimum over
all deformations ¢ € A and the minimizing deformation ¢ is a homeomorphism
and in particular det D¢ > 0 a.e. in {2.

Refer to [5] for functions g, for which the requirements of the theorem are ful-
filled, an additional feature based energy and a description of the multiscale
minimization algorithm, as well as further references.

References

1. J. BaLL, Global invertibility of Sobolev functions and the interpenetration of mat-
ter, Proc. Roy. Soc. Edinburgh, 88A (1988), pp. 315-328.

2. G. E. CHrisTENSEN, R. D. RaBBIiTT, AND M. I. MILLER, Deformable templates

using large deformation kinematics, IEEE Trans. Medical Imaging, 5, no. 10 (1996),

pp- 1435-1447.

P. G. C1ARLET, Three-Dimensional Elasticity, Elsevier, New York, 1988.

4. U. CLARENZ, M. DROSKE, AND M. RUMPF, Towards fast non-rigid registration,
in Inverse Problems, Image Analysis and Medical Imaging, AMS, 2001.

5. M. DroskE AND M. RUMPF, A variational approach to non-rigid morphological
registration, SIAM Appl. Math., (2003). submitted.

6. U. GRENANDER AND M. I. MILLER, Computational anatomy: An emerging disci-
pline, Quarterly Appl. Math., LVI, no. 4 (1998), pp. 617-694.

7. S. HENN anD K. WiTscH, lterative multigrid regularization techniques for image
matching, STAM J. Sci. Comput. (SISC), Vol. 23 no. 4 (2001), pp. 1077-1093.

8. J. MobDERsITZKI AND B. FIscHER, Fast diffusion registration, Special Issue of
Contemporary Mathematics, AMS, (2000).

9. G. SAPIRO, Geometric Partial Differential Equations and Image Analysis, Cam-
bridge University Press, 2001.

10. J. P. THIRION, Image matching as a diffusion process: An analogy with Mazwell’s
demons, Med. Imag. Anal., 2 (1998), pp. 243-260.

@



35

N
111
1

]

RasE
T U [

[T ﬁ:ﬁ:i T T Tl

Fig. 1. Sectional morphological registration on a pair of MR and CT images of a
human spine. Dotted lines mark certain features visible in the reference image. Top
Left: reference, CT, Top Right: template, MR, with clearly visible misfit of structures
marked by the dotted lines. Middle Left: deformed template T" o ¢;, where ¢ is the
result of a feature based pre-registration [5]. Middle Right: deformed template T o ¢
after final registration where the dotted feature lines nicely coincide with the same
features in the deformed template MR-image. All images have a resolution of 2572,
Additionally the deformations after the feature based registration resp. after the entire
registration process are illustrated in the bottom row.



