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Abstract. A shape model for fully automatic segmentation and recog-
nition of lateral spine radiographs has been developed. The shape model
is able to learn the shape variations from a training dataset by a princi-
pal component analysis of the shape information. Furthermore, specific
image features at each contour point are added into models of gray value
profiles. These models were computed from a training dataset consist-
ing of 62 manually segmented lumbar spine images. The application of
the model containing both shape and image information is optimized on
unknown images using a multi step simulated annealing search. During
optimization the shape information of the model assures that the seg-
mented object boundary stays plausible. The shape model was tested on
the 62 images using the leaving one out paradigm.

1 Introduction

In clinical routine radiographs of the spine are often applied for the diagnosis of
damaged posture or other injuries affecting the vertebrae of the spine. The di-
agnosis includes the detection of geometric measured values like angles between
the vertebrae or the intervertebral disc height. Measuring these values is a time
consuming and error prone task for physicians. Therefore, automatic computa-
tion of these values is of great interest. However, before an automatic extraction
of the desired values from the spine model can be executed, accurate segmenta-
tion of the lumbar spine has to be performed. Difficulties arise concerning the
quality of the medical images in all day clinical routine from various aspects:
superpositions of bones (pelvis), air (bowels), or fatty tissue (obese patient) de-
grade image information considerably, projection distortion of two dimensional
images of the vertebra causes different and varying lines on the bone body.

For these reasons classical methods of image segmentation are insufficient.
Therefore we use a knowledge based segmentation technique based on the Active
Shape Model (ASM) approach from COOTES ET AL. [1]. Previous approaches
require manual placement of the starting position of the model [2]. This task
is compensated by a multi step simulated annealing search method. Beyond,
other improvements were applied to the original Active Shape Model approach
to achieve higher segmentation accuracy [3].
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2 Methodology

The whole approach divides into the generation of a training dataset of contours,
the computation of flexible shape and gray value models, and their optimization.

The training dataset for both kinds of models, shape and gray value models,
consists of manually drawn shapes. Each object shape has a constant number of
landmarks located at the regions of interest, which are usually the parts of the
contour with the highest curvature. Figure 1 illustrates the structure of the train-
ing dataset including the landmark points. Usually the manually drawn shapes
have a differing number of contour points, but the computation of the model
requires the same number of points for each element of the training dataset.
Therefore, the contours are interpolated equidistantly between the landmark
points.
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Fig. 1. Training example of a spine with landmark points marking the four corner
points of the vertebrae.

2.1 Building the Model

The interpolated shapes also contain, beside the real shape variations, affine
variances. For better control over the model behavior, it is profitable to separate
the affine variances from the real shape variations. Since all shapes have an
equal number of points, they can be aligned towards the mean shape using a
least squared error method.

Each element of the aligned training dataset can be expressed as an 2n-
dimensional vector x = (#1,¥1,...,%n, Yn). Suppose now the elements of the
training dataset form a cloud in 2n-dimensional space a Principal Component
Analysis (PCA) can be used to approximate any of the original points with fewer
than 2n parameters. The main aspect of this computation step is to reduce the
dimensionality of the data significantly to model the shapes of the training set.
Contour models using this kind of contour representation are also known as Point
Distribution Models (PDM).

At this point we are able to compute a flexible shape model efficiently using
a comparatively small number of parameters. But the shape model so far is only
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able to express shape characteristics of the training dataset. For an optimiza-
tion of the model on unknown image material typical image features must be
extracted from the images the training dataset was generated from. A strong
feature is always the edge information of the objects. But gradient information
itself is far too weak for a proper segmentation, because inside and outside of
the object cannot be distinguished anymore.

Therefore gray value profiles are extracted from the images showing charac-
teristic variations. To be independent of the varying exposure of the images the
profiles are normalized. The computed normalized profiles are perpendicular to
the shape contour and always have the same size. For each point of the shape
model a gray value profile model is computed analogous to the computation of
the shape model. The image structures may vary in different parts of the con-
tours of the object. Therefore it would be very inappropriate to compute one
general profile model for the whole object.

2.2 Optimization

For optimization a simulated annealing search technique is used. Four affine
parameters and n model parameters must be optimized. Reasonable boundaries
of the affine parameters are extracted either from the image dimensions and
the affine variabilities in the training dataset. The boundaries for the model
parameters are also estimated from the shape variations of training dataset.
Each parameter can take different values in its interval, which are defined by a
step size for each parameter.

The elements of the search space are defined by the values of the 4 4+ n
parameters of the model. Each element has exactly 2(4 + n) neighbors, which
can be computed by decreasing or increasing an parameter by its step size. Each
element of the search space defines a shape located in the image frame. It is
obvious that the energies of two neighboring elements of the search space do
not differ significantly. Considering all elements of the search space they form
an energy mountain profile, wherein the deepest valleys are the regions which
correspond to the global minimum.

Simulated annealing can be viewed as a local search through that mountain
profile enriched by a kind of randomized decision choosing whether to leave local
optima in order to find better solutions.

The optimization is performed in three constitutive steps. At first a model
consisting of 5 vertebrae and the sacrum is optimized on a down-sampled image
of size 11—6. This leads to a rough estimation of the position and major shape
variations of the model. Thereafter the model is broken apart into three smaller
models consisting of two vertebrae each. The segmentation information of the
previous step is taken as an initialization for this optimization which is running
at a scale of % Finally shape models of each vertebra are optimized on the
original image. In each step the allowed variation of the models is limited de-
pendent on the segmentation result of the previous step. Furthermore the effect
of breaking the model apart successively into smaller models leads to a decrease



416

of shape variation in the training sets, which produces smaller search spaces for
the simulated annealing optimization.

3 Results

The algorithm was tested on 62 unknown spine images of average image quality
using the leaving-one-out paradigm. That means the different models were com-
puted from the 61 remaining contours and the actual spine contour was taken as
a reference contour to evaluate the result. Figure 2 shows a typical result after
application of all optimization steps. For comparison the reference shapes are
also displayed.

Fig. 2. Final segmentation result (white contour) of x-ray images together with the
manual reference shapes (black contour).

3.1 Evaluation

The validation of the result shapes is performed by comparing them with manu-
ally drawn reference shapes. A number of different measures were extracted from
the segmentation results. The mean, minimum, and maximum percentage cover
Cy Cmins Cmae Of the shapes, the mean distances between the shapes dg and the
landmarks dy, in millimeters, and the minimum and maximum distances between
the shapes dpin,s, dmae,s and the landmarks dpin. 1, dmae,r in millimeters.

The maximum distances dpqz,5 and dp,q., 1 Wwere computed as the largest of
the individual distances between result and reference shape. They quantify the
overall localization quality by the largest occurring discrepancy. Whereas dg and
d;, are a measure for precision of the local delineation of shapes and landmarks
respectively. Furthermore the mean percentage cover ¢ can also be taken as a
measure for the overall detection accuracy. Table 1 shows the results for each
vertebra and the spine as a whole in detail.
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Table 1. Final results of spine segmentation. The distances and their standard devia-
tions are specified in millimeters.

c Cmin |Cmax ds dmin,s |dmac,s dr, dmin,L |dmac,L
uto uwto uwto
Vertebra 1.5(92.0 £ 4.2(79.3 | 97.3 |1.28 £ 1.76| 0.0 13.11 [3.05 £ 2.41| 0.15 13.51
Vertebra 1.4]91.9 + 3.6 82.5 | 97.1 |1.28 + 1.68| 0.0 12.90 (2.82+ 2.09| 0.13 10.71
Vertebra 1.3|92.2 £+ 3.7(82.8 | 97.4 |1.43 + 1.92| 0.0 14.08 (2.49+ 1.73| 0.08 10.71
Vertebra 1.2|91.4 £+ 4.0 81.4 | 96.9 |1.53 + 2.05| 0.0 15.01 (2.55 + 2.22| 0.08 13.48
Vertebra 1.191.4 £+ 4.4(72.2 | 97.1 |1.46 &+ 1.95| 0.0 22.28 [2.94 4+ 2.85| 0.21 20.69
Sacrum 79.8 +£9.9/48.0|95.1 [2.06 £ 2.95| 0.0 33.18 |5.19 + 4.16| 0.47 21.78
Spine 89.8 + 7.0|48.097.4 |1.51 4+ 2.03| 0.0 33.18 |3.17 + 2.62| 0.08 21.78

4 Conclusion

We have presented a multi-step approach for the segmentation of the lumbar
spine. A typical problem of deformable model adaption is the determination of
the starting position. If the starting position is not close enough to the object,
the algorithm runs the risk of being attracted to false features. Considering the
spine with its ability to be more or less twisted a placement of the initial contour
using only affine parameters is far too weak. Hence we use a simulated annealing
search, which enables us to integrate a variable amount of model parameters
into the search process to acquire a satisfying starting shape. Furthermore the
adaption by breaking the spine model apart into separate models improves the
segmentation accuracy significantly.

In summary the segmentation accuracy of the most significant parts of the
shapes, the landmarks, is measured by a distance of 3.17mm with a standard
deviation of 2.62mm. But these results can only give an estimation about the
quality of the segmentation because the evaluation of each snake was only per-
formed with a single manually drawn snake. Hence an evaluation with a set of
contours of each snake manually drawn by different users would be practical.
However the results show that this approach is able to provide fully automatic
spine segmentations of a subjective satisfying quality.

Finally the presented approach can be easily applied to other segmentation
tasks. Even an application in three-dimensional medical imaging is possible [4].
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