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Abstract

In this paper we introduce a decidable fixpoint extension of temporal Descrip-
tion Logics. We exploit the decidability results obtained for various monodic ex-
tensions of Description Logics to obtain decidability and tight complexity results
for temporal fixpoint extensions of these Description Logics and more generally
for the decidable monodic fragments of first order logic.

1 Introduction

Monodic temporal extensions of various (decidable) fragments of first-order logic have
been studied employing the quasi-model approach of Wolter and Zacharyashev [Hod-
kinson et al., 2000; 2001]. Their technique has been successfully applied to a variety
of decidable fragments, e.g., to the ALC and DLR description logics, to the guarded
fragment GF , or to the two variables fragment. In addition, the complexity of the
decision procedures for these fragments has been studied [Hodkinson et al., 2003]. All
these papers have focused on the standard first-order temporal logic that uses the U
(until) and S (since) connectives, save [Gabbay et al., 2003] that studies an extension
of a multi-modal (but still first-order) logic.

This paper considers a different dimension of the problem: it proposes to enhance
the temporal part of the language instead of varying the first-order fragment. The
paper shows that the original quasimodel technique is amenable to using a much more
expressive language over the temporal structure, while retaining decidability for many
of the fragments studied in the US case.

Indeed, first-order temporal logics have been shown to lack certain expressiveness
related, e.g., to expressing periodic events. This shortcoming has been identified by
Wolper [Wolper, 1983] and various extensions have been proposed, e.g., the extended
temporal logic (ETL) [Wolper, 1983] or the temporal fixpoint calculus [Vardi, 1988].

∗The work presented in this paper was carried out when the author was visiting the Free University
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In order to focus on the actual temporal dimension of the problem, the results
of this paper are formulated with respect to a very simple description logic, ALC.
However, the results can be easily extended to other decidable fragments of first-order
logic, provided they satisfy the monodicity restriction. The results are as follows:

• We show a decision procedure for monodic ALCµ��, a temporal description logic
strictly more expressive than ALCUS , based on the temporal fixpoint calculus
[Vardi, 1988]. We also show complexity bounds on the decision procedure that
mirror those for ALCUS . Thus, from the complexity standpoint, the extension
is for free.

• We show that the proposed extension is also applicable to more expressive di-
alects of description logics, e.g., CIQ, CIO, and DLR, and to other decidable
fragments of first order logic, e.g., GF , that satisfy the monodic restriction.

The paper is organised as follows: Section 2 provides the necessary definitions. Sec-
tion 3 presents decidability of the temporal fixpoint extension of a simple description
logic ALC. It also presents complexity bounds for the associated reasoning problems.
However, due to a heavy reliance on a rather complex quasimodel machinery [Hod-
kinson et al., 2000], the actual proofs are sketched only in an appendix of the paper.
Section 4 discusses the applicability of the results to a wider range of description logics
and other decidable fragments of first-order logic. Section 5 concludes with directions
for future research.

2 Definitions

Definition 1 (ALCµ�� syntax) Concepts in the language ALCµ�� is defined by the
following abstract syntax.

C,D ::= A | > |⊥ | ¬C |C uD |C tD | ∀R . C | ∃R . C |
�
C | �C |µA . C

The � and
�

are the usual next-time and previous-time operators. Given a µA . C
fixpoint concept expression—where A is a primitive concept description—we require
that free occurrences of A in the concept expression C are all positive, i.e., they appear
within even numbers of negations. Informally, the concept µA . C denotes the least
fixpoint solution to the equation A ≡ C(A), where here C is seen as a function of the
concept variable A.

Formulæ of ALCµ�� are defined by the abstract syntax

ϕ ::= C v D | ¬ϕ |x |ϕ ∧ ψ |
�
ϕ | �ϕ |µx.ϕ

Similarly to concepts descriptions, the propositional variable x in µx.ϕ can only appear
in ϕ under an even number of negations. In the following, we will restrict ourself to
closed formulas.

We say that a fixpoint concept µA . C is a future concept (past concept) if every
occurrence of the concept variable A in C is in the scope of one or more � (

�
)

operators but no
�

(�) operators, respectively. The greatest fixpoint operator can be
defined, as expected, as νx.ϕ = ¬µx.¬ϕ[x/¬x].



Definition 2 (Monodic Fragment) We define ALCmon
µ�� (the monodic fragment of

ALCµ��) to be ALCµ�� restricted to concepts in which free fixpoint variables do not
occur in the scope of role restrictions (∀R . C and ∃R . C).

The monodic restriction essentially separates the handling of the temporal dimension
using the fixpoint and next/previous time operators from the data dimension cap-
tured by ALC roles. The boolean structure is shared between these two parts. This
restriction corresponds to our original intent of extending the temporal part of the
language without affecting the first-order fragment. In the following, we consider only
the monodic fragment. This restriction makes the expressiveness of the language sub-
stantially different from the standard extensions of non temporal description logics
with fixpoints—e.g., [Calvanese et al., 1999]—since the fixpoint operates only on the
temporal part of the language.

Definition 3 (ALCµ�� semantics) An ALCµ�� interpretation structure is a triple
I = (T ,∆, (·)I(t)) where T is a flow of time (an unbounded, discrete, linearly ordered
set), ∆ is a non-empty domain of objects, and (·)I(t) is an interpretation function
that for every t ∈ T provides an interpretation for concepts and roles at time t (i.e.,
CI(t) ⊆ ∆ and RI(t) ⊆ ∆ × ∆). The interpretation should satisfy the following
equations:

>I(t) = ∆

⊥I(t) = ∅

(¬C)I(t) = ∆ \ CI(t)

(C uD)I(t) = CI(t) ∩DI(t)

(C tD)I(t) = CI(t) ∪DI(t)

(∀R . C)I(t) = {i ∈ ∆ | ∀j . RI(t)(i, j) ⇒ CI(t)(j)}

(∃R . C)I(t) = {i ∈ ∆ | ∃j . RI(t)(i, j) ∧ CI(t)(j)}

(�C)I(t) = CI(t−1)

(�C)I(t) = CI(t+1)

(µA . C)I(t) =
⋃

k≥0(C
k[⊥/A])I(t)

Ck[⊥/A] stands for the concept description obtained by unfolding a fixpoint concept k
times1. Note that we make the constant domain assumption, i.e., ∆ does not change
in time.

Given a formula ϕ, an interpretation I, and a time point t ∈ T , the truth-relation
I, t |= ϕ (ϕ holds in I at moment t) is defined inductively as follows:

I, t |= C v D iff CI(t) ⊆ DI(t)

I, t |= ¬ϕ iff I, t 6|= ϕ
I, t |= ϕ ∧ ψ iff I, t |= ϕ and I, t |= ψ
I, t |= �ϕ iff I, t− 1 |= ϕ
I, t |= �ϕ iff I, t+ 1 |= ϕ
I, t |= µx.ϕ iff I, t |= ϕk[false/x] for some k ≥ 0

1Due to the restrictions on the occurrence of A in C, this definition is equivalent to the more
common intersection of models definition [Calvanese et al., 1999; Vardi, 1988].



A formula ϕ is satisfiable if there is a temporal interpretation I such that I, t |= ϕ,
for some time point t; I is called a model for ϕ at t. A concept C is satisfiable if
there is an interpretation I such that CI(t) 6= ∅ for some time point t. We say that
ϕ is globally satisfiable if there is an interpretation I such that I, t |= ϕ for every t
(I |= ϕ, in symbols). We say that ϕ ( globally) implies ψ and write ϕ |= ψ if we have
I |= ψ whenever I |= ψ.

Note that a concept C is satisfiable iff ¬(C v ⊥) is satisfiable, a formula ϕ is globally
satisfiable iff �	ϕ is satisfiable, and ϕ |= ψ iff �	ϕ∧¬ψ is not satisfiable2. Thus, all
reasoning tasks connected with the notions introduced above reduce to satisfiability
of formulas.

3 Properties of ALCmon
µ
�

The language we have introduced so far has clear advantages over the description
logic ALCUS . The addition of the fixpoint allows to express the notion of evenness
and periodicity, which is not expressible in ALCUS . On the other hand, the U (until),
S (since), and the other standard temporal connectives of ALCUS can be encoded in
the logic with fixpoints ALCmon

µ
�. So, for example:

�
C ≡µA . (C t A)

�C ≡ νA . (C u A)
C U D≡µA . (D t (C u A))

�
C ≡µA . (C t �A)

	C ≡ νA . (C u �A)
C S D≡µA . (D t (C u �A))

Moreover, based on results on the expressive power of propositional linear time tem-
poral logics [Wolper, 1983] we can prove the following:

Proposition 4 ALCmon
µ
� (ALCmon

µ
� ) is more expressive than ALCUS (ALCU), respec-

tively.

A typical example of the additional expressive power of ALCmon
µ
� would be a prop-

erty which should hold true every k time points, starting from the current one. For
example, a catholic priest celebrates the Mass every seven days:

Celebrating-Catholic-Priest
.
= νA . (∀celebrate . Catholic-Mass u A)

Observe that, in the restricted monodic fragment introduced in the previous section,
the descriptions within a single state are purely first-order; the fixpoint only affects
the temporal part of the language and it does not change the first order nature of the
pure description logic.

Note also that in the monodic fragment it is impossible to express temporalised
roles. It is well known that these would lead to an undecidable satisfiability problem
even in ALCU [Hodkinson et al., 2000].

3.1 Complexity of Reasoning

We summarise the computational properties of ALCµ
�. We consider only the integer-
like flow of time T = (Z,<).

2The � and 	 operators are defined in Section 3.



Theorem 5 The formula satisfiability problem for ALCmon
µ�� is decidable.

The restrictions on the occurrence of the fixpoint concept variable in the fixpoint
constructor of ALCmon

µ�� guarantees that the fixpoint is only applied with respect to
the temporal dimension of the underlying structures; within a single state, ALCmon

µ��
remains a fragment of first-order logic. Therefore, the quasi-model machinery can be
applied in this setting. In addition, complexity results from the case of first-order
temporal connectives transfer to our setting:

Theorem 6 The formula satisfiability problem for ALCmon
µ�� is EXPSPACE-complete.

Here, the upper bound relies on a temporal fixpoint extension of [Wolter and Za-
kharyaschev, 1999; Artale et al., 2002; Gabbay et al., 2003; Schild, 1993]; hardness
holds even for ALC� .

Theorem 7 The concept satisfiability problem for ALCmon
µ�� is PSPACE-complete.

The upper bound follows from an extension of [Schild, 1993]; the PSPACE complexity
of the propositional temporal logic [Sistla and Clarke, 1985] is the same as the temporal
fixpoint calculus [Vardi, 1988]. The lower bound follows from PSPACE-hardness for
ALCU .

4 Temporal Fixpoints and Other Fragments

The first extension of ALCmon
µ�� is allowing ABox assertions of the form a : C and

aRb , for a and b names of individual objects in ∆, to be considered atomic formulas
alongside C v D. This extension does not change the computational properties of
ALCmon

µ��:

Theorem 8 The formula satisfiability problem for ALCmon
µ�� with ABox is decidable;

concept satisfiability is PSPACE-complete, formula satisfiability is EXPSPACE-complete.

The decidability result can also be extended to more powerful description logics and
other decidable fragments of first-order logic, in particular to the following:

Theorem 9 Satisfiability of the monodic fixpoint temporal extensions of

• CIQ, CQO, and CIO;

• DLR;

• GF

is decidable.

These results are based on patching the decidability proofs in, e.g., [Wolter and Za-
kharyaschev, 1999; Hodkinson, 2002; Artale et al., 2002] using our technique. It also
shows that the temporal fixpoint extension is orthogonal to the consideration of the
first-order fragment (as long as integer-like flow of time is used).



5 Conclusion

The paper provides a modular extension of fragments of first-order temporal logics
that have been shown decidable using the quasimodel technique to allowing fixpoints
to be used in the temporal dimension. This extension enhances the expressive power of
the languages (for example, evenness is now definable over the temporal dimension).
The extension is modular in the sense that it can be applied to a large number of
monodic decidable fragments of first-order temporal logic.

5.1 Open Problems

We are currently studying several extensions of the framework proposed in this paper,
namely:

• Allowing fixpoint variables to occur in scopes of ∀R. · and ∃R. ·, while requiring
the fixpoints to affect only the temporal dimension, e.g., by requiring all fix-
point variables to occur in the scope of the next time (�) or previous time (�)
operators;

• Allowing full ALCµ��; in this case, the concept descriptions are no longer first-
order in every state and the quasi-model technique cannot be applied directly.

Other extensions relate to studying temporal fixpoints for other flows of time, to
allowing even more expressive temporal languages (e.g., S1S), and to investigating
interaction with queries [Artale et al., 2002].
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Appendix. A sketchy introduction to Quasimodels

In this appendix we introduce the necessary background definitions related to the
quasimodel -based technique used to show decidability of various monodic temporal
extensions of decidable fragments of first-order logic [Hodkinson et al., 2000; Wolter
and Zakharyaschev, 1999]. We modify these to suit ALCmon

µ� over the flow of time
(N,<) (for simplicity, we consider only the future fragment here, since treating the
combined past/future fragment is essentially the same.) Consider a formula ϕ ∈
ALCmon

µ� . We define sets of concepts and formulas, conϕ and subϕ, to be the sets of
all concepts and all subformulas of ϕ, and their negations, respectively, in which all
the concepts D (formulas ϑ) of the form �C and µA . C (�ψ and µx.ψ) are replaced
by auxiliary primitive concepts AD (propositions pϑ), respectively, that do not appear
in ϕ. Also, all concepts (propositions) bounded by a fixpoint operator are replaced by
the auxiliary concept (proposition) associated with the fixpoint subformula (resp.).

Definition 10 (Quasiworlds for ϕ) Given an ALC interpretation I (that inter-
prets primitive symbols in ϕ and the above auxiliary symbols), we define a quasiworld
wI for ϕ to be the tuple

〈{

{C ∈ conϕ : a ∈ CI} : a ∈ ∆
}

, {ψ ∈ subϕ : I |= ψ}
〉



The important observations at this point are that, for a fixed formula ϕ, (1) there
are only finitely many (distinct) quasiworlds, and (2) for decidable logics, they can be
effectively constructed.

The interpretations I for the individual quasiworlds will serve as templates for
models of single states in an overall model for ϕ. However, these models must be
coherent along the temporal dimension. This, in particular, requires that the auxiliary
concepts and formulas standing for temporal subconcepts/subformulas must behave
according to the definitions of the temporal connectives and fixpoints.

Definition 11 (Runs and Quasimodel for ϕ) Let W = 〈wi : i ∈ N〉 be a se-
quence of quasiworlds of the form 〈Ti,Ψi〉, indexed by natural numbers. We say that
a sequence r = 〈ti : i ∈ N〉, where ti ⊆ conϕ, is a run if

1. ti ∈ Ti,

2. A�C ∈ ti iff C ∈ ti+1; and

3. AµA.C ∈ ti iff C ∈ ti and that there is no infinitely regenerating sequence of
AµA.C in the run r.

We say that W is a quasimodel for ϕ if

1. for every t ∈ Ti and i ∈ N there is a run r such that t ∈ r;

2. p�ψ ∈ Ψi iff ψ ∈ Ψi+1; and

3. pµx.ψ ∈ Ψi iff ψ ∈ Ψi and that there is no infinitely regenerating sequence of
pµx.ψ ∈ Ψi in the W .

We say that W satisfies ϕ iff ϕ ∈ Ψ0.

Runs in quasimodels relate domain elements from the domains of different quasiworlds
yielding a coherent model for ϕ (here, the ability to copy domain elements in the
individual states sufficiently many times is essential to have sufficiently many runs).
The remaining conditions then ensure, in a similar way, that the formulas holding in
the individual quasiworlds are also coherent with the temporal structure (N,<). The
conditions associated with the auxiliary concepts and propositions related to fixpoints
are analogous to those introduced by Vardi in the case of the temporal fixpoint calculus
[Vardi, 1988] to guarantee the minimality of the interpretations of the fixpoints.

Proposition 12 An ALCmon
µ� formula ϕ is satisfiable if and only if it is satisfiable in

a quasimodel for ϕ.

Thus, it suffices to check whether ϕ has a quasimodel. This can be done, e.g., by
embedding the quasimodel conditions into S1S, similarly to [Hodkinson et al., 2000]. In
particular, S1S is more than sufficient to enforce the temporal fixpoint conditions. To
achieve tight complexity bounds, we can employ the fact that, for satisfiable ALCmon

µ�
formulas, periodic quasimodels exist, similarly to the US case [Hodkinson et al., 2000].
This yields the required complexity bounds.


