
eXolutio: Tool for XML Schema and Data
Management?

Jakub Kĺımek, Jakub Malý, Irena Mlýnková, and Martin Nečaský

XML and Web Engineering Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00 Praha 1, The Czech Republic
{klimek, maly, mlynkova, necasky}@ksi.mff.cuni.cz

eXolutio: Tool for XML Schema and Data Management?

Jakub Klı́mek, Jakub Malý, Irena Mlýnková, and Martin Nečaský

XML and Web Engineering Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměstı́ 25, 118 00 Praha 1, The Czech Republic
{klimek, maly, mlynkova, necasky}@ksi.mff.cuni.cz

Abstract. Recently XML has achieved the leading role among languages for
data representation and, thus, the amount of related technologies and applications
exploiting them grows fast. However, only a small percentage of applications is
static and remains unchanged since its first deployment. Most of the applications
change with newly coming user requirements and changing environment. In this
paper we describe a tool for evolution and change propagation of XML appli-
cations called eXolutio, which has been developed and improved in our research
group during last few years. The text should help the reader to get acquainted
with the tool and its theoretical background.

Keywords: XML schema, conceptual modeling, tool, evolution

1 Introduction

The eXtensible Markup Language (XML) is currently a de-facto standard for data rep-
resentation and together with accompanying standards, such as XML Schema, XPath,
XQuery, XSLT, etc., it becomes a powerful tool. Consequently, the amount and com-
plexity of software systems that utilize XML and/or selected XML-based standards
and technologies for information exchange and storage grows very fast. The systems
represent information in a form of XML documents. One of the crucial parts of such
systems are XML formats which describe the syntax of the XML documents in a form of
XML schemas expressed in some XML schema language, e.g. DTD or XML Schema.
Usually, a system does not use only a single XML format, but a set of different XML
formats, each in a particular logical execution part. The XML formats represent partic-
ular views of the application domain of the software system. We can, therefore, speak
about a family of XML formats utilized by a software system.

Having a system which exploits a family of XML formats, we face the problem of
XML format evolution as a specific part of evolution of the software system as a whole.
The XML formats may need to be evolved whenever user requirements or surrounding
environment changes. Each such change may influence many different XML formats
in the family. Without a proper technique, we have to identify the XML formats af-
fected by the change manually and ensure that they are evolved coherently with each

? This work was supported in part by the Czech Science Foundation (GAČR), grant numbers
P202/10/0573 and P202/11/P455 and in part by the grant SVV-2012-265312.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 69–80, ISBN 978-80-7378-171-2.

70 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

other. Such evolution brings a challenge for research, so that the user interaction and,
hence, the expensive and error-prone work can be minimized. We cannot leave the user
out completely, there still remain cases when user decision is unavoidable; however,
automatic management of evolution enables to identify all the affected parts of the ap-
plication and perform the user-selected changes correctly and efficiently and, possibly,
exploit them in further automatic processing.

In our research group we have focused on the area of efficient and correct manage-
ment of a family of XML formats for several recent years. Starting with a simple idea
of propagation of changes among related XML formats, we have gradually extended
our effort towards a robust framework and its implementation in a tool called eXolutio.
It currently supports the original idea of designing XML formats using the principles of
Model Driven Architecture (MDA) [18], their evolution, and integration of new XML
formats into the framework.
Contributions The aim of this paper is to provide a covering overview of our research
in the area of XML evolution, to describe architecture and implementation of the eXo-
lutio tool, to present results of our experiments with the tool proving the concept and
efficiency and a comparison of the tool with similar tools.
Outline The rest of the paper is structured as follows: In Section 2 we focus on the
background theoretical aspects – our conceptual model for XML. In Section 3 we in-
troduce eXolutio, our tool in which we implement our research results. In Section 4 we
provide the proof of the concept using a set of experiments. In Section 5 we discuss the
related work. Finally, in Section 6 we conclude.

2 Conceptual Model for XML

In this section, we introduce our conceptual model for XML and its inheritance exten-
sion. It has two levels, PIM and PSM, which is inspired by MDA.

A PIM schema is based on UML class diagrams and models real-world concepts
and relationships among them. It contains three types of components: classes, attributes
and associations. A sample PIM schema is depicted in Figure 1. Where association
cardinality is not explicitly stated, default cardinality 1..1 applies. A part of the PIM
are also integrity constraints which we are currently working on, but which are not in
the scope of this paper.

Definition 1. A platform-independent (PIM) schema is a triple S = (Sc,Sa,Sr) of
disjoint sets of classes, attributes, and associations, respectively.

– Class C ∈ Sc has a name assigned by function name. For inheritance purposes,
function isa assigns a parent class to a child class (UML generalization) and must
not form a cycle. Furthermore, functions abstract and final determine whether the
class can have instances in data and whether this class can be inherited from,
respectively.

– AttributeA∈ Sa has a name, data type and cardinality assigned by functions name,
type, and card, respectively. Moreover, A is associated with a class from Sc by
function class.

eXolutio: Tool for XML Schema and Data Management 71

0..*

makes

0..*

0..*

1..*

1..*

Supply

amount

supply-price

date

name

email {1..*}

Supplier

Product

title

price

code

Item

tester

item-price

amount

Customer

name

email {1..*}

phone {0..*}

Purchase

code

create-date

status

Address

street

city

LocalAddress

has

GlobalAddress

country

ShippingAddress

country

Fig. 1. Example of a PIM diagram

– AssociationR ∈ Sr is a setR= {E1, E2}, whereE1 andE2 are called association
ends of R. R has a name assigned by function name. Both E1 and E2 have a
cardinality assigned by function card and are associated with a class from Sc by
function participant. We will call participant(E1) and participant(E2) participants
of R. name(R) may be undefined, denoted by name(R) = λ.

For a class C ∈ Sc, we will use attributes (C) to denote the set of all attributes of C,
i.e. attributes (C) = {A ∈ Sa : class(A) = C}. Similarly, associations (C) will denote
the set of all associations with C as a participant, i.e. associations (C) = {R ∈ Sr :
(∃E ∈ R)(participant(E) = C)}. For a given association R = (E1, E2), we will use
notation (C1, C2) as an equivalent of (participant(E1), participant(E2)) if there are
no more associations connecting C1 and C2.

The platform-specific model (PSM) specifies how a part of the reality is represented
in a particular XML schema in a UML-style way. We introduce it formally in Defini-
tion 2. We view a PSM schema in two perspectives. From the grammatical perspective,
it models XML elements and attributes. From the conceptual perspective, it delimits
the represented part of the reality. Its advantage is that the designer works in a UML-
style way which is more comfortable then editing the XML schema. Formally, there is
a mapping from each PSM schema to the PIM schema.

Definition 2. A platform-specific (PSM) schema is a tuple S ′ = (S ′c,S ′a,S ′r,S ′m, C′S′)
of disjoint sets of classes, attributes, associations, and content models, respectively, and
one specific class C′S′ ∈ S ′c called schema class.

– Class C ′ ∈ S ′c has a name assigned by function name. For inheritance purposes,
function isa assigns a parent class to a child class and the relation must not form
a cycle. Furthermore, functions abstract and final determine whether the class can
have instances in data and whether this class can be inherited from, respectively.

– Attribute A′ ∈ S ′a has a name, data type, cardinality and XML form (whether it
models an XML attribute or an XML element) assigned by functions name, type,
card and xform, respectively. xform(A′) ∈ {e, a}. Moreover, it is associated with
a class from S ′c by function class and has a position assigned by function position
within the all attributes associated with class(A′).

72 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

Items

Item

ProductBase

Product
|

Purchase

@version

Customer

name

Contact

email {1..*}

phone {0..*}

ItemTester

@tester

ItemPricing

price

amount

cust items

item

PurRQSchema

purchaseRQ

1..*

Items

Item

ProductBase

Product

Customer

name

cust items

item

PurRSSchema

purchaseRS

1..*

Purchase

@code

create-date

@version

status

@version

ProductBase

code

title

CommonSchema

(a) (b) (c)

Address

street

city

addr

ShippingAddress

country

gps

LocalAddress
GlobalAddress

street

city

country

addr

Fig. 2. Examples of PSM schemas

– Association R′ ∈ S ′r is a pair R′ = (E′1, E
′
2), where E′1 and E′2 are called asso-

ciation ends of R′. Both E′1 and E′2 have a cardinality assigned by function card
and each is associated with a class from S ′c or content model from S ′m assigned by
function participant, respectively. We will call participant(E′1) and participant(E′2)
parent and child and will denote them by parent(R′) and child(R′), respectively.
Moreover, R′ has a name assigned by function name and has a position assigned
by function position within the all associations with the same parent(R′). name(R′)
may be undefined, denoted by name(R′) = λ.

– Content model M ′ ∈ S ′m has a content model type assigned by function cmtype.
cmtype(M ′) ∈ {sequence, choice, set}.

The graph (S ′c ∪S ′m,S ′r) must be a forest1 of rooted trees with one of its trees rooted in
C′S′ . ForC ′ ∈ S ′c, attributes (C ′) will denote the sequence of all attributes ofC ′ ordered
by position, i.e. attributes (C ′) = (A′i ∈ S ′a : class(A′i) = C ′ ∧ i = position(A′i)). Sim-
ilarly, content (C ′) will denote the sequence of all associations with C ′ as a parent or-
dered by position, i.e. content (C ′) = (R′i ∈ S ′r : parent(R′i) = C ′∧ i = position(R′i)).
We will call content (C ′) content of C ′.

A sample PSM schema is depicted in Figure 2. PSM uses similar constructs to PIM:
classes, attributes and associations. The PSM-specific constructs have precisely defined
semantics. A class models a complex content. The complex content is specified by the
attributes of the class and associations in its content (their ordering is given by functions
attributes and content). An attribute models an XML element declaration with a simple
content or XML attribute declaration depending on its XML form (function xform).
An association models an XML element declaration with a complex content if it has
a name. Otherwise, it models only that the complex content modeled by its child is
nested in the complex content modeled by its parent. Type of the modeled content (set,

1 Note that since S ′ is a forest, we could model R′ directly as a pair of connected components.
However, we use association ends to unify the formalism of PSM with the formalism of PIM.

eXolutio: Tool for XML Schema and Data Management 73

choice, sequence) can be specified by a special construct that can be, for example, seen
in Figure 2(a) under the Item class.

2.1 Interpretation of PSM schema against PIM schema

A PSM schema represents a part of a PIM schema. A class, attribute or association in
the PSM schema may be mapped to a class, attribute or association in the PIM schema.
In other words, there is a mapping which specifies the semantics of classes, attributes
and associations of the PSM schema in terms of the PIM schema. The mapping must
meet certain conditions to ensure consistency between PIM schemas and the specified
semantics of the PSM schema. The interpretation of a PSM schema against a PIM
schema is what we call the mapping. It is the core feature of our conceptual model.
It interconnects constructs on the platform-specific level with those on the platform-
independent level and allows for interesting use cases for the conceptual model like
XML schema evolution and integration [13, 14, 19, 20]. Its definition is, however, not
trivial and is beyond the scope of this paper.

3 eXolutio architecture

The implementation of our research results is a tool called eXolutio [12]. There exists
also an older version of our conceptual model and its implementation called XCase [11],
which is the predecessor of eXolutio. For simplicity, we will stick to the current name.
eXolutio allows the user to model a PIM schema and multiple PSM schemas with inter-
pretations against the PIM schema. The user can then evolve the whole set of schemas
coherently, because his operations are propagated to all affected places by a mechanism
described in [19].

Fig. 3. eXolutio screenshot

74 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

useruser

Model

Controller

Presentation

Updates

Input

Operations

View

(a) Overall architecture

+CommandOperation()
+UndoOperation()
+PrePropagation()
+PostPropagation()

CommandBase

AtomicCommand

+CommandOperation()

ComposedCommand

1*

1 *

foreach c in SubCommands

 c.PrePropagation()

 c.CommandOperation()

 c.PostPropagation()

+Undo()
+Redo()

Controller

1 1

SubCommands

UndoStack
RedoStack

+Push(in c : CommandBase)
+Pop() : CommandBase

CommandStack

c = UndoStack.Pop()

c.UndoOperation()

RedoStack.Push(c)

(b) Controller

Fig. 4. eXolutio – main MVC components

The architecture of eXolutio is based on the Model–View–Controller (MVC) design
pattern (Figure 4(a)). This means that we hold all the project data in the model part,
neither mixing it with operations, nor visualization. Whenever a user issues a command,
it is handled by the controller part. The controller makes all the necessary changes in the
model. The view part observes that the model has changed and updates the visualization.
The connections between individual parts are loose enough so it is possible to, e.g., use
multiple visualizations. In particular, we have a Windows Presentation Foundation [17]
visualization (a desktop application) a Silverlight [16] visualization (a web application)
and a no-visualization (a console application) versions of eXolutio which all share the
same model and the same controller.

Model The model part of the tool based on our conceptual model [21] consists of classes
for each modeled component, such as a class, an association or an attribute on each of
the modeled levels (PIM and PSM), a class for PIM and PSM schemas and a class for
the whole project. Besides the obvious properties of components like a name or a collec-
tion of attributes of a class, each component class implements methods for serialization
and deserialization of the component to and from XML. Therefore, when we save and
load a project, we simply call a serialization or a deserialization method on all found
objects in a certain order. Finally, each schema contains lists of all the components of
individual types in that schema, so we can easily go through, e.g., all associations in a
certain schema. Since one of the main features of our tool is the visualization of connec-
tions between the two levels of abstraction, one of the most common queries is “Give
me all PSM classes which have this PIM class as their interpretation”. We basically go
through each PSM schema in the project and through each PSM class in that schema
and check whether its interpretation is the given PIM class. In addition, the model con-
tains methods for easy traversal of both the PIM and PSM schemas. An example can
be a method for retrieval of all attributes of a PSM class including those inherited by
the structural representative constructs. Another example can be a method that gets all
uninterpreted descendants of an interpreted PSM class. When a certain method repre-
senting a query over the model is needed by the controller more than once, we make it
a model method so that everyone can use it.

eXolutio: Tool for XML Schema and Data Management 75

View The view component serves for two purposes: it visualizes the model for the user
and provides user-friendly interface to run the controller commands. PIM schemas are
depicted as UML diagrams and the layout of the diagram is left up to the user prefer-
ence, for PSM schemas we use automatic hierarchical layouting to emphasize the fact
that a PSM schema is a tree/forest. Besides the visualizations of the schemas, view com-
ponent provides several windows and controls that help the user to navigate the modeled
project, see the connections between individual concepts and follow the various links
(e.g. find interpretation of an attribute or a class referred from a structural representant).
The view component can be run either as a desktop application or inside a web browser
using Silverlight plugin technology. This browser view can be used to accompany a
documentation of published XML schema standards (e.g. [1]). An interactive visualiza-
tion of a family of schemas joined by a common model can benefit greatly every system
designer, who wants to adopt a third party standard and needs a clear overview of the
whole problem domain and its individual schemas.

Controller The controller is the core of the tool. It contains all the operations and algo-
rithms that make the tool unique. Also, it contains the usual command and undo/redo
management. Whenever a user issues a command from view, it is handled by the con-
troller. The controller (depicted in Figure 4(b)) gets all the necessary parameters from
view such as what command is requested, the currently selected components, the new
name for a component, etc. The controller creates the appropriate command, which in
most cases will be one of our composite operations (described later in this section) and
passes all the required parameters. The operation executes and updates the model ac-
cordingly. Then it places the command on the undo stack. The command itself contains
all the information it needs to change the model back to the state it was in before the
command was executed. In other words, we can simply call undo and the command
knows what it needs to do and whether it is possible. This way, we can stack the exe-
cuted commands and perform undo and redo operations as needed and as usual. In [19]
we have described a theoretical background for atomic (simple, well defined) and com-
posite (user-friendly) operations, which we will now describe from the implementation
point of view. One of our goals was also to make the two levels of abstraction (PIM and
PSM) work as independently of each other as possible while maintaining consistency
when there are connections between the levels. Therefore, the operations need to work
at their respective levels and be propagated only when there is an interpretation. Since
we have a quite complex system of operations, we had to break it down into simpler
parts. This means that among our atomic operations one can find for example an oper-
ation that creates an attribute. But it does not do anything else than that. Specifically, it
does not give a name to the attribute, it does not set its datatype, etc. For that, we have
other atomic operations. Having the atomic operations, we can compose more complex
and user-friendly ones. A basic composite operation can be the already mentioned cre-
ation of an attribute, which this time is user friendly. It is composed of the creation
of the attribute, renaming the attribute, setting its cardinality and its datatype. If it was
a PSM attribute, the operation would also set its xform (Definition 2). So this is basi-
cally a predefined sequence of 4 or 5 operations, which is quite simple. Another simple
example can be deletion of an attribute. This means setting its cardinality, name and
datatype to default values and then deleting it. The reason for this is that when we undo

76 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

this operation, we want the name and the other values of the attribute to recover, so it is
not correct to just delete the attribute. Let us have a look at a more advanced example.

So far we have described how to compose atomic and composite operations. How-
ever, these worked on their respective levels of abstraction. Now we have to make sure
that when there is an interpretation of a PSM schema against a PIM schema, we keep
the model in a consistent state and save the user’s time by propagating the changes be-
tween the levels. This is achieved by the propagation. Before each atomic operation is
executed, a method implementing its propagation to the other level is called. It deter-
mines whether there is an interpretation and therefore the need to propagate. If so, it
creates a (possibly) composite operation on the other level of abstraction and integrates
it to the currently running operation. Only when the propagation succeeds, the original
atomic operation that caused it is executed. This way, the propagation actually becomes
a part of the currently running operation. This is convenient because when it finishes, it
can be undone and redone like any other operation.

4 Experiments

To provide the proof of the whole concept and show the advantages of our tool, we eval-
uate our approaches using experiments based on a real-world family of XML schemas.
We experiment with the National Register for Public Procurement System (NRPP)2. It
is a governmental information system where public authorities in the Czech Republic
publish data about their public contracts. Authorities send contract information to the
information system formatted in one of the 17 XML formats accepted by the NRPP.
This includes, e.g. XML format for contract notifications, supplier selection notifica-
tions, etc. The information is then published by the system in the form of HTML pages.
The goal of the experiment is to show how our approach would save time if the authors
of the NRPP XML formats used eXolutio to design the XML formats and evolve them
according to changing legislation instead of their manual editing and adaptation.

Currently, the NRPP only provides a textual documentation for the XML formats
and a set of sample XML documents. Therefore, our first goal is to design a conceptual
schema in a form of a PIM schema which models the domain of public contracts and
design PSM schemas of the XML formats mapped to the PIM schema.

The PIM schema contains classes which model public contracts and their procurers
and suppliers. There are also some additional concepts modeled – i.e. prices and contact
information. A supplier is associated with a contract, a procurer is associated with a
contract by a path of associations has contact and main. Each contract has additional
contact information – where documentation for the contract is provided and where bids
to the contract are collected. Finally, there are four different prices – expected price, the
best offered price, price agreed by a selected supplier and procurer, and a final real price
known after finishing the contract. The PSM schema depicted in Figure 5 (a) models
an XML format which a public authority uses to send a notification about a new public
contract to NRPP. The PSM schema depicted in Figure 5 (b) models an XML format
for notifications about the supplier selected for the contract.

2 http://www.isvz.cz (in Czech only)

eXolutio: Tool for XML Schema and Data Management 77

Fig. 5. PSM schemas modeling XML formats for (a) sending contract notifications to NRPP, (b)
reporting on contract supplier selection to the NRPP, and (c) representing procurer detail

We can measure the amount of manual work required to design the PIM and PSM
schemas in terms of numbers of executed atomic operations. The numbers of atomic
operations executed to create the PIM and PSM schemas are depicted in Figure 6 (a). It
shows that only creation and update operations were used. Here, manual creation of the
schemas is necessary so there is no direct advantage in comparison to writing the XML
schemas of the XML formats directly. However, eXolutio saves time because for each
performed atomic operation it checks whether it does not break the consistency between
the XML formats. When the designer codes the XML schemas of the XML formats
directly no such control is performed automatically and (s)he must do it manually in
each step during coding.

0

50

100

150

200

250

300

α ν δ σ

0

100

200

300

400

500

600

α ν δ σ

0

20

40

60

80

100

120

α ν δ σ

0

50

100

150

200

250

300

350

400

450

α ν δ σ

(a) (b) (c) (d)

Fig. 6. Numbers of atomic operations performed manually by the designer (dark grey) and auto-
matically by the propagation mechanism (light grey)

Having the PIM schema and a set of PSM schemas of the XML formats used by
NRPP we set ourselves three goals. The first goal is to show how eXolutio facilitates
creating new XML formats on the basis of an existing PIM schema. A PSM schema of

78 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

a new XML format for public procurer details is depicted in Figure 5 (c). The numbers
of the atomic operations executed at this step are depicted in Figure 6 (b). Again, only
the creation and update operations were performed. Even though the designer needs to
design the PSM schemas for the new XML formats manually, the experiment shows
that our approach saves him/her a great deal of work and prevents him/her from making
unnecessary errors. This is because our technique enables us to create the PSM schemas
on the basis of the PIM schema (which is faster than creating PSM schemas separately)
and ensures that the designer creates the PSM schemas coherently with the PIM schema
(as it preserves the consistency of the interpretation).

The second goal is to improve the quality of the NRPP XML formats, which is
low. The designers of the XML formats did not follow basic XML design principles
(e.g. exploiting the hierarchical nature of XML). For example, contact information is
modeled by XML elements with names prefixed with cont , docs , etc. It would
have been better to remove the prefixes and enclose the semantically related XML el-
ements into separate XML elements (e.g. enclose contact XML elements to XML el-
ement contact structured to main, doc, etc. or enclose all information related to
the supplier into XML element supplier). We have made these adaptations in the
present XML formats. The numbers of the executed atomic operations are depicted in
Figure 6 (c). In this step, synchronization and removal operations were also used, be-
cause some of the old parts of the PSM schemas were replaced by new ones. Again,
the experiment demonstrated that our approach saves a lot of work as it preserves the
consistency of PSM schemas against the PIM schema when changes are performed.

The third goal was to show how the set of schemas can be evolved coherently. We
implemented various changes which resulted from new requirements on the NRPP func-
tionality and from new legislation. In both cases, changes to the PIM schema needed to
be done.

The new legislation required to report not only the number of bids received for each
contract, but also particular bids including the bidding supplier and offered price.

Finally, there was a requirement to update the XML format for contract notifications
(Figure 5 (a)) so that it is possible to give notification not only on the expected months
and days in which the contract should be finished, but also on the exact date. This
change was correctly propagated to the PIM schema, because it is a conceptual change.
From here, it was propagated to the other PSM schemas.

The numbers of the atomic operations executed during the last two steps are de-
picted in Figure 6 (d). The darker part shows the numbers of manually executed op-
erations. The lighter part shows the numbers of operations executed automatically by
the propagation mechanism. α are additions, υ are changes, δ are deletions and σ are
synchronizations - statements that two modeled sets of attributes or associations are se-
mantically equivalent. The synchronizations are very useful in our change propagation
mechanism, for details refer to [19, 20].

5 Related work

The current approaches towards evolution management can be classified according to
distinct aspects [15, 8]. The changes and transformations can be expressed [22, 4] as

eXolutio: Tool for XML Schema and Data Management 79

well as divided [6] variously too. However, to our knowledge there exists no general
framework comparable to our proposal; particular cases and views of the problem have
previously only been solved separately, superficially and mostly imprecisely without
any theoretical or formal basis.
XML View We can divide the current approaches to XML schema evolution and change
management into several groups. Approaches in the first group consider changes at
the schema level and differ in the selected XML schema language, i.e. DTD [2, 7] or
XML Schema [24, 5]. The changes are expressed variously and more or less formally.
Approaches in the second and third group are similar, but they consider changes at
an abstraction of logical level – either visualization [10] or a kind of UML diagram
[9]. Both cases work at the PSM level, since they directly model XML schemas with
their abstraction. No PIM schema is considered. All approaches consider only a single
separate XML schema being evolved.

In all the papers cited the authors consider only a single XML schema. In [23] multi-
ple local XML schemas are considered and mapped to a global object-oriented schema.
Then, the authors discuss possible operations with a local schema and their propagation
to the global schema. However, the global schema does not represent a common prob-
lem domain, but a common integrated schema; the changes are propagated just upwards
and the operations are not defined rigorously. The need for well defined set of simple
operations and their combination is clearly identified in Section 6 of a recent survey of
schema matching and mapping [3].

6 Conclusion

In this paper, we introduced eXolutio, our tool for XML schema and data management.
We surveyed related work and we showed the theoretical background behind our tool
and evaluated it on real-world XML schemas.

References

1. OpenTravel.org.
2. L. Al-Jadir and F. El-Moukaddem. Once Upon a Time a DTD Evolved into Another DTD...

In Object-Oriented Information Systems, pages 3–17, Berlin, Heidelberg, 2003. Springer.
3. Z. Bellahsene, A. Bonifati, and E. Rahm. Schema Matching and Mapping. Data-Centric

Systems and Applications. Springer Berlin Heidelberg, 2011.
4. A. Boronat, J. A. Carsı́, and I. Ramos. Algebraic Specification of a Model Transforma-

tion Engine. In FASE ’06: Proc. of the 9th Int. Conf. Fundamental Approaches to Software
Engineering, Vienna, Austria, volume 3922 of LNCS, pages 262–277. Springer, 2006.

5. F. Cavalieri. EXup: an Engine for the Evolution of XML Schemas and Associated Docu-
ments. In EDBT ’10: Proc. of the 2010 EDBT/ICDT Workshops, pages 1–10, New York, NY,
USA, 2010. ACM.

6. A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing Dependent Changes in Coupled
Evolution. In Proc. of the 2nd Int. Conf. on Model Transformations, ICMT 2009, Zurich,
Switzerland, volume 5563 of LNCS, pages 35–51. Springer, 2009.

7. S. V. Coox. Axiomatization of the Evolution of XML Database Schema. Program. Comput.
Softw., 29(3):140–146, 2003.

80 Jakub Kĺımek, Jakub Malý, Irena Mlýnková, Martin Nečaský

8. K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Approaches.
IBM Syst. J., 45(3):621–645, 2006.

9. E. Domı́nguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas and Doc-
uments Using UML Class Diagrams. In DEXA’05: Proc. of the 16th Int. Conf. on Database
and Expert Systems Applications, volume 3588 of LNCS, pages 343–352. Springer, 2005.

10. M. Klettke. Conceptual XML Schema Evolution – The CoDEX Approach for Design and
Redesign. In M. Jarke, T. Seidl, C. Quix, D. Kensche, S. Conrad, E. Rahm, R. Klamma,
H. Kosch, M. Granitzer, S. Apel, M. Rosenmüller, G. Saake, and O. Spinczyk, editors,
BTW’07, pages 53–63, Aachen, Germany, March 2007.

11. J. Klı́mek, L. Kopenec, P. Loupal, and J. Malý. XCase - A Tool for Conceptual XML Data
Modeling. In Advances in Databases and Information Systems, volume 5968/2010 of Lec-
ture Notes in Computer Science, pages 96–103. Springer Berlin / Heidelberg, March 2010.
http://www.springerlink.com/content/v45198r1v783xu13.

12. J. Klı́mek, J. Malý, and M. Nečaský. eXolutio – A Tool for XML Data Evolution, 2011.
http://exolutio.com.

13. J. Klı́mek and M. Nečaský. Integration and Evolution of XML Data via Common Data
Model. In Proceedings of the 2010 EDBT/ICDT Workshops, Lausanne, Switzerland, March
22-26, 2010, New York, NY, USA, 2010. ACM.

14. J. Klı́mek and M. Nečaský. Generating Lowering and Lifting Schema Mappings for Se-
mantic Web Services. In 25th IEEE International Conference on Advanced Information
Networking and Applications Workshops, WAINA 2010, Biopolis, Singapore, 22-25 March
2011. IEEE Computer Society, 2011.

15. T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electron. Notes Theor.
Comput. Sci., 152:125–142, 2006.

16. Microsoft. Silverlight. http://www.microsoft.com/silverlight/.
17. Microsoft. Windows Presentation Foundation (WPF). December 2010.

http://msdn.microsoft.com/en-us/library/ms754130.aspx.
18. J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group, 2003.
19. M. Nečaský, J. Klı́mek, J. Malý, and I. Mlýnková. Evolution and Change Management of

XML-based Systems. Journal of Systems and Software, 85(3):683 – 707, 2012.
20. M. Nečaský, I. Mlýnková, and J. Klı́mek. Model-Driven Approach to XML Schema Evolu-

tion. In R. Meersman, T. S. Dillon, and P. Herrero, editors, OTM Workshops, volume 7046
of Lecture Notes in Computer Science, pages 514–523. Springer, 2011.

21. M. Nečaský, I. Mlýnková, J. Klı́mek, and J. Malý. When conceptual model meets grammar:
A dual approach to XML data modeling. Data & Knowledge Engineering, 72(0):1 – 30,
2012.

22. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Version
1.0. Object Modeling Group, April 2008. http://www.omg.org/spec/QVT/1.0/.

23. K. Passi, D. Morgan, and S. Madria. Maintaining Integrated XML Schema. In IDEAS ’09:
Proc. of the 2009 Int. Database Engineering, Applications Symp., pages 267–274, New York,
NY, USA, 2009. ACM.

24. M. Tan and A. Goh. Keeping Pace with Evolving XML-Based Specifications. In EDBT’04
Workshops, pages 280–288, Berlin, Heidelberg, 2005. Springer.

