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Abstract. The concept of Linked Data has appeared recently in order
to allow publishing data on the Web in a more suitable form enabling
automated processing by programs and not only by human users. Linked
Data are based primarily on RDF triples, which are also modeled as
graph data. Despite the research effort in recent years, several questions
in the area of Linked Data indexing and querying remain open, not only
since the amount of Linked Data globally available significantly increases
each year. Our ongoing research effort should result in a proposal of a
new querying system dealing with several disadvantages of the existing
approaches identified in our previous work. They are especially related
to data scaling, dynamicity and distribution.

Keywords: Linked Data, RDF, indexing, querying, SPARQL.

1 Introduction

The concept of Linked Data [3] appeared in order to extend the Web of Docu-
ments towards the Web of Data. And the reason is simple – it is often not feasible
to retrieve potentially structured information from traditional documents based
on HTML [12] formats tailored for users and not programs.

Linked Data do not represent any particular standard; we only talk about
a set of recommended principles and techniques, which lead to the publication
of data in a way more suitable for their automated processing. First, each real-
world entity should be described by a unique URL identifier. These identifiers
can be dereferenced by HTTP to obtain information about the given entities.
And, finally, these entity representations should be interlinked together to form
a global open data cloud – the Web of Data.

A particular way to follow these principles is to use the RDF (Resource
Description Framework) [7] standard, where data are modeled as triples con-
forming to the concept of subject-predicate-object. An alternative means to view
these triples are graphs, where vertices correspond to subjects and objects, edges
represent the triples themselves and are labeled by predicates. At the implemen-
tation level, we can publish RDF triples in a form of RDF/XML [2] syntax and
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along the data we can also publish RDFS [4] schemata or OWL [8] ontologies
restraining the allowed content of such RDF data.

In recent years, a significant effort appeared not only in a theoretical research,
but also in the amount of Linked Data globally available. However, we can still
identify several open problems to which attention should be paid. The goal of our
ongoing research effort is to propose a new querying system for Linked Data. In
particular, we want to focus on indexing structures and techniques with respect
to SPARQL [10], probably the most used querying language for RDF data.

The aim of this paper is to provide a description of the system we are at-
tempting to propose. However, in order to understand our motivation, we also
need to discuss the existing approaches from the area of Linked Data indexing
and querying. Their thorough overview was presented in our previous work [15].
Although these approaches represent efficient systems (or at least promising in-
teresting proposals), when we focus on large amounts of dynamic and distributed
data concurrently, these approaches start showing their bottlenecks.

Preliminary ideas of our querying system were first introduced in [14]. Now,
we will discuss main aspects and issues of the architecture in more detail. They
are especially related to components for managing sources, distributed databases,
storages for data triples and auxiliary indexing structures. Index structures in
fact represent one of the crucial parts of our work, since the majority of existing
methods does not assume dynamic data. When processing queries, we need to
find suitable query evaluation plans, which involves the source selection and a
set of optimization strategies.

Outline. In Section 2 we present a basic overview of the existing approaches.
Section 3 provides the description of the architecture of system we are working
on. Finally, Section 4 concludes.

2 Related Work

The existing approaches can probably be divided into three main categories: local
querying systems, distributed querying systems and global searching engines. It
is worth noting that even though we want to focus on distributed querying,
its models and algorithms, wide range of relevant ideas can be found between
approaches for local querying. For simplification, we will use abbreviations S, P ,
O and C for subject, predicate, object and context respectively.

We start our overview of existing approaches by local querying systems. Index
structures proposed by Harth and Decker [5] enable querying of local data quads
with context. These structures involve Lexicon (an inverted list for keywords
and two-way translation maps for term identifiers based on B+-trees) and Quad
indices (B+-trees for SPOC, POC, OCS, CSP , CP , OS orderings) allowing to
query in all possible 16 access patterns. Despite data quads themselves, these
indices also contain statistics about data.

The core of the stream processor RDF-X by Neumann and Weikum [9] is
based on six B+-tree indices for all SPO, SOP , OSP , OPS, PSO and POS
access patterns. Additionally, they also use indices with statistics (S, P , O, SP ,
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PS, PO, OP , SO and OS projections) and selectivity histograms and statistics
for pre-computed path or star patterns. Next, the idea of HexaStore approach
by Weiss et al. [18] is based on similar SPO, SOP , OSP , OPS, PSO and POS
index structures, however, these are implemented as ordered nested lists. All
these lists contain only identifiers instead of strings, again.

BitMat is an approach proposed by Atre et al. [1]. Its index model is based
on a matrix with three dimensions for S, P and O values (terms are translated
to identifiers, which are used as matrix indices). Each cell contains a bit value
equal to 1 if and only if the given triple is stored in the database, otherwise value
0. The index is organized as an ordinary file with all SO, OS, PO and PS slices
stored using a bit run compression over individual slice rows.

Udrea et al. [17] introduced a model based on splitting data graphs into
subgraph areas that are described by conditions limiting their content. The idea
is derived from a metric defined on URIs and literals (e.g. a minimal number of
edges in a data graph between a given pair of values). The index structure itself
is a balanced binary tree, where internal nodes represent mentioned areas and
leaf nodes store data triples conforming to these areas.

The last presented local approach is a parameterized index introduced by
Tran and Ladwig [16]. Their model is based on bisimilarity relations, putting in
a relation such two vertices of the data graph that share the same outgoing and
ingoing edges (reflecting only predicates). Vertices from the same equivalence
class have the same characteristics and, therefore, prompted queries can first be
evaluated over these classes to prune required data.

Now, we move to distributed approaches. Quilitz and Leser [11] proposed a
system for integrated querying over distributed and autonomous sources. The
core of this approach is a language for description of distributed sources, in
particular, data triples they contain, together with other source characteristics.

The purpose of a data summary index by Harth et al. [6] is to enable the
source selection over distributed data sources. Data triples are modeled as points
in a 3-dimensional space (S, P , and O coordinates are derived by hash functions).
The index structure is a QTree based on standard R-Trees. Internal nodes act
as minimal bounding boxes for nested nodes, leaf nodes contain statistics about
data sources, not data triples themselves.

3 Framework

The system should provide transparent querying of distributed data – not in
the context of the entire Web of Data, but only within a distributed database
over which we have a full control. Linked Data are the subject of nontrivial
changes in time and, thus, the aspect of the data volatility cannot be ignored
in the framework architecture and index structures especially. Many existing
approaches bring interesting ideas, but their indexing models only assume envi-
ronments with static data. Therefore, the core part of our work is to propose an
appropriate dynamic index structure.



146 Martin Svoboda, Jakub Stárka, Irena Mlýnková

3.1 Sources and Databases

The nature of Linked Data assumes that data are distributed within the entire
global cloud of the Web of Data. Since completely centralized solutions seem
not to precisely follow this idea, we want to find a suitable compromise between
centralized and totally distributed approaches. For this purpose we can accept
an idea that a distributed database is spread across a set of sources, as we can
see in Figure 1 with a sample distributed infrastructure. Each source provides
two main features – it is able to store data triples inside its local storages and
provides interfaces for querying.

These sources can be viewed only as ordinary services, but we have the full
control over sources we want to use in our database – either we own them com-
pletely (and decide what data they should store), or, at least, we can decide
what independent sources we would like to use (and we accept data they pro-
vide). Anyway, submitting a query to a public interface of a particular source,
it should transparently decompose the query into its elementary parts, decide
which sources should be contacted to obtain relevant data, and, finally, to com-
pose the entire query result. In other words, the user should define data to be
used (by building its distributed database), but the query itself should be eval-
uated automatically without his or her explicit help.

For this purpose, we first need to have a technique for describing capabilities
of individual sources. A promising concept was already introduced by Quilitz
and Leser [11], as we already noted in the previous section. Anyway, we must be
able to clearly describe data the given source contains. This can be achieved by a
set of various conditions on triples and their S, P and O components. However,
this is not an easy task, since descriptions must be as accurate as possible. But
on the other hand, too complicated and big descriptions would be useless as well.
Moreover, if we assume data dynamicity and query evaluation, we also need to
publish statistics about given data, their versions or availability. And still we
cannot end, because if we recall the second purpose of each source, we must also
capture other issues of the query evaluation process. For example, if two different
sources contain the same data, it would be worth to know which of them has
better assumptions to execute the evaluation more efficiently.

Having defined the way how sources publish information about data they
contain, we need to manage sources themselves. So, assume that we have the
knowledge of sources we want to use, their locations or other technical details.
Now, we must define, which sources (and, in particular, which data) constitute
our database. This management seems to be easy, but cannot be omitted.

3.2 Storages and Indices

Data triples are stored in physical storages. Their role, however, might be a bit
different comparing to traditional relational databases or others. The model of
RDF triples is so simple that we can store data directly in indices, but as we
will see, this still does not mean that physical storages should not be included
in the architecture of querying systems. Although triples really are easy to grab,
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Fig. 1. Sample infrastructure with sources and distributed databases

it would be misleading to think that we do not need to handle different data
differently. Relational databases allow users to create schemata and explicitly
declare how their data should be stored in relational tables. However, we are not
offered similar features in existing native approaches for RDF data.

Therefore, we assume that a storage is a component for storing RDF triples,
but we do not have any further assumptions on their internal structure or char-
acteristics. The only important is to comply with an agreed public interface.
As a consequence, we can work with native storages, we can create wrappers
around relational databases, or even to access remote storages via network. In
other words, it would be interesting to access local storages within a particular
source with the same (or at least very similar) interfaces as we would use between
distributed sources during the query evaluation phase. In fact, we indeed need
to achieve this behavior, since if we formulate a query on a given source against
a particular database, apparently, some data may be available locally and other
not – but from the point of the query evaluation process, both these data play
the same role. A sample storages configuration can be seen in Figure 2.

Fig. 2. Sample collections and storages composition

The shared idea by the majority of indexing methods is the way of storing
string values of URIs and literals, because there is a high probability that strings
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(or substrings) may have multiple occurrences in the database. Therefore, it is
very effective to store these strings only once in a special storage, assign them
unique integer identifiers, and use them in RDF triples instead of the original
terms. As a consequence, frequently executed value equality tests during the
query evaluation may then be executed much faster and the space required for
storages decreases as well.

Having a particular domain of our problem, we should know at least some-
thing about data and even queries, and, thus, to design our database effectively.
We do the same years and years in relational databases, so we should be able to
select appropriate storages and indexing structures directly for our situation in
RDF approaches, too. This functionality should be one of the core parts of our
system. When storing data in a local storage of a source within a given database,
users should be encouraged to choose from a palette of implemented approaches,
best conforming to their situation.

The main disadvantage of the majority of interesting models for indexing
RDF data is the static nature of indexing structures themselves. We do not en-
able working with extremely volatile data, but it is not a good idea to strictly
assume only a static database. Therefore, one of our main goals is to extended
some existing approach [1, 13] towards support for adding, modifying and remov-
ing data from storages and associated indices. Another problem could represent
the necessity to heuristically configure indices. For example, in the index struc-
ture proposed by Tran and Ladwig [16], we need to define sets of predicates
that are used for restricting ingoing and outgoing edges from vertices when con-
structing equivalence classes based on a relation on vertices. Unfortunately, this
configuration may not always be feasible easily.

3.3 Queries

We have chosen SPARQL as a querying language. Having a query statement,
we first need to parse it into an internal representation of a graph pattern. For
simplicity, we can assume that this pattern is built from a set of triples, where
we can use variables instead of only fixed terms. They may serve for joining
individual patterns together, or may only state that we do not care about values
of a corresponding triple particle. The latter purpose in fact corresponds to the
idea of joining – if we first evaluate each pattern separately, then we need to
join intermediate results together – joining only those pairs of triples that have
equal values at positions of corresponding variables.

The problem is that our database is distributed between several sources. We
have descriptions of data these sources provide, thus, we need to decide for each
pattern (or even more complicated subqueries), where relevant data are located.
This problem is referred as a source selection. Whereas data summary index by
Harth et al. [6] works with detected summaries about data, we would like to rely
on discussed descriptions. However, relevant data can be split between sources in
different ways, or they can even partially or fully overlap. Therefore, this source
selection is not always simple and we must take care what sources we want to
access. We can see a sample query evaluation in Figure 3.
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Fig. 3. Distributed evaluation process of a sample query

When we have decided which sources contain relevant data, we are still not
finished with preparing the query evaluation plan. Data in sources are physically
maintained in storages and these storages may have different capabilities to
return required data. Thus, during the source selection, we also need to consider
these capabilities. And moreover, different indices may be available, too.

If we want to find a suitable query evaluation plan, which is a must, since
the complexity of different plans may be significantly different, we have to con-
sider all the following aspects: different sources, storages, indices and different
algorithms available for executing operations. The theoretical goal could be to
find the optimal plan, but in practice we must settle only for approximations.
Usually, we cannot inspect all possible plans, so we have to use only suitable
heuristics. Another problem is that we are often forced to use incomplete and
only approximate statistics.

The general idea of all optimizations is to avoid processing of irrelevant data
wherever possible and to perform all computations effectively. If the existing
approaches are not able to directly access only the required data, they at least
attempt to prune data using other methods or ideas. For example, we can move
data filtering selections as close as possible to their fetching, or we can perform
data pruning before the phase of joining. Probably the most important position
in query optimization techniques has the join ordering. It is quite interesting that
we can use similar ideas to the nested loop algorithm from relational databases.
However, there are other aspects that need to be considered, too.

4 Conclusion

In this paper we described the architecture of the querying system we are propos-
ing. Issues related to this architecture can be divided into two groups: data and
queries. First, we discussed observations and ideas related to the model of a
distributed database spread across a set of selected sources, motivation and fea-
tures of physical storages for RDF triples and indexing structures supporting the
query evaluation process. Finally, this process must discuss methods for finding
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optimal query evaluation plans, selection of relevant distributed sources and a
set of optimization techniques, too.

Although the existing solutions already focus on the same area, these ap-
proaches do not target at all three main open challenges concurrently – data
scaling, distribution and dynamicity.
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