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1 Uncertainty

When it comes to practical affairs, uncertainty is a notorious source of dis-
comfort. Decision-making, whether private or public, would be straightfor-
ward if the outcomes of the choices which are available in a given situation
could be foreseen with certainty. In the absence of reliable predictions beyond
reasonable doubt, decision-making has become an art as much as a science.

This may seem trivial from a contemporary vantage point, but histori-
cally it was a long way to move from a liberation from the ,quest for certain-
ty* (John Dewey) to the acknowledgement of the inevitability of uncertainty.
Along the way lay the inception of subjective (personalistic) probabilities
and the invention of the modern concept of a cardinally measurable utility.
While probabilities and utilities intuitively are independent of each other,
they are nevertheless amenable to a unified treatment and can be simulta-
neously developed in a suitable formal framework. The joint derivation of
probabilities and utilities from axioms for coherent, i.e. rational, preferences
is the hallmark of Bayesianism, and has found its classical exposition in
Leonard Savage’s Foundations of Statistics (Savage 1957). For some, Baye-
sianism is the ultimate philosophical answer to the challenge of uncertainty,
but this still leaves room for considerations on its scope. Thus, under one
perspective Bayesianism is a doctrine about processing statistical or partial
information, and its main components are the representation of partial infor-
mation states by probability functions and the integration of new evidence
or information -(,updating‘) - by so-called conditionalization. Conditionali-
zation here means that the (unconditional) probability function representing
a new information state ppe,, after learning some piece of evidence e is equal
to the conditional prior probability function representing the old informa-
tion state, conditional, i.e., on the item of evidence: ppew(A4) = poa(4le).!
Under a broader perspective, however, Bayesianism is an account of rational

!For more details see section 2.



choice, succinctly summed up in one recommendation: ,, Among the available
options, choose one for which the expected utility is maximum®. With the
expected utility of an option A defined as:

n

EU(A) =) _p(si)u(A(si)

i=1

where s1,...,8, are the relevant situations on which the agent is uncer-
tain, A(s;) is the outcome of an option (,act‘) A relative to the situation s;,
and v is a (subjective) utility function which is unique up to positive affine
transformation, the Bayesian recommendation of maximizing expected uti-
lity generalizes the Bayesian approach as a method of statistical inference
in an obvious manner.?

The mechanism of Bayesian deliberation, whose salient feature is the as-
sessment of uncertainty in the context of choice, is nicely illustrated by the
famous Monty Hall problem and similar probability puzzles.? In the Monty
Hall problem, the correct choice, standing up to the requirements of ratio-
nality, requires the appropriate calculation of conditional probabilities. On
the assumption that updating by new information conforms to conditiona-
lization and in this sense refers to conditional probabilities, these can be
calculated by the use of Bayes’ theorem:

p(h) x p(elh)

p(hle) = P

However, while these examples are frequently seen as evidence that Baye-
sian inference is a powerful device, they indicate at the same time where it
stands in need of improvement. In many cases, the unconditional probability
of the evidence e is unknown and not open for direct assessment. What might
be known, however, are probabilities for e, conditional on various hypothe-
ses hi,...,h,. Where these hypotheses hi,...,h, are mutually exclusive
and jointly exhaustible (i.e. their probabilities add up to 1), p(e) is, on basic
probability postulates, equal to p(e|h1) x p(h1) + ... + p(elhy) X p(hy,). As
these conditional probabilities in turn may depend on other variables, the
computation of a specific probability value may get quite involved.

2For philosophical purposes, it well deserves to be pointed out that the philosophy of
pragmatism in the tradition of C.S. Peirce and John Dewey proclaims a priority of practice
over theory, and thus sees beliefs and the cognitive standards for assessing the rationality
of beliefs as dependent on the aim to make beliefs trustworthy for guiding actions, where
actions may also include further inquiry.

3In the Monty Hall problem, a guest in a TV show is offered a choice between three
doors, with the prize, a car, behind one of the doors, and a goat behind each of the other
two doors. After having chosen one door, the show master opens one of the two doors
that were not chosen by the guest, and one of the goats appears. The guest is then asked
whether she wants to stick with her original choice or whether she wants to ’switch’. It
turns out that switching increases the prospects for winning the prize to 2/3.



In general then, it is a considerable improvement, when coping with
uncertainty, to find a joint probability distribution which provides all the
necessary probability values. Joint probability distributions are, however,
with an increasing number of variables complex to handle and require con-
siderable computational power. In particular, the task of integrating new
evidence, which amounts to updating all the values in the joint probabili-
ty distribution, can be quite demanding. At this point Bayesian belief nets
come into play.

2 Bayesian Belief Nets

Usually, probabilities are defined for propositions or for events. For our ex-
position, we will assume, however, that probabilities are defined for variables
with a (finite) number of possible states, such that each variable is in exactly
one state at one time. To each variable is assigned a probability distribution.
It should be obvious that the variables stand for individual propositions (or
for events, according to one’s taste). A situation (in Savage’s terminology
a state), then, is defined jointly by the states of each of the variables. As
in Savage’s exposition, an event may also be defined as a set of situations
(or Savage states). Where A is a variable such that its possible states are
a1, - ., ap, a probability distribution p(A) for A can be written as

p(A) = (21,...,2Zn)

n
such that ; > 0 and Z z; = 1. As should be obvious, z; denotes the

i=1
probability that variable A is in state a;.
Conditional probabilities are defined by the following equation:
p(4, B)
p(B)
Bayes’ Theorem follows from this definition straightforwardly, and it can be
stated in a general form as:

p(A|B) =

_ _p(E|Ay) x p(Ai)

]glp(ElAj) x p(4;)

(4| E)

n
Note that Y p(E|A;) x p(A4;) equals p(E), which accounts for the general
j=1
version of Bayes’ theorem, once its standard version is established.

Suppose, we are concerned with a situation in which n variables A4,..., 4,
are involved. A joint probability distribution for the universe under conside-
ration p(U) is defined as

p(U) =p(A1,...,An)



By standard techniques like marginalization, p(U) can be used to compute
p(4;), or even p(A;|e), where e is some evidential input. However, when the
number of variables is large enough (and it has not to be very large), the
joint probability distribution p(U) seems to get almost useless for practi-
cal purposes, as the complexity increases considerably with the number of
variables and the number of the states for each variable.

However, there may exist dependencies between some of the variables,
e.g. as causal relations, such that information on one variable affects the
probability distribution for another variable. For example, in Jensen’s car
start problem (Jensen 2001) the filling of the gas tank results (with a certain
degree of reliability) in a certain fuel meter reading, and thus the fuel meter
reading provides information about the gas tank. If dirty spark plugs and
lack of gas are identified as the potential causes for a failed car start, and the
fuel meter reads full’, then we will be willing to conclude that the problem
is more likely to be due to the spark plugs.

Given a pattern of (causal) relations, the computation of a joint proba-
bility distribution is simplified by the so called chain rule. Let the relational
pattern be represented by a non-cyclical graph whose edges are directed
(representing the idea that the influence, whether causal or not, has a di-
rection), and let Pr(A) - the set of variables preceding A - stand for the set
of variables which are connected with A by a directed edge such that they
precede A in the graph. Then the chain rule states that

pU) = HP(Az'|P7“(Ai))

where A; is among the variables in the universe U. A proof of the chain
rule basically exploits the fact that p(A, B) = p(A|B) x p(B) which follows
immediately from the definition of conditional probabilities. In addition, it
relies on information about what can be ’omitted’ because of some sort of
informational separability.* Due to the chain rule which is applicable in an
Bayesian Belief Net (BBN), joint probability distributions are more readily
tractable than they would be in the absence of information about influence
patterns. A BBN in this context is formally defined as a directed, acyclic
graph where each of the variables forming the nodes can be in one of a finite
number of mutually exclusive states, and where to each variable A with pre-
decessors By, ..., By, is assigned a probability distribution p(A|By, ..., By).

From a purely theoretical perspective, BBNs may not look utterly im-
pressive. But they are of some interest with regard to practical applicati-
ons, and an increasing number of expert systems is based on the technique
of BBNs. Prominent examples for recent applications comprise, amongst
others, weather forecasting (Kennett/Korb/Nicholson, 200x), medical dia-
gnosis for brain injuries (Sakellaropoulos/Nikiforidis 2000), electronic mail

“For details on the proof and the notion of separability as ’d-separation’, see Jensen
(2001), 21



delivery systems and diagnosis of printing problems (Microsoft), fraud de-
tection (AT&T), failure detection in telecommunication networks (Nokia),
and logistics in car manufacturing (Volkswagen). The general aim of all of
these systems is an efficient handling of information about uncertain events
in the form of hypotheses whose probability has to be assessed in the light of
the available evidence. While it is plausible to claim that experts systems in
general are still in their infancy, first comparisons seem to suggest that BBNs
tend to fare better than most of their rivals, and outperform in particular
rule-based systems that do not take account of probabilities as a measure of
uncertainty.

But in spite of their technical success in these and other promising areas
of application, Bayesian Belief Nets are not exempt from critical discussi-
on. At present, their design as expert systems seems to be founded on the
idea that the expert supplies the structure of the dependencies, or causal
or informational influence - the model -, while the system calculates the
probabilities on the basis of the model. But this situation is unsatisfactory
for several reasons. First, despite a fully developed formalism for probabi-
listic reasoning, Bayesian Belief Nets, in relying on human expertise and
intuition for the identification of causal relations, still depend, on this view,
fundamentally on ,tacit knowledge’ that so far seems largely unassailable for
scientific methods and a systematic treatment. Although it certainly would
betray a form of scientific hubris if one would look with contempt at all areas
of human activities which hitherto have withstood formalization and which
are heavily based on tacit, non-declarative knowledge, this aspect nonethe-
less makes BBN’s slightly less attractive as a technically powerful way for
handling uncertainty. Progress in formal learning theory, however, may help
to overcome the state where model building is largely a matter of individual
ingenuity.®

However, more serious than this aspect is the (vaguely related) fact that
the models on which the computations of joint probabilities are based are
not necessarily unique. To be sure, in those cases where the domain of pos-
sibly uncertain events was explicitly designed, the uniqueness of the model
and a thorough knowledge on the causal relations between possible events or
variables can be expected. But in many areas of research, where the domain
of uncertain events is not subject to human invention or intervention but
instead is given in advance, the model itself stands in need of exploration.
In those cases, therefore, it is not only conceivable but highly likely that dif-
ferent hypotheses about (causal) dependencies between the variables under
consideration can be entertained, and as these lead to different models the
probability calculations based on these models must be expected to differ.

5t is fair, however, to emphasize that efforts to formalize model building and formal
learning about causal structures are currently under way. Therefore, one should not conclu-
de from the present state of affairs that model building will remain beyond formalization
for all times.



Although this problem is explicitly acknowledged in the BBN community,
its consequences are not sufficiently embraced. Many workers in the field
of BBN’s seem to be content to take several models into account and to
accept all of the probability results that can be deduced from these different
models. Where the goal is to demonstrate the superiority of BBN’s over
other theories of modelling uncertainty, this equanimity is not surprising.6
But from a more philosophical perspective this situation is unsatisfactory. In
particular, when the aim is to estimate the likelihood of events in the context
of choice, ambiguous probability assessments surely should be avoided, or
otherwise the Bayesian recommendation for choice under uncertainty is of
10 help. Where, due to the incompleteness of our knowledge, more than one
model representing causal dependencies is available, the situation is equal
to one where several agents entertain different probability judgements and,
hence, find themselves in a conflict concerning the likelihood of one or more
hypotheses. The Bayesian approach in general is ill-suited for dealing with
such conflicts for reasons to which we now turn.

3 Conflict and Knowledge Management

An important feature of Bayesianism in any of its versions is that it is
a forward-looking doctrine in the sense that a new information state can
only be the result of new informational input. Uncertainty, on this view, is
due to the incompleteness of our knowledge and not to the unreliability or
imperfection of given information.” There is much to said in favor of this
conception, but it obviously ignores the everyday experience that sometimes
new informational input requires adjustments or corrections with respect to
previously held beliefs. The Bayesian postulates neglect the occasional need
for a revision of information states as a result of, for example, the impacts
of new evidence where this is incoherent with the given information.® But
a need to revise or modify an information state may also be prompted by
a desire to seek a consensus between agents whose assessments prove to be
incompatible, and this is the kind of situation with which we were concerned
at the end of the preceding section. Again, Bayesianism is at a loss when it
comes to conflicting probability judgments, because, in some sense, conflict
does not exist under a Bayesian perspective, or, to be more exacting, can

5See, e.g., Kennett/Korb/Nicholson (200x), where three Bayesian nets are shown to
outperform considerably the hitherto established method of sea-breeze prediction in ac-
curacy.

"Which is to say, given knowledge may be imperfect because it is incomplete but to
the extent that it is available it is not defective. Thus, we may not know everything but
what we know is free of errors.

8This and other limitations of Bayesianism were criticized by Isaac Levi for more than
two decades, see, e.g., Levi (1980). Levi’s own proposals for reasoning under uncertainty
are the background of the present paper and will be sketched i this section.



only exist as a transitory state to be remedied by additional information.

There are, in fact, two results which, taken together, can be understood
as a refutation of the possibility of genuine conflict under a Bayesian per-
spective. The first one, known as ,washing out of priors‘, states that different
probability distributions will converge under a sufficiently large series of up-
datings by additional evidence. The second result, Aumann’s theorem on
agreeing to disagree, states that the posterior probabilities of two ideally
rational agents for an event must be equal if their priors were equal and the
posterior probabilities are common knowledge, and irrespective of how they
arrived at the posteriors. This means, in Aumann’s own words, that ,, people
with the same priors cannot agree to disagree“.® Lack of information, then,
is the only conceivable source of conflict among rational agents, and any
conflict as to questions of fact must be overcome by additional evidence.
But even if this is accepted, it still would be desirable to supplement the
Bayesian account by criteria for a rational consensus in the absence of ad-
ditional information. In the case of two agents whose beliefs are in conflict,
this means that there exists at least one belief which should be withdrawn
in order to identify those convictions which are shared by both agents and
which mark common ground.

How does all this relate to Bayesian Belief Nets and the possibility of
rival probability assessments by different BBNs? If, as suggested above, ex-
perts can disagree on the causal structure of a field under investigation and
therefore propose different models for computing the probabilities of the
events of interest, then it is not unlikely that additional information for the
solution of the conflict is not available and will not be available within the
time in which a decision has to be reached. A rational choice, then, must
find a solution for these competing hypotheses and the (possibly different)
choice recommendations based on them.

One option, of course, is to identify the ,worst-case scenario‘. This means,
preference would be given to that model for which the outcomes of the events
of interest are the most unfavorable, a strategy which equals the maximin
criterion for choice under uncertainty. For example, insurance companies
trying to estimate the potential effects of a global climate change on the
basis of different models which lead to different conclusions might well give
priority to more pessimistic estimations. But although risk-averse ,maximi-
ning* is reasonable in many situations, it is far from clear that more optimi-
stic assessments can always be dismissed so easily. When, in addition, the
problem of mediating between disagreeing experts is understood as a ca-
se of collective decision-making where non-uniform probability judgements
as well as different preferences have to be aggregated, then a rule that au-
tomatically gives priority to the worst-case scenario is certainly, in social
choice terminology, dictatorial. For these reasons, a more flexible approach

®Aumann (1976), 1236; the emphasis is Aumann’s.



for mediating between different and incompatible probability assessments by
different Bayesian Belief Nets, or by different experts in general, is needed.

A promising proposal, due to Isaac Levi, introduces so called ,indetermi-
nate probabilities‘. Indeterminate probabilities were primarily designed to
overcome the rigid Bayesian commitment to unique numerical probabilities.
Instead of identifying probabilities with unique real numbers in the inter-
val [0, 1], indeterminate probabilities are intervals of real numbers in [0, 1].
Formally, a closed interval of reals is the same as the convex set defined by
the greatest lower bound and the least upper bound of the interval. This, in
turn, is based on the following motivation for indeterminate probabilities.
Suppose, we face a situation in which two or more conflicting probability esti-
mations are available, stemming either from different agents or from different
models. A resolution of this conflict should not simply ignore or overrule any
one of the conflicting positions. Rather, mediation should proceed by taking
all available (and prima facie sufficiently reasonable) probability estimations
into account, and also those which could be seen as a comprise between the
given estimations. Formally, this is done by taking the set of the existing
probability values and forming its convex hull. Because probability values
represent a degree of confidence for a single event (proposition), they are
something like points in an cognitive space. Proceeding on the assumption
that an epistemic state is represented by a probability function, we achieve
the full generality of indeterminate probabilities by working with nonempty,
convex sets of (finitely additive) probability functions (Levi, 1974).

For a demonstration of the advantages of indeterminate probabilities in
the context of choice, Levi points occasionally to the well-known Ellsberg
problem. The Ellsberg problem consists in a pair of games of chance where
a ball is drawn randomly from an urn containing ninety balls of three colors.
Thirty balls are known to be red and each of the remaining sixty balls is
either black or yellow, in unknown proportion. The payoff matrices for the
two games are as follows.

Game |
30 ‘ 60
red ‘ black ‘ yellow
A | $100 | $0 $0
B| $0 | $100 $0
Game 11
| 30 | 60

$100 | $0 $100

‘ red ‘ black ‘ yellow
C
D| $0 | $100 | $100



Empirical studies suggest that many agents (in most experiments a clear
majority) prefer option A in Game I and option D in Game II. This kind
of behavior, however, is at odds with Bayesian recommendations, because
no utility function, assigning the same utilities to the same outcomes in
both games, makes this choice behavior coherent. The force of the Ellsberg
problem however, is not just to show that Bayesian decision theory is des-
criptively inadequate. Even more important is the point that in the absence
of unique probabilities on which the outcomes depend, agents can plausibly
justify their choice behavior that contradicts Bayesian prescriptions. On the
basis of indeterminate probabilities, the following account can be given. Op-
tion A in Game I comes with a prospect of winning $100 with a probability
of 1/3, while in option B the chances of winning the same amount of money
range from 0 to 2/3. No estimation is possible, however, where, within this
range, the true chance will lie, because the proportion of black and yellow
balls is supposed to be unknown. In Game II, on the other side, it is opti-
on D that comes with a fixed prospect, now of 2/3, while the chances for
option C range from 1/3 to 1, and no information is available where it will
lie exactly. Therefore, the chances for winning in option B could be better
than in option A, but they also might be worse, just as in Game IT option C
might be better than option D but also might be worse. As the agents are
unable to decide which of these possibilities really holds, they have reasons,
by deliberations similar to ,maximining‘, to resort to those options which
offer a fixed security level, namely option A in Game I and option D in
Game II.

Indeterminate probabilities were presented above as unconditional pro-
babilities. It is more convenient to define indeterminate probabilities, as Levi
himself has done in his original exposition (Levi 1974) as non-empty, convex
sets P.(A) of (finitely additive) probability functions p(Ale), for propositi-
ons e consistent with the background knowledge, and all propositions A.
Usually, joint probability distributions are defined by reference to conditio-
nal probabilities, as p(A, B) = p(A|B) x p(B). Multiplying indeterminate
probabilities ,pointwise* yields joint probability distributions for indetermi-
nate probabilities.

Without going into technical details, we concentrate instead on the ob-
vious implications for knowledge management. The Ellsberg problem indi-
cates that indeterminate probabilities overcome some of the deficiencies that
affect the Bayesian paradigm with its insistence on unique numerical pro-
babilities. In point of fact, Bayesian decision theory is a special case of the
decision theory based on indeterminate probabilities, as is, under favorable
conditions, the maximin strategy for choice under (severe) uncertainty.'% But
in contrast to the restricted methods of Bayesian deliberation, indetermina-
te probabilities accommodate to the possibility of conflicting assessments of

OFor details see Levi (1974).



uncertain events. To the extent that different estimations about the proba-
bilities of the possible situations pertinent to some context of choice give rise
to different recommendations concerning the option to be chosen, group de-
cision may be expected to take place under conflict. In order to overcome an
impasse that may result from such a situation, indeterminate probabilities
offer a model of mediation for conflicts under uncertainty in the following
ways. First, by substituting unique numerical probabilities with probability
intervals a weaker epistemic position is maintained. Therefore, the commit-
ment to a certain degree of confidence in some hypothesis is less strict. By
weakening their endorsement of a certain belief and by suspending judgment
on the exact degree of uncertainty, agents are able to retreat to a weaker
position that can be shared by others who initially held different beliefs
concerning the likelihood of a hypothesis under dispute. In this way, they
may find a mediating position that is sufficiently broad to be embraced by
the agents with conflicting opinions, and yet encapsulates their joint beliefs
as something like the ,greatest lower bound‘. Second, a partial suspense of
judgment will in some cases imply a suspense of choice. This is due to the
fact that in the absence of unique estimations for situations which are un-
certain, calculations of expected utility also will typically fail to be unique.
Different probabilities for an uncertain event will lead to different utility
expectations. The obvious consequence is that different recommendations
can be entertained how or by which action to maximize expected utility.
In the lofty realms of scientific reasoning, states of conflicting assessments
may be taken as a transient nuisance. Further information or evidence will
have to be awaited for the resolution of such a conflict, and inquiries will be
undertaken with the aim to procure the required information.

But in everyday situations as well as in the world of business affairs,
the prevailing constraints on time or budget often will prevent that these
conflict will be resolved by additional information. Decisions, then, have to
be made with the available resources and on the given informational basis.

Emntrepreneurial decision very often are group decisions. Except in ra-
re cases of strong homogeneity (which in some groups, of course, may be
brought about by compulsion), opinions on the likelihood of relevant si-
tuations will vary. With their commitment to economic success, managerial
decisions find a preeminent task in the settlement of dispute in order to
embark on a clear business strategy. Insurance companies have to fix pre-
miums, stock brokers have to buy, hold, or sell assets, and so on. However,
under conflicting judgments on what is the case or how risky some business
may be, disagreement on proposed strategies is not entirely unlikely. One
role, then, that knowledge management in situations like that can fruitfully
play is that of mediation between conflicting assessments where these stand
in the way of consensual decision making. Levi’s account of indeterminate
probabilities is a promising proposal for rational mediation between con-
flicting assessments. Indeterminate probabilities represent epistemic states

10



of a more flexible sort than ordinary probability functions in their com-
mitment to uniqueness. Where agents disagree on the likelihood of events
under consideration a mediating proposal comprises the full range of con-
flicting assessments, and thereby calls for a suspense of judgment over the
precise degree credence that should be assigned to the uncertain events un-
der dispute. On the mediating position, less is taken for granted and decision
making will proceed in a more cautious manner. Levi’s decision theory, to
the extent that it is based on indeterminate probabilities, is tied to a con-
ception of stratified choice behavior. In a first step, those options bearing
maximum expected utility under some probability estimation are identified,
and in a second step - assuming that choice can be suspended - those of the
options selected in step 1 which bear the highest security level, i.e. which
under the least favorable probability estimation have the highest expected
utility, are chosen.'! Under this process, decision making, in particular when
done by groups, will put some emphasis on security. This conformns to the
intuition that less daring decisions, decisions which are risk-averse, are easier
to justify than maximum risk-bearing choices.

Uncertainty marks an epistemic challenge for groups as well as individu-
als. Indeterminate probabilities were presented as a method for overcoming a
notorious obstacle for deliberate decision making. Knowledge management
should profit from this proposal to the extent that it offers a concept of
mediation where groups have to reach decisions under conflicting factual
assessments.
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