
Inferencing and Truth Maintenance in RDF Schema
Exploring a naive practical approach

Jeen Broekstra
jeen.broekstra@aidministrator.nl

Arjohn Kampman
arjohn.kampman@aidministrator.nl

Abstract Contrary to earlier reports in literature, exhaustive forward inferencing is a feasible
approach for practical RDF. It is sufficiently fast and the increase in necessary storage size is suf-
ficiently small to make it work. Benefits of this approach are low-cost design and implementation,
and very cheap query answering, since this task is reduced to simple lookup without inferencing.

A potential problem of exhaustive forward inferencing is how to deal with statement deletion
(an aspect often ignored thus far): when a statement is removed, some of its consequences may
also have to be removed. The naive approach is to simply recalculate the entire deductive closure
of the RDF store. A more sophisticated approach is based on truth maintenance: it tracks all
deductive dependencies between statements, and uses this to determine which other statements
will have to be removed as a consequence of a single deletion. This approach has the additional
advantage of having deductive dependencies available for other tasks, such as business logic and
change tracking.

We give a detailed algorithm for such truth maintenance for RDF(S), and we compare the perfor-
mance of this algorithm with that of the naive recomputation approach.

1 Introduction

The Resource Description Framework (RDF) [7] specifies a simple model for knowl-
edge representation. RDF Schema (RDFS) [1] adds additional expressive power and se-
mantics to this basic model. The combined language has a simple propositional logic as
its foundation, the semantics of which are described in the RDF Model Theory (MT) [5].

We have studied a number of practical issues that arise when computing the deduc-
tive closure of an RDF Schema and dealing with the consequences of delete operations.
First, we present a simple, scalable approach to RDF MT inferencing in an exhaus-
tive forward-chaining fashion. Second, we present a Truth Maintenance algorithm that
makes use of dependencies between statements to deal with ’non-monotonous’ updates
(i.e. delete operations) to an RDF Schema knowledge base. We present how this algo-
rithm has been implemented in the Sesame [2] architecture, and present the results of
several benchmark tests we have undertaken with our approach.

The purpose of dependency tracking between statements as presented in this paper
is twofold. First, the information about the dependency relations between statements is
necessary for several high-level services on RDF repositories, such as change tracking
and statement-level security (see [3] for details). Second, the goal is to achieve a perfor-
mance improvement in removal operations when compared to brute-force approaches.

2 Related Work

There is a large body of literature available on efficient algorithms for transitive clo-
sure computing. For example, in [10] a thorough analysis of the problem is given and
a set of algorithms for maintaining transitive closures and transitive reductions of di-
graphs is presented. While such closure algorithms are highly relevant for the problem
at hand, we do not consider this approach in this paper: our aim is not to present a
highly efficient algorithm for inferencing, but to implement a naive exhaustive forward
chaining approach (which is very low-cost to design and implement) and ”see how far
we can stretch it”. Claims in earlier literature have often dismissed the idea of such a
naive approach out of hand, but we feel it is worthwile to explore the idea, to determine
empirically how scalable and practical such an approach can be.

In [4], Doyle proposes a Truth Maintenance System, to allow reasoning programs
to make assumptions and subsequently revise their beliefs when discoveries contradict
these assumptions.

The system proposed in this paper is much simpler than the system by Doyle: it only
has to deal with propagation of disbelief (i.e. the TMS is only invoked when proposi-
tions are retracted). In fact, the algorithm that we propose is a drastically simplified and
altered version of the justification-based TMS proposed in [4].

3 Inferencing in RDF

3.1 The RDF Model Theory

The RDF Model Theory [5] is a specification of a model-theoretic semantics for RDF
and RDF Schema, and some basic results on entailment. Of particular interest to us is
that it presents a set of entailment rules for computing the deductive closure of an RDF
Schema Model. These entailment rules are at the core of why a TMS is needed in a
system that interprets RDF Schema semantics.

The entailment rules infer new RDF statements based on the presence of other state-
ments. However, the RDF MT also asserts a set of RDF statements which are considered
true regardless of what other information is present. These axiom statements deal exclu-
sively with the semantics of the RDF(S) primitives themselves, and assert such truths
as ”subPropertyOf is a Property”.

The claim of [5] is that the deductive closure of an RDF Schema is computed by
recursively applying these entailment rules to the set of RDF statements.

3.2 Forward chaining closure computing

In [8], Ora Lassila notes that using brute-force, exhaustive, iterative application of the
RDF MT entailment rules is not a realistic option:

triggers rule:
rule: 1 2 3 4a 4b 5a 5b 6 7a 7b 8 9 10 11

1 * * * * * *
2 * * * * * * * * *
3 * * * * * * * * *

4a * * * *
4b * * * *
5a * *
5b * * *
6 * * * * * * * * * * *

7a * * * * *
7b * * *
8 * * *
9 * * * * * * * *

10 * * * * *
11 * * * * *

Table 1: Dependencies between RDFS entailment rules

The rules are highly redundant and their brute-force, exhaustive, iterative ap-
plication is not a realistic way of computing the closure. For example, give a
graph with only one triple, the rules [...] would generate 17 new triples, but
would also result in 493 attempts to add a redundant triple. [.....] another issue
is that the application of the rules may result in the addition of a large number
of new triples in the database [...].

However, as we will show in this section, with a few optimizations it turns out
to be quite feasible to apply the RDF MT entailment rules in a exhaustive forward
chaining strategy, and our experiments show that on RDF datasets taken from practice,
the addition of these new triples does not result in problematic sizes of the repository.

Consider table 1, which shows the dependency relations between the entailment
rules. A ruleφ1 → ψ1 is dependent on another ruleφ2 → ψ2 if there is some con-
clusions ∈ ψ1 that matches a premisep ∈ φ2. A number of things become apparent
immediately from table 1: first, rule1 is not dependent on any other rules. This means
that for one run of the closure-computing mechanism this rule only needs to be invoked
once. Second, rule6 seems to be computationally heavy, as it is triggered by every other
rule. However, if we examine rule6 we see that it has to do with subProperty relations,
which is a feature that is comparatively rarely used.

Sesame uses a forward chaining algorithm to compute and store the closure during
any transaction that adds data to the repository. The algorithm runs iteratively over the
entailment rules, but makes use of the dependencies between entailment rules shown
above to eliminate most redundant inferencing steps. Specifically, in any iterationn of
the algorithm only those entailment rules are invoked which have a dependency on a
rule that produced new statements in iterationn− 1.

This exhaustive forward chaining approach, although by many considered to be
non-scalable, turns out to perform surprisingly well. We used a number of different

data sets in testing this approach. The selected data sets are not toy examples, but actual
sets that are in use in various projects, of different sizes and complexity, and we believe
this selection to give an interesting cross-section of different use cases for RDF.

– OpenWine is an open source data set that contains information about different
wines. It is available fromhttp://www.openwine.org/ .

– SUO stands for ”Standard Upper Ontology” and is a DAML+OIL representation
of the SUO IEEE effort to standardize an upper ontology1. The DAML+OIL file is
available fromhttp://www.daml.org/ontologies/uri.html .

– CIA is an RDF representation of the CIA World Factbook. It is an enhanced version
of the RDF representation produced by the On-To-Knowledge IST project2 and is
available fromhttp://sesame.aidministrator.nl/testsets/CIA/ .

– Wordnet is a data set containing the Wordnet 1.6 schema (wordnet-20000620.rdfs)
and the set of nouns (wordnet nouns-20010201.rdf). These files are available
for download athttp://www.semanticweb.org/library .

As can be seen, the increase in number of statements through closure computing
varies per data set, however in most cases it is well under control and does not exceed
50%. The only exceptions to this rule is the SUO data set. This large increase is caused
by the fact that it consists exclusively of a large class hierarchy that is both broad and
deep: since virtually every statement in the set is a schema statement a lot of inferencing
rules are applicable to all statements.

3.3 Backward Chaining closure computing

An alternative approach towards computing the RDF MT closure of an RDF model
employs a backward chaining strategy, which combines best with an on-demand/just-
in-time approach towards closure computing (i.e. instead of computing the entire clo-
sure in advance, only the relevant part of the closure is computed whenever a particular
query is being resolved). The main advantages of such an approach are the decrease in
required storage size and upload time, while the main disadvantage is the decrease in
performance of query answering. In our current setup, we have chosen to give query
performance a high priority and therefore have chosen to explore the possibilities of
forward chaining first. However, it is recognized that when the complexity of the model
theory and the expressivity of the modeling language increase (for example when mov-
ing from RDF Schema to OWL Lite [11]), the disadvantage of larger storage space may
at some point outweigh the advantage of faster querying, and an adjustment in strategy
will need to be made. The remainder of this paper further explores the performance and
the limits of the forward chaining strategy, and the consequences this strategy has for
other operations, such as removal.
1 Seehttp://suo.ieee.org/
2 seehttp://www.ontoknowledge.org/

4 Truth Maintenance

As we have seen in section 2, truth maintenance in RDF models is a comparitively
simple problem. Since RDF is monotonic in nature, truth maintenance only becomes
important when a statement is retracted. In other words, we are dealing with a single
aspect of truth maintenance:disbelief propagation[9].

Our approach is further simplified by a practical assumption that is being made:
only explicit statements can be retracted. The current algorithm does not deal with the
belief revision involved in retracting derived statements, although it could be extended
to cope with this scenario as well.

4.1 A brute-force approach

In our setting, where the complete closure is stored by means of a forward chaining
inferencer, truth maintenance involves ’physical’ retraction of statements that are no
longer justified. A brute-force algorithm involves, quite simply, discarding all state-
ments that were inferred and re-computing the closure.

The obvious benefit of the brute-force approach is that no additional bookkeeping
is necessary, apart from whether a statement is explicit or derived.

A downside to this approach is that it makes even simple delete operations compu-
tationally expensive (see table 8 for comparitive results).

4.2 A justification-based TM algorithm for RDF

In this section, we present our justification-based Truth Maintenance algorithm. The
algorithm makes use of the dependency relations between entailment rules (see table 1).
More specifically, it tracks, for each statement in the model, of which other statements
it is dependent, or put another way, which other statementsjustify it (cf. [4]).

As we have mentioned earlier, the purpose of dependency tracking is twofold: the
metadata thus acquired is necessary for services such as repository change tracking and
statement-level security policies (as described in [6]), and furthermore the aim is to
achieve an improvement in the performance of removal operations when compared to
brute-force approaches.

The algorithm will be executed at the end of any update transactionT which con-
tains one or more delete operations.

We callB the set of believed facts. A factf ∈ B is labeledexplicit if it is asserted
explicitly. If it is not explicitly asserted,f is labeledderived.

S is the set of justifications. Each justifications ∈ S is of the form〈fs, d1s, d2s〉 :
fs, d1s, d2s ∈ B. fs is the fact justified bys. d1s and d2s are justifying facts for
fs, whered1s corresponds to the first premise of the entailment rule that produceds,
andd2s to the second premise (note that the entailment rules always have at most two
premises). Whenfs is an RDF MT axiom statement,d1s = α. Whens is justification

01. for each f ∈ D:
02. if (f = explicit) then
03. label f derived;
04. remove s〈f, ∅, ∅〉 from S
05. else
06. remove f from D;
07. endif;
08. end for;
09. repeat
10. let removed := false;
11. for each f ∈ D:
12. if (∀s〈fs, d1s, d2s〉 ∈ S : fs 6= f) then
13. remove f from B;
14. remove f from D;
15. let removed := true;

16. for each q〈fq, d1q, d2q〉 ∈ S:
17. if d1q = f or d2q = f then
18. remove q from S;
19. if (fq = derived) then
20. add fq to D;
21. end if;
22. end if;
23. end for;
24. end if;
25. end for;
26. until (D = ∅) or (removed = false).

Table 2: Initial truth maintenance algorithm

for an explicit factd1s = ∅. In both cases, and whens was produced by a rule with a
single clause in the premise,d2s = ∅.

Furthermore, we introduce a setD wich containssuspendedstatements.

Definition 1. A suspendedstatement is a statement that is a candidate for removal from
the repository during a transaction.

Initially, this set contains all statementsf on which delete operations were per-
formed inT .

The initial truth maintenance algorithm is shown in table 2. The first loop (line 1-
8) in the algorithm is an initialization step that labels each explicit statement that was
removed inT asderived, and removes the corresponding justification fromS. Notice
that if a suspended statement is not explicit, it is removed fromD, because derived
statements can not be deleted except by deleting the explicit statements that justify
them.

After this initialization, the algorithm enters a loop where it scans all suspended
statementsf (line 11). It determines the justification for eachf (line 12), and if there is
no justification then first the statement is removed from bothB andD, and second each
justification which contains the statement is removed as well (line 16-18). Since we are

removing justifications, the derived statements that were justified by these justifications
need to be re-examined, so they are added to the set of suspended statements (line 19-
21). The algorithm terminates when there are no more suspended statements, or when
a complete pass is made without removing any statements fromB.

4.3 Cyclic dependencies and grounded justifications

Unfortunately, the initial algorithm shown in table 2 fails to take the occurrence of
cyclic dependencies inS into account. Consider, for example, the following set of RDF
statements:

1. (rdfs:subClassOf, rdfs:domain, rdfs:Class) (derived, axiom)

2. (my:foo, rdfs:subClassOf, rdfs:Resource) (explicit)

3. (my:foo, rdf:type, rdfs:Class) (derived)

S now contains a.o. the following elements:a〈1, α, ∅〉 (produced by RDF MT axiom
assertion),b〈2, ∅, ∅〉 (produced by explicit assertion of statement 2),c〈2, 3, ∅〉 (produced
by RDF MT rule 7a) andd〈3, 1, 2〉 (produced by RDF MT rule 2).

If now we execute an update transaction where statement 2 is removed, the TM
algorithm first marks 2 asderived and removesb from S. It then checks whetherS
contains a justification for statement 2. In the above, it finds it:c. The algorithm then
concludes that statement 2 is still justified and does not remove it. This, however, is
incorrect becausec contains statement 3 which is itself dependent on statement 2 again
(justification d). It is clear that 2 should have been removed and that justificationc

should not have been taken as sufficient evidence.
The problem lies in the fact that one of the justifying statements ofc is itself de-

pendent on the justified statement. Therefore, we introduce the concept of agrounded
justification.

Definition 2. A justifications〈fs, d1s, d2s〉 ∈ S is calledgroundedif and only if nei-
therd1s nord2s are justified solely byfs or by any other statement transitively justified
solely byfs.

The rationale behind this definition is simple: if a fact is explicit, it holds no matter
what the other justifications for it are. If it is derived, however, the justification for it
should not be completely dependent on itself.

We enhance the original algorithm to capture the problem of cyclic dependencies by,
after labeling deleted statements asderived and removing their corresponding justifi-
cations fromS, computing a new setG ⊆ S which contains thegroundedjustifications
g.G is computed using a mark-and-sweep-like algorithm shown in table 3.

We begin with a set that contains only justifications for explicit facts (since these are
always justified) and axiom facts (since these are never dependent on other statements)
(line 1-5). Notice that we assume that the justifications produced by explicit assertion

01. for each s〈fs, d1s, d2s〉 ∈ S:
02. if (d1s = α or d1s = ∅) then
03. add s to G;
04. end if;
05. end for;
06. repeat
07. let newfound := false;
08. for each s〈fs, d1s, d2s〉 ∈ S:
09. if [(∃t〈ft, d1t, d2t〉 ∈ G : ft = d1s)

∧ ((∃u〈fu, d1u, d2u〉 ∈ G : fu = d2s) ∨ d2s = ∅)] then
10. add s to G;
11. let newfound := true;
12. end if;
13. end for;
14. until newfound = false;

Table 3: Computing the grounded justifications

01. for each f ∈ D:
02. if (f = explicit) then
03. label f derived;
04. remove s〈f, ∅, ∅〉 from S
05. else
06. remove f from D;
07. endif;
08. end for;
09. determine G;
10. let E := S −G;
11. for each se〈fe, d1, d2〉 ∈ E :
12. add fe to D;
13. remove se from S;
14. endif;
15. for each f ∈ D:
16. if (∀s〈fs, d1s, d2s〉 ∈ G : fs 6= f) then
17. remove f from B;
18. end if;
19. end for.

Table 4: Mark-and-Sweep Truth Maintenance algorithm

for statements that are to be deleted are no longer present inS. From this basis, we
iteratively add those justifications fromS from which the justifying facts are already
justified byG (line 6-14). This way, it is ensured that no justifications are added which
are dependent on statements which themselves are no longer justified.

The enhanced TM algorithm is shown in table 4.
The algorithm in table 4 is a modification of the original algorithm: after labeling

each deleted statementderived and removing the corresponding justifications fromS
(line 2-8), the setsG (see table 3) andE are computed (line 9-10). Since we now
have complete knowledge on justification for all statements inB, we can eliminate the

repeat..until loop from the original algorithm completely: all statements justified
by expired dependencies are added toD (line 12) and all expired dependencies are
removed fromS (line 13). Then, all statements inD are verified, that is, they are deleted
if and only if there is no justification for them inG (line 15-19). After looping overD
once, the algorithm terminates.

4.4 Complexity

The algorithm presented in figure 4 has a complexity in the order of the number of
deductive dependencies,O(|S|). Since the size ofS is determined by the number of
entailments per statement, this number can become very high. This is a clear bottleneck
and makes the algorithm less suited for the purpose of optimizing speed of delete op-
erations: an alternative algorithm might avoid this bookkeeping task of computing and
maintaining the deductive dependencies altogether.

However, since our other prime motivation for the algorithm is having the set of
deductive dependencies available for higher-level reasoning tasks such as repository
change tracking and statement-level security policies, there is a tradeoff to consider.
Our current practical approach has been to accept the performance bottleneck in the
computation of the set of dependencies in favor of enabling higher-level reasoning.

4.5 Implementation issues

In this section we will discuss several practical issues that arose when implementing the
TM algorithm in the Sesame3 [2] system.

4.5.1 Justification Inferencing

The algorithm tacitly assumes that the set of justifications,S, is known. However, like
the closure of the set of statements, determiningS requires inferencing over the set
of RDF MT entailment rules from [5]. Unlike for the statement inferencing, however,
optimizations that skip redundant inferences are not possible in this case, since it is
important thatS is complete.

In the test setup in Sesame, the determination ofS is therefore implemented as a sep-
arate inferencing task. The justification inferencer is invoked after the complete closure
has been computed and stored. It employs a basic backward chaining strategy: it loops
over all statements and determines for each one whether it is a possible conclusion of
an RDF MT entailment rule, and if so, which other statements satisfy the premise(s) for
the matching rule. While this computation is expensive, it is only necessary to perform
it once, at some time after new statements are added to the repository.

In the test setup, the justification inferencing is done directly after statements have
been added, as part of the transaction. This means that the transaction takes longer. An

3 Seehttp://sesame.aidministrator.nl/

data setexplicit closure increase
OpenWine 4310 5289 23%

CIA 26285 30260 15%
SUO 4071 12498 206%

Wordnet273681373485 37%

Table 5: Increase in number of statements through closure computing

alternative approach would be to delay the justification inferencing, until the moment
the TMS (or e.g. the versioning functionality) needs the information, or to do this part
of the inferencing in a background process, locking delete operations until it is complete
but leaving other types of operations on the repository available.

5 Results

We have run a number of tests, on computing the closure, and on general performance
with both the brute-force approach and the justification-based approach, with the data
sets introduced in section 3.2.

The tests were carried out using Sesame release 0.8, with the SQL92Sail and the
TmsSQL92Sail for brute-force and justification-based inferencing respectively. In re-
porting the results we normalized the figures. This is done because our chief interest is
comparing the two approaches rather than doing absolute performance tests, and also
because the performance figures are highly dependent the version of Sesame, the used
hardware, and the DBMS configuration.

5.1 Computing the closure

The overhead in storage space for the complete closure of the model for the data sets
introduced in section 3.2 is shown in table 5. The algorithm for closure computing is
an exhaustive forward chaining algorithm, using a few optimizations, as decribed in
section 3.2.

In table 6 we see the comparative performance of closure computing, normalized
against simple upload without closure computing.

We can observe from these result that adding our exhaustive forward chaining algo-
rithm to the upload task adds an overhead, but that this overhead is not excessive.

5.2 Brute-force vs. TMS

In table 7 the comparative performance results for uploading data sets are shown, nor-
malized against the brute-force approach. Uploading consists of inferring and storing

datasetclosure computing (norm)
CIA 1.45

SUO 1.41
Wordnet 1.13

Table 6: Performance overhead of closure computing, normalized against simple upload

data setset sizeadd statement (norm)total upload (norm)
OpenWine 5289 1.27 1.34

SUO 12498 10.50 10.25
CIA 30260 1.07 1.11

Wordnet373485 1.36 1.36

Table 7: Performance of TMS-based statement adding, normalized against the brute-
force approach

statements, and in the case of the TMS-enabled setup, it also includes computing the
set of deductive dependencies.

As was to be expected, overall performance on upload is slightly worse in the
justification-based approach, which is mainly caused by the computation of the set of
deductive dependencies. Again, we notice that the SUO data set behaves differently
from other sets due to its composition.

In table 8 the performance results for removing data are shown. The average given
is the average per removal operation (note that this does not necessarily correspond to
one removed statement, one removal operation may delete several statements).

From these results we can observe that justification-based removal performs sig-
nificantly better than its brute-force counterpart, except on the SUO data set and the
Wordnet data set, in which cases it performs worse.

data setset sizeremove (avg.) (norm)
OpenWine 5289 0.73

SUO 12498 1.08
CIA 30260 0.15

Wordnet176037 1.68

Table 8: Performance of TMS-based statement removal, normalized against the brute-
force approach

The reason the Wordnet and SUO sets perform worse when using the justification-
based approach can be explained by the physics of the algorithm implementation and
the testing environment. In the Sesame implementation of the TM algorithm, the set of
grounded justificationsG is computed using a rather complex SQL query that performs
multiple joins with the table that stores the set of justifications,S. In the cases of SUO
and Wordnet, this set of justifications is comparatively large – in the SUO test because
there are so many new statements inferred (see table 5), in the Wordnet test because the
data set itself is fairly large.

It turns out that the MySQL RDBMS used in the tests has limited capabilities for
efficiently processing the SQL queries used to determineG when such large tables are
involved, and its performance on such queries drops dramatically when the size of the
table that storesD exceeds a certain threshold. The brute-force approach, which does
not need to computeG, only has to use the SQL queries needed to do inferencing.
However, these SQL queries are relatively simple and MySQL has less problems with
evaluating these efficiently, even on large data sets. The upshot is that in these cases,
re-computing the entire closure becomes more efficient than using the TMS approach.

Several strategies can be used to improve performance of the TMS, such as table
optimization, indexing, or even the use of a more sophisticated query planner than the
one available in MySQL. However, a more structured solution lies in the adjustment of
the truth maintenance algorithm itself. In recent testing results, it has turned out that the
strategy for computing the setG can be adapted to perform significantly better in situa-
tions where the number of removed statements in a transaction is lower than 10% of the
total size of the data set. In future work we will further investigate and implement this
strategy, and the implementation will be able to switch between strategies depending
on the number of removed statements in a transaction.

6 Conclusions

In this article we have addressed several issues concerning RDF inferencing and truth
maintenance. We have demonstrated that, contrary to earlier claims in the literature,
exhaustive forward chaining is a feasible and even scalable approach for computing the
deductive closure of an RDF(S) model. Also, we have argued that removal operations
are important to consider in relation to the inference strategy employed, and we have
presented an algorithm for capturing dependencies between statements and exploiting
these dependencies for doing truth maintenance when statements are removed.

As we have shown, the exhaustive forward-chaining inferencing strategy performs
very well on our selection of RDF datasets, both in speed and required storage space.
In future work we will investigate how well this approach will scale to capturing the
semantics of a language like OWL Lite [11]. The most obvious adjustment to the in-
ferencing strategy to better deal with these more expressive languages, which we will
investigate further in future work, is letting go of the strict forward chaining approach
and building in some on-demand generation of entailed statements.

We have shown that the truth maintenance algorithm using dependencies between
statements performs quite well on medium-sized data sets, and our goal of improving
removal operation performance as compared to brute-force approaches is achieved on
these data sets.

However, though the Sesame system itself can easily cope with data sets that con-
sist of over 3 million statements, it seems apparent from the data obtained from – in
particular – the Wordnet test that remove operations as implemented in the test system
will not scale well to these high figures. A proviso here is that the test results were ob-
tained using unoptimized code in the Sesame system, recent tests with more optimized
code have actually significantly improved absolute performance, in many cases by a
factor 10 or more. These results, however, are not presented here because they cannot
be compared to the brute-force approach, for a very simple reason: the Sesame codebase
now makes use of the TMS algorithm internally, and there is no brute-force counterpart
implemented to obtain a valid comparison.

Regardless, we conclude that although this TMS approach performs satisfactorily
for medium-sized (that is, up to approx. 200,000 statements) data sets and the current
expressiveness of RDF and RDF Schema, the approach will have to be adjusted to cope
with larger data sets. In particular, the justification-based truth maintenance algorithm
can be further tuned to perform better under difficult circumstances by better indexing
schemes and possibly using a more sophisticated query planner, as well as by adapting
the computation ofG, and switching strategies depending on the statistics of the trans-
action (in fact some of these optimization have already been implemented, resulting in
the aforementioned performance increase).

Also, since not every task will require the higher-level services mentioned earlier, an
alternative implementation of inference that is currently under investigation will make
use of more sophisticated closure computing algorithms and will forgo keeping track
of all deductive dependencies. This will result in the loss of capabilities for change
tracking and security policies but will result in faster performance and a smaller memory
footprint.

References

1. D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification
1.0. Candidate recommendation, World Wide Web Consortium, March 2000. Seehttp:
//www.w3.org/TR/2000/CR-rdf-schema-20000327 .

2. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic Archi-
tecture for Storing and Querying RDF and RDF Schema. In Ian Horrocks and James
Hendler, editors,Proceedings of the first International Semantic Web Conference (ISWC
2002), number 2342 in Lecture Notes in Computer Science, pages 54–68, Sardinia, Italy,
June 9 – 12, 2002. Springer Verlag, Heidelberg Germany. See alsohttp://sesame.
aidministrator.nl/ .

3. John Davies, Dieter Fensel, and Frank van Harmelen, editors.Towards the Semantic Web:
Ontology-Driven Knowledge Management, chapter 10: Ontology Middleware and Reason-
ing. Wiley & Sons, Europe, 2002. See alsohttp://www.ontotext.com/omm .

4. Jon Doyle. A Truth Maintenance System.Artificial Intelligence, 12, 1979.

5. Patrick Hayes. RDF Model Theory. Working Draft, World Wide Web Consortium, January
23, 2003. Seehttp://www.w3.org/TR/rdf-mt/20030123/ .

6. Atanas Kiryakov, Kiril Iv. Simov, and Damyan Ognyanov. Ontology Middleware:
Analysis and Design. On-To-Knowledge (IST-1999-10132) Deliverable 38, OntoText,
March 2002. Seehttp://www.ontotext.com/publications/index.html#
KiryakovEtAl2002 .

7. O. Lassila and R. R. Swick. Resource Description Framework (RDF): Model and Syntax
Specification. Recommendation, World Wide Web Consortium, February 1999. Seehttp:
//www.w3.org/TR/REC-rdf-syntax/ .

8. Ora Lassila. Taking the RDF Model Theory Out for a Spin. In Ian Horrocks and James
Hendler, editors,Proceedings of the First International Semantic Web Conference, ISWC
2002, Sardinia, Italy, number 2342 in Lecture Notes in Computer Science, pages 307–317.
Springer-Verlag, Heidelberg, Germany, June 9 – 12, 2002.

9. J.P. Martins. The Truth, the Whole Truth and Nothing But the Truth.AI Magazine: Special
Issue, 11(7), 1990.

10. J. A. La Poutŕe and J. van Leeuwen. Maintenance of transitive closure and transitive reduc-
tion of graphs. InWorkshop on Graph-Theoretic Concepts in Computer Science, number
314 in Lecture Notes in Computer Science, pages 106–120. Springer-Verlag, Heidelberg,
Germany, 1988.

11. Michael Smith, Chris Welty, and Deborah McGuinness. OWL Web Ontology Language
Guide. Working draft, World Wide Web Consortium (W3C), March31 2003. Seehttp:
//www.w3.org/TR/owl-guide .

