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Abstract posed method uses a pruning technique that dramatically

saves the memory space. These relatively small trees are

Existing association rule mining algorithms suffer constructed based on a memory-based structure called FP-
from many problems when mining massive transactional Trees [11]. This data structure is studied in detail in the
datasets. Some of these major problems are: (1) the repetifollowing sections. In short, we introduced in [8] the COFI-
tive /O disk scans, (2) the huge computation involved dur- tree stucture and an algorithm to mine it. In [7] we pre-
ing the candidacy generation, and (3) the high memory de-sented a disk based data structure, inverted matrix, that re-
pendency. This paper presents the implementation of ourplaces the memory-based FP-tree and scales the interactive
frequent itemset mining algorithnGOFI, which achieves frequent pattern mining significantly. Our contributions in
its efficiency by applying four new ideas. First, it can mine this paper are the introduction of a clever pruning technique
using a compact memory based data structures. Secondpased on an interesting property drawn from our top-down
for each frequent item assigned, a relatively small indepen-approach, and some implementation tricks and issues. We
dent tree is built summarizing co-occurrences. Third, clever included the pruning in the algorithm of building the tree so
pruning reduces the search space drastically. Finally, a sim- that the pruning is done on the fly.
ple and non-recursive mining process reduces the memory
requirements as minimum candidacy generation and count-1.1  Problem Statement
ing is needed to generate all relevant frequent patterns.

The problem of mining association rules over market
basket analysis was introduced in [2]. The problem consists
of finding associations between items or itemsets in trans-
actional data. The data could be retail sales in the form of
customer transactions or even medical images [16]. Asso-

Frequent pattern discovery has become a common topicciation rules have been shown to be useful for other appli-
of investigation in the data mining research area. Its main cations such as recommender systems, diagnosis, decision
theme is to discover the sets of items that occur togethersupport, telecommunication, and even supervised classifi-
more than a given threshold defined by the decision maker.cation [5]. Formally, as defined in [3], the problem is stated
A well-known application domain that counts on the fre- as follows: Letl = {i1,is, ...i,,, } be a set of literals, called
guent pattern discovery is the market basket analysis. Initems andm is considered the dimensionality of the prob-
most cases when the support threshold is low and the numiem. LetD be a set of transactions, where each transaction
ber of frequent patterns “explodes”, the discovery of these T' is a set of items such thgt C I. A unique identifier
patterns becomes problematic for reasons such as: higiTID is given to each transaction. A transactibns said
memory dependencies, huge search space, and massive I/@ containX, a set of items i/, if X C 7. An associ-
required. However, recently new studies have been pro-ation ruleis an implication of the form X = Y, where
posed to reduce the memory requirements [8], to decreaseX C I,Y C I,andX NY = ). An itemsetX is said to be
the I/O dependencies [7], still more promising issues needlarge or frequentif its supports is greater or equal than a
to be investigated such as pruning techniques to reduce thgjiven minimum support threshotd An itemsetX satisfies
search space. In this paper we introduce a new methoda constraint C if and only if CX) istrue. The ruleX = Y
for frequent pattern discovery that is based on the Co- has asupport sin the transaction sé? if s%of the transac-
Occurrence Frequent Item tree concept [8, 9]. The new pro-tions inD containX UY . In other words, the support of the

1 Introduction



rule is the probability thak” andY hold togetheramong all ~ frequent patterns. This massive creation of conditional trees
the possible presented cases. It is said that theXule YV makes this algorithm not scalable to mine large datasets be-
holds in the transaction s& with confidence df c% of yond few millions. In [14] the same authors propose a hew
transactions irD that containX also containt”. In other algorithm, H-mine, that invokes FP-Tree to mine condensed
words, the confidence of the rule is the conditional proba- data. This algorithm is still not scalable as reported by its
bility that the consequentt is true under the condition of authorsin [13].

the antecedenX. The problem of discovering all associa-

tion rules from a set of transactiofsconsists of generating 1.3  Preliminaries, Motivations and Contributions

the rules that have supportandconfidencegreater than a

given threshold. These rules are calkttbng rules This The Co-Occurrence Frequent Item tree (or COFI-tree for
association-mining task can be broken into two steps: short) and theCOFI algorithm presented in this paper are
1. A step for finding all frequent-itemsets known for its  based on our previous work in [7, 8]. The main motivation
extremel /O scan expense, and the massive computationalof our current research is the pruning technique that reduces

COSts; the memory space needed by the COFI-trees. The presented
2. A straightforward step for generating strong rules. algorithm is done in two phases in which phase 1 requires
In this paper and our attached code, we focus exclusivelytwo full I/O scans of the transactional database to build the
on the first step: generating frequent itemsets. FP-Tree structure[11]. The second phase starts by building
small Co-Occurrence Frequent trees for each frequent item.
1.2 Related Work These trees are pruned first to eliminate any non-frequent

items with respect to the COFI-tree based frequent item.
Finally the mining process is executed.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the Frequent Pattern tree, design and con-
struction. Section 3 illustrates the design, constructions,
pruning, and mining of the Co-Occurrence Frequent Item
trees. Section 4 presents the implementation procedure of
this algorithm. Experimental results are given in Section 5.
Finally, Section 6 concludes by discussing some issues and
Ihighlighting our future work.

Several algorithms have been proposed in the literature
to address the problem of mining association rules [12, 10].
One of the key algorithms, which seems to be the most pop-
ular in many applications for enumerating frequent item-
sets, is theapriori algorithm [3]. Thisapriori algorithm
also forms the foundation of most known algorithms. It
uses aranti-monotongroperty stating that for a-itemset
to be frequent, all itsi-1)-itemsets have to be frequent. The
use of this fundamental property reduces the computationa
cost of candidate frequent itemset generation. However, in .
the cases of extremely large input sets with big frequent 1-2 Frequ_em Pattern Tree: Design and Con-
items set, thé\priori algorithm still suffers from two main struction
problems of repeated 1/0O scanning and high computational
cost. One major hurdle observed with most real datasets The COFI-tree approach we propose consists of two
is the sheer size of the candidate frequent 2-itemsets andnain stages. Stage one is the construction of a modified
3-itemsets. Frequent Pattern tree. Stage two is the repetitive building of
TreeProjection is an efficient algorithm presented in [1]. small data structures, the actual mining for these data struc-
This algorithm builds a lexicographic tree in which each tures, and their release.
node of this tree presents a frequent pattern. The authors
report that their algorithm is one order of magnitude faster 2.1  Construction of the Frequent Pattern Tree
than the existing techniques in the literature. Another inno-
vative approach of discovering frequent patterns in transac- The goal of this stage is to build the compact data struc-
tional databases, FP-Growth, was proposed by Han et alture called Frequent Pattern Tree [11]. This construction is
in [11]. This algorithm creates a compact tree-structure, done in two phases, where each phase requires a full I/O
FP-Tree, representing frequent patterns, that alleviates thescan of the dataset. A first initial scan of the database iden-
multi-scan problem and improves the candidate itemsettifies the frequent 1-itemsets. The goal is to generate an or-
generation. The algorithm requires only two full I/O scans dered list of frequent items that would be used when build-
of the dataset to build the prefix tree in main memory and ing the tree in the second phase.
then mines directly this structure. The authors of this al-  This phase starts by enumerating the items appearing in
gorithm report that their algorithm is faster than thpri- the transactions. After enumeration these items (i.e. after
ori and the TreeProjection algorithms. Mining the FP-tree reading the whole dataset), infrequent items with a support
structure is done recursively by building conditional trees less than the support threshold are weeded out and the re-
that are of the same order of magnitude in number as themaining frequent items are sorted by their frequency. This



tween this item-node in the tree and its entry in the header

Table 1. Transactional database table. The header table holds as one pointer per item that

[ TNo. | ltems | points to the first occurrences of this item in the FP-Tree
Tl AlG DjCB structure.
T2 B|C|H|E|D
T3 B/ DIE|A|M ,
T4 clelelAalN 2.2 lllustrative Example
T5 A|B|N|O|P
T6 A|C|Q|R|G For illustration, we use an example with the transactions
T7 A|C|H|I |G shown in Table 1. Let the minimum support threshold be set
T8 L|IE|F|K|B to 4. Phase 1 starts by accumulating the support for all items
T9 A|lF|M|N|O that occur in the transactions. Step 2 of phase 1 removes all
Ti0 | C|F| P|G|R non-frequent items, in our example (G, H, I, J, K, L,M, N,
T11 || A|D| B |H]| I 0O, P, Q and R), leaving only the frequentitems (A, B, C, D,
Ti2 |D|E|B|K]|L E, and F). Finally all frequent items are sorted according to
TI3 ||M|{D|C |G| O their support to generate the sorted frequent 1-itemset. This
T4 | C|F|P|Q]| J last step ends phase 1 in Figure 1 of the COFlI-tree algorithm
Ti5 | B |D| E | F | I and starts the second phase. In phase 2, the first transaction
T16 JIE|B|A|D (A, G, D, C, B) isfiltered to consider only the frequentitems
T7 |A|K|E|F|C that occur in the header table (i.e. A, D, C and B). This fre-
T8 | C|D|L |BJ|A quent list is sorted according to the items’ supports (A, B,

C and D). This ordered transaction generates the first path
of the FP-Tree with all item-node support initially equal to

list is organized in a table, called header table, where thel. A link is established between each item-node in the tree
items and their respective support are stored along withand its corresponding item entry in the header table. The
pointers to the first occurrence of the item in the frequent same procedure is executed for the second transaction (B,
pattern tree. Phase 2 would construct a frequent pattern treeC, H, E, and D), which yields a sorted frequent item list (B,

C, D, E) that forms the second path of the FP-Tree. Trans-

Item |Counter |ltem [Lounter Ifem _Qounter Item Counter action 3 (B, D, E, A, and M) yields the sorted frequent item
g i(l) g g g 13 E ; list (A, B, D, E) that shares the same prefix (A, B) with an
C 10 P 3 C 10 D 9 existing path on the tree. Item-nodes (A and B) support is
g i g ; E g g ig incremented by 1 making the support of (A) and (B) equal
E 3 1 3 E 7 A 11 to 2 and a new sub-path is created with the remaining items
H 3 K 3 on the list (D, E) all with support equal to 1. The same pro-
e cess occurs for all transactions until we build the FP-Tree

Step 1 Step 2 Step 3 for the transactions given in Table 1. Figure 2 shows the
result of the tree building process. Notice that in our tree
Figure 1. Steps of phase 1 structure, contrary to the original FP-tree [11], our links are

bi-directional. This, and other differences presented later,
Phase 2 of constructing the Frequent Pattern tree struc-are used by our mining algorithm.

ture is the actual building of this compact tree. This phase
requires a sec_:ond complete I/O scan from the_ dataset. Fo? Co-Occurrence Frequent-ltem-trees: Con-
each transaction read, only the set of frequent items presen . . ..
in the header table is collected and sorted in descending or- struction, Pruning and Mining
der according to their frequency. These sorted transaction
items are used in constructing the FP-Trees as follows: for Our approach for computing frequencies relies first on
the first item on the sorted transactional dataset, check if itbuilding independent, relatively small trees for each fre-
exists as one of the children of the root. If it exists then quentitem in the header table of the FP-Tree called COFI-
increment the support for this node. Otherwise, add a newtrees. A pruning technique is applied to remove all non-
node for this item as a child for the root node with 1 as frequent items with respect to the main frequent item of
support. Then, consider the current item node as the newthe tested COFI-tree. Then we mine separately each one
temporary root and repeat the same procedure with the nexbf the trees as soon as they are built, minimizing the candi-
item on the sorted transaction. During the process of addingdacy generation and without building conditional sub-trees
any new item-node to the FP-Tree, a link is maintained be-recursively. The trees are discarded as soon as mined. At
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Figure 2. Frequent Pattern Tree.

any given time, only one COFI-tree is present in main mem- cally not frequent with respect to item F as the support for
ory. In our following examples we always assume that we all these items are not greater than the support threshold
are building the COFI-trees based on the modified FP-Treewhich is equal to 4, Figure 3. From knowing this, there

data-structure presented above. will be no need to mine the F-COFI-tree, we already know
that no frequent patterns other than the item F will be gen-
3.1 Pruning the COFlI-trees erated. We can extend our knowledge at this stage to know

that item F will not appear in any of the frequent patterns.
Pruning can be done after building a tree or, even better,The COFI-tree for item E indicates that only items D, and
while building it. We opted for pruning on the fly since the B are frequent with respect to item E, which means that
overhead is minimal but the consequences are drastic reducthere will be no need to test patterns as EC, and EA. The
tion in memory requirements. We will discuss the pruning COFI-tree for item D indicates that item C will be elimi-
idea, then present the building algorithm that considers thenated, as it is not frequent with respect to item D. C-COFI-
pruning on the fly. tree ignores item B for the same reason. To sum up the
In this section we are introducing a nemti-monotone  Apriori property states in our example of 6 1-frequentitem-
property called global frequent/local non-frequent property. set that we need to generate 15 2-Candidate itemset which
This property is similar to thépriori one in the sense that ~ are (A,B), (A,C), (A,D), (A,E), (A,F), (B,C), (B,D), (B,E),
it eliminates at thé” level all non-frequent items that will  (B,F), (C,D), (C,E), (C,F), (D,E), (D,F), (E,F), using our
not participate in thei¢-1) level of candidate itemsets gen- property we have eliminated (not generated or counted) 9
eration. The difference between the two properties is thatpatterns which are (AE), (AF), (B,C), (B,F), (C,D), (C,E),
we extended our property to eliminate also frequent items (C,F), (D,F), (E,F) leaving only 6 patterns to test which are
which are among thé-itemset and we are sure that they (A,B), (A,C), (A,D), (B,D), (B,E), (D,E).
will not participate in the 4+1) candidate set. Th&priori
property states thatl nonempty subsets of a frequent item- 3.2 Construction of the Co-Occurrence Frequent-
set must also be frequemAn example is given later in this Item-trees
section to illustrate both properties. In our approach, we
are trying to find all frequent patterns with respect to one  The small COFI-trees we build are similar to the condi-
frequent item, which is the base item of the tested COFI- tional FP-Trees [11] in general in the sense that they have
tree. We already know that all items that participate in the a header with ordered frequent items and horizontal point-
creation of the COFI-tree are frequent with respect to the ers pointing to a succession of nodes containing the same
global transaction database, but that does not mean that thefrequent item, and the prefix tree per se with paths repre-
are also locally frequent with respect to the based item in thesenting sub-transactions. However, the COFI-trees have bi-
COFlI-tree. The global frequent/local non-frequent property directional links in the tree allowing bottom-up scanning as
states thaall nonempty subsets of a frequent itemset with well, and the nodes contain not only the item label and a
respect to the item of the A-COFI-tree , must also be  frequency counter, but also a participation counter as ex-
frequent with respect to iteml. For each frequent item plained later in this section. The COFI-tree for a given fre-
A we traverse the FP-Tree to find all frequent items that quentitemr contains only nodes labeled with items that are
occur with A in at least one transaction (or branch in the more frequent or as frequent as
FP-Tree) with their number of occurrences. All items that  To illustrate the idea of the COFI-trees, we will explain
are locally frequent with itend will participate in build- step by step the process of creating COFlI-trees for the FP-
ing the A-COFI-tree, other global frequent items, locally Tree of Figure 2. With our example, the first Co-Occurrence
non-frequentitems will not participate in the creation of the Frequent Item tree is built for item F as it is the least fre-
A-COFI-tree. In our example we can find that all items quentitem in the header table. In this tree for F, all frequent
that participate in the creation of the F-COFI-tree are lo- items, which are more frequent than F, and share transac-



tions with F, participate in building the tree. This can be F COFl-tree
found by following the chain of item F in the FP-Tree struc-

ture. The F-COFI-tree starts with the root node containing

the item in question, then a scan of part of the FP-Tree is ap-

plied following he chain of the F item in the FP-Tree. The

first branch FA has frequency of 1, as the frequency of the

branch is the frequency of the test item, which is F. The goal | coFi-ee
of this traversal is to count the frequency of each frequent
item with respect to item F. By doing so we can find that
item E occurs 4 times, D occurs 2 times, C occurs 4 times,
B 2 times, and A 3 times, by applying tlanti-monotone
constraint property we can predict that item F will never
appear in any frequent pattern except itself. Consequently
there will be no need to continue building the F-COFI-tree. 5cortes

The next frequent item to test is E. The same process
is done to compute the frequency of each frequent items
with respect to item E. From this we can find that only two
globally frequent items are also locally frequent which are
(D:5 and B:6). For each sub-transaction or branch in the
FP-Tree containing item E with other locally frequent items

that are more frequent than E which are parent nodes of E, C COFitren

a branch is formed starting from the root node E. the sup-

port of this branch is equal to the support of the E node _E

in its corresponding branch in FP-Tree. If multiple fre-

guent items share the same prefix, they are merged into one

branch and a counter for each node of the tree is adjusted B COFl-tree

accordingly. Figure 3 illustrates all COFI-trees for frequent ATSE=ATe]
items of Figure 2. In Figure 3, the rectangle nodes are nodes

from the tree with an item label and two counters. The first

counter is asupport-counfor that node while the second
counter, callegbarticipation-countis initialized to 0 and is
used by the mining algorithm discussed later, a horizontal
link which points to the next node that has the satem-
namein the tree, and a bi-directional vertical link that links

a child node with its parent and a parent with its child. The
bi-directional pointers facilitate the mining process by mak-
ing the traversal of the tree easier. The squares are actually

cells from the header table as with the FP-Tree. This is agypnort for this branch (following the upper links for this
list made of all frequent items that participate in building item). Two nodes are created, for items D and B with sup-
the tree structure sorted in ascending order of their globalport equalsto 2, D is a child node of B, and B is a child node
support. Each entry in this list contains ifem-nameitem- ot £ The third location of E indicate having EDB:1, which
countet and apointerto the first node in the tree that has  ghares an existing branch in the E-COFI-tree, all counters
the sametem-name are adjusted accordingly. A new branch of EB: 1 is created

To explain the COFI-tree building process, we will high- as the support of E=1 for the fourth occurrences of E. The
light the building steps for the E-COFI-tree in Figure 3. Fre- final occurrence EDB: 2 uses an existing branch and only
guent item E is read from the header table and its first loca-counters are adjusted. Like with FP-Trees, the header con-
tion in the FP-Tree is located using the pointer in the headerstitutes a list of all frequent items to maintain the location
table. The first location of item E indicate that it shares a of first entry for each item in the COFI-tree. A link is also
branch with items CA, with support = 2, since none of these made for each node in the tree that points to the next lo-
items are locally frequent then only the support of the E root cation of the same item in the tree if it exists. The mining
node is incremented by 2. the second node of item E indi- process is the last step done on the E-COFI-tree before re-
cates that it shares items DBA with support equals to 2 for moving it and creating the next COFI-tree for the next item
this branch as the support of the E-item is considered thein the header table.

Figure 3. COFlI-trees
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Figure 4. Steps needed to generate frequent
patterns related to item E

3.3 Mining the COFI-trees

The COFI-trees of all frequent items are not constructed

D COFI-tree STEPL1

Pattern
DBAS

DBA
DB
DA

D COFl-tree STEP2 Pattern

D B

DBA
DB
DA

(4]

(8 5)

o1 ©

Frequent Patterns are:
DBA:5, DB: 8, DA: 5

Figure 5. Steps needed to generate frequent
patterns related to item D

ates the pattern EB: 1. EB already exists and its counter
is adjusted to become 6. The COFlI-tree of Iltem E can be
removed at this time and another tree can be generated and
tested to produce all the frequent patterns related to the root
node. The same process is executed to generate the fre-
guent patterns. The D-COFI-tree (Figure 5) is created after
the E-COFI-tree. Mining this tree generates the following
frequent patterns: DBA: 5, DA: 5, and DB:8. The same pro-

together. Each tree is built, mined, then discarded before thet€SS occurs for the remaining trees that would produce AC:

next COFI-tree is built. The mining process is done for each
tree independently with the purpose of finding all frequent
k-itemset patterns in which the item on the root of the tree
participates.

6 for the C-COFI-tree and BA:6 for the B-COFlI-tree.

The following is our algorithm for building and mining
the COFI-trees with pruning.

Algorithm COFI: Creating with pruning and Mining

Steps to produce frequent patterns related to the E itemCOFI-trees

for example, as the F-COFI-tree will not be mined based
on the pruning results we found on the previous step, are
illustrated in Figure 4. From each branch of the tree, us-
ing the support-countand theparticipation-count candi-

Input: modified FP-Tree, a minimum support thresheld
Output: Full set of frequent patterns

Method:

1. A = the least frequent item on the header table of

date frequent patterns are identified and stored temporarilyFP-Tree
in a list. The non-frequent ones are discarded at the end2. While (There are still frequent items) do

when all branches are processed. The mining process for

the E-COFI-tree starts from the most locally frequent item
in the header table of the tree, which is item B. Iltem B ex-
ists in two branches in the E-COFI-tree which are (B:5, D:5
and E:8), and (B:1, and E:8). The frequency of each branch
is the frequency of the first item in the branch minus the
participation value of the same node. Item B in the first
branch has a frequency value of 5 and participation value
of 0 which makes the first pattern EDB frequency equals
to 5. The participation values for all nodes in this branch
are incremented by 5, which is the frequency of this pat-
tern. In the first pattern EDB: 5. We need to generate all
sub-patterns that item E participates in, which are ED: 5,
EB: 5, and EDB: 5. The second branch that has B gener-

2.1 count the frequency of all items that share item (A)
a path. Frequency of all items that share the same path
are the same as of the frequency of the (A) items
2.2 Remove all non-locally frequent items for
the frequent list of item (A)
2.3 Create a root node for the (A)-COFI-tree with both
frequency-courdindparticipation-count= 0
2.3.1 Cis the path of locally frequent items in the path
of item A to the root
2.3.2 Items on C form a prefix of the (A)-COFI-tree.
2.3.3 If the prefix is new then S&equency-count
frequency of (A) node angarticipation-
count= O for all nodes in the path
Else



2.3.4 Adjust thdrequency-coumf the already ~ cor Tp—. ‘
exist part of the path.
2.3.5 Adjust the pointers of thdeader list
if needed 3 250 / /
2.3.6 find the next node for item A in the FP-tree and § 2o /
goto2.3.1 g /7
2.4 MineCOFI-tree (A) . L
2.5 Release (A) COFl-tree ol —
2.6 A = next frequent item from the header table swpous 01 0% 00 000l e
3.Goto 2 (A) Runtime
Function: MineCOFI-tree (A) —+-CoFI —A—FP-Growth \
1. nodeA = selechextnode //Selection of nodes starts with 100
the node of most locally frequent item and following its . A

chain, then the next less frequent item with its chain, un- =

til we reach the least frequent item in tHeader listof the

(A)-COFlI-tree

2. while there are still nodes do
2.1 D = set of nodes from nodeA to the root swporss 01 005 002 001 oo ooz oon
2.2 F = nodeAfrequency-counhodeA.
participation-count

0.0004

(B) Total Memory requirement

2.3 Generate all Candidate patterns X from items in D. ‘ ~ cor) e rporowth ‘

Patterns that do not have A will be discarded. ”

2.4 Patterns in X that do not exist in the A-Candidate 0

List will be added to it with frequency = F otherwise g 1200 /

just increment their frequency with F 2 o

2.5 Increment the value @farticipation-count > 600 /W —

by F for all items in D N

2.6 nodeA = selechextnode 0 ———— —
3. Goto 2 swpanse 0100 RO 00h o GER ok e oo

4. Based on support threshatdremove non-frequent pat-
terns from A Candidate List.

(C) Memory requirement without FP-tree

No.of transactions = 500K, Dimension= 10K,

4 Experimental Studies Average no. of items / transaction = 12

To study the COFI-tree mining strategies we have con-  Figure 6. Mining dataset of 500K transactions

ducted several experiments on a variety of data sizes com-

paring our approach with the well-known FP-Growth [11]

algorithm written by its original authors. The experiments

were conducted on 2.6 GHz CPU machine with 2 Gbytes proach is in the memory space saved. Our algorithm outper-
of memory using Win2000 operating system. Transactionsforms the FP-Growth by one order of magnitude in terms of
were generated using IBM synthetic data generator [4]. Wememory space requirements. We have also tested the mem-
have conducted several types of experiments to test the efoery space used during the mining process only, (i.e, isolat-
fect of changing the support, transaction size, dimension,ing the memory space used to create the FP-Tree by both
and transaction length. The first set of experiments wereFP-growth and COFI-tree FP-Tree based algorithms). We
tested on a transaction database of 500K transactions, 10Kave found also that the COFI-tree approach outperforms
the dimension, and the average transaction length was 12the FP-tree by one order of magnitude in terms of mem-
We have varied the support from absolute value of 500 to ory space used by the COFI-tree compared with the condi-
2 in which frequent patterns generated varied from 15K to tional trees used by FP-Growth during the mining process.
3400K patterns. FP-Growth could not mine the last experi- Figure 6A presents the time needed to mine 500K transac-
ment in this set as it used all available memory space. In alltions using different support levels. Figure 6B depicts the
experiments the COFI-tree approach outperforms the FP-memory needed during the mining process of the previous
Growth approach. The major accomplishment of our ap- experiments. Figure 6C illustrates the memory needed by



An optional file name for the out patterns. This code gen-

Table 2. Time and Memory Scalability with re- erates ALL frequent patterns from the provided input file.
spect to support on the T1014D100K dataset The code scans the database twice. The goal of the first
_ i database scan is to find the frequency of each item in this
Time in Seconds Memory in KB transactional database. These frequencies are stored in a
Support %[ COFI [ FP-Growth| COFI | FP-Growth data structure called Candidate-ltems. Each entry of this
0.50 15 3.0 18 173 candidate items is a structure called ltemsStructure that is
0.25 1.7 5.2 19 285 made of two long integers representing the item and its fre-
0.10 2.7 12.3 26 289 guency. All frequent items are then stored in a special data
0.05 14.0 20.9 19 403 structure called F1-ltems. This data structure is sorted in

descending order based on the frequency of each item. To

access the location of each item we map it with a specific
the COFI-trees and Conditional trees during the mining pro- |ocation using a new data structure called FindinHashTable.
cess. Other experiments were conducted to test the effect ofn brief, since we do not know the number of unique items
changing the dimension, transaction size, transaction lengthat runtime, and thus can't create an array for counting the
using the same support which is 0.05%. Some of these exitems, rather than having a linked list of items, we create
periments are represented in Figure 7. Figures 7A and 7Bplocks ofp items. The numbes could arbitrarily be 100 or
represent the time needed during the mining process. Fig-1000. Indeed, following links in a linked list each time to
ures 7C and 7D represent the memory space needed durinfind and increment a counter could be expensive. Instead,
the whole mining process. Figures 7E and 7F representlocs of items are easily indexed. In the worst case, we
the memory space needed by the COFI-trees or conditionakould lose the space pf— 1 unused items.
trees during the mining process. In these experiments we
have varied the dimension, which is the number of distinct
items from 5K to 10K, the average transaction length from

The second scan starts by eliminating all non frequent
items from each transaction read and then sort this trans-
action based on the frequency of each frequent item. This

12tj[0 24f 'temiéiin%gggsiﬁ'&n’ and the _numtt)ezjof Fr?nj'process occurred in the Sort-Transaction method. The FP-
actions from 0 ' €se eXpenments depicled y.qq is pyilt based on the sub-transaction made of the fre-

:Ee f?ﬁt tE'aDt gur a{ohproach |sr:)netorder Off magnitude betterquent items. The FP-tree data structure is a tree ciil-
an the FF-Lrowth approach In terms of memory usage. .., - the structure struct FPTTrédong Element; long

We also run experiments using the public UCI datasets ., er- FPTTree* child; FPTTree* brother; FPTTree* fa-

E/TOVLded oncrt]he FIC';/” worksgop \t;vePri(t)?lovlsl%:QK are dther; FPTTree* next} has been used to create each node
ushroom, ess, connect, Pumsb, » N ¢ this tree, where a link is created between each node and

T_10J4l?10r(])K. The COE' allgolgthmhsc?es rglatively well its first child, and the brother link is maintained to create a
vis-a-vis the support threshold with these datasets. Re-j a4 jist of all children of the same node. This linked list

sults ‘;’]“e notl rgport((ajd herle fo.rhla;]c_:khof Space. IOur apl'lis built ordered based on the frequency of each item. The
sroac revgae gool_kresg LS wg '9 SUDF;]O” valueona Peader list is maintained using the structure FrequentStruc
atasets. However, like with other approaches, in cases o{ long Item; long Frequency; long COFIFrequency; long

!OW support_ ""’?"_Je’ where the number of frequent_ p.atte_mSCOFlFrequencyl; FPTTree* first; COFITree* firstCOF;
increases significantly, our approach faces some dn‘flcultles.After building the FP-tree we start building the first COFI-

For suqh cases It Is regommended tp con5|der dISCOVerIngtree by selecting the item with least frequency from the fre-
plosed itemsets or maximal patterns mstegd of just frequenﬁuent list. A scan is made of the FP-tree starting from the
itemsets. The sheer number of frequent itemsets becomeﬁnked list of this item to find the frequency of other items

overwhelming, and some argue even useless. Closed itemg iy, respect to this item. After that, the COFI-tree is created
sets and maximal itemsets represent all frequent patterns b%ased on only the locally frequent items. Finally frequent

eliminating the redu.ndant ones. For |Ilus_trat|on, Table 2 patterns are generated and stored in the FrequentTree data
compares the CPU time and memory requirement for COF structure. All nodes that have support greater or equal than
and FP-Growth on the T1014D100K dataset. the given support present a frequent pattern. The COFI-tree

and the FrequentTree are removed from memory and the
5 Implementations next COFI-tree is created until we mine all frequent trees.

One interesting implementation improvement is the fact

The COFI-tree program submitted with this paper is a that the participation counter was also added to the header
C++ code. The executable of this code runs with 3 param-table of the COFI-tree this counter cumulates the partici-
eters, which are: (1) the path to the input file name. (2) pation of the item in all paterns already discovered in the
a positive integer that presents the absolute support. (3)current COFI-tree. The difference between the participa-



tion in the node and the participation in the headeris thatthe [2] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-

counter in the node counts the participation of the node item
in all paths where the node appears, while the new counter
in the COFI-tree header counts the participation of the item
globally in the tree. This trick does not compromise the

effectiveness and usefulness of the participation counting.
One main advantage of this counter is that it looks ahead
to see if all nodes of a specific item have already been tra-

tion rules between sets of items in large databasePrdn.
1993 ACM-SIGMOD Int. Conf. Management of Dgtages
207-216, Washington, D.C., May 1993.

] R. Agrawal and R. Srikant. Fast algorithms for mining as-

4] 1. Almaden.

versed or not to reduce the unneeded scans of the COFI-tree. 5]

6 Conclusion and future work

The COFI algorithm, based on our COFI-tree structure,
we propose in this paper is one order of magnitude better
than the FP-Growth algorithm in terms of memory usage,
and sometimes in terms of speed. This Algorithm achieves
this results thanks to: (1) the non recursive technique used
during the mining process, in which with a simple traver-

(6]

(7]

sal of the COFlI-tree a full set of frequent patterns can be [g]

generated. (2) The pruning method that is used to remove
all locally non frequent patterns, leaving the COFI-tree with

only locally frequent items.
The major advantage of our algorith@OFI over FP-

Growth is that it needs a significantly smaller memory foot-
print, and thus can mine larger transactional databases with
smaller main memory available. The fundamental differ-
ence, is that COFI tries to find a compromise between a
fully pattern growth approach, that FP-Growth adopts, and

(9]

a total candidacy generation approach that apriori is known [10]

for. COFI grows targeted patterns but performs a reduced

and focused generation of candidates during the mining. [11]

This is to avoid the recursion that FP-growth uses, and no-

torious to blow the stack with large datasets.

We have developed algorithms for closed itemset min-
ing and maximal itemset mining based on our COFlI-tree
approach. However, their efficient implementations were
not ready by the deadline of this workshop. These effi-
cient algorithms and experimental results will be compared
to existing algorithms such as CHARM[17], MAFIA[6] and

CLOSET+[15], and will be reported in the future.
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D = Dimension, L = Average number of items in one transaction
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Figure 7. Mining dataset of different sizes
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