
Finite State Automata and Image Recognition

Marian Mindek

Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

marian.mindek@vsb.cz

Finite State Automata and Image Recognition.

Marian Mindek1

1Katedra informatiky, FEI, VŠB – Technická Univerzita Ostrava, 17. listopadu 15,
708 33, Ostrava-Poruba

marian.mindek@vsb.cz

Abstract. In this paper we introduce finite automata as a tool for specification
and compression of gray-scale image. We describe, what are interests points in
pictures and idea if they can hang together with resultant finite automata.

Keywords: finite automata, interest points, image recognition

1 Introduction

Karel Culik II and Vladimir Valenta have proposed fractal-coding technique which is
based on automata theory. In their paper [1] describe a inference algorithm for
generalized finite automata and a lossy compression system for bi-level images based
on this algorithm and vector quantization. In another paper [2] describe a similar
algorithm for gray-scale image, which use a weighted finite automata (WFA). We're
issue these ideas and describe algorithm for gray-scale pictures based on simple
solution for bi-level pictures.

2 Finite automata

A digitized image of the finite resolution m x n consists of m x n pixels each of which
takes a Boolean value (1 for black, 0 for white) for bi-level image, or real value
(practically digitized to an integer value 0 and 256) for a gray-scale image.
 Here we will consider square images of resolution 2n x 2n (typically 6 ≤ n ≤ 11). In
order to facilitate the application of finite automata to image description we will
assign each pixel at 2n x 2n resolution a word of length n over the alphabet
Σ={0,1,2,3} as its address. A pixel at 2n x 2n resolution corresponds to a sub square of
size 2-n of the unit square. We choose ε as the address of the whole unit square. Its
quadrants are addressed by single digits as shown in Fig. 1 on the left. The four sub
square of the square with address w are addressed w0, w1, w2 and w3, recursively.
Address of all the sub square (pixels) of resolution 4 x 4 are shown in Fig. 1, middle.
The sub square (pixel) with address 3203 is shown on the right of Fig. 1.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 141–151, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

142 Marian Mindek

Figure 1. The addresses of the quadrants, of the sub square of resolution 4 x 4, and the sub
square specified by the string 3203.

In order to specify a black and white image of resolution 2m x 2m, we need to specify
a Boolean function Σm → {0,1}, or alternately we can specify just the set of pixels
which are black, i.e. a language L ⊆ Σm. Frequently, it is useful to consider multi-
resolution images, that is images which are simultaneously specified for all possible
resolution, usually in some compatible way. (We denote Σm the set of all words over
Σ of the length m, by Σ* the set of all words over Σ)
 In our notation a bi-level multi-resolution image is specified by a language L ⊆
Σ*, Σ={0,1,2,3}, i.e. the set of addresses of all the black squares, at any resolution.
Now, we are ready to give some examples. We assume that the reader is familiar with
the elementary facts about finite automata and regular sets, see e.g. [4].
 A finite automaton is displayed by its diagram which is directed graph whose
nodes are states, with the initial node indicated by an incoming arrow and the final
nodes by double circles. An edge labeled a from state i to state j indicates that input a
causes the transition from state i to state j. A word in the input alphabet is accepted by
the automaton if it labels a path from the initial state to the final state. The se
(language accepted by automaton A) is denoted L(A).

Example. The 2 x 2 chess-board in Fig. 2 looks the same for all resolution 2m x 2m,
m ≥ 1. For depth m, the specification is the finite set {1,2}Σm-1, the multi-resolution
specification is the regular set {1,2}Σ*. The 8 x 8 chess-board in Fig. 2 as a multi-
resolution image is described by the regular se Σ2{1,2}Σ* or by automaton A of Fig.
3.

Figure 2. 2 x 2 and 8 x 8 chess-boards.

Finite State Automata and Image Recognition 143

Figure 3. Finite automaton A defining the 8 x 8 chess-board.

Notice that here we used the fact that the regular expression Σ2{1,2}Σ* is the
concatenation of two regular expression Σ2 and {1,2}Σ*. It is easy to show that in
general if the image is described by the concatenation of two languages L=L1L2,, then
the image L is always obtained by placing copes of the image L2 into all the squares
addressed by the 4 x 4 chess-board Σ{1,2}Σ* into the squares addressed 0,1,2 and 3,
that is as concatenation of Σ and Σ{1,2}Σ*.

Our concatenation decomposition L=L1L2,, works even when language L1, is infinite
as shown by the following example.

Example. Clearly, L1= {1,2}*0 are addresses of the infinitely many squares
illustrated at the left of Fig. 4. If we place the completely black square defined by
L2=Σ* into all these squares we get the image specified by the concatenation
L1L2={1,2}*0Σ* which is the triangle shown in the middle of Fig. 4.

Figure 4. The squares specified by {1,2}*0, a triangle defined by {1,2}*0Σ*, and the
corresponding automaton.

Example. By placing the triangle L= L1L2 from the previous example into all the
squares with addresses L3={1,2,3}*0 we get the image L3L={1,2,3}*0{1,2}*0Σ*
shown at the left of Fig. 5.

 Zooming is easily implemented for images represented by regular sets. Let an
image be represented by language L. Zooming to sub square with address w, i.e.
expanding the image in square w to the whole unit square, is done as follows. We take
the left quotient of L with respect to w, that is Lw={x∈Σ | wx∈L}. This is especially
easy when L is specified by a deterministic finite automaton (DFA) A. The DFA Aw

144 Marian Mindek

accepting Lw is obtained by simply replacing the initial state of A by the state reached
by input string w.

Figure 5. The diminishing triangles defined by {1,2}*0Σ*, and the corresponding automaton.

We have just shown that a necessary condition for black and white multi-resolution
image to be represented by a regular set, is that is has only a finite number of different
sub images in all the sub squares with addresses from Σ*. We will show that this
condition is also sufficient. Therefore, images that can be perfectly (i.e. with infinite
precision) described by regular expressions (finite automata) are images of regular or
fractal character. Self-similarity is a typical property of fractals. Any image can by
approximated by a regular expression (finite automaton), however, an approximation
with a smaller error might require a larger automaton.
 Now, we will give a theoretical procedure which, given a multi-resolution image,
finds a finite automaton perfectly specifying it, if such an automaton exists.

Procedure Construct Automaton
For given image I, we denote Iw the zoomed part of I in the square addressed w. The
image represented by state number x is denoted by ux.

1. i=j=0.
2. Create state 0 and assign u0=I.
3. Assume ui=Iw. Process state i, that is for k=0,1,2,3 do:

If Iwk=uq for some atate q, then create an edge labeled k from state i to state q;
otherwise assign j=j+1, uj=Iwk ,and create an edge labeled k from state i to the
new state j,

4. if i=j, that is all states have been processed, stop;
otherwise i=i+1, go to 3.

The procedure Construct Automaton terminates if there exists an automaton that
perfectly specifies the given image and produces a deterministic automaton with the
minimal number of states. Our algorithm for gray-scale image is based on this
procedure, but it will use valuated finite automata (as like WFA) introduced in the
section 4 and only replacing black and white color to 256 color (or grayness) image
and no creating loop.
 For the image diminishing triangles in Fig. 5, the procedure constructs the
automaton shown at the right-hand side of Fig. 5. First the initial state D is created an

Finite State Automata and Image Recognition 145

processed. For 0 a new state T is created, for 1,2 and 3 a loop to itself. Then state T is
processed for 0 a new state S is created, for 1 and 2 a loop to T. There is no edge
labeled 3 coming out of T since the quadrant 3 for T (triangle) is empty. Finally the
state S (square) is processed by creating loops back to S for all 4 inputs.

3 Interest points

Follows section is based on [4]. The system for image capturing produce mostly the
images that are represented discretely by matrices of value. Each element in the
matrix expresses either the brightness or the intensities of the color components at the
corresponding image point (pixel). In order to capture the image precisely, many
pixels are usually used, which yields high volumes of data. If an image is to be
analyzed, it is often difficult or even impossible to use all this information directly.
Many systems work in such a way that they divide the process of analyzing the image
into two steps. In the first step, the important features in the images are found in a
rather „mechanical“ way. The features are then used for analyzing the image in the
second step. (Let us recall the well-known fact that this scheme need not be accepted
without exceptions. The desired result of the first step may depend on the image
content which, however, is not known at the time when the first step is carried out.)

The first step, in which the important features are found (usually without deeper
understanding the content of the image), has grown into a large and important field in
digital image processing that includes finding areas, edges, and corners. Great
attention was paid to solve the mentioned problems in the past. Despite this effort, the
research in the are does not seem to be closed. If more effective and especially more
reliable solutions were available, it could improve the overall performance of the
whole systems.

This part of work focuses on the problem of detecting the corners (points of interest,
feature points, junction points, dominant points). By the term corner, we mean the
point at which the direction of the noundary of object changes abruptly. The object is
a continuos image area with a constant (or nearly constant) brightness or color.
Alternatively, we could say that the corner is an intersection point between two or
more edge segments. Let us use Figs. 6-10 to illustrate the term more clearly. Fig. 6
depicts a very simple image containing several objects with the corners indicated in
the figure. Fig. 7 shows an example of a typical shape of function of brightness in the
neighborhood of a corner. A more complicated brightness function is depicted in Fig.
8. Fig. 9 and 10 show an artificial and real image, respectively, with the corners
indicated in them. The simplest possible type of corner depicted in Fig. 7 is called the
L-cornel. The image may also contain more complicated corners referee to as T, Y,
and X-corners. The corner depicted in Fig. 8, for example, is T-corner. Various types
of corners are depicted in Fig. 11. We remark that some authors use the term corner
only for the points at which two edges intersect. They then use the term junction or
vertex for more complicated situations. To be concise, we use the term corner in all
that cases.

146 Marian Mindek

Figure 6. A simple image counting objects (gray areas). The boundaries (solid lines) and
corners (small circles) are indicated in the image.

Figure 7. A typical shape of the surface that is defined by the function of brightness in the
neighborhood of corner (L-corner). The arrow indicates the theoretical corner point.

Figure 8. A more complicated surface of brightness (T-corner).

Finite State Automata and Image Recognition 147

Figure 9. Detected corners (white crosses) in an artificial image.

Figure 10. Detected corners in an image obtained from a CCD camera.

Figure 11. How the corners manifest themselves in real images. L-corners(a,b,c), T-corner (d),
Y-corner (e), X-corner (f).

148 Marian Mindek

Since the corners convey rich information for many applications in digital image
processing and computer vision, the problem of detecting the corners is recognized
and well known. Corner detection is often an important step in various image-
understanding and scene-reconstructing systems, in which objects are to be detected,
tracked, recognized and reconstructed. Some authors claim that the corners play the
important role in human perception, which seems probable. It also explain why the
use of corner detection may be a logical step in artificial systems too.

If a theoretical analysis is to be carried out, a certain mathematical model of corner is
usually required. We will show a widely used model of the L-corner. Let ψ(ξ) be the
unit step function defined as follows

ψ(ξ) = () 1 if ξ ≥ 0, 0 otherwise (3.1)

Consider an L-corner that is created as an intersection of two non-collinear straight
edges. Let ϕ1, ϕ2∈<0,2π) be the directions perpendicular to the edges oriented to the
side with higher brightness. We set ni=(cosϕi, sinϕi), i=1,2. Consider the image
containing a single convex corner at a point C, The brightness function, denoted by
b(X), in such an image can be described by the following equations (the term ni(X-C)
expresses the signed distance of X from the i-th edge)

b0(X) = ψ(n1 . (X - C)) ψ(n2 . (X - C)) ,
b(X) = G(X)*b0 (X) (3.2)

where * means the convolution, * denotes the dot product, and G(X) stands for the
two dimensional Gaussian filter.

The corner depicted in Fig. 7 was generated by making use of Eq- (3.1) too. For more
complex corners (T, Y, X-corners) the corresponding models can also be introduced
[4]. These, however, will not be necessary in this work.

Detecting the corners reliably and effectively in real images that are processed in
practice is a difficult problem (Fig. 10). Although many detectors usually work well
on simple test images, all the existing algorithm have problem in practical
applications if more complicated images are to be processed.

For more information about corners detection, and much more see [5].

4 Image recognition

Our algorithm is based on algorithm shown in section 2. From every node graph lead
maximum 4 edges, which they are evaluation numbers of represented image part. At
every node is storage information of average grayness in sub square represented
thereby state.

Finite State Automata and Image Recognition 149

Procedure Construct Automaton for Recognition
For given image I, we denote Iw the zoomed part of I in the square addressed w. The
image represented by state number x is denoted by ux.

1. i=j=0.
2. Create state 0 and assign u0=I. (Image represented by empty word) and define

average grayness of image I.
3. Assume ui=Iw. Process state i, that is for k=0,1,2,3 do:

If Iwk=uq (with small error) or if the image Iwk can be expressed as a part or
expanded part of the image uq for some state q, then create an edge labeled
k from state i to state q;
otherwise assign j=j+1, uj=Iwk ,and create an edge labeled k from state i to the
new state j,

4. if i=j, that is all states have been processed, stop;
otherwise i=i+1, go to 3.

The procedure Construct Automaton for Recognition terminates if there exists an
automaton that perfectly (or with small defined error) specifies the given image and
produces a deterministic automaton with the minimal number of states. The number
of state can be small reduced, or extended by changing error or do tolerance for
average grayness of image part. For reconstruct image from automata and compute a
interesting point for image recognition we propose follow recursively algorithm.

Procedure Reconstruct Image for Recognition
For given automata A, we make image Iw the zoomed part of I in the square addressed
w. The image represented by state number x is denoted by ux.

1. Assign the initial state qo to the image represented by the empty word, that is, to

the whole image I, and define i(qo)=1, t(qo)=∅(ε), the average grayness of the
image I, which we change to computed color, if we wont that.

2. Recursively, for a state q assign to square specified by a string u, consider four sub
square specified by a string u0, u1, u2, u3. Denote the image in square by Iua. If
the image is everywhere t(qo) and word has shorter then requested, assign a new
input state q that representative image specified by a input word uX where X is
denoted part of image. Otherwise, assign a new input state q(uY) where Y is a
next part of image.

3. Repeat step 3 for each state, and stop if no founded new input state, or input word
is a equal to requested.

The procedure Reconstruct Image for Recognition was stop for every automata
computed by a procedure Construct Automaton for Recognition, or other similar
algorithm.
 With previous procedure can mark the interest point for recognition. There is
many method for reflecting point. For example on Fig. 12 (for this and another
example on left is original image and on right-hand computed image) is on the left
image where lighter color is for state, that construct later (part has longest word) on

150 Marian Mindek

the right is lighter color for the state with less sub square (white color is for state, has
not sub square).

Figure 12. Reconstructed image on the left-hand with marked later state, on the right-hand with
state, has not sub square.

Figure 13. Reconstructed image with marked state.

On Fig. 13 is reconstructed image from automata which have deep 5 and compression
is not loss. Number of state is 3317 and 43 latest has not a sub square. Lighter point
on right-hand part is marked state without neighbor with same over squere. Some of
this point is correspond with interest point (corners) on right part Fig. 10. Finally on
Fig. 14 is decompressed image with error 16%, only 16 level of gray and computed
automata have 175 state (latest 8 have not sub square). White dot on middle part is
state without sub square. On right-hand is marked corners (red dot) computed by
method described in [5], many of this point correspond with automata state. For
compare on Fig. 15 is all state marked, where darkness color is newer state and white
color have latest state.

Figure 14. Reconstructed image with marked state.

Finite State Automata and Image Recognition 151

Figure 15. States of computed automata represented by color (on right-hand).

5 Conclusions

In this paper we have proposed an alternative solution for image recognition and
finding a interesting points as a corners. This method is based on finite automata
compression. The interesting property of this approach is an ability of similarity
recognition.

References

1. K. Culik II and V. Valenta. Finite automata based compression of bi-level and
Simple Color Images.

2. K. Culik II and J. Kari. Image compression Using Weighted Finite Automata, in
Fractal Image Compression: Theory a Techniques, Ed. Yuval Fisher, Springer
Verlag, pp 243-258 (1994)

3. R. Deriche and G.Giraudon, A computational approach for corner and vertex
detection, International Jurnal of Computer Vision, 10(2), 101-124 (1993)

4. J.E.Hopcroft and J.D.Ullman. Introduction to automata theory, languages and
computation. Addison-Wesley (1979).

5. E. Sojka, A New Algorithm for Direct Corner Detection in Digital Images, VŠB-
Technical University of Ostrava, Faculty of Electrical Engineering and Computer
Science, (2002)

