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Abstract. In this paper pivoting M-tree (PM-tree) is introduced, a
metric access method combining M-tree with the pivot-based approach.
While in M-tree a metric region is represented by a hyper-sphere, in PM-
tree the shape of a metric region is determined as an intersection of the
hyper-sphere and a set of hyper-rings. The set of hyper-rings for each
metric region is related to a fixed set of pivot objects. As a consequence,
the shape of a metric region bounds the indexed objects more tightly
which, in turn, improves the overall efficiency of the similarity search.
Preliminary experimental results on a synthetic dataset are included.

Keywords: PM-tree, M-tree, pivot-based methods, efficient similarity search

1 Introduction

Together with the increasing volume of various multimedia collections, the need
for an efficient similarity search in large multimedia databases becomes stronger.
A multimedia document (its main features respectively) is modelled by an ob-
ject (usually a vector) in a feature space U thus the whole collection can be
represented as a dataset S ⊂ U . Similarity search is then provided using a spa-
tial access method [1] which should efficiently retrieve those objects from the
dataset that are relevant to a given similarity query.

In context of similarity search, a similarity function (dissimilarity function
actually) can be modeled using a metric, i.e. a distance function d satisfying the
following metric axioms for all Oi, Oj , Ok ∈ U :

d(Oi, Oi) = 0 reflexivity
d(Oi, Oj) > 0 (Oi 6= Oj) positivity
d(Oi, Oj) = d(Oj , Oi) symmetry

d(Oi, Oj) + d(Oj , Ok) ≥ d(Oi, Ok) triangular inequality

Given a metric space M = (U , d), the metric access methods [2] organize (or
index) objects of a dataset S ⊂ U just using the metric d. Most of the metric ac-
cess methods exploit a structure of metric regions within the space M. Common
to all these methods is that during a search process the triangular inequality of
d allows to discard some irrelevant subparts of the metric structure.
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2 M-tree

Among many of metric access methods developed so far, the M-tree [3,5] (and its
modifications) remains still the only indexing technique suitable for an efficient
similarity search in large multimedia databases.

The M-tree is based on a hierarchical organization of feature objects Oi ∈ S
according to a given metric d. Like other dynamic, paged trees, the M-tree
structure is a balanced hierarchy of nodes. The nodes have a fixed capacity and
a utilization threshold. Within the M-tree hierarchy, the objects are clustered
into metric regions. The leaf nodes contain ground entries of indexed objects
themselves while routing entries (stored in the inner nodes) represent the metric
regions. A ground entry has a format:

grnd(Oi) = [Oi, oid(Oi), d(Oi, P (Oi))]

where Oi ∈ S is an appropriate feature object, oid(Oi) is an identifier of the orig-
inal DB object (stored externally), and d(Oi, P (Oi)) is a precomputed distance
between Oi and its parent routing entry. A routing entry has a format:

rout(Oj) = [Oj , ptr(T (Oj)), r(Oj), d(Oj , P (Oj))]

where Oj ∈ S is a feature object, ptr(T (Oj)) is pointer to a covering subtree,
r(Oj) is a covering radius, and d(Oj , P (Oj)) is a precomputed distance between
Oj and its parent routing entry (this value is zero for the routing entries stored
in the root). The routing entry determines a hyper-spherical metric region in
space M where the object Oj is a center of that region and r(Oj) is a radius
bounding the region. The precomputed value d(Oj , P (Oj)) is redundant and
serves for optimizing the M-tree algorithms.

Fig. 1. A metric region and its routing entry in the M-tree structure.

In Figure 1, a metric region and its appropriate routing entry rout(Oj) in an
M-tree are presented. For a hierarchy of metric regions (routing entries rout(Oj)
respectively) the following condition must be satisfied:
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All feature objects stored in leafs of covering subtree of rout(Oj) must be spatially
located inside the region defined by rout(Oj).

Formally, having a rout(Oj) then ∀Oi ∈ T (Oj), d(Oi, Oj) ≤ r(Oj). If we re-
alize, such a condition is very weak since there can be constructed many M-trees
of the same object content but of different structure. The most important con-
sequence is that many regions on the same M-tree level may overlap.

Fig. 2. Hierarchy of metric regions and the appropriate M-tree.

An example in Figure 2 shows several objects partitioned into metric regions
and the appropriate M-tree. We can see that the regions defined by rout1(Op),
rout1(Oi), rout1(Oj) overlap. Moreover, object Ol is located inside the regions
of rout1(Oi) and rout1(Oj) but it is stored just in the subtree of rout1(Oj).
Similarly, the object Om is located even in three regions but it is stored just in
the subtree of rout1(Op).

2.1 Similarity Queries

The structure of M-tree was designed to natively support similarity queries. A
similarity measure is here represented by the metric function d. Given a query
object Oq, a similarity query returns (in general) objects Oi ∈ S close to Oq.

In the context of similarity search we distinguish two kinds of queries. A range
query is specified as a hyper-spherical query region defined by a query object
Oq and a query radius r(Oq). The purpose of a range query is to return all the
objects Oi ∈ S satisfying d(Oq, Oi) ≤ r(Oq). A query with r(Oq) = 0 is called a
point query. A k-nearest neighbours query (k-NN query) is specified by a query
object Oq and a number k. A k-NN query returns the first k nearest objects to
Oq. Technically, a k-NN query can be implemented using a range query with a
dynamic query radius.

During a similarity query processing the M-tree hierarchy is being traversed
down. Only if a routing object rout(Oj) (its metric region respectively) intersects
the query region, the covering subtree of rout(Oj) is relevant to the query and
thus further processed.
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2.2 Retrieval Efficiency

The retrieval efficiency of an M-tree (i.e. the costs of a query evaluation) is highly
dependent on the amount of overall volume1 of the metric regions described by
routing entries. The larger metric region volumes (and also volumes of region
overlaps) the higher probability of intersection with a query region.

Fig. 3. a) An M-tree with large volume of regions. b) An M-tree with small
volume of regions.

In Figure 3 two different yet correct M-tree hierarchies for the same dataset
are presented. Although both M-trees organize the same dataset, a query pro-
cessing realized on the second M-tree will be more efficient (in average) due to
the smaller region volumes.

Recently, we have introduced two algorithms [6] leading to a reduction of the
overall volume of metric regions. The first method, the multi-way dynamic inser-
tion, finds the most appropriate leaf for each object being inserted. The second
(post-processing) method, the generalized slim-down algorithm, ”horizontally”
(i.e. separately for each tree level) tries to redistribute all entries among more
appropriate nodes.

3 Pivoting M-tree

A metric region (as a part of routing entry) of M-tree is described by a bounding
hyper-sphere (given by a center object and a radius). However, the shape of
hyper-spherical region is far from optimal since it does not ”wrap” the objects
tightly together and the region volume is too large. In other words, relatively to
the hyper-sphere volume there is only a ”few” objects spread inside the hyper-
sphere thus a huge proportion of an empty space2 is covered. Consequently,
1 We consider only an imaginary volume since there exists no universal notion of

volume in general metric spaces.
2 The uselessly indexed empty space is sometimes refered as a ”dead space”.



Pivoting M-tree: A Metric Access Method for Efficient Similarity Search 31

for hyper-spherical regions of large volumes the query processing becomes less
efficient.

In this section we introduce an extension of M-tree, called pivoting M-tree
(PM-tree), exploiting the pivod-based idea for metric region volumes reduction.

3.1 Pivot-based Methods

Similarity search realized by pivot-based methods [2,4] is based on a single gen-
eral idea. A set of p (random) objects {p1, ..., pl, ..., pk} ⊂ S is selected, called
pivots. The dataset S (of size n) is preprocessed so as to build a table of n ∗ p
entries, where all the distances d(Oi, pl) are stored for every Oi ∈ S and every
pivot pl. When a range query (Oq, r(Oq)) is processed, we compute d(Oq, pl) for
every pivot pj and then try to discard such Oi that |d(Oi, pl)−d(Oq, pl)| > r(Oq).
The objects Oi which cannot be eliminated with this rule have to be directly
compared against Oq.

The simple pivot-based approach is suitable especially for applications where
the distance d is considered expensive to compute. However, it is obvious that the
whole table of n∗p entries must be sequentially loaded during a query processing
which significantly increases the disk access costs.

3.2 Structure of PM-tree

Since PM-tree is an extension of M-tree we just describe the new facts instead
of a comprehensive definition. To exploit advantages of both, the M-tree and
the pivot-based approach, we have enhanced the routing and ground entries by
a pivot-based information.

First of all, a set of p pivots pl ∈ S must be selected. This set is fixed for
all the lifetime of a particular PM-tree index. Furthermore, we define a routing
entry of a PM-tree inner node as:

routPM (Oj) = [Oj , ptr(T (Oj)), r(Oj), d(Oj , P (Oj)),HR]

The additional HR attribute stands for an array of phr hyper-rings (phr ≤ p)
where the l-th hyper-ring HR[l] is an interval (possibly the smallest) cover-
ing distances between the pivot pl and each of the objects stored in leafs of
T (Oj), i.e. HR[l].min = min({d(Oi, pl)}) and HR[l].max = max({d(Oi, pl)}) for
∀Oi ∈ T (Oj). Similarly, for a PM-tree leaf we define a ground entry as:

grndPM (Oi) = [Oi, oid(Oi), d(Oi, P (Oi)),PD]

The additional PD stands for an array of ppd pivot distances (ppd ≤ p) where
the l-th distance PD[l] = d(Oi, pl).

Since each hyper-ring stored in HR defines a metric region containing all the
objects indexed by T (Oj), an intersection of hyper-rings and the hyper-sphere
forms a metric region bounding all the objects in T (Oj). Furthermore, due to
the intersection with hyper-sphere, the PM-tree metric region is always smaller
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Fig. 4. a) Region of M-tree. b) Reduced region of PM-tree (with three pivots).

than the original M-tree region defined just by a hyper-sphere. For a comparison
of an M-tree region and an equivalent PM-tree region see Figure 4.

The PM-tree, as a combination of M-tree and the idea of pivoting, represents
a metric access method based on hierarchical pivoting. The numbers phr and ppd

(both fixed during a PM-tree index lifetime) allow us to specify the ”amount
of pivoting”. For phr > 0 and ppd = 0 only the hierarchical pivoting will take
place while for phr = 0 and ppd > 0 a query will be processed like in the
ordinary M-tree with subsequent pivot-based filtering in leafs. Obviously, using
a suitable phr > 0 and ppd > 0 the PM-tree can be tuned to achieve an optimal
storage/retrieval efficiency.

3.3 Building the PM-tree

In order to keep HR and PD arrays up-to-date, the original M-tree construction
algorithms [5,6] must be adjusted. The adjusted algorithms still preserve the
logarithmic time complexity.

Object Insertion.
During an object Oi insertion, the HR array of each routing entry in the insertion
path must be updated by values d(Oi, pl),∀l ≤ phr.

For the leaf node in the insertion path a new ground entry must be created
together with filling its PD array by values d(Oi, pl),∀l ≤ ppd.

Node Splitting.
When a node is split, a new HR array of the left new routing entry is created
by union of all appropriate intervals HR[l] (PD [l] in case of leaf splitting) stored
in routing entries (ground entries respectively) of the left new node. A new HR
array of the right new routing entry is created similarly.
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3.4 Query Processing

Before processing any similarity query the distances d(Oq, pl), ∀l ≤ max(phr, ppd)
have to be computed. During a query processing the PM-tree hierarchy is being
traversed down. Only if the metric region of a routing entry rout(Oj) intersects
the query region (Oq, r(Oq)), the covering subtree T (Oj) may be relevant to the
query and thus it is further processed. In case of a relevant PM-tree routing
entry the query region must intersect all the hyper-rings stored in HR. Prior to
the standard hyper-sphere intersection check (used by M-tree), the intersection
of hyper-rings HR[l] with the query region is checked as follows (note that no
additional d computation is needed):

phr∧
l=1

(d(Oq, pl)− r(Oq) ≤ HR[l].max ∧ d(Oq, pl) + r(Oq) ≥ HR[l].min)

If the above hyper-ring intersection condition is false, the subtree T (Oj) is irrel-
evant to the query and thus discarded from further processing. On the leaf level
a relevant ground entry is determined such that the following condition must be
satisfied:

ppd∧
l=1

|d(Oq, pl)− PD[l]| ≤ r(Oq)

In Figure 4 an example of query processing is presented. Although the M-tree
metric region cannot be discarded (see Figure 4a), the PM-tree region can be
discarded since the hyper-ring HR[2] is not intersected (see Figure 4b).

The hyper-ring intersection condition can be incorporated into the original
M-tree range query as well as k-NN query algorithms. In case of range query
the adjustment is straightforward – the hyper-ring intersection condition is com-
bined with the original hyper-sphere intersection condition. However, the k-NN
query algorithm (based on priority queue heuristics) must be redesigned. In the
experiments we have considered range queries only – the design of a k-NN query
algorithm for PM-tree is a subject of our future research.

3.5 Hyper-Ring Storage

In order to minimize storage volume of the HR and PD arrays in PM-tree nodes,
a short representation of object-to-pivot distance is necessary.

We can represent a hyper-ring HR[l] by two 4-byte reals and a pivot distance
PD [l] by one 4-byte real. When (a part of) the dataset is known in advance
we can approximate the 4-byte distance representation by a 1-byte code. For
this reason a distance distribution histogram is created by random sampling
of objects from the dataset along with comparing them against all the pivots.
Then a distance interval 〈dmin, dmax〉 is computed so that most of the histogram
distances fall into the interval. See an example in Figure 5, where such an inter-
val covers 90% of sampled distances (the d+ value is an (estimated) maximum
distance of a bounded metric space M).
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Fig. 5. Distance distribution histogram, 90% distances in interval 〈dmin, dmax〉

Values HR[l] and PD [l] are scaled into the 〈dmin, dmax〉 interval using a 1-byte
code. Experimental results have shown that a 1-byte distance approximation is
almost as effective as a 4-byte real while by using 1-byte approximation the
PM-tree storage savings are considerable. As an example, for phr = 50 together
with using 4-byte distances, the hyper-rings stored in an inner node having
capacity 30 entries will consume 30 ∗ 50 ∗ 2 ∗ 4 = 12000 bytes while by using
1-byte distance codes the hyper-rings will take only 30 ∗ 50 ∗ 2 ∗ 1 = 3000 bytes.

4 Experimantal Results

We have made several preliminary experiments on a synthetic dataset of 250,000
10-dimensional vectors. The vectors were distributed within 2500 spherical clus-
ters of a fixed radius (over the whole extent of the vector space domain). As a
distance function the Euclidean metric (L2) was used. Each label PM-tree(x,y)
in the figures below stands for a PM-tree index where phr = x and ppd = y. The
sizes of PM-tree indices varied from 19MB (in case of PM-tree (0,0), i.e. M-tree)
to 64MB (in case of PM-tree (100,100)). The PM-tree node size (disk page size
respectively) was set to 4KB. For each index construction the SingleWay +
MinMax techniques were used (we refer to [6]).

In the experiments a retrieval efficiency of range query processing was eval-
uated. The query objects were randomly selected from the dataset and each
particular query test consisted of 200 range queries of the same query selectivity
(the number of objects in query result). The results were averaged. Disk access
costs (DAC) and computation costs of the query evaluation were examined, ac-
cording to the number of pivots used (phr and/or ppd) as well as according to
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query selectivity. The query selectivity was ranged from 5 to 50 objects. The
experiments were intended to compare PM-tree with M-tree hence the PM-tree
query costs are related to the costs spent by processing the same query by the
M-tree index.

4.1 Disk Access Costs

In Figure 6a DAC according to query selectivity are presented. We can see that
for querying PM-tree(60,0) index there is needed from 80% to 90% (increasing
with selectivity) of DAC needed by the M-tree. The PM-tree(200,0) index is
even more efficient since only 65% to 85% of DAC is needed. On the other side,
PM-tree(200,50) index consumes up to 150% DAC since the long PD arrays
(storing 50 pivot distances for each ground entry) cause the 250,000 ground
entries must be stored in 9177 leafs (the M-tree needs only 4623 leafs).

Fig. 6. Disk access costs: a) Query selectivity b) Number of pivots

Disk access costs according to the number of pivots are presented in Figure
6b. With the increasing p the disk access costs for PM-tree(p,0) indices decrease
from 85% to 65% since more hyper-rings help to discard more irrelevant subtrees
while the index sizes grow slowly (e.g. size of PM-tree(200,0) index is 24MB).
The PM-tree(100,p/2) indices are more efficient than the M-tree for p < 60
only.

Interesting results are presented for PM-tree(p,p/4) indices where DAC re-
main about 100%. These results are better than for PM-tree(100,p/2) indices
but worse than for PM-tree(p,0) indices. The reason for such behaviour is that
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with increasing p more hyper-rings help to discard more irrelevant subtrees but,
on the other hand, due to the even longer PD arrays the index sizes grow quickly.

4.2 Computation Costs

Unlike for disk access costs, the increasing number of pivot distances in PD
arrays positively affects the computation costs. In Figure 7a we can observe
PM-tree(200,50) index to be more than 10 times as efficient as the M-tree
index. However, for p > 80 the indices PM-tree(p,p/4) and PM-tree(100,p/2)
consume the same computation costs (see Figure 7b). This happens particularly
due to the increasing number of leafs which must be payed by a higher number
of routing entries in inner nodes.

Fig. 7. Computation costs: a) Query selectivity b) Number of pivots

4.3 Summary

Based on the experimental results we are able to claim several facts (relative to
the M-tree efficiency):

– For increasing p where phr = p and ppd = 0 the disk access costs as well as
the computation costs steadily decrease.

– For increasing p where phr � ppd (say phr = p, ppd = p
4 ) the disk access costs

are similar to the M-tree DAC but the computation costs can be considerably
lower. Such a behaviour can be useful when a distance computation is more
expensive than a single disk access.

– In cases where phr ≤ ppd the PM-tree behaviour acts similarly like the simple
pivot-based filtering does since the disk access costs are high.
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5 Conclusions and Outlook

In this paper the pivoting M-tree (PM-tree) was introduced. The PM-tree com-
bines M-tree hierarchy of metric regions together with the idea of pivot-based
methods. The result is a flexible metric access method providing even more effi-
cient similarity search than the M-tree. The preliminary experimental results on
a synthetic dataset indicate various efficiency trends for various PM-tree config-
urations.

In the future we plan to develop new PM-tree building algorithms exploiting
the pivot-based information. Second, the original M-tree k-NN query algorithm
has to be redesigned. Our next goal is formulation of a cost model making
possible to tune PM-tree parameters for an estimated efficiency. Last but not
least, extensive experiments on huge multimedia datasets have to be performed.
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