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Abstract. There is several known algorithm to construct concept lat-
tices. The question is, how could we simplify this lattice into concepts,
that are important and have selected features. According to “A Theory
of Diversity”, we can compute the diversity of a set of objects recursively
from the pairwise dissimilarities between its elements. Using Conjugate
Möebius Inverse, we can compute weights of each concept from these di-
versities. Determining attribute weights is a complex task, however, since
there are as many potential attributes as there are non-empty subset of
object. The document shows the implementation of Möebius function on
concept lattices and then determinig concepts weights by pairwise be-
tween objects. We suppose, this is the way to simplify concept lattices.
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1 Introduction

This article addresses the problem of the weighting of concepts. In “A The-
ory of Diversity” (Nehring and Puppe, 2002, henceforth TD), we proposed a
multi-attribute approach according to which the diversity of a set of objects
is determined by the number and weight of the different features (attributes)
possessed by them. In some cases, the diversity of a set can be computed re-
cursively from the pairwise dissimilarities between its elements (plus their value
as singletons). Two basic models for which this is possible are the hierarchical
model studied by Weitzman (1992, 1998) in the context of biodiversity and the
more general line model introduced in TD. As already observed by Weitzman
(1992), then hierarchical model implies that the two greatest dissimilarities be-
tween three points are always equal if singletons are equally valued. The purpose
of the present paper is to show, how could we compute the weights of concepts
using knowledge of this models.

Section 2 procides the necessary background from formal concepts analysis
and TD. Section 3 shows the implementation of Conjugate Möebius Function to
valuating concept lattice and another way to get same values by pairwise dis-
similarities between objects. Last section is devoted to the poser with weighting
concept lattices.
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2 Backgound

This section shows some definitions and tools, that are important for our later
valuating of concepts. First we define a context and concept lattice. Next, we
summarize the basic features of the multi-attribute model developed in TD.

2.1 Context and concept lattice

Definition 1. A formal concept C := (G, M, I) concsists of two sets G and
M and relation I between G and M . The elements of G are called the objects and
the elements of M are called the attributes1 of the context. In order to express
that an object g is in a relation I with an attribute m, we write gIm or (g,m) ∈ I
and read it as “the object g has the attribute m”. The relation I is also called
the incidence relation of the context.

Definition 2. for a set A ⊂ G of object we define

A
′
= {m ∈ M | gIm for all g ∈ A}

(the set of attributes common to the objects in A). Correspondingly, for a set B
of attributes we define

B
′
= {g ∈ G | gIm for all m ∈ B}

(the set of objects which have all attributes in B).

Definition 3. A formal concept of the context (G, M, I) is a pair (A,B) with
A ⊆ G, B ⊆ M , A

′
= B and B

′
= A. We call A the extent and B the intent of

the concept (A,B). B(G, M, I) denotes the set of all concepts of context (GMI)

Definition 4. The concept lattice B(G, M, I) is a complete lattice in which in-
fimim and supremum are given by:

∧
t∈T

(At, Bt) =
( ⋂

t∈T

At,

( ⋃
t∈T

Bt

)′′)

∨
t∈T

(At, Bt) =
(( ⋃

t∈T

At

)′′

,
⋂
t∈T

Bt

)
.

We refer to [1].

1 The attribute has different meaning in the Conjugate Möebius Inverse. It’s a set of
objects.
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2.2 Diversity function

Definition 5. Let F be the totality of all features deemed relevant in the specific
context, and denote by R ⊆ X × F the “incidence” relation that describes the
features possessed by each object, i.e. (x, f) ∈ R whenever object x ∈ X possesses
feature f ∈ F . For each relevant feature f ∈ F , let λf ≥ 0 quantify the value of
realization of f . Upon normalization, λf can thus be thought of as the relevant
importance, or weight of feature f . The diversity value of a set S is defined as

v(S) =
∑

f∈F :(x,f)∈R for some x∈S

λf (1)

The diversity value of a set is given by the total weight of all different features
possessed by some objects in S. Note expecially that each feature occurs at most
once at sum. In particular, each single object contributes to diversity the value
af all those features that are not possessed by any already existing objects.

For any subset A ⊆ X of objects denote by FA the set of features that
are possessed exactly the objects in A. Each feature in FA is possessed by all
elements of A and not possessed by any element of X \A. Then we can write

v(S) =
∑

A∩S 6=∅

∑
f∈FA

λf (2)

Then, for each subset A ⊆ X denote by λA :=
∑

f∈FA
λf the total weight of

all features with extension A, with the convention that λA = 0 whenever FA = ∅.
With this notation we write

v(S) =
∑

A∩S 6=∅

λA (3)

2.3 Conjugate Möebius Inverse

Theorem 1. For any function v : 2X → R with v(∅) = 0 there exists unique
function λ : 2X → R, the Conjugate Möebius Inverse, such that λ∅ = 0 and, for
all S,

v(S) =
∑

A:A∩S 6=∅

λA (4)

Furthermore, the Conjugate Möebius Inverse λ is given by the following formula.
For all A 6= ∅,

λA =
∑

A:A∩S 6=∅

(−1)|A|−|S|+1 ∗ v(Sc), (5)

where Sc denotes the complement of S in X.

We refer to [4].
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3 Concept lattice and Möebius function

This part shows, how can we compute weights and diversity of concepts of
particular concept lattice. Then we use dissimilarity and similarity function to
get the same result by easier way.

Description of objects and features in incidence matrix.
C = cat q = quadrupped (four feet)
M = monkey (chimpanzee) p = pilli
D = dog i = intelligence
F = fish (delphinus) w = live in water
H = human h = hand
W = whale

Table 1. Incidence relation matrix.

λq = 2 λp = 3 λi = 4 λw = 2 λh = 2
q p i w h

C x x

M x x x

D x x

F x x

H x x

W x x

There are all subsets A ⊆ X in the table 2. FA presents a set of relevant
features f ∈ F , which are possessed by all elements of set A, but not possessed
by any element of a set X \A. By λA :=

∑
f∈FA

λf , we get the values in the
table.

By v(S) =
∑

A:A∩S 6=∅ λA, we compute the diversity of each subset of objects
of universum X, S ⊆ X in the table 3. In this time, we include all attributes
and their weights to compute diversities of subsets S. The large the incidence
matrix the large count of conceivable attribues and subsets of objects, so it’s
more difficult to compute diversity function.

Next, we consider only attributes corresponding to concepts. Sets of at-
tributes are not sets of features of concept but they are identical to sets of
objects.

We use Conjugate Möebius Inverse (5) to compute weights of attributes (con-
cepts) from diversities in the table 4.
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Table 2. All conceivable attributes.

A FA λA A FA λA A FA λA A FA λA A FA λA

∅ FW w 2 CMD p 3 MFHW i 4 CMDFH
C MH h 2 CMF CMDF CMDFW
M CD q 2 CMH CMDH CMDHW
D CM CMW CMDW CMFHW
F CF CDF CMFH CDFHW
H CH CDH CMFW MDFHW
W CW CDW CMHW CMDFHW

MD CFH CDFH
MF CFW CDFW
MW CHW CDHW
DF MDF CFHW
DH MDH MDFH
DW MDW MDFW
FH MFH MDHW
HW MFW DFHW

MHW
DFH
DFW
DHW
FHW

Table 3. Diversities of subsets S of objects.

S v(S) S v(S) S v(S) S v(S) S v(S) S v(S)

∅ 0 FW 6 CMD 11 MFHW 11 CMDFH 13 CMDFHW 13
C 5 MH 9 CMF 13 CMDF 13 CMDFW 13
M 9 CD 5 CMH 11 CMDH 11 CMDHW 13
D 5 CM 11 CMW 13 CMDW 13 CMFHW 13
F 6 CF 11 CDF 11 CMFH 13 CDFHW 13
H 6 CH 11 CDH 11 CMFW 13 MDFHW 13
W 6 CW 11 CDW 11 CMHW 13

MD 11 CFH 13 CDFH 13
MF 11 CFW 11 CDFW 11
MW 11 CHW 13 CDHW 13
DF 11 MDF 13 CFHW 13
DH 11 MDH 11 MDFH 13
DW 11 MDW 13 MDFW 13
FH 8 MFH 11 MDHW 13
HW 8 MFW 11 DFHW 13

MHW 11
DFH 13
DFW 11
DHW 13
FHW 8
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Table 4. Weighting by CMI

A S : S ⊆ A Sc (−1)|A|−|S|+1 v(S) λA

FW F CMDHW +1 13 2
W CMDFH +1 13
FW CMDH −1 11
∅ CMDFHW −1 13

MH M CDFHW +1 13 2
H CMDFW +1 13
MH CMDW −1 11
∅ CMDFHW −1 13

CD C MDFHW +1 13 2
D CMFHW +1 13
CD MFHW −1 11
∅ CMDFHW −1 13

cmd C MDFHW −1 13 3
M CDFHW −1 13
D CMFHW −1 13
CM DFHW +1 13
CD MFHW +1 11
MD CFHW +1 13
CMD FHW −1 8
∅ CMDFHW +1 13

MFHW M CDFHW +1 13 4
F CMDHW +1 13
H CMDFW +1 13
W CMDFH +1 13
MF CDHW −1 13
MH CDFW −1 11
MW CDFH −1 13
FH CMDW −1 13
FW CMDH −1 11
HW CMDF −1 13
MFH CDW +1 11
MFW CDH +1 11
MHW CDF +1 11
FHW CMD +1 11
MFHW CD −1 5
∅ CMDFHW −1 13

M M CDFHW −1 13 0
∅ CMDFHW +1 13

∅ 0

CMDFHW all subsets all subsets 0

Any diversity function satisfies this formula:

v(S ∪ {x})− v(S) =
∑

A3x,A∩S=∅

λA (6)
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Fig. 1. a) Diversities of concepts b) Weights of concepts

Table 5. Dissimilarities

C M D F H W

C 0 2 0 5 5 5

M 6 0 6 5 3 5

D 0 2 0 5 5 5

F 6 2 6 0 2 0

H 6 0 6 2 0 2

W 6 2 6 0 2 0

By (6), the marginal diversity of an object x at a set S is given by the total
weight of all attributes possessed by x but by no element of S. Accordingly, we
will refer to marginal diversity also as the distinctiveness of x from S, which we
denote by

d(x, S) := v(S ∪ {x})− v(S). (7)

A diversity function naturally induces a notion of pairwise dissimilarity be-
tween objects as follows.

Definition 6. For all x, y

d(x, y) := d(x, {y}) = v({x, y})− v({y}). (8)

By (6), d(x, y) is the weight of all attributes possessed by x but not by y.
Note that, in general, d need not be symmetric. We can read it from table (5).

As we said at the beginning, there are two models in TD. The hierarchical
and the more general line model. All concept lattices are hierarchical ordered.
But, weighting of concepts is a difficult task. We can assign values to concepts
only in small and simly lattice because of next condition.

Definition 7. A model H ⊆ 2X is called a (taxonomic) hierarchy if the elements
of H are nested in the sence that, for all A,B ∈ H,

A ∩B 6= ∅ ⇒ [A ⊆ B ∨ B ⊆ A]. (9)
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Accordingly, we will refer to a diversity function v, as well as to the associ-
ated attribute weighting function λ, as hierarchical if the support Λ of relevant
attributes forms a hierachy. Diversity function is hierarchical if and only if, for
all x and S,

v(S ∪ {x})− v(S) = min
y∈S

[v({x, y})− v({y})] (10)

or, equivalently,
d(x, S) = min

y∈S
d(x, y) (11)

Theorem 2. Conjugate Möebius Inverse on a hierarchy. Let v be a di-
versity function with attribute weighting function λ. If v is hierarchical, then for
all A ∈ Λ and all x ∈ A,

λA = min
y∈Ac

d(x, y)−max
y∈A

d(x, y) (12)

Conversely, suppose that,
for all A ∈ Λ and all x ∈ A, λA = d(x, Ac)−maxy∈A d(x, y), then λ is hierar-
chical.

According to (12) we compute weights of concepts in the table 6. We can see,
that most of values are correct (compare with table (4)). But, some of them are
not right although we have used the same formula (12). We can find hierarchical
ordering in the concept lattice but it is different to hierarchy defined in (9).

Table 6. Values of concepts according to (12)

Concept A Ac sel. x miny∈Ac d(x, y) maxy∈A d(x, y) λA

C1 CD MFHW C 2 0 2
D 2 0 2

C2 M CDFHW M 0 0 0
C3 FW CMDH F 2 0 2

W 2 0 2
C4 MH CDFW M 5 3 2

H 2 0 2
C5 CMD FHW M 3 6 -3

C 5 2 3
D 5 2 3

C6 MFHW CD M 6 5 1
F 6 2 4
H 6 2 4
W 6 2 4

C7 CMDFHW ∅ C 0 0 0
C8 ∅ CMDFHW ∅ 0 0 0
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Proof. Suppose that Λ is a hierarchy. Let x ∈ A ∈ Λ, and define
z∗ := argmaxz∈Ad(x, z). Since Λx = {B ∈ Λ : x ∈ B} is a chain, one
has B ⊂ A ⇔ z∗ /∈ B for all B ∈ Λx, where “⊂” denotes the proper subsethood
relation.
Hence,

minz∈Ac d(x, z)−maxz∈A d(x, z)
= v({x} ∪Ac)− v(Ac)− d(x, z∗)
= λ({B : x ∈ B ⊆ A})− λ({B : x ∈ B, z∗ /∈ B})
= λA + λ({B : x ∈ B ⊂ A})− λ({B : x ∈ B, z∗ /∈ B})
= λA.

Conversely, suppose that Λ is not a hierarchy, i.e. suppose there exists
A,C ∈ Λ such that A ∩ C, A \ C, and C \ A are all non-empty. Let x ∈ A ∩ C.
Without loss of generality we may assume that A is an minimal element
of Λ satisfying x ∈ A and A \ C 6= ∅, i.e. for no proper subset A

′
of A,

x ∈ A
′ ∈ Λ and A

′ \ C 6= ∅. Let y ∈ A \ C. By construction one has
{B ∈ A : x ∈ B,B ⊂ A} ⊂ {B ∈ Λ : x ∈ B, y /∈ B} since C belong to
the latter but not to the former set. Since assumption, λC > 0, this implies
λ({B : x ∈ B ⊂ A})− λ({B : x ∈ B, y /∈ B}) < 0.
Therefore,

d(x, Ac)−maxz∈A d(x, z)
= v({x} ∪Ac)− v(Ac)−maxz∈A d(x, z)
≤ v({x} ∪Ac)− v(Ac)− d(x, y)
= λ({B : x ∈ B ⊆ A})− λ({B : x ∈ B, y /∈ B})
= λA + λ({B : x ∈ B ⊂ A})− λ({B : x ∈ B, y /∈ B})
< λA.

According to next definition, we can divide the concept lattice into hierarchies
to compute weights of concepts by CMI.

Definition 8. A lattice hierarchy H in lattice L is join-sublattice where
a ∩ b 6= ∅ ⇒ [a ≤ b ∨ b ≤ a], a, b ∈ H. H(L,⊆) denotes the poset of all lat-
tice hierarchies of lattice L.

Theorem 3. Let H be the lattice hierarchy. Then Hasse diagram H \0 is rooted
tree.

Proof. Because H is finite join-sublattice then exists join r for all element of H.
It is easy to show that r is root. Hence Hasse diagram H \ 0 is connected. Let
H \ 0 contain a cycle i.e. suppose there exists a, b ∈ H \ 0 such that a‖b and
a ∧ b = c, c 6= 0. We obtain a contradiction with presumption.
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4 Conclusion

Concept lattice is ordered but we can not use a simple method to compute
weights of concepts by Conjugate Möebius Inverse. We try to delegate this prob-
lem to pairwise of elements of the hierarchical model. We get values of weights
or diversities but this method ensures right results if and only if, concept lattice
or a part of lattice satisfy the condition of hierarchical structure (9).

We see another way to solve this problem. In future, we want to prove, that
we can “supply” any concepts lattice by finite set of trees, that are ordered and
they satisfy our condition of hierarchical structure. We want to find minimal
count of hierarchies, that can cover concept lattice.
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