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ABSTRACT 
Seas of web pages in the Internet contain free texts in 
natural language that are only read by human beings. To 
be understandable for machines, these pages should be 
annotated with semantic markups. Manually annotating 
large amounts of pages is an arduous work. This has made 
automatic semantic annotation an urgent challenge. In this 
paper, we propose a machine-learning based automatic 
annotation approach. This approach can be trained for 
different domains and requires nearly no manual rules. 
The annotation is on the sentence level and is in RDF 
format. We adopt a dependency grammar – Link Grammar 
[2] – for this purpose. ALPHA system, a prototype of this 
approach has been developed with IBM China Research 
Lab. We expect many improvements are possible for this 
approach and our work may be selectively adopted or 
enhanced. 

1 Introduction 
There are seas of web pages in the Internet and nearly all 
of them contain free texts in natural language that are only 
read by human beings. Annotating these pages with 
semantic markups is one promising way to make them 
understandable for machines. Unfortunately, automatic 
semantic annotation for the natural language sentences in 
these pages is a daunting task and we are often forced to 
do it manually or semi-automatically using handwritten 
rules. In this paper, we propose a machine-learning (ML) 
based automatic semantic annotation approach that can 
be trained for different domains and require almost no 
manual rules. The annotation resulted form this approach 
lies in the sentence level, i.e., we will annotate each 
sentence or prime sentences in a web page. This approach 
stems from our previous research on semantic analysis on 
natural language sentences using Conceptual Graphs 
(CG). 

Free texts in the Internet contain various information in 
diverse domains. The method we proposed in this paper is 
for domain specific sentences that are sentences occur in 
a specific application domain. Though the sentences are 
limited in one domain, our method itself is domain 
independent and the system can be trained for various 
domains.  
Domain specific sentences are usually very stylish in the 
words, phrases, grammar and semantics they employ, 
which lead to a strong patterned text  for which machine 

learning based approach is effective. Our approach is 
independent on any ML algorithm. In the prototype 
ALPHA system, we employed instance-based learning. 
Link Grammar is first used to get the syntactic structures 
of sentences. The learning process then learns to map the 
syntactic structures to semantic structures – RDF graphs. 
WordNet [7] and the domain relation hierarchy are used as 
the domain ontology in the whole semantic analysis and 
representation process. Preliminary results gained from 
the ALPHA system demonstrated the feasibility of the 
approach.  

The paper is organized as follows. Section 1.1 explains the 
concept of “Domain Specific Sentences” used in this 
paper. Section 1.2 briefly shows what the result RDF looks 
like. Section 1.3 explains the reason to adopt Link 
Grammar. Section 2 outlines the whole approach by giving 
an overview. Section 3 presents the detailed process that 
generates RDF graph from domain specific sentences. 
Section 4 discusses the result of ALPHA system. Section 
5 concludes our work by comparing related work. 

1.1 Domain Specific Sentences 
Domain specific sentences point to those sentences that 
are frequently occurring in one certain application domain 
text but scarcely in others. They are assumed to own the 
following characteristics: 

I. vocabulary set is limited 
II. word usage has patterns 
III.semantic ambiguities are rare  
IV.terms and jargon of the domain appear frequently 
The notion of sublanguage [3,4] has been well discussed 
last decade. Domain specific sentences actually can be 
seen as sentences in a domain sublanguage. As previous 
study has shown, a common vocabulary set and some 
specific patterns of word usage can be identified in a 
domain sublanguage. These results provide ground for us 
to assume the above characteristics about domain specific 
sentences. In the rest of this paper, we will show how 
characteristics I to III are employed in our work. Terms 
and jargon will be dealt with in the following section by 
adding them to the Link Grammar dictionary. 

  

1.2 RDF Graph 
After the annotation, sentences from web pages will be 
marked up with RDF statements. We illustrate the 
representation by using an example sentence “I go to 



Shanghai”. The corresponding RDF statement will be like 
the following: 

<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns="http://cs.sjtu.edu.cn/apex/alpha-schema#" 
> 
<Concept rdf:ID="1"> 
<rdfs:label>I</rdfs:label> 

<WordNetSenseIndex>WN16-2-012345 
</WordNetSenseIndex> 

</Concept> 
<Concept rdf:ID="2"> 
<rdfs:label>go</rdfs:label> 

<WordNetSenseIndex>WN16-2-012345 
</WordNetSenseIndex>  

</Concept> 
<Concept rdf:ID="3"> 

<rdfs:label>shanghai</rdfs:label> 
</Concept> 
<rdf:Description about="#1"> 
<AGNT rdf:resource="#2"/> 
</rdf:Description> 
<rdf:Description about="#2"> 
<DEST rdf:resource="#3"/> 
</rdf:Description> 
</rdf:RDF> 

Class “Concept” represents concept in sentence. In the 
current implementation, we are using WordNet [7] as 
experimental concept ontology. Property 
“WordNetSenseIndex” uniquely identifies a word sense 
(concept) in WordNet database. Properties such as 
“AGNT” (agent), “DEST” (destination) are sub-properties 
derived from a general property “Relation”. All the sub-
properties of “Relation” are organized as a hierarchy and 
thus form the relation ontology. [18] 

The RDF statement can also be diagramed as a directed 
labeled graph with nodes and arcs as depicted in figure 1. 
Since the diagram is simpler and easier to understand, we 
will use the diagram, which we call RDF graph, to 
represent RDF statements instead of writing long RDF 
statements in the rest of the paper.  

1.3 Link Grammar  
Link Grammar is a dependency grammar system we employ 
in our work. For the same sentence “I go to Shanghai”, the 
Link Grammar parse result is shown in the top of Fig.2. 
The labeled arcs between words are called links. The 
labels are the types of the links. For example, the “Sp*I” 
between “I” and “go” represents the type of links 
between “I” and a plural verb form. “MVp” connects verb 
to its modifying prepositional phrases. “Js” connects 
prepositions to their objects. In Link Grammar, there is a 
finite set of such link types. 

Each word in Link Grammar has a linking requirement 
stating what types of links it can attach and how they are 
attached. The link requirements are stored in a Link 
Grammar dictionary. The parse result is called a linkage or 
a link structure. The Link Grammar parser is called a link 
parser. Currently, the link parser from CMU [5] has a 
dictionary of about 60000 words together with their linking 
requirements. Although the CMU link parser still has 
difficulties in parsing complex syntactic structures in real 
commercial environment, it is now ready for use in 
relatively large prototypes. Applying Link Grammar to 
languages other than English (e.g. Chinese [19]) is also 
possible.  

The most important reason that makes us adopt Link 
Grammar in our work is the structure similarity between 
Link Grammar parse result and RDF graph. Fig.2 shows 
this similarity by comparing the Link Grammar parse result, 
the typical parse tree of a constituent grammar and the 

RDF graph for the same example sentence. In fact, this 
similarity comes from the common foundation of both RDF 
graph and Link Grammar. RDF graph consists of concepts 
and relations. The relations denote the semantic 
associations between concepts. Similarly, link structure 
consists of words and links. The links directly connect 
syntactically and semantically related words [2]. Open 
words [17] (such as noun, adjective and verb) access 
concepts from the catalog of conceptual types, while 
closed words [17] (such as prepositions) and links help 
clarify the semantic relationships between the concepts.  

DEST AGNT 
I Go Shanghai 

Fig. 1. RDF graph for the example sentence “I go to Shanghai” 
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Fig. 2. Link structure is more like a RDF graph 
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Based on this similarity and restricted to a specific 
domain, we propose to automatically generate annotation 
by learning the mapping from link structure to RDF graph. 

Another important feature of Link Grammar is that the 
grammar is distributed among words [2]. There can be a 
separate grammar definition (linking requirement) for each 
word. Thus, expressing the grammar of new words or 
words that have irregular usage is relatively easy. We can 
just define the grammar for these words and add them to 
the dictionary. This is how we deal with terms and jargon 
of a domain in our approach. Because the vocabulary set 
for a domain is limited (see section 1.1), we can add all 
unknown words (including terms and jargon) to the 
current dictionary of Link Grammar with affordable amount 
of work. 

 

2 Overview of the approach 
Our approach of automatic page annotation is a process 
consisting of two phases: the training phase and the 
generating phase, as shown in Fig.3. 

The first step of both phases is to invoke Link Grammar, 
and parse the sentence into its link structure, which will be 
mapped to RDF through different means in the two 
phases. 

In the training phase, some domain experts will go through 
a three-operation process to transfer the link structure into 
RDF graph manually based on their domain knowledge. 
Each operation maps a certain part of the syntactic 
structure to its corresponding semantic representation 
according to the syntactic and semantic context.  

Concepts, schemata 1  and relations contained in the 
semantic representation are selected from the domain 

                                                                 
1 Schemata, is a set of RDF graphs describing background 

information in a domain. 

ontology. Since semantic ambiguities are rare in domain 
specific sentences (see section 1.1), it is relatively easy to 
perform these mapping operations (the process of 
semantic analysis). 

What training phase does is a preparation. Before the 
system can learn to do the mapping in the generating 
phase, we convert the mapping into machine learning area. 
Most of studied tasks in machine learning area are to infer 
a function that classifies a feature vector into one of a 
finite set of categories [6]. We thus translate the mapping 
operation into classification operation by encoding the 
operation as category and encoding the context in which 
the operation is performed as feature vector. We call the 
feature vector context vector since it encodes the context 
information of an operation. The vector generator in the 
left down corner of Fig.3 is the component that executes 
this task.  

After sufficient training vectors and categories are 
obtained in the training phase, the system can enter into 
the generating phase. RDF generator, the main part of the 
generating phase will implement the following algorithm 

under the help of ML engine and Link Grammar after it is 
given a sentence from object domain.  

 

1  get the link structure for the sentence from link parser. 

2  generate an empty RDF graph. 

3  for (i = 1 to 3) { //perform the three kinds of operations 

4 generate all possible context vectors from link    
 structure for the i-th kind of operation. 

5 for (every context vector) { 

6 if (an operation is needed for this vector) { 

7  classify the vector using ML engine. 

8 decode the classified category as an operation.   

9 perform the operation on the link structure and  
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Fig. 3. Overview of the approach 
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10 modify the RDF graph according to the operation  

11 result (using concepts, schemata and relations     
12               from the domain ontology). 

13 } 

14 } 

15 } 

16 do integration on the RDF graph. 

17 output the final RDF annotation for the sentence. 

Our approach is independent of specific ML algorithm 
used. In ALPHA system, we adopt IBL (Instance Based 
Learning) for the ML engine because IBL makes it easy to 
determine whether an operation is needed for an arbitrary 
vector in the above algorithm (line 6). IBL can return a 
distance value along with the classification result. If the 
distance value is too large, it can be determined that no 
operation is needed for the vector because it is far from 

being similar to existing training vectors and may be 
deemed as noise. For other learning methods, this 
determination may not be easily achieved. 

In the following section, we will explain Algorithm.1 and 
the three operations by taking an example sentence “The 
polo with an edge is refined enough for work”, which is 
excerpted from a corpora of clothes descriptions collected 
from many clothes shops on the Web. In the sentence,  
“Polo” is a brand and represents a certain kind of shirts 
and “edge” actually means collar. The link structure for 
this sentence is shown in Fig.4. 

3 Learning to generate RDF 
In this section we will introduce the three operations that 
map a link structure to RDF: word-conceptualization, link-
folding and relationalization. These three kinds of 
operations must be performed exactly in the right order in 
both the training phase and the generating phase because 
a later operation may use information generated in the 
previous operations. In section 3.4, the integration on 
RDF graph (line 16 of Algorithm.1) is explained. 

3.1 Word-Conceptualization  
I. Function 

Word-conceptualization is the first operation to be 
performed. Its function is to annotate open words as 
concepts in the sentence to form the skeleton of the initial 
empty RDF graph and mark close words for further 
operation. This operation can be seen as a word sense 
disambiguation operation. 

II. Training 

In the training phase, domain experts select all the open 
words in the link structure one by one. Once an open 
word is selected, the training interface can provide the 
expert a list of possible concepts or schemata retrieved 
from the domain ontology. The expert then chooses the 
appropriate one from the list.  

This operation is then encoded by the vector generator 
into a context vector and its category. For example, the 
context vector for the open word “polo” in the example 
sentence may be <polo, NN, Dmu, Mp>2 in which “NN” is 
the POS (part-of-speech) tag3 and “Dmu” and “Mp” are 
the innermost left and right link types of “polo” (see 
Fig.4). All the context information is obtained from the link 
structure.  

The category for the context vector is encoded as the 
result of the operation – the ID of the selected concept or 
schemata in the domain ontology. The encoding is 
something like “WN16-2-330153” which can be used later 
as a key to retrieve concept (in WordNet terminology, 

word sense) from the WordNet database.  

Since WordNet is not specific for any domain, some 
words in a certain domain may not exactly match any 
sense in the list. For those words the experts are asked to 
choose the most similar sense instead of adding a new 
sense to WordNet so as to preserve the hierarchy in 
WordNet for further research.  

III. Generating 

Generating all possible context vectors (line 4 of 
Algorithm 1.) is actually to generate one context vector for 
each open word in the link structure of the sentence. The 
generated context vector is then sent to the ML engine as 
to do a classification. The returned category is an 
encoding of concept or schema ID. In line 9 of Algorithm 
1, the RDF generator retrieves the concept or schema from 
the domain ontology according to the decoded ID and 
creates a concept node in the RDF graph.  

Because word usage has patterns in domain specific 
sentences, we expect that similar context vectors appear 

                                                                 
2 The vector is just an example. For brevity, we are not 

trying to make the vector encoding perfect in this paper. 
Actually, what context information is encoded into the 
vector is a separate problem. This problem is isolated 
into the vector generator component. In the current 
implementation, we defined a configuration file for the 
vector generator to address the issue. 

3 We can augment the link parser with a POS tagger so 
that the accurate POS tag information can be added to 
the link structure and be obtained from it later. 

Algorithm 1. The algorithm of the RDF Generator 

Fig. 4. The link structure for the example sentence 
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for a given open word on a specific word sense. Based on 
these similar context vectors, we expect the ML engine 
can return correct classification with a high possibility 
since the semantic ambiguity is also rare in domain 
specific sentences. 

After this step, all concept nodes of the RDF graph 
should be created. The RDF graph for the example 
sentence is shown in Fig.5. For convenience, we use 
simple concept names in Fig.5. The “S-WORK” is the 
“SUITABLE-FOR-WORK” schema in domain ontology.   

3.2 Link-Folding 
I. Function 

The following two operations focus on creating the 
semantic relations between the concepts. Closed words 
(especially prepositions) with their links imply 
relationships between the concepts of the words they 
connect. In the example sentence, “… polo --- with --- 
edge …” fragment implies a PART relation between 
[POLO:#] and [EDGE]. We then “fold” the 'with' and its 
left and right links and replace them with a PART relation. 
This is just what the link-folding operation does. 

Closed words with their links representing semantic 
relations can be seen as word usage patterns. In domain 
specific sentences, such patterns are expected to occur 
frequently. This actually enables the machine to learn the 
patterns from training corpora. In addition, since semantic 
ambiguities are rare in domain specific sentences, it can be 
expected that the result of the learning converge on the 
correct relation. Similar analysis also applies to the next 
operation – relationalization in section 3.3. 

II. Training 

In the training phase, the domain expert can select any 
closed word that connects two concepts and implies a 
semantic relation and map it to the responding semantic 
relation from the relation ontology4.  

The context vector for this operation may encode context 
information such as the POS tag of the closed word, the 
left and right link types and the two concepts. The 
category is an encoding of the relation ID in the domain 
ontology. For the “… polo --- with --- edge … ” case, the 
context vector may be <with, IN, Mp, Js, POLO, EDGE>5. 

                                                                 
4 For brevity, we omitted the direction of a relation here. 
5  The POLO and EDGE in the vector are actually the 

concept IDs in the domain ontology. We will use the 
same convention in the following vector examples. 

And the category is the encoding of the ID of the PART 
relation in the domain ontology. 

III. Generating 

In the generating phase, generating all possible context 
vectors for this operation (line 4 of Algorithm 1.) is 
actually generating one context vector for every possible 
case in which a closed word connects two concepts. This 
needs consult the concept information generated in the 
word-conceptualization operations. If an operation is 
needed for the vector, it is sent to the ML engine to do a 
classification. The returned category is an encoding of the 
relation ID in domain ontology. In line 9 of Algorithm.1, 
the RDF generator retrieves the relation from domain 
ontology according to the ID and creates the relation 
between the two concepts. 

For the example sentence, there are three closed words 
that need link-folding operation: ‘with’, ‘is’ and ‘for’, as 
shown in Fig.4. Among them, the word ‘is’ is an auxiliary 
verb and ‘with’ and ‘for’ are prepositions. 

The relation implied by the auxiliary verb ‘is’ is THEME 
and the ‘for’ between ‘refined’ and ‘work’ implies a 
RESULT relation. The RDF graph after this step has 
relations added between concepts. As to our example 
sentence, the RDF graph has grown to Fig.6. 

3.3 Relationalization 
I. Function  

Semantic relation can also be implied by a link that directly 
connects two concepts in the link structure. For example, 
the ‘MVa’ link between ‘refined’ and ‘enough’ in the link 
structure of example sentence implies a MANNER relation. 
The relationalization operation translates this kind of links 
into corresponding semantic relations. 

II. Training 

In the training phase, domain knowledge expert can select 
any link that implies a semantic relation between concepts 
it connects. The expert then selects the semantic relation 
from the domain ontology for the connected two 
concepts. 

The context vector for this operation can include 
information such as the link type and the concepts. For 
the “… refined –MVa – enough … ”, the context vector 
may be <MVa, REFINE, ENOUGH>. The category for the 
context vector can be encoded as the relation ID in the 
domain ontology. For the above vector, it is the ID of the 
MANNER relation. 

III. Generating 

POLO:# EDGE 

REFINE 

ENOUGH 

S-WORK: *x 

THME 

PART 

RSLT 

Fig. 6. RDF graph after link-folding  

Fig. 5. RDF graph after word-conceptualization 
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In the generating phase, generating all possible context 
vectors for this operation (line 4 of Algorithm 1.) is 
actually generating one context vector for every link that 
connects two concepts. If an operation is needed for the 
vector, it is sent to the ML engine to do a classification. 
The returned category is an encoding of the relation ID in 
domain ontology. In line 9 of Algorithm.1, the RDF 
generator retrieves the relation from domain ontology 
according to the ID and creates the relation between the 
two concepts. 

After this step, more relations may be created in the RDF 
graph. As to the example sentence, the MANNER relation 
will be created to connect the [REFINE] concept and the 
[ENOUGH] concept and the whole graph grows to Fig.7.  

3.4 Integration 
Integration is the last step (line 16) in Algorithm.1.  This  
step is not a part of the training phase. It only appears in 
the generating phase and it is the only step that uses 
manually constructed heuristics. What it does includes 
simple co-reference detection and nested graph creation. 

In the discussion of the previous three operations, we 
don’t involve lambda expressions for brevity. In fact, they 
may appear when words for concepts are missed in the 
sentence. They may als o be introduced when schema is 
selected in word-conceptualization phase. In order to 
complete the RDF graph, we need to draw co-reference 
lines between the variables in these lambda expressions. 

Although there is machine-learning based approach for 
co-reference detection [9], in our work we mainly focus on 
the generation of RDF graph for a single sentence. 
Discourse analysis and co-reference detection is left for a 
separate research work. For different domains, we may 
construct different heuristics for them. In our current wok 
we simply make all undetermined references to point to the 
topic currently under discussion.  

Nested graph (context) may be introduced by expanding 
schema definition or removing modal/tense modifiers of a 
concept. Although RDF specification lacks a clear 
semantics about RDF reification, we are now using RDF 
reification mechanism to represent nested graph (context). 
In our example, we have mentioned in section 3.1 that the 
concept type S-WORK is actually a “SUITALBE-FOR-
WORK” schema from the domain ontology. We can do an 
expansion on it. Fig.8 is the definition for the “SUITALBE-
FOR-WORK” schema. SUTB represents the relation 
SUITABLE. 

After the expansion, we can do a simple co-reference 
detection that draws a co-reference line between the 

undetermined variable x and the current topic [POLO:#]. 
After this step, the final graph is generated. Fig.9 is the 
result for our example sentence “The polo with an edge is 
refined enough for work”. 

3.5 Summary 
Through the sections from 3.1 to 3.4, we have explained 
how we map link structure to RDF graph and convert the 

mapping to machine learning area. Word-
conceptualization builds concepts in the RDF graph. Link-
folding and relationalization connect concepts with 
semantic relations. In the last step, we use manually 
constructed heuristics to do simple co-reference detection 
and nested graph creation. 

4 Results  
We have developed a prototype called ALPHA system 
written in C. ALPHA system is now running on Solaris. It 
can be trained for different domains. Currently in our work, 
clothes domain is chosen as the sample domain. Nearly 
300 clothes descriptions, 500 sentences have been 
collected from clothes shops on the Web6 and are trained 
in ALPHA system. Among them, 34 descriptions and 93 
sentences are reserved for testing. The test result is 
shown in Fig.10. Using different IBL algorithms, the 
accuracy7 of concepts varies from 60% ~ 80%, and that of 
relation varies from 45% ~ 60%.  

The result demonstrated the feasibility of our approach.  

                                                                 
6  Those online shops include www.brooksbrothers.com 

and www.gap.com, etc.  
7  Here the accuracy of concepts = concepts annotated 

correctly / total concepts, and the accuracy of relations = 
links annotated correctly / links that should be 
annotated. 
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Fig.7.RDF graph after relationalization 
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Link Grammar has a strong impact on the accuracy of 
ALPHA system. Although its characteristics make it 
relatively easily to add domain grammar, it has some 
trouble in disambiguating the syntactic structure of over-
abridged sentences in clothes domain, such as “Back 
vent.”, which causes a serious failure in ALPHA system. 
Though we are aware of the problem, we will let it be at 

present because we want to pay more attention to 
semantic disambiguation. 

 To improve the accuracy of ALPHA system, we are 
considering developing new algorithms that can compute 
the distances of vectors more accurately. We are also 
considering making changes in the architecture so as to 
support the analysis of clauses and idioms. Further more, 
other application domains will be selected to test our 
approach. 

5 Related works 
Ontology-based annotation is most studied such as [15], 
[16]. [15] extends HTML with semantic extensions and 
builds an interactive and graphic tool to help annotate 
web pages manually. What it does is to associate an 
object in HTML with a concept from their ontology. After 
gaining experiences from manually annotation, they also 
conceive an information extraction-based approach for 
semi-automatic annotation of natural language texts by 
mapping terms to ontological concepts. Different from it, 
our approach is fully automatic after the training phase. 
Our approach also generates the semantic markup in 
standard RDF format. 

In natural language annotation, grammar-based approach 
is often used. They can roughly be divided into slot-filling 
and structure-mapping categories according to their 
generating techniques. 

Slot-filling techniques such as [12] fill template semantic 
graphs with thematic roles identified in the parse tree. 
Often the graph of one tree node in the syntactic parsing 
tree is constructed using the graph of its child nodes 

according to construction rules on how to fill the slots. 
Although this approach has been successfully applied in 
many applications, it heavily depends on manually created 
construction rules on the parse tree.  

Another kind of technique advanced in previous work is 
to directly map between syntactic structure and semantic 

structure such as [13]. We call them structure-mapping. In 
this respect, they are more similar to our work. To map to 
more flat structures of conceptual graphs, [13] uses 
syntactic predicates to represent the grammatical relations 
in the parse tree. Instead, in our work, Link Grammar is 
employed to directly obtain a more flat structure. Different 
from [13]’s approach, our work doesn’t use manual rules. 
Moreover, we separate the semantic mapping into several 
steps that greatly reduce the total number of possibilities. 
In another work in [14], parse tree is first mapped to a 
“syntactic conceptual graph”. The “syntactic conceptual 
graph ” is then mapped to a real conceptual graph. This 
approach again heavily uses manually constructed 
mapping rules.  

Up to now most methods for annotation are by hand or 
heavily depend on rules created manually. These methods 
will have difficulty in applying to the Web because of the 
tremendously large amounts of pages. Our approach 
provides an automatic way to annotate them in a faster 
and robust way. Research on machine learning in natural 
language processing using corpora data [6] has increased 
significantly and there are growing numbers of successful 
applications of symbolic machine learning 
techniques[10,11]. Our work presents a preliminary 
inquest into the use of traditional machine learning 
techniques to automatically generate semantic markups 
for domain specific sentences. We expect that many 
improvements are possible and our work may be 
selectively adopted or enhanced. 

Fig. 10. The accuracy of concepts and relations about different algorithm 
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