
CREWS Report Series 97-06

A PRIMER FOR METHOD ENGINEERING

Colette Rolland

Université de Paris 1 - Sorbonne

17, rue de la Sorbonne

75231 Paris Cedex 05

Rolland@masi.ibp.fr

Proceedings of the conferance INFORSID

(INFormatique des ORganisations et Systèmes d'Information et de Décision)

Toulouse, France, June 10-13, 1997

A PRIMER FOR METHOD ENGINEERING

Colette Rolland

Université de Paris 1 - Sorbonne

17, rue de la Sorbonne

75231 Paris Cedex 05

Rolland@masi.ibp.fr

Résumé
L'ingénierie des méthodes répond à l'incapacité des méthodes à prendre en compte les besoins de

leurs utilisateurs, les ingénieurs d'application. L'ingénierie des méthodes a pour objectif d'aider à la

construction de méthodes. L'article utilise le cadre de référence des quatre mondes pour étudier le

sujet de l'ingénierie des méthodes. Il présente un état de l'art qui identifie les problèmes importants

et les directions de recherche à suivre pour les résoudre. L'article met également l'accent sur les

problèmes majeurs qui n'ont pas été encore abordés ou qui sont apparus récemment.

Mots-clés

Ingénierie des méthodes, ingénierie des processus, fragment de méthode, méthode situationnelle

Abstract
The area of method engineering has emerged in response to an increasing feeling that methods are

not well suited to the needs of their users, the application engineers. Method engineering aims at

developing methods. The paper uses the four worlds framework to investigate the subject of method

engineering. It presents a state-of-art survey with a view to identifying the important problems and

research directions being followed to solve these. The major problems not yet addressed or which

have newly emerged are highlighted

Key-words

Method engineering, process engineering, fragment method, situational method

1. Introduction

There are a large number of methods available for information systems development
(ISD). These include structured approaches, prototyping approaches, systemic
approaches, object-oriented, etc. Many of these methods have been comparatively
analysed in books [OLLE88] and journals (e.g [JACK84], [HIRS92]). Despite a
large body of work concerning details of systems development methods, there is
still a poor understanding of how such methods are actually used in practice
[WYNE93]. However, there is an increasing feeling that methods are not well-
suited [LYYT87] to the needs of their users, the IS developers. In particular, it is
necessary to change methods from one business situation [HIDD94] to another.
Several survey based studies (e.g [WIJE90], [AAEN92], [YOUR92], [RUSS95]
have revealed that ISD methods are developed or adapted locally. For example, a
survey of method use in over 100 organisations' [RUSS95] shows that more than
2/3 of the companies have developed or adapted their methods in-house. Also, 89%
of respondents believed that methods should be adapted on a project to project
basis.

Method engineering [WELK92a] represents the effort to improve the usefulness of
systems development methods by creating an adaptation framework whereby
methods are created to match specific organisational situations. There are at least
two objectives that can be associated to this adaptation. The first objective is the
production of contingency methods, that is, situation-specific methods for certain
types of organisational settings. This objective represents method engineering as the
creation of a multiple choice setting. The second objective is one in which method
engineering is used to produce method "on-the-fly". Situational method engineering
[WELK92a] is the construction of methods which are tuned to specific situations of
development projects. Each system development starts then, with a method
definition phase where the development method is constructed on the spot.

Another broad view of the method engineering area is proposed by Harmsen who
suggests to organise approaches to method engineering in a Method Spectrum
[HARM94] according to the degree of flexibility in meeting situational needs.
Methods are placed on a scale ranging from 'low' flexibility to 'high' (figure 1). At
the 'low' end of this spectrum are rigid methods whereas at the 'high' end is
modular method construction. Rigid methods are completely pre-defined and leave
little scope for adapting them to the situation at hand. On the other hand, modular
methods can be modified and augmented to fit a given situation. Selection from rigid
methods allows each project to choose its method from a panel of rigid, pre-defined
methods whereas selection of paths within a method consists of selecting the
appropriate path for the situation at hand. Finally selection and tuning a method
permits each project to select methods from different approaches and tune them to
the project's needs.

U
se

 o
f r

eg
id

 m
et

ho
do

lo
gy

Se
le

ct
io

n
fro

m
 ri

gi
d

m
et

ho
do

lo
gi

es
Low High

Se
le

ct
io

n
of

 p
at

h
w

ith
in

 m
et

ho
do

lo
gy

Se
le

ct
io

n
an

 tu
ni

ng
 o

f m
et

ho
d

ou
tli

ne

M
od

ul
ar

 m
et

ho
d

co
ns

tru
ct

io
n

Figure 1: the spectrum of ME approaches

2. A framework for understanding method engineering

The position taken in this paper consists of adapting the four worlds framework
originally proposed for system engineering (figure 2) to method engineering. The
framework has proved its efficiency to enhance understanding in various
engineering disciplines, namely information systems engineering [JARK92],
requirements engineering [JARK93] and IS development process engineering
[ROLL97a]. Our claim is that it can help understanding the field of method
engineering which consists of applying engineering approaches, techniques, and
tools to the construction of methods.

SUBJECT
WORLD

USAGE
WORLD

DEVELOPMENT
WORLD

SYSTEM
WORLD

How is information
about subject world used

within IS environment

Justification of
development goals

User
interfaces

How does IS
represent information
about subject world

design
decisions

Figure 2 : The four worlds of IS engineering

In the original system engineering framework (figure 2), the subject world contains
knowledge of the domain about which the proposed IS has to provide information.
It contains real-world objects which become the subject matter for system
modelling.

The system world includes specifications at different levels of detail of what the
system does. It holds the modelled entities, events, processes, etc. of the subject
world together with the mapping of these conceptual specifications onto design
specifications and implementation.

The usage world describes the organisational environment of the information
system, i.e. the activity of agents and how the system is used to achieve work,
including the stakeholders who are system owners and users. The usage world
deals with the intentional aspects of the IS to be build whereas the subject world
refers to the domain it shall represent through informations.

The development world focuses on the entities and activities which arise as part of
the engineering process itself. It contains the processes which create the information
system i.e. processes which involve analysis and understanding of knowledge
contained in the other worlds and representation of that knowledge.

Our proposal consists of identifying the subject world to the world of methods.
Both Oxford and Webster's dictionaries primarily define the term "method" as
meaning "the procedure for obtaining an object". Method is clearly a concept of
process rather than representation, even the current methods in use focussed on
representations more than on the process to get these representations. This paper
will avoid the term methodology as its original meaning (study of methods) has
become confused, and is either used as a simple synonym of method (cf [OLLE88])
or to create a hierarchy of methods [WYNE93]. One shall notice that a method is an
"artifact", i.e an object made by people, for subsequent use. The use of the method
is itself to create artifacts (information systems) for subsequent use. An artifact has a
physical persistence and reflects the the time period and cultural stage it was made.

The system world deals with the representation of methods. As methods are
artifacts to create artifacts in order to process real things, the framework is lifting the
systems structures to a higher (third) level of abstraction. This level is often referred
to as the meta-modelling level.

In the usage world we will investigate the reasons, the rationale for method
engineering. We shall respond to the WHY question. Why an introduction of the
third level should resolve problems which were not solved with the two other
levels? Clearly the hope is that with the introduction of the third level, the actual
development methods become "selectable" (or definable), and equally importantly,
the determination of these selections itself becomes more higly structured.

The development world deals with the process of constructing methods, either "on-
the-fly" or by "selection". It is a meta-process in the sense that it supports the
construction of methods, which in turn, will support the development of
information systems. The way the process might be supported by a tool
environment (Computer Aided Method Engineering i.e CAME tool) is also a
concern of this world.

The paper uses the four worlds to present the state of art in method engineering and
to raise questions, problems and research issues in the field of method engineering.
It comprises four sections, each of these relating to one of the world.This allows us
to discuss in a focussed manner the different concerns of method engineering : the

definitions of methods, their representations, the way of developing these
representations, and the rationale for using these representations.This is done in the
subject, system, development, and usage worlds respectively.

3. The subject world

The subject world is concerned with the definition of methods. Many definitions
have been proposed [BRIN90], [PRAK94], [WYNE93], [LYYT89] and most of
them converge to the idea that a method is based on models (systems of concepts)
and consists of a number of steps which must/should be executed in a given order.
Seligmann [SELI89] proposes a framework for methods which comprises the way
of thinking (the philosophy), the way of modelling (the models to be constructed),
the way of organising and the way of supporting. The way of organising is
subdivided into the way of working, i. e. the how of performing the development,
and the way of control, i. e. the how of managing the development. The way of
supporting deals with the description techniques and the corresponding tools).

In the past, method developers have concentrated on the definition of models more
than on the definition of guidelines. This means that the product aspect of method
has been favoured at the expense of the process aspect. Several classifications of
product models have been proposed. A traditional distinction regarding the
modelling perspectives is between the structural, functional and behavioural
perspective [OLLE88]. Recent developments of methods emphasise the need for
enterprise modelling [BUBE94] and introduce concepts such as goal, actor, role,
role dependency and the like [YU94], [DARD91], [POTT94]. At the same time,
method developers introduced the distinction between functional and non functional
requirements for information systems development. This leads to a broader
classification of models according to the functional (itself subdivided into structural,
functional and behavioural), non functional , and intentional perspective
[ROLL97b].

It is clear that process modelling has been paid less attention than product
modelling. Recent in-depth studies of software development practices [LUBA93]
demonstrate that we know very little about the development process. However there
has been recently a shift of focus from the product to the process view of systems
development and process engineering is considered today as a key issue by both the
software engineering comunity and the information systems engineering
community. There is already considerable evidence for believing that there shall be
both, improved productivity of the software systems industry and improved
systems quality, as a result of improved development processes[DOWS93],
[ARME93], [JARK94].

According to Dowson [DOWS88], process models can be classified in three groups:
activity-oriented models, product-oriented models and decision-oriented models
(Figure 3). As can be seen in Figure 3, there has been a remarkable surge of interest
in process modelling in the last ten years after a gap of nearly 30 years of stability.
Activity-oriented process models [ROYC70] come from an analogy with problem-

solving and provide a frame for manual management of projects. This linear view is
inadequate for methods which support backtracking, reuse of previous designs, and
parallel engineering.However they have been predominent for the last twenty years.
Current workflow and software process models [OSTE87], [FINK94] are
extensions of activity-based models but they assume broad coverage and fairly
strict control of the process.

DECISION

ACTIVITY PRODUCT

Hierarchical spiral

Fountain

Spiral

Code and Fix Waterfall
Product graphs

DAIDA

Viewpoints
[Tomiyama 89]

[Ackman 90]

[Nadin 87]

ESF

[Royce70][Benington56]

[Boehm88]

[Iivari90]

[Henderson90]

[Finkelstein90]

[Humphrey89]

[Potts89]

[Frankson91]

[Jarke92]

EOM

CONTEXTUAL APPROACH

[Moreno93]
[Rolland93]

Figure 3: Classes of Process Modelling Approaches

Product-oriented process models [HUMP89], [FINK90], [FRAN91] represent the
development process through the evolution of the product. They permit design
tracing in terms of the performed transformations and their resulting products.
Finally, the most recent models are decision-oriented models. They integrate more
deeply the semantics attached to evolutionary aspects. The notion of design decision
facilitates understanding of the designer's intention, and thus better reuse of results
[Potts89]. The situatedness of engineering processes has been taken into account
and coupled to a decision-based approach in the contextual approach for
requirements engineering developed in the NATURE project [ROLL91],
[ROLL93], [ROLL94b], [ROLL95].

Methods cannot be separated from the technology available for supporting their use
i.e from Computer Aided System Engineering (CASE) technology. Reflecting the
bias in favour of the product aspects of methods, most existing CASE tools are
primarily providing facilities to capture, store, manipulate and document products
and rarely support the process of developing products. Process support has recently
been introduced through enactment mechanisms in Software Process Centred
Environments (see Finkelstein 1994 for a complete survey), workflow systems, and
a new range of CASE tools like [SISA96].

 Improving process models and supporting their enactment is a major research
issue. Reducing the "YAMA (Yet Another Modelling Approach) syndrome"
[OIE92] is surely a driving force for method engineering. There is a need for a
systematic and objective means to compare and evaluate methods.

4. The system world

The system world is concerned with the representation of methods. Based on our
assumption that a method is composed of a product model and a process model, the
representation of methods really deals with modelling models i.e meta-modelling.
Some work has been done on the static integration of product models. Venable
[VENA93] has performed detailed analyses and integrations of both data flow
models and conceptual data models. [CAMP94] have analysed levels of abstraction
for conceptual schemas. [HONG93] compare eight object-oriented methods on the
basis of their data models. A "super method" acts as a reference model for the
methods compared. [IIVA94], in accordance with the CRIS approach [OLLE88],
relies on a normative comparison of object-oriented methods, as he draws up a
number of requirements which are compared to the methods' properties. [WIER91]
has compared JSD, ER modelling and DFD modelling. [FALK94] have proposed to
integrate models in a metamodel hierarchy in which models are related one with
another through transformations.

Even if these works are of interest for the method engineering community, they do
not entirely fulfil the objective of methods representation as stated in ME. Method
engineering aims at either facilitating the selection of a method within a panel of
contingency methods or to support the selection and the assembly of method
components to construct a method on-the-fly. Therefore the representation of
methods is purposeful and must satisfy two requirements : (1) identify the right
notion of a method component and (2) characterise a component to facilitate its
situated usage. Complementarily the question of the language that can be chosen for
representation prurpose is raised. We comment on these three points in turn.

Meta-modelling languages

Brinkkemper [BRIN90] claims that every conceptual modelling language is suitable
to serve as a meta-modelling language, and therefore suitable to represent method
components. Various meta-modelling applications of languages originally intended
for other domains, such as LOTOS [SAEK91] seem to demonstrate the validity of
this claim. However other authors have opposite claims. Venable and Grundy claim
that there is a need for a specific meta-modelling language and environment. CoCoa
[Vena93] has been developed and used in the MViews environment [GRUN96].

Some efforts have been made to define general requirements for ME : [KOTT84],
[MART95], and [WELK92a] recognise the need for rich semantic constructs for
modelling the conceptual structure and constraints of methods. [ROLL95] present a
set of characteristics of process models which a process meta-model should cope
with.

Most of the meta-modeling formalisms rely on existing semantic models : E/R based
and NIAM models are the most often used with some extensions (see [SORE88],
[WELK92b], [SMOL91], [HOFS93]). Harmsen and Saeki [Saek96] have

compared four languages, namely Object-Z, MEL, GOPPRR and HFSP. The
selection of the four languages was justified by the fact that they are representative
of four schools of thought. GOPRR belongs to the data oriented school stressing
the representation of the product aspect of methods. Object-Z takes a similar
position but emphasises object oriented modelling. The third school consists of
languages developed for software process modelling and capturing design rationale.
HFSP belongs to this group. Finally MEL is a specific method engineering
language.The conclusion of the study is not clear and the claim is that ME languages
should themselves be obtained by assembly of various languages fragments in order
to be purpose-fit.

We certainly need more experiences in representing methods to define the set of
requirements for a "good" ME language. It is clear also that current attempts have
focussed on the representation of the product aspect of methods and have been
using languages dealing with data and data constraints representations. The external
facet of the language has to be distinguished from its underlying computational
model. Thus, regarding the latter, it is not clear why a first-order predicate logic or a
temporal logic should not suffice to represent the semantics of methods
representations. Regarding the former, perhaps more emphasis on graphical
notations is required.

Method components

One proposal for method components [HARM94] viewed a method as a collection
of method fragments. A fragment can be either a product fragment or a process
fragment. A product fragment captures product related knowledge of methods
whereas a process fragment captures activity related knowledge. Product fragments
are deliverables, documents, models, diagrams or concepts. The concept of class or
of a binary relationship between two entities, or the entire E/R model are examples
of product fragments. Process fragments are stages, activities and tasks to be carried
out. Guidelines to "Create an E/R schema' or to 'Perform Requirements
engineering" are examples of process fragments.

The drawback of the fragment based approach is the over-emphasis on the product
fragment resulting in underdeveloped meta-process modeling. In addition, the
process models underpining the meta-models are often activity-based [WIJE91],
[MART94].

[ROLL94b], [ROLL95], [ROLL94a], [PLIH95] within the ESPRIT project
NATURE, proposed a decision-oriented process meta-model which places equal
emphasis on the product and process aspects of methods. A theoretical formulation
is available in [SCHW95]. The proposal defines a method component as a tight
coupling between these aspects. This is achieved by organising components as
chunks defined around the notion of context (figure 4). A Context is a couple
<situation, decision>, where the decision part represents the choice an IS developer
can make at a moment in the engineering process and the situation is defined as the

part of the product it makes sense to make a decision on. A decision corresponds to
an intention, a goal that the developer wants to fulfil. The chunk prescribes the way
to proceed in this situation to make the decision. There are three ways of
proceeding: to execute an action which transforms the product, to make a choice
among a set of predefined possibilities and to perform a plan for decision making.
These three correspond to the three types of contexts shown in Figure 4, namely,
executable, choice and plan contexts.

2,N

1,N

1,N

1,N

0,N

1,N

0,N

supports

objects
to

Alter-
native

SituationDecision
Argument

Context

built
from

0,N

Approach

Intention

1,N

0,N 0,N

1,N

Dependency
Link

Executable
Context

Action Product

changesapplied by

1,1

1,N

1,N1,1

1,N

0,N
Plan

Context

#isa isa

is based on

1,N

0,N

Choice
Context

#

Figure 4 : Overview of the NATURE process chunk

To our knowledge, these are the only two proposals for defining method
components. It is clear that additional work is needed before an agreed notion of
method components can be arrived at.

Method components should be looked upon according to two other perspectives :
abstraction and granularity. Method components are expressed with different
granularity, at various levels of abstraction. For example consider the following
method components (1) the OMT methodology, (2) the ER modelling approach, (3)
the rules to define the key of an Entity-Type, (4) a generic outline providing a
stepwise organisation of system analysis and (5) a generic set of guidelines for any
concept description. The granularity is larger in (1) and (2) than in (3) above.
Further, the first three are expressed at a less abstract level than the fourth and fifth
examples above.

Notice that depending on its level of abstraction the method component will be
reused as such (perhaps after some customisation) or will be instantiated before
being assembled in the method under construction. Components of examples (1) to
(3) above are directly reusable whereas each generic activity of the outline (example
(4)) has to be instantiated according to the specific product of the method in hand
before being used. Similarly the generic guidelines for concept description (example
(5)) requires instantiation for each particular concept of the method under
construction.

[VANS96] proposes two kinds of method components at two different levels of
granularity, called route map and method fragments respectively. A route map
fragment is "a complete route map of a system development method". It refers to
strategies such as delivery, development, realization etc strategies, activities and
products concerning system develoment as well as project management. The method
fragment is "a coherent part of a method for system development or project
management". Method fragments may be linked to a route map which may establish
a complete project approch or a situated method.

[ROLL96b] introduce the notion of framework to model commonalties among
methods and the notion of a method construction pattern, pattern for short, to
capture generic laws governing the construction of different but similar methods. A
framework is a method chunk which formalizes, in a more abstract way than a
component does, knowledge which is common among several methods. A pattern
models a common behaviour in method construction. It is generic in the sense that it
is used by a typical method engineer in every method construction process. It is
more abstract than a component or a framework. Both terms have been chosen by
analogy to reuse approaches in the object oriented area. Patterns are there defined as
solutions to generic problems which arise in many applications [GAMM93],
[PREE95] whereas a framework is application domain dependent [WIRF90],
[JOHN88].

Different kinds of construction patterns have been defined, like the Identify,
Describe, Construct, Define, Check and Refine patterns [ROLL96a]. These
patterns can be regarded as generic laws underlying method construction; these laws
are generic in the sense that they can be applied to the construction of many
methods. Using these laws, six of the traditional analysis methodologies, OMT,
OOA, SA/SD, ER, O* and OOD have been generated.

Perhaps what is needed is a corpus of both, generic method knowledge and generic
method construction knowledge which, has as yet, not been looked for, identified
and described. A suggested research topic is therefore to develop a domain analysis
approach to identify objects, rules and constraints which are :

(a) common among different (but similar) methods

(b) common among different (but similar) ways of method construction

and to formalize them as method chunks. In this way, method engineering can use
the results of method domain analysis and save a significant amount of time as
demonstrated in other domains [ARAN89]. Assuming that the degree of similarity
which exists in the construction of methods which belong to the same area is similar
to the equivalent degree in system requirements engineering, then method domain
analysis can result in significant overall productivity improvement in method
construction. Indeed, Jones [JONE84] indicates that only 15% of the requirements
for a new system are unique to the system; the remaining 85% comes from the
requirements of existing similar ones.

Component characterisation

Assuming that method components exist in a method base, the question now is
"how to deliver the relevant method components to the user?" The ME community
has been looking at this question in two ways : first, by promoting a global analysis
of the project on hand based on contingency criteria and, secondly, by associating
descriptors to components in order to ease the retrieval of components meeting the
requirements of the user. Therefore in the former the project situation is at a very
global level whereas in the latter the descriptors of method components support local
matching with the situation at hand. Besides it is clear that the issue of component
charaterisation is in a preliminary state of resolution.

As an example of the first approach let us consider the contingency model of
[VANS96]. The model is based on 17 contingency factors which take value
between Low and High. These are :
- Management commitment (for the IS project)
- Importance (of the project)
- Impact(of the project)
- Resistance and conflict (to what extent stakeholders have different or conflicting
 interests)
- Time pressure
- Shortage of human resources
- Shortage of means
- Formality (of the project procedures)
- Knowledge and experience(of the project team)
- Skills
- Size
- Relationships (between the IS under development and existing IS)
- Dependency (of the project to external factors)
- Clarity (of the project goals, obectives etc)
- Stability (of the project goals)
- Level of innovation

According to the authors, the characterisation of the project allows them to select the
method components appropriate for the project. The approach has been tried out in
nine non-standard projects of the systems development departement of a bank
organisation.

The second approach [ROLL96b] uses the notion of descriptor [DeAnt91] as a
means to describe method chunks. A descriptor plays for a method chunk the same
role as a meta-class does for a class. It is similar to the one of faceted classification
schema [PRIE87] developed in the context of software reuse. As method chunks,
descriptors are organised in a contextual fashion : each of them categorizes the
situation in which the chunk can be used and describes the intention of its use. A
descriptor can be seen as a meta-context which links the situation in which a method
chunk is relevant to the intention the chunk allows to fulfil. The situation part refers
to the characteristics of the projects in the development of which the chunk can be
used as part of the project method. The intention part refers to the engineering

intention(s) that could be fulfilled when using the chunk. As shown in figure 5, a
method chunk is said to be relevant for (relationship-type for in Figure 5) a certain
situation (entity-type situation) to (relationship-type to) achieve a certain intention
(entity-type intention). For example, Chunk c is applicable for high risk project
(characterization of the situation) to a reengineering purpose (intention).

#
#

#

#

#

#
Situation

Method
Chunk

Decision

Intention

Approach

Target

CntAbst

a
by

refers
to

refers
to

for

to

Component

Pattern

Framework

Forest

Tree

Context ProductPart

Method

Group

Simple

Complex

Composed-of
Area

Problem
Domain

Target
Domain

Project
Domain

Complexity
Risk

Figure 5 Descriptor of a method chunk

Based on the notions of Intention ,Approach ,Target andProduct Parts. of the
NATURE contextual modelling approach [ROLL95], the intentional part of the
descriptor can express that a chunk is relevant to (relationship-type to in Figure 5)
achieve a (relationship-type a in Figure 5) targeted intention by a given approach.
Therefore the previous example can be refined in the following way : Chunk c is
applicable for high risk project to reengineer (intention) a business process (target)
by domain based approach (approach).

The situation part of a descriptor aims at providing the means to evaluate the
adequacy of the method chunk to the situation of project at hand while the intention
part tries to ensure that the goal of the project matches the goal of the method chunk.
As shown in Figure 5 the situation is characterised in two ways : (a) by the Area
(entity-type Area) of the project and, (b) by the complexity and risk (properties of
the entity-type Problem Domain) as two situational factors evaluated for both the
Project Domain (entity-type Project Domain) and the Target Domain (entity-type

Target Domain). The characterisation of the Problem Domain is based on the results
achieved by the EUROMETHOD project [FRAN94].

The research related to the system world has so far been focussing on meta-
modelling issues. This is understandable as it forms the basis for systemic ME.
However meta-product modelling has been favoured at the expense of meta-process
modelling. In addition the way meta-models are built is essentially a direct
modelling of what exists today in methods. As we will argue in the next section an
effort should be made to abstract from existing methods their common features more
than just modelling those features. Finally, research on the criteria or factors which
characterise the method situation is in a very early stage of development.

5. Usage world

The usage world deals with with the intentionality of method engineering. IS
methods are generally assumed to be situation-independent. However, there are a
multitude of different development methods each having their own advantages and
disadvantages relating to the problem domain or the development context. In
addition, experience with method use shows that system developers adapt and
modify the methods they use to the situation and to their own personal preferences.
Developers may need to create a new method from scratch, modify (e.g
incrementally improve or tailor) an existing method, or reuse parts of various
methods and recombine them to create the new, preferred method.

The goal of method engineering is not only to "operationalize" methods but also to
correct general oversights in many of the current published methods. Method
engineering introduces a third level of abstraction in information system
development, a method for creating methods (figure 6). The challenge of ME is to
provide means to increase our understanding of the general factors which must be
adapted to the development situation. Additional work is needed to determine what
factors should be included at the third level. Examples might include usability,
availability, security, etc. Clearly this requires not only studying methods (which is
maybe the focus of ME nowadays) but studying the reality of information systems
development. In other words before building meta-models which reflect old models
on a new level of abstraction, one should question the old ones. The benefit of ME
is dependent of our ability to understand why the third level should resolve
problems which were not solved by the two other levels.

The human organisation:
regular relationships
among people 1 st level

Artefacts that more-or-less
reflect human relationships,
like organization chars and
computer networks

2 nd Level

Artefacts used to create
organizational IS artefacts,
like methods and CASE

3 rd Level

Artfacts used to create
developmental IS artifacts,
like criteria and notation
frameworks in method
engineering

figure 6 The three ISD levels (adapted from Baskerville)

For instance it is a fact that IT is ineffective in various ways, outdated, misplaced or
not used as planned because it is rejected by the organisation users (see literature on
failures e.g Lyytinen 1988). The IS community introduced IS methods (the second
level) to avoid the failures of the first level.But one also discovers that IT
development methods can be misused, or unused, misplaced and outdated. ME
raises the problems at a higher level. The challenge is first, to understand the general
factors which influence the second and third levels. Secondly, the third level must
provide general processes which based on these factors are able to generate a
method and consequently a system adapted to the project at hand.

Another argument developed by [BASK96] is that the third level of abstraction
introduced by ME (figure 6) can help in understanding the relationships between
human organisations, their organisational structure and structural artifacts.
Structural artifacts include IT, ISD methods and method engineering. The claim is
that there are conflicts between such artifacts and the organisation and between the
artifacts themselves that can be resolved or, at least, better understood through the
introduction of the third level. The previously mentioned failures or inadequacies of
ISs to organisations are examples of such conflicts.

6. Development world

The development world is concerned with the process of constructing methods. If
we draw an analogy with tools for advanced software process management (e. g.
software process centred environments) then the method engineering process should
follow the framework [DOWS93] illustrated in figure 7. The framework has three
different sub-domains : a process model domain, a process performance domain;
and a process model enactment domain which interact with each others.

Process Model Domain

Model
Fragments

Process Performance Domain

Enactement
Mechanism

Process Model Enactement
Domain

Enactement
CreationProcess

Improvement,
Capitalisation
of Experience

Guidance
Monitoring/Controling

Feedback

Human
agents,
Activities

Figure 7: process domains

The process model domain contains process models or parts of process models.

The process performance domain encompasses the actual activities conducted by
human agents and machines as well, in the course of a project. Some will be
executed by software tools; others will consist of thinking, writing, exchanging
ideas, taking decisions through formal and informal interactions between members
of the project team. All these activities are sought to be supported by the process
model.

The process model enactment domain is concerned with what takes place in the
CASE environment to support process performance governed by the process model.
It includes run-time occurrences of process models or parts of process models
which are called enactments.The enactment mechanism uses the process model to
determine and control the interactions with the agents performing the process and
with other components of the CASE environment, so as to support, guide, or
enforce performance of the process in a way consistent with the process model.

The three domains interact with each other. Firstly, the process model influences the
way in which the process is performed. Actual performance will then correspond, to
some extent, to the model of how it should be performed. Secondly, the course of
enactment may need to be contingent on events arising from actual process
performance. Therefore the process will be different from the theoretical
instantiation of the process model. This leads to the idea of feedback from process
trace to process model.allowing its improvement.

Current work in method engineering has not yet reached this level of sophistication.
One option for situational method engineering [HARM94] is depicted in figure 8 as
a data flow diagram.The process starts with the characterisation of the project
environment which includes the existing systems development organization, the
customer organization, the supplier organization, the area of application,
information and computerizaton policies, etc. Contextual and contingency factors

derived from the project environment are important for supporting the selection of
the appropriate method components from the method base repository.

Characterize
Project

Environment

Generate
Project

Methodology

Methods
Administration

Method Base
Repository

Proposed
Project

Methodology

System
Development

Project

Project
Environment
Description

Methods,
Tools,

Techniques

Adapted
Project

Methodology

Project
Experience

Developed
System

Project
Deliverables

figure 8: A data flow diagram specifying the process of situational method
construction

The contingency factors are determined during the project characterisation as a result
of interviews, brain storming sessions, questionaires or other knowledge
acquisition techniques.The important contingency factors are utilized to select the
appropriate components from the method base repository. The situated method is
constructed based on these fragments. The construction is supported by rules to
assemble components and constraints to be satisfied by the constructed method to be
consistent. Rules and constraints are parts of the knowledge stored in the method
repository to support the situated method construction process. Then, an
information system project is started, using the situated method constructed in the
previous phase and the deliverables of the project are produced. Evaluations during
and after the project performance may yield new knowledge about situated method
development, which is captured in the method base repository. Finally new method
components can be added to the repository for further use.

The method construction process calls for software support. Computer Aided
Method Engineering (CAME) tools have been designed and developed for this
purpose. Computer Aided System Engineering (CASE) tools support the
development of information systems. CAME tools aim at supporting the
development of methods. Using [HARM94] as a basis, the suggested functionality
of a CAME tool is as follows:

- definition and evaluation of contingency rules and factors or descriptors. As
discussed earlier, this enables the right choice of the method components

- storage of method components, method construction knowledge, past experience,
heuristics etc in a repository called the method base.

- retrieval of the contents of the method base. A query language for accessing the
contents of the method base needs to be defined.

- composition of method components. The knowledge permitting the development
of a new method must be available.

- validation and verification of the constructed method. The CAME tool should not
only support the selection and assembly tasks but also check the resulting method.
The tool, therefore, should incorporate guidelines to ensure the correctness of the
method.

- adaptation facilities for modification of the contents of the method base as a result
of the experience gained

- support and guidance of the method engineering task.

It is possible to establish a relationship through the repository between the method
and application engineering environments. This is shown in Figure 9. The
repository extends the one advocated in Information Resource Dictionary
Framework Standard [IRDS90]. Similar to the IRDS repository, it consists of three
levels. However, whereas the IRDS deals with levels of product description, the
repository deals with levels of both, product and process descriptions .

process
repository

process meta-model

way-of-working
trace model

process traces

uses

defines

improves
uses

uses

creates

process control
& guidance

method
definition

learning
process

trace

application
engineer

method
engineer

uses

modifies

Figure 9 : Repository based and process-integrated environment support

The environment is composed of two sub-environments, the application engineering
environment in which the process is guided, executed, and traced, and the method-
engineering environment in which the process is defined and improved. These two
environments use the process repository which contains the information necessary
to provide the intended functionality.

This architecture assumes the existence of an enactment mechanism which supports
both, the enactment of the application development and of the method of
development. It, therefore, assumes that the method development process has been
completely modelled in order to be executed or interpreted by the enactment
mechanism. It emphasises the role of tracing to support the improvement of the
process models by utilising previous experience.

While there is now consensus on the functionality that a CAME tool should provide,
considerable work has still to be done to achieve implementations meeting this
functionality. However, a number of meta-CASE products and prototypes have
been developed which implement this functionality partially. As examples consider
Maestro II [MERB91], MetaEdit+ [KELL96], Decamerone [HARM95], and Mentor
[SISA96]. Decamerone is in its early stages of development but aims at supporting
the assembly of product and process fragments which have been selected based on
project contingency factors. However, it does not provide guidance either in method
engineering or in application engineering. MetaEdit+ includes a number of
instantiations of mainly the product aspects of about twenty methods. Maestro II is a
meta-CASE tool on which Decamerone has been developed. The emphasis in
Mentor has been on the unification of the process and product aspects of methods as
well as on the guidance and support that can be provided in both the method
engineering and the applciation engineering work.

None of the tools referred to above is really tackling the problem of assembly of
components in a consistent and coherent way. Similarly, the retrieval of components
is not well-supported. The contents of the method base are highly restricted and
need to be extended to include, for example, knowledge about the situated usability
of components. The need for tools to support tracing of the method engineering
process is critical to the ability to subsequently learn and improve this process.
However, little attention has been paid to this aspect. The ability to dynamically
change the method has also not been explored.

To summarise, the design of Computer Aided Method Engineering (CAME)
environments is a research issue involving a number of different problems such as
repository structuring and management, enactment mechanisms, efficient
interpretation/execution of process modelling languages, process descriptions
configuration management.

7. Conclusion

This paper has extended the four worlds framework to understand the subject of
methods, their representations, the development of computer based support for the
construction of methods, as well as the rationale for the discipline of method
engineering.

We have seen a plethora of methods in the subject world. However, there is a felt
need for empirical evaluation of the use of methods. Besides, current studies show

that there is a need to situate methods, i.e, define methods as context dependent
whereas they are today considered to be domain independent.

Representation of methods is based on meta-modelling around which the whole area
of method engineering has developed. The more modern meta-models look for an
integration of the process and product aspects of methods whereas earlier meta-
models focussed on product aspects only. Meta-modelling per se does not tackle the
important problem of modular description of methods. Therefore, there is a need for
further research to define the notion of a method component better.

In the development world we have highlighted the need for refinement of the
existing architecture of CAME environments and their integration with CASE
environments. Besides, the need to integrate in both, CAME and CASE, enactment
mechanisms to support process execution was shown. Finally even though the
functionality of CAME tools has been rather well identified, implementation of tools
with this full functionality has yet to be achieved.

In the usage world the question of why we should use a meta approach in method
definition has ben addressed. It was pointed out that the straight-forward modelling
of current methods is inadequate for solving any of the unsolved problems of IT
acceptance in an organisation.

The challenge of method engineering is to understand why these problems are
unsolved, relate them to organisational factors, and adapt methods to develop IT
systems to the specific factors of the situation at hand.

8. References

[AAEN92] Aaen et Al, A tale of two countries:CASE experience and expectations,
The Impact of Computer Supported Technology on Information Systems
Development, North Holland Pub, pp 61-93, 1992

[AKHR92] F. N. Akhras and S.S.S. Melnikoff, Towards Dynamic generation of
Knowledge-Based Environments for Software Process Assistance, 1992

[ARAN89] Arango, Domain analysis : from art to engineering discipline, Proc. 5th
Int. Workshop on Software Specification and Design, IEEE Computer
Society Press, San Diego, 1989

[ARME93] P. Armenise, S. Bandinelli, C. Ghezzi, A. Morzenti, A survey and
assessment of software process representation formalisms, Int. Journal of
Software Engineering and Knowledge Engineering,Vol. 3, No. 3, 1993

[BASK96] Baskerville R, Structural artifacts in method engineering: The security
imperative, IFIPWG 8.1 Conference on Method Engineering, Chapman
and Hall, pp 8-28, 1996

[BENI56] Benington H.D.; Production of Large Computer Programs, Proc. ONR
Symposium on Advanced Programming Methods for digital Computers,
pp 15-27, Juin 1956

[BOEH88] B. Boehm, A Spiral Model of Software Development and Enhancement,
IEEE Computer Vol. 21, No. 5, 1988

[BRIN90] S. Brinkkemper, Formalisation of Information Systems Modelling,
Ph.D. thesis, University of Nijmegen, Thesis Publishers, Amsterdam,
1990

[BUBE94] J. Bubenko, C. Rolland, P. Loucopoulos, V. DeAntonellis Facilitating
"Fuzzy to Formal" Requirements Modelling, IEEE 1st Int. Conference on
Requirements Engineering, ICRE'94, pp 154-158, 94

[CAMP94] Campbell L. Halpin T., Abstraction techniques for conceptual schema,
in Proc. 5th Australasian Database Conference, Global Publications
Services, New Zealand, p 374-388, 1994

[DARD91] Dardenne, A., Fickas, S., van Lamsweerde, A., Goal-directed concept
acquisition in requirements elicitation, Proc. 6th IEEE Workshop System
Specification and Design0 , Como, Italy, 14-21, 1991

[DEAN91] De Antonellis V., Pernici B., Samarati P. (1991) "F-ORM METHOD :
A methodology for reusing specifications", in Object Oriented Approach in
Information Systems, Van Assche F., Moulin B., Rolland C. (eds), North
Holland, 1991

[DOWS88] M. Dowson, Iteration in the Software Process, Proc 9th Int. Conf. on
"Software Engineering", 1988

[DOWS93] M. Dowson, Software Process Themes and Issues, IEEE int. conf. on
the Software Process, Berlin, 1993

[FALK94] Falkenberg E.D., Oie G.L.H., Meta-model hierarchies from an object-
role modelling perspective, in 1st Intl. Conference on Object-Role
Modelling, Univ. of Queensland, Brisbane, Australia, pp 310-323, 1994

[FINK90] Finkelstein A., Kramer J., Goedicke M., ViewPoint Oriented Software
Development, Proc. Conf. "Le Génie Logiciel et ses Applications",
Toulouse, p 337-351, 1990.

[FINK94] A. Finkelstein, J. Kramer, B. Nuseibeh (eds), "Software Process
Modelling and Technology", John Wiley (pub), 1994.

[FRAN91] M. Franckson, C. Peugeot, "Specification of the Object and Process
Modeling Language ", ESF Report n° D122-OPML-1. 0, 1991

[FRAN94] Franckson M., The Euromethod deliverable model and its contribution
to the objectves of Euromethod, Proc. IFIP-TC8 Int. Conf. on Methods
and Tools for the Information Systems Life Cycle, Verrijn-Stuart and Olle
(eds), North-Holland, pp131-149, 1994

[GAMM93] Gamma E., Helm R., Johnson R., Vlissides J., Design patterns :
Abstraction and Reuse of Object-Oriented Design, Proc. of the ECOOP'93
Conf., Sringer Verlag, 1993

[GRUN96] Grundy J.C., Venable J.R., Towards an integrated environment for
method engineering, Proc. IFIP WG 8.1 Conf. on method Engineering,
Chapman and Hall, pp 45-62, 1996

[HARM94] Harmsen F et al, Situational method engineering for informational
system project approaches, in Method and Associated Tools for the
Information Systems Life Cycle, Verrijn-Stuart and Olle (eds.), North
Holland, pp169-194, 1994

[HARM95] Harmsen F., Brinkkemper S., Design and implementation of a method
base management system for situational CASE environment. Proc. 2nd
APSEC Conference, IEEE Computer Society Press, pp 430-438, 1995

[HARM96] Harmsen F., Saeki M., Comparison of four method engineering
languages, IFIP 8.1 Conference on Method Engineering, 1996, Chapman
and Hall, pp 209-231, 1996

[HEND90] B. Henderson-Sellers, J. M. Edwards, The Object-oriented Systems
Life-Cycle, Comm. of the ACM, 09, 1990

[HIDD94] Hidding G.J., Methodology information : who uses it and why not?,
Proc. WITS-94, Vancouver, Canada, 1994

[HIRS92] Hirschheim R. and Klein H.K. Paradigmatic influences on information
systems development methodogies:evolution and conceptual advances,
Advances in Computers, 34, pp. 294-381, 1992

[HOFS93] HOFStede A.H.M., Proper H.A., van der Weide Th. P., Formal
definition of a conceptual language for the description and manipulation of
information models, Information Systems 18, pp 489-523

[HUMP89] Humphrey W.S., Kellner M.I., Software Process Modeling: Principles
of Entity Process Models, Proc. 11th Int. Conf. on Software Engineering,
1989

[HONG93] Hong S.G. van der Goor, Brinkkemper S., A comparison of six
object-oriented analysis and design methods, 26th Hawaiian Conference on
System Sciences IEEE Computer Society Press, 1993

[IIVA90] J. Iivari, Hierarchical Spiral Model for Information System and Software
Development, Information and Software Technology, Vol. 32, Part 1 :
"Theoritical Background", No. 6, and Part 2 : "Theoritical Background",
No. 7, 1990

[IIVA94] J. IIvari, Comparing O.O. Methods, Int. IFIP WG8.1 Conference in
CRIS series : Method and associated Tools for the Information Systems
Life Cycle", 1994.

[IRDS90] Information Technology - Information Resource Dictionary System
(IRDS) - Framework, ISO/IEC International Standard, 1990

[JACK84] Jackson M.C., Keys P., Towards a system of systems methodologies,
Journal of the Operational Research Society, 35, pp. 473-486, 1984

[JARK92] M. Jarke et al DAIDA - An Environment for Evolving Information
Systems; ACM Trans. on Information Systems, Vol. 10, No. 1, 1992.

[JARK93] Jarke, M., Pohl, K., "Establishing visions in context: towards a model
of requirements processes". Proc. 12th Intl. Conf. Information Systems,
Orlando, Fl, 1993.

[JARK94] M. Jarke, K. Pohl, C. Rolland, J.R. Schmitt, Experienced-Based
Method Evaluation and Improvement : A Process Modeling Approach, Int.
IFIP WG8.1 Conference in CRIS series : Method and associated Tools for
the Information Systems Life Cycle", 1994.

[JONE84] Jones T.C., Reusability in programming : a survey of the state of the art,
IEEE Transactions on Software Engineering,SE Vol 10, No1, 1984

[JOHN88] Johnson R. E., Foote B., Designing reusable classes, Journal of Object-
Oriented Programming, Vol 1, No3, 1988

[JOHN91] Johnson R.E., Russo F., "Reusing object-oriented design", Technical
report UIUCDCS 91-1696, University of Illinois, May 1991

[KELL96] Kelly S., Lyyttinen K., Rossi M., Meta Edit+: A fully configurable,
multi-user and multi-tool CASE and CAME environment, Proc. CAiSE'96
Conference, Springer Verlag, 1996

[KOTT84] Kottemann J.E., Kosynski B.R., Dynamic meta-systems for
information systems development, Proc. 5th Intl. Conference on
Information Systems, pp 187-204, 1984

[LUBA93] Lubars et al, M. Lubars , C. Potts, C. Richter, A Review of the State of
the Practice in Requirements Modeling, Proc. Int. Symposium on
Requirements Engineering, 1993.

[LYYT87].Lyytinen K., Different perspectives on information systems : problems
and solutions, ACM Computing Surveys, Vol 19, No1, 1987

[LYYT89] Lyytineen et al, K. Lyytinen, K. Smolander, V-P. Tahvainen, Modelling
CASE Environments in sytems Work, CASE'89 conference papers, Kista,
Sweden, 1989.

[LYYT97] Lyytinen K. Hirschhiem A., Information systems failures: A survey and
classification of the empirical literature, Oxford Survey in Information
Technology 4, 1997

[MART94] P. Marttiin, Methodology Engineering in CASE shells : Design Issue
and current Practice, PhD thesis, Computer science and information
systems reports, Technical report TR-4, 1994.

[MART95] Martiin P. et al, Modelling requirements for future CASE:issues nd
implementation considerations, Information Resources Management
Journal, 8, 1, pp 15-25, 1995

[MERB91] Merbeth G., Maestro II- das intergrierte CASE-system von Softlab,
CASE systeme and Werkzeuge (Ed. H. Balzert) BI Wissenschaftsverlag,
pp 319-336, 1991

[MORE93] Moreno, M, Souveyet, C., The Evolutionary Object Model (EOM),
IFIP WG 8.1 Conf. on Information Systems Development Process, Como,
Italy, Sept. 1993

[NADI87] Nadin M., Novak M.; “MIND: A Design Machine, Conceptual
Framework”; Intelligent CAD Systems I, Springer Verlag, 1987

[OIE92] Oie G.L.H van Hemmen, Falkenberg E.D., Brinkkemper S., The meta-
model hierarchy:a framework for information system concepts and
techniques, University of Nijmegen, 1992

[OLLE88] Olle T. W., J. Hagelstein, I. MacDonald, C. Rolland, F. Van Assche,
A. A. Verrijn-Stuart, Information Systems Methodologies : A Framework
for Understanding, Addison Wesley, 1988

[OSTE87] L. Osterweil, Software processes are software too; Proc. 9th Int.
Conference on Software Engineering, IEEE Computer Society,
Washington, DC, 1987, pp2-13, 1987

[PLIH95] Plihon V., Rolland C., Modelling Ways-of-Working, Proc 7th Int. Conf.
on Advanced Information Systems Engineering, CAISE'95, Springer
Verlag, 1995

[POTT89] Potts C., A Generic Model for Representing Design Methods, Proc. 11th
Int. Conf. on Software Engineering, 1989

[POTT94] Potts C. and Al, Inquiry-based Requirements Analysis, IEEE Software,
Mars 1994

[PRAK94] Prakash N., A Process View of Methodologies, 6th Int. Conf. on
Advanced Information Systems Engineering, CAISE'94, Springer Verlag,
1994

[PREE95] Pree W., Design Patterns for Object-Oriented Software Development,
Addison Wesley, 1995

[PRIE87] Prieto-Diaz R., Freeman P., Classifying software for reusability, IEEE
Software, Vol. 4, No. 1, 1987

[ROLL91] Rolland C., Cauvet C., ALECSI : An Expert System for Requirements
Engineering, Proc. 3th Int. Conf. on Advanced Information Systems
Engineering (CAISE'91), Springer Verlag, 1991.

[ROLL93] Rolland C., Modeling the Requirements Engineering Process,
Information Modelling and Knowledge Bases, IOS Press, 1993

[ROLL94a] Rolland C., Modeling the evolution of artifacts, 1st IEEE Int.
Conference on Requirements Engineering, Colorado Springs, Colorado,
1994.

[ROLL94b] Rolland C. and Prakash N., A Contextual Approach to modeling the
Requirements Engineering Process, SEKE'94, 6th International
Conference on Software Engineering and Knowledge Engineering,
Vilnius, Lithuania, 1994

[ROLL95] Rolland C., Souveyet C., Moreno M., An Approach for Defining Ways-
Of-Working, Information Systems, Vol 20, No4, pp337-359, 1995

[ROLL96a] Rolland C., Plihon V., Using generic chunks to generate process
models fragments in Proc.of 2nd IEEE Int. Conf. on Requirements
Engineering", ICRE'96, Colorado Spring, 1996

[ROLL96b] Rolland C. and Prakash N., A proposal for context-specific method
engineering, IFIP WG 8.1 Conference on Method Engineering, Chapman
and Hall, pp 191-208, 1996

[ROLL97a] Rolland C., Numero special sur "L!ingénierie des procesus", ISI, 1997

[ROLL97] Rolland and Al, Deliverable D1-I1.1 CREWS, A proposal for a Scenario
Classification Framework, 1997

[ROYC70] Royce W. W., Managing the Development of Large Software Systems,
Proc. IEEE WESCON 08, 1970

[RUSS95] Russo et al, The use and adaptation of system development
methodologies, Proc. 1995 Intl. Resources Management. Association
Conference, Atlanta, 1995

[SAEK91] Saeki M., Kaneko T. Sakamoto M., A method for software process
modelling and description using LOTOS, Proc. 1st Intl. Conference on the
Software Process, IEEE Computer Society Press, Los Alamitos, CA,
USA, pp 90-104, 1991

[SCHW95] Schwer S., Rolland C., Theoretical formalization of the process meta-
modelling approach, internal CRI report 95-08, University of Paris 1,
France, 1995

[SELI89] Seligman et al Seligmann P.S., Wijers G. M., Sol H.G., Analyzing the
structure of I.S. methodologies, an alternative approach, in Proc. of the 1st
Dutch Conference on Information Systems, Amersfoort, The Netherlands,
1989

[SISA96] Si-Said S., Rolland C., Grosz G., MENTOR : A Computer Aided
Requirements Engineering Environment, in Proc 8th Int. Conf. on
Advanced Information Systems Engineering (CAISE'96), Springer Verlag,
1996 .

[SMOL91] Smolander K., Lyttinen K., Tahvanainen V.P., Martiin P., MetaEdit: A
flexible graphical environment for methodology modelling, Proc. 3rd Intl.
Conference on Advanced Information Systems Engineering, Springer
Verlag, pp 168-193, 1991

[SORE88] Soreson P.G., Tremblay J.P., McAllister A.J., The meta-view system
for many specification environments, IEEE Software, March, pp 32-38,
1988

[TOMI89] Tomiyama T., Kiriyama T., Takeda H., Xue D., Yoshikaya H.,
Metamodel: A Key to Intelligent CAD Systems, Research in Engineering
Design Vol 1, pp 19-34, 1989

[VANS96] Van Slooten K., Hodes B., Characterising IS development project, IFIP
WG 8.1 Conference on Method Engineering, Chapman and Hall, pp 29-
44, 1996

[VENA93] Venable G.R., CoCoA: a conceptual data modelling approach for
complex problem domains, Ph.D. dissertation, SUNY, Binghampton,
1993

[WELK92a] Welke R.J, and Kumar K., Method engineering : a proposal for
situation-specific methodology construction, in Systems Analysis and
Design : A Research Agenda, Cotterman and Senn(eds), Wiley, pp257-
268, 1992

[WELK92b] Welke R.J., The CASE repository: more than another data base
application, in Challenges and Strategies for Research in Systems
Development, Wiley, Chichester, U.K, 1992

[WIER91] Wieringa R.J., Combining static and dynamic modelling methods, Proc.
IFIP WG 8.1 Conference on Objected Oriented Information Systems,
North Holland, 1991

[WIJE90] Wijers G. M., van Dort H.E., Experiences with the use of CASE tools in
the Netherlands, Advanced Information Systems Engineering, pp 5-20,
1990

[WIJE91] Wijers G.M., Modelling support in information systems development,
Ph. D. thesis, Delft University of Technology, Thesis Publishers,
Amsterdam, 1991

[WILS91] Wilson D.A, Rosenstein L.S., Shafer D., Programming with MacApp,
Addison-Wesley, 1991

[WIRF90] Wirfs-Brock J., Johnson R., Surveying current research in Object-
Oriented Design, Communications of ACM, Vol 33, No9, 1990

[WYNE93] Wynekoop J. , Russo N., System development
methodologies:unanswered questions and the research-practice gap, in
Proc.14th Intl. Conf. Inf. Syst., New York, ACM Pub. pp 181- 190,
1993

[YOUR92] Yourdon E., The decline and fall of the american programmer, Prentice
Hall, Englewood Cliffs, NJ, 1992

[YU94] Eric SK Yu, John Mylopoulos. From ER to AR_ modelling strategic Actor
Relationships for Business Process Reengineering, In Proc. of the 13th
International Conference on the Entity-Relationship Approach - ER’94,
Manchester (UK), December 13-16, 1994.

