
CREWS Report Series 97–12

A Contextual Approach for
Process-Integrated Tools

Klaus Pohl and Klaus Weidenhaupt
RWTH Aachen, Informatik V, Germany

Ahornstraße 55, 52056 Aachen

e-mail: {pohl,weidenhaupt}@informatik.rwth-aachen.de

appeared in Proceedings of the 6th European Software
Engineering Conference / 5th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE 97), Zurich, September 22-25, 1997.

A Contextual Approach for Process-Integrated Tools

Klaus Pohl and Klaus Weidenhaupt

RWTH Aachen, Informatik V, Ahornstraße 55, D-52074 Aachen, Germany
{pohl,weidenh}@informatik.rwth-aachen.de

Abstract: Research in process-centered environments (PCEs) has focused on project management
support and has been dominated by the search for suitable process modelling languages and enact-
ment mechanisms. The consequences of the process orientation on the tools used during process
performance, and for offering fine-grained, method-based support to the engineers performing the
process have been studied much less.
In this paper, we discuss the requirements for a tighter integration of interactive engineering tools
and present a contextual approach for the process-integration of those tools. To achieve process
integration we argue that tools, like processes, should be explicitly defined. The integration of the
tool models with the process definitions forms an environment model which is interpreted during
tool execution. Based on this interpretation tool behavior is adjusted according to the process def-
inition; i.e. the interpretation empowers the tools to provide fine-grained method-conform process
support.
Our approach has been implemented as a reusable object-oriented framework and validated by
specializing this framework to develop two prototypical process-integrated environments (PIEs).

1 Introduction
During the last decade a tendency of moving from product-oriented computer supported
development environments to process-oriented environments, so-called process-centered
environments (PCEs), could be observed. The explicit definition of processes is a prereq-
uisite for easy adaptation to project specific needs and the integration of process changes.
In contrast, the process support offered by product-oriented environments is hard-coded,
i.e. there exists no explicit process definition. Due to the required re-programming process
changes are hard to accomplish.

PCEs can be divided into three conceptually distinguishable domains [1,2]: the model-
ling, the performance, and the enactment domains. Themodelling domaincomprises all
activities for defining and maintaining software process models using a formal language
with an underlying operational semantics which enables mechanical interpretation of the
models. Theenactment domainencompasses what takes place in a PCE to support (guide,
enforce, control) process performance; this is essentially a mechanical interpretation of the
process models by a so-called process engine. Theperformance domainis defined as the
set of actual activities conducted by human agents and non-human agents (computers).

Process support provided by PCEs can be characterized by the typical interactions
between the three domains: (1) a process model is instantiated, i.e. process parameters
like resources and time scheduling are bound to project specific values and passed to the
enactment domain; (2) based on the interpretation of the instantiated model, the enactment
domain supports, controls, and monitors the activities of the performance domain; (3) the
performance domain provides feedback information on current process performance to the
enactment domain. This is a prerequisite for adjusting process model enactment to the
actual process performance and enabling branches, backtracks, and loops in process model
enactment.

Research in the PCE area has focused onprocess (project) management supportand
has been dominated by the search for suitable process modelling languages and enactment

mechanism, i.e.has focused on the modelling and enactment domains[3]. It has resulted in
a set of mature process modelling languages and enactment mechanism (e.g. [4,5,6,7,8,9]).
Although the need for process integration of the tools used to perform the process has
been recognized [10,3,11,12,2] the integration of the performance domain, respectively
the tools, with the modelling and enactment domains has almost been neglected [3,2,11].
Such an integration is essential if fine-grained, methodical support should be offered to
the engineers, e.g. during the creation of a requirements specification or a high/low level
design.

The process integration of the tools presented in this paper is based on the assumption
that the humans executing the process should play an active role during process execution,
i.e. that process execution should not only be dictated by the process enactment mechanism.
We argue thatprocess-integrated toolsare a prerequisite for enabling the user to understand
and control process execution and to play a more active role by initiating the execution of
predefined method fragments depending on the actual process situation.

In section 2 we elaborate the main requirements to be considered for process-integration
of interactive engineering tools. The key ideas for achieving these requirements are
sketched in section 3. The consideration of those requirements has led to a significant
improvement of our approach for process-integration of tools described in [2]. We now
advocate that for achieving process integration the capabilities of the interactive tools
should be explicitly defined. The resulting tool models should, in addition, be integrated
with the process definitions. Our new contextual approach for defining and integrating
tool and process models is outlined in section 4. Our overall approach has been validated
by implementing a generic architecture which interprets the integrated model and thereby
assures that the engineering environment “behaves” according to the method definitions
(section 5).

Finally, we compare our contextual approach for process-integrated tools with other
research and existing PCEs (section 6) and provide an outlook to future work (section 7).

2 Requirements for Process-Integrated Tools
In the enactment domain, process definitions are enacted to drive process performance. In
the performance domain, tools are used by humans to execute the various process steps and
method fragments. Integrating these two domains for providing fine-grained methodical
support for the engineers has different facets and requirements which are identified in this
section.

A widely adopted view on the tool integration problem has been proposed by Wasserman
who distinguishes platform, user interface, data, control, and process integration [10] but,
like other authors, does not discuss process integration in depth. The integration between
the enactment and performance domain mainly has to cope with data, control, and the
process integration aspects. While we share Wasserman’s view on data integration and
control integration, process integration requires certain features which are not discussed
in the literature so far. These requirements are also related to, but significantly more
comprehensive than those discussed by [1,13,14,15,16,17] whose analysis is mainly based
on the weak integration of the enactment and performance domains in existing PCEs.

2.1 Service Integration
A tool serviceis a functionality provided by a tool which can be accessed (called) from
outside, e.g. the creation of a certain artefact, the compilation of the source code, printing
or loading a document, etc. Tool services can vary in their complexity. To ensure that
the tools of the performance domain can execute the services requested by the enactment
mechanism, the tools used must be considered when defining process models.

Current process modelling formalisms lack comprehensive modelling concepts for repre-
senting tool resources at the same conceptual level as processes. They offer only limited,
low-level constructs for representing service invocation (e.g. black transitions in SPADE
[4], the call -statement in Marvel [5], or the wrapping techniques for blackbox integration
employed in the OZ environment [18]). For exploiting existing tool support in the process
definitions the method engineer has to collect information about the available tools, their
services and the service invocation (e.g. parameters required) from various sources (e.g.
manuals, program documentations, personal knowledge or experience). Considering the
heterogeneous environments and work settings which exist today in industry, guaranteeing
that the services defined in the process model are correctly mapped to the tool environment
used for performing the process is not trivial, especially if a process model is enacted in
different environments.

Thus, mechanisms are required which systematically support the method engineer in
finding and assigning adequate tool support to certain process steps. If the available tools
(e.g. their services, in and out parameters of the services) are defined at a conceptual
level the method engineer can be supported in relating the tool services to the process
definitions. For example, the tool and process models can be compared and discrepancies,
such as lack of sufficient tool functionality or wrong assignments, can be detected.

2.2 Invocation of Method Fragments
On the one hand, methodical support can not be fully predefined due to many criteria
not known a priori which influence the actual process performance and/or due to the
weak understanding of the steps themselves. The actual process performance is thus often
driven by humans which, depending on the process situation, decide what to do next, i.e.
process performance depends on intelligent and creative individuals which make the right
decisions. It is thus important that the computer based environment does not restrict the
humans in their creativity.

On the other hand, there exist method fragments which are well understood, do not
depend on unknown criteria and can thus can be predefined [19,2]. To increase the
productivity and the quality of the product under development, such methodical knowledge
should, whenever possible, be used to guide the engineer. As a consequence, the computer-
based environment has to assure that the well understood method fragments are used to
guide the user whenever possible.

Process-integrated tools must thus provide means for initiating the execution of predefined
method fragments, e.g. by comparing the current process situation with the method
fragment definitions.

2.3 Process Sensitive Tools (Informing the User about the Enactment State)
A tight integration between the enactment and performance domains can only be achieved
if both domains consider the process status of each other. The enactment domain has to
consider current process performance for deducing the process steps to be performed next
(section 2.4), whereas the current enactment state has to be reflected in the performance
domain. To assure that the user is aware of the current enactment state, the tools must be
process sensitive. A process sensitive tool

• adapts its behavior (the user interactions allowed and the services provided) according
to the current enactment state and the process definitions. For example, the selectability
of product parts may be restricted to the ones allowed in the current state, or the product
parts on which a service can be performed are highlighted to draw user attention to
them;

• empowers the user to activate predefined method fragments and services provided by
other tools. Since process definitions are subject to frequent change, the activation

of predefined method fragments and services should not be hard-coded in the tool.
Instead, the activation should be based on the actual process definitions. The tools
must be process-aware; i.e. must have knowledge about the actual process definitions.

Supplying the performance domain with knowledge about the enactment state is straight-
forward in situations where a particular service has to be performed on a certain product
part. In this case, the relevant product parts are passed as parameters of the service request.
If there are alternatives among which the user has to choose, the enactment domain must
inform the tool about the set of services allowed, the selectable product parts for each
service, respectively product part combinations.

2.4 Feedback Information (Informing the Process Engine about Performance State)
For adjusting the enactment state according to the current process performance, the
performance domain must provide feedback information about the execution of a particular
service by a tool. The data to be exchanged depend on the service executed. Consequently,
the feedback data have to be defined as out-parameters for each service type (see service
integration above). In addition, information about the current process performance state,
e.g. unforeseeable events like a process deviation, has to be provided. This information
can either be created by observing (monitoring) activities, or directly provided by the user.

Technically, the distribution of the feedback information has to be enabled by a control
integration mechanism.

The problem of gathering feedback information from the performance domain has also
been recognized in current approaches. In SPADE [4], for example, a specific Petri-Net
construct, the user input place, has been introduced. Message events generated by the
tools have to be mapped into tokens of such places. In Provence [20], the enactments
mechanism captures events from the performance domain via a monitoring system for
operating system traps, e.g. file system accesses. However, mapping performance domain
events to feedback information understood by the enactment mechanism is by far not
trivial, e.g. to deduce that saving a file in an text editor means that a bug fix in the source
file has been completed.

2.5 Synchronization of Enactment and Performance Domain
The definition of a communication protocol and its application within each domain is
a prerequisite for synchronizing the process states of both domains. In current PCE
approaches, the interaction between the enactment domain and the tools is typically
established by an implicit client-server relationship, i.e. the enactment domain acts as
a client which requests the execution of a tool service. Conversely, the tool plays the role
of a server which executes the service and returns the results (feedback information) to the
enactment mechanism. This simple cooperation pattern is sufficient as long as we consider
traditional tools which are not process-integrated.

Due to the more active role of process-integrated tools (section 2.2 - 2.4), a more elaborate
interaction protocol between the two domains than client-server has to be provided. Such
a protocol should, for example, distinguish between different process states like normal
process performance, process deviations, the performance of automated services, or user
choices.

2.6 Process-Aware Control Integration Mechanism
In contrast to service integration which defines the service interfaces, a control integration
mechanism is required for transmitting particular service requests and feedback information
between the components of a process-integrated environment. A control integration
mechanism is responsible for passing the requested service to a tool which is able to
execute the service. To enable correct physical distribution of the service requests and the

feedback information provided after service execution, the control integration mechanism
has to be aware of the services provided by a particular tool. In addition, service and
feedback distribution has to consider relevant knowledge defined in the process model,
e.g. if the process model restricts possible allocation of resources needed for performing
a service, or if the model explicitly defines the service provider, this has to be considered
when distributing a service. Thus, either the control mechanism must be process-aware,
i.e. must know the relevant parts of the actual process definition, or the enactment domain
must instruct service distribution according to the process definition. In most existing PCEs
(e.g. SPADE [4], MELMAC [6], Merlin [21], ProcessWEAVER [9]), neither a process-
awareness of the control mechanism nor the ability of the enactment domain to control
service distribution is offered.

Existing control integration mechanism like FIELD [22], BMS of HP’s Softbench [23],
Tooltalk [24], or CORBA [25] provide an excellent foundation for implementing a process-
aware control integration mechanism.

3 Key Solution Ideas
Our key solution ideas for fulfilling the requirements discussed in section 2 (see figure
1) are:

• The explicit definition oftool modelsand their integration with process models (section
4). The solution described in this paper extends our previous solution [2] in two
main aspects. First, tool models are defined separately from the process models and
represent the capabilities of the tools. Secondly, the integration of the tool and process
models forms an integratedenvironment modelthat takes both process and tool support
into account. The environment model offers five main advantages: (a) it achieves
service integration by uniformly defining the services provided by the tools and by the
enactment mechanism; (b) it enables the tool to adapt the user guidance according to
the actual method definitions; (c) it defines how objects should be displayed by the
tool; (d) it defines the required feedback information for each type of service request;
(e) it empowers the tool to support the user in initiating the invocation of predefined
method fragments.

• The definition of a comprehensivecommunication protocolas a basis for synchronising

Enactment Domain

generic
process engine

architecture

Performance Domainmethod fragment
definitions

tool
definitions

Modelling Domain

generic
tool

architecture

instantiated
process
model

fragments

tool models and their integration
with process models
 - data integration
 - service integration
 - foundation for
 - process sensitivity
 - correct feedback information
 - invocation of process fragments

tool
definitions

instantiated
process
models

enactment
request

service
request feedback

abort
request

process
models

tool
models

generic tool and enactment
architectures
 - process sensitivity through interpretation
 of environment model
 - supports invocation of method fragments
 - implemented as reusable implementation
 framework

communication protocol
 - synchronization of tools and

enactment mechanisms
 - distribution of service requests

process-aware control integration
 - message distribution according to
 the environment model

Fig. 1. The Key Solution Ideas.

both domains. The communication protocol extends the conventional client-server
relationship between enactment mechanism and tools offered by most PCEs to a more
flexible pattern where both domains can play the role of a server and a client, i.e.
the enactment domain can request the execution of tool services and the performance
domain (tools) can request the enactment of predefined method fragments. The detailed
description of the communication protocol can be found in [2];

• The implementation of aprocess-aware control integration mechanismon top of
ToolTalk [24], which ensures that service requests are distributed between both do-
mains in accordance with the process definitions.

• The development ofgeneric architecturesfor process-integrated tools and enactment
mechanisms (section 5). Both architectures ensure that process performance is in
accordance with the environment model and guarantee the synchronization of the
enactment and performance domains based on the communication protocol. The
generic tool architecture facilitates the invocation of predefined method fragments and
assures that the guidance provided to the user corresponds to the process definition
and the actual process situation. The generic enactment architecture handles enactment
requests of the performance domain by enacting the requested method fragments and
provides means for an easy integration of existing enactment mechanisms.

4 Modelling Tools and Processes
According to the requirements discussed in section 2 there arethree types of services
in process-integrated environments (PIE): automated, guidance and enactment services
(section 4.1). Whereas the process model defines when a service should be performed, the
tool model defines which services are provided by a particular tool.

In section 4.2 we sketch acontextual process meta model, i.e. a process modelling
language, which defines an ontology for representing the three service types as well as
their situated invocation. We further illustrate the definition of the three service types
using the defined ontology.

For representing the services offered by a tool we propose atool meta model, i.e. tool
modelling language, which provides additional concepts for defining the capabilities of the
tool (section 4.3). The definition of the concepts of the tool meta model was driven by
the need for an easy integration with the process meta model.

An integration of the proposed tool and process meta models can be achieved by defining
associations between both meta models (section 4.4). Thereby the so calledenvironment
meta modelis formed.

4.1 Requirements for Modelling Concepts

4.1.1 Three Service Types
According to the requirements discussed in section 2 there exist three types of services
in a PIE:

• automated serviceswhich require no user interactions and are executed by the tool
according to the service request obtained by the enactment domain;

• guidance serviceswhich guide the user in making a selection among a set of alternative
services and product parts. If the execution of aguidance serviceis requested, the tool
must adapt its behavior (the services offered and the product parts displayed at its user
interface) according to the process definition and the information obtained with the
service request;

• enactment serviceswhich enable the tools to request the enactment of a predefined
method fragment from the enactment domain.

To illustrate the three service types assume a requirements engineering environment
consisting of a set of interactive tools.

In this environment the creation of an entity type is an atomic action (automated service)
provided the Entity Relationship (ER) editor. The refinement of an entity type is defined
asguidance service. Since the guidance service defines two possible ways for achieving a
refinement of an entity type (discrimination of attributes and the specialization (subtyping)
of the entity type), the ER editor has to offer these alternatives to the requirements engineer,
i.e. the ER editor has to adapt its user interface according to the guidance service definition.

The refinement technique “subtyping” is defined as a method fragment which specifies
a set of process steps (services) to be performed in a certain order. If the requirements
engineer selects this alternatve, the defined method fragment has to be enacted by the
process engine, i.e. the ER editor has to request the execution of the predefined method
fragment by the process engine (enactment service).

4.1.2 Service Invocation is Situated
The applicability of a particular service depends on the current process situation. A
situation is normally regarded as an abstraction of current reality based on observed object
states (see [26,2] for details). A simple example for the situated nature of actions is a
delete action; if no object (e.g. entity) exists the delete action (e.g. delete entity) can
not be applied.

In most situations many services (actions) can be applied. For example, when modelling
an ER-diagram you can create an arbitrary new entity, delete one of the entities, define a
new attribute and so forth. Consequently, a choice among the allowed services has to be
made. As stated in many contributions, such a choice (decision) is always driven by the
goal (or set of goals) which the person (or group) tries to achieve (e.g. [27,28,29,30,31]).
The decision which service to apply in a given situation can either be predefined in the
process model (i.e. the process modeler does not allow any choice) or the decision has
to be made by the engineers performing the process (i.e. the process modeler has defined
more than one service for a given situation).

To enable the definition of a set of services which can be applied in a given situation,
we have to define the situations themselves as objects and provide means to represent the
goal the user wants to achieve in a given situation.

4.2 A Contextual Process Meta Model
The contextual process meta model (see upper part of figure 2) described in this section
was developed within the NATURE project (see [32,33,19,2] for a detailed description).

A situationis built from product parts of theproductundergoing the development process.
An intention reflects the goal to be achieved in a given situation. Acontextrepresents a
meaningful relation between a situation and an intention. Thus, the meta model provides
concepts for the explicit representation of process situations and the goals to be achieved
in such situations. The refinement of the notion of context into executable, choice and
plan contexts enables the representation of the three service types which appear in a PIE:

• Executable contextsrepresent the part of the process definition which can be strictly
enforced, or even automated, i.e. the user does not have any choice what to do next. An
executable context is operationalized by performing theaction related to this context.
Performing the action changes the product and may thus generate new situations. Thus,
executable contexts are used to define atomic tool services (automated services);

• Choice contextsrepresent the part of the process definition, in which the user has to
make a decision. For each choice context at least twoalternatives must be defined.
An alternative can be another choice, executable, or plan context. For each alternative,
arguments (pros and/or cons) can be provided to guide the application engineer in

choosing one of the alternatives. Thus, choice contexts are used to define the guidance
services.

• Plan contextsdefine a strategy to fulfill a particular intention (goal); i.e. they define a
certain order on a subset of arbitrary contexts (plan, choice, and/or executable contexts).
A plan context can be supported by forcing the application engineer to deal with the
contexts in the order defined by the plan. Thus, plan contexts are used to define
enactment services.1

4.3 The Tool Meta Model
Representing processes and tools at a conceptual level is a prerequisite for comparing and
mapping the services defined in the process definition to the services offered by the tools of
the environment. For achieving process-sensitive tools we propose to model tools not only
in terms of the services provided (as in most other PCE approaches), but also in terms
of their graphical user interface and interaction capabilities. The tool meta model was
designed to facilitate an easy integration with the contextual process meta model proposed
in section 4.2.

The cornerstone of the tool meta model is the concepttool category(see lower part
of figure 2). An atomic service (action) provided by a tool category is related to the
tool category by aprovides_actionassociation, e.g. the action CreateEntity is related to
the ER-editor. For each action theinput and output parameters (products) are defined.
The modelling of the atomic actions is important for assigning executable contexts to tool
categories (section 4.4).

The graphical presentation of the product parts is defined as instantiation of the associ-
ation displaysbetween a graphical shape provided by the tool (modelled as instances of
the conceptgraphical shape) and a product part.

Besides the capabilities of a tool for displaying product parts, also the interaction
capabilities have to be defined. We assume that each tool enables the selection and
de-selection of product parts by default and thus do not model these interactions. In
contrast, theCommandElementsprovided by a tool have to be explicitly defined. In our
implementation we currently distinguish between three types of such capabilities, namely
PullDownMenu, ControlIconsand ControlKeys.

4.4 The Environment Meta Model: Integrating Process and Tool Meta Models
While the process meta model supports the definition of method fragments in terms of
executable, choice and plan contexts, the tool meta model is used to define the capabilities
of the tools available in the environment. By interrelating the tool and process meta models
an integrated meta model, the so calledenvironment meta model, is formed which defines
how and by which tool a context has to be executed (see dashed lines in figure 2).

To define the tool category responsible for executing a choice or executable context
(remember plan contexts are enacted by process engines) the executable and choice contexts
defined in the process model must be related to the tool definition. Since the tool meta
model was designed with this interrelation in mind, the integration of the tool and process
meta models is fairly easy (see figure 2).

Besides the easy integration, the tool and process meta models facilitate consistency
checks through which a consistent interrelation of both models can be supported.

1 For defining thecontrol flowof plan contexts we propose to represent the concepts of the process meta model
using an existing process modelling language. For our prototypical environments (section 5) we have chosen
the petri-net language SLANG [4] and the imperative language C++ (see [34] for details).

Plan
Context

Product

Graphical
Shape

Tool
Category

displays Command
Element

Pull-Down
Menu

Control
Key

Control
Icon

alternative

Executable
Context

Choice
Context

Argument

IntentionContextSituation

Action

2+
1+

composed_of

related_situation related_intention

applied_byinput

output

1+

1+ 1+provides_command1+

2+

1+

con pro

provides_action

provides_
Choice_
Contextprovides_

Executable_
Context

display_of
intention

changes

process meta
model

tool meta
model

shared
concepts

environment
meta model

Legend

Fig. 2. The Environment Meta Model.

4.4.1 Relating Tool Categories and Executable Contexts
Each executable context defined in the process model has to be associated with the tool
category responsible for executing the context. This responsibility is represented as an
instance of the associationprovides_executable_context. For example, if the executable
contextCreateEntityis related to a tool categoryER-editor the ER-editor has to perform
the actionA associated in the process model with this context.

Given an executable contextE, the associated actionA and a set of tool categoriesT1 –
Tn, we distinguish between three types of assignment:

• automated assignment: If there exists exactly one tool categoryTi which offers the
required actionA this tool category is automatically associated to the executable context
E;

• choice of tool category: If there exist two or more tool categoriesT1 - Tn which offer
the required actionA the method engineer must relate exactly one tool category with
the executable contextE;

• lack of tool support: If no tool category provides the required actionA a new tool
action has to be implemented in a tool and defined in the corresponding tool model,
or the process model has to be changed.

For each assignment between a tool category and an executable context two consistency
checks can be performed to ensure that the input and output defined for the tool action in
the tool model correspond with the process model definitions.

C1 assure that theoutputassociations defined in the tool model between the action and
the product parts are subsumed by thechangeassociations defined for the action in
the process model:Given an actionA. Let Po be the set of product parts related to
A in the tool model usingoutputassociations andPc the set of product parts related
to A in the process model viachangeassociations. Then,Po must be a subset ofPc;

C2 assure that all product parts defined asinput for the action are subsumed by the
situation of the executable context related to the action:Given an actionA. Let Pi

be the set of product parts related toA in the tool model viainput associations. Let
E be the executable context associated to the actionA in the process model,S its
situation andPs the set of product parts defined for the situation. ThenPi must be
a subset ofPs.

Only if both checks are successful, i.e. if the input and output parameters defined in the
tool model correspond with the process definitions, the tool category is assigned to the
executable context. Otherwise, the method engineer is informed about the mismatch.

4.4.2 Relating Tool Categories and Choice Contexts
Each choice context has to be related to exactly one tool category by anpro-
vides_choice_contextassociation. Thereby the tool category assigned to the choice context
is made responsible for performing the choice context, i.e. a new guidance service is
defined for the tool category.

In addition, for each contextCj defined as alternative of the choice contextCC the
presentation of the intentionI related to the contextCj has to be defined. Since an
intention (e.g. the intentiondelete) can be associated with more than one context (e.g. the
contextdeleteEntityanddeleteAttribute) a context dependent presentation of the intention
is required. This is achieved by relating the contextCj to at least one command element
using thedisplay_of_intentionassociation (figure 2).

Like the relation of an executable context to a tool category, also the relation of a choice
context to a tool category can be supported by automated consistency checks:

C3 assure that the tool category can display all intentions associated with the alterna-
tives of the choice contexts:Given a choice contextCC which is related in the
process model to a set of alternative contextsCA. For each context ,
the tool categoryT associated (using the provides_choice_context association) with
the choice contextCC must be assigned to at least one command element (via a
provides_command association) which is related (using a display_of_intention asso-
ciation) to the context Cx;

C4 assure that the tool category can display all product parts associated with the situa-
tions of all alternative contexts of the choice context:Given a choice contextCC for
which a setCA of alternative contexts is defined in the process model and a set of
product partsPCA which subsumes all products related to any situationS which is
related to a contextCx CA. If a tool categoryT is associated to the choice context
CC then for all product partsPi PCA a displays relation betweenPi , a graphical
shapeG, and T must exist.

4.5 Environment Meta Model: Summary
In summary, representing both processes and tools at a conceptual level supports the
method engineer in assigning the required tool functionality to the method definitions.
Moreover, the above mentioned consistency constraints assure correct assignments in the
environment model.

Service integrationis achieved by the environment model through the relation of exe-
cutable and choice contexts defined in the process model to the tool definitions.

The feedback requiredafter context execution is inherently defined by the context types
(in the case of executable contexts as output product types; in the case of choice contexts
the contexts as alternatives).

The foundation for theinvocation of method fragmentsis established by the fact that a
plan context can be related as an alternative to a choice contexts. This makes the tools
aware of plan context definitions, i.e. the tools get to know the plan contexts which can
be activated in a given process situation (illustrated in section 5.2)

Vice versa, the environment model empowers the enactment domain to invoke the tool
responsible for executing a choice or executable context whenever such a context becomes
active during the enactment of a plan context.

Last but not least, the definition of the graphical and interaction capabilities for the
contexts lays the foundation for theadaptation of tool behavior(illustrated in section 5.1).

The interpretation of the environment model at run-time by the three main components
of our implementation framework, namely thetools, the enactment mechanism and the
control integration mechanism, builds the foundation for achieving a process-integrated
environment.

5 Implementation and Validation
Based on the contextual process and tool modelling approach outlined in section 4 and the
communication protocol defined in [2] we have defined a generic architecture for process-
integrated environments which consists of three main components:

• An enactment architecturefor process engines which interprets the process relevant
parts of the environment models. It drives process enactment based on the process
knowledge defined in the environment model, deduces the tool category for performing
a particular service (context) based on the environment models, handles enactment
requests of the performance domain by enacting the requested method fragments, and
provides means for an easy integration of existing enactment mechanisms for the
interpretation of plan contexts;

• A process-aware control integration mechanism which has been implemented on top
of the ToolTalk. It controls message distribution (service requests) based on the
interpretation of the environment model.

• A generic tool architecturewhich consists of two major generic subsystems, the
StateManagerand theContextManager. The task of theStateManageris to ensure
that message exchange with the enactment mechanism is carried out according to the
communication protocol. In addition, the StateManager controls and maintains the
current state of the tool. State transitions are triggered by user interaction events or the
receipt of a message from the enactment domain. The task of theContextManageris
assigned to two major subcomponents. TheContextExecutoris responsible for adjusting
the tool behavior and for providing user guidance according to the environment model
(section 5.1). The task of theContextMatcheris to identify predefined method
fragments (section 5.2).

All architectural components have been realized as a set of collaborating object-oriented
components. The design of the architecture and its implementation is described in detail
in [34]. In this paper we focus on the process-sensitivity of the tools and thus sketch the
two components of the ContextManager: the ContextExecutor and the ContextMatcher.

5.1 The ContextExecutor
The ContextExecutor controls the execution of choice and executable contexts. Context
execution is either initiated by the ContextMatcher or by the StateManager due to the
receipt of a context execution message from the enactment domain.

If the execution of an automated service (executable context) is requested, the Context-
Executor invokes the tool action associated with the executable context in the environment
model, with the situation data as input parameters.

If the execution of a guidance service (choice context) is requested, the ContextExecutor
adapts the user interface of the tool according to the definition of the choice context and
the current situation data. More precisely, in the command region of the user interface
only those menu items and icons are displayed which are associated to an alternative of the
choice context. In the product region, all products corresponding to the situation data of
the choice context arehighlightedto draw user attention on them (the entity publication in
figure 3). Furthermore, all products which may contribute to a situation of an alternative
context are displayed asselectable(bright color), whereas all other products part become

unselectable(e.g. the relationship loaned_by in figure 3).
Thus, all contexts (situations and intensions) defined as alternatives of the choice context

are displayed to the engineer. On user request, the ContextExecutor displays the pros and
cons for each alternative defined in the model in a special guidance window (not shown
in figure 3).

As an example for the adaptation of tool behavior, the right part of figure 3
shows an entity relationship (ER) editor which currently executes the choice context
CC_RefineEntity with the entity typepublication as current situation data. There
are three alternatives defined for this choice context (see left part of figure 3): (1) the
executable contextEC_Create_isA_linkby which an IsA-Link between two selected entity
types is created; (2) the executable contextEC_Discriminate_Attributefor creating a dis-
criminating attribute for the selected entity type; and (3) the plan contextPC_SubtypeEntity
for creating subtypes of the selected entity type.

According to the associations specified between the choice context and the command ele-
ments provided by ER editor, the intention of the alternative contextEC_CreateIsALink
appears as menu item in theedit pull-down menu and as icon in the icon bar using the
bitmapCreateIsALink.xpm (see figure 3). Similar, the command elements for the other
two alternative contexts of the choice context are retrieved from the environment model
and displayed to the user (not illustrated in figure 3).

In the product area, the situation data (the entity typeproceedings of the choice
context CC_RefineEntity) is highlighted. According to the environment model, all
situations of the three alternatives are only based on entity types (not depicted in figure 3).
Consequently, the ContextExecutor has marked all other objects as unselectable (displayed
in gray), i.e. only entity types (book, copy_of_publication, user) are selectable
(displayed in white).

5.2 The ContextMatcher
During the execution of a choice context the user selects and deselects product parts and
command elements. The task of the ContextMatcher is to compare the current state of
the user interface (product parts and command elements selected) with the definitions of
the contexts defined as alternatives of the currently active choice context. It compares the
commands with the intentions of the alternative contexts and the product parts with the
situation of the alternative contexts. The matcher currently applies a best fit approach, i.e.
it associates a situation slot with the most specific selected product (part).

Context

Choice
Context

Intention

Tool
Category

Control
Icon

Pull-Down
Menu

Control
Key

CC_RefineEntity ER_Editor

PC_SubtypeEntity

EC_DiscriminateEntity

EC_CreateIsALink

 "Create IsA Link"

Edit

provides_choice_context
Product

EntityType

related_situation
Situation

OneEntity

Command
based_on

provides_command

alternative

alt1 alt2 alt3

related_intention

publication represents copy_of_publication

loaned_by

user

name

address

book

display_of_intention

provides_CC1 prov_com1

prov_com2

rel_intention

based_on1

rel_sit
CreateIsaLink.xpm highlighted product

(current situation)

selectable
products

unselectable products
(shadowed)

Part of the Environment Model Tool Executing a Choice Context

Fig. 3. Influence of the Environment Model on the Tool Behavior.

Whenever the selected product parts and the intentions match with a context definition,
the ContextMatcher requests the activation of the context from the StateManager. If the
activated context is a plan context the StateManager sends an enactment request (together
with the situation data) to the enactment mechanism.

Note that the detection and activation of a new defined plan, executable or choice context
can be achieved by just relating the new context as alternative to a choice context or
(only in the case of choice contexts) directly to the tool category. The definition of a
new method fragment does not require any reprogramming or adaptation of the tools,
since the responsible tool automatically displays the intentions and highlights the products.
Moreover, it automatically compares selected intentions and product parts with the new
context definition and activates the detected context. For example, if the selected product
parts and the selected command element match with a new defined plan context, the
enactment of the plan context is initiated by the tool.

In the following we illustrate the invocation of a method fragment (figure 4). The ER
editor is in the choice contextCC_RefineEntity . The user has selected the two enti-
ties publication and journal and the menu command associated with the intention
Create IsA Link . The ContextMatcher compares the selected product parts and the in-
tention associated with the selected command element with the context definition subsumed
in the environment model. For efficiency reasons the matching is performed whenever a
command element (intention) has been selected by the user.

The ContextMatcher detects that the selected items match with the definition of the
executable contextEC_CreateIsALink defined as alternative of the active choice context
(see left part of figure 4).

Context

Choice
Context

Intention

Tool
Category

CC_RefineEntity ER_Editor

Edit

CreateIsaLink.xpm

provides_Choice_Context
Product

EntityType

related_situation
Situation

TwoEntities

Command

based_on

provides_command

alternative

alt1

related_intention

publication represents copy_of_publication

loaned_by

user

name

address

book
super

sub

publication

book

TwoEntities_27

rel_sit

Control
Icon

Pull-Down
Menu

Control
Key

display_of_intention

EC_CreateIsALink rel_int

prov_com1

prov_com2

prov_CC1

 "Create IsA Link"

Tool Interactions Matching of Selected Product Parts and Commands with Context Definition

Fig. 4. Matching a Context.

5.3 Validation
We have validated the integrated process and tool modelling approach and the resulting
implementation framework by building two prototypical process-integrated environments:
PRO-ART 2.0, a requirements engineering environment, and TECHMOD, an environment
for supporting the construction of simulation models for chemical plants. Both environ-
ments have, in addition, be applied in small case studies performed by students and in
the case of TECHMOD by chemical engineers. Conclusions could be drawn from three
different perspectives:

Application engineer’s view:Most users reported that the fine grained method support
provides very helpful guidance. The reflection of the methodical guidance in the behavior of

the tools was regarded as a major advantage, especially the adaptation of the user interface
according to the method definitions and the support provided for invoking predefined
method fragments even if the user is not aware them.

Method engineer’s view:It turned out that defining method fragments using the three
context types offers significant advantages. First the three context types provide a guideline
how to structure method models. Secondly, the method engineer is forced to make decision
points explicit (by defining choice contexts), Thirdly, the three context types imply that the
tool definitions are considered adequately during process definition. Fourthly, adaptation
of method guidance can be achieved by just changing the model definitions and it can be
assured that the application engineer is always aware of the actual method definition. This
is essential especially in settings, where new methodical knowledge about good process
performance is constantly elicited and learned.

Tool builder’s view: From this viewpoint, the main result was that the building blocks
of the integrated environment meta model were sufficient for defining tools. Moreover,
the developers were forced to define process knowledge explicitly in plan contexts instead
of embedding it in the tools, i.e. the “process in the tool syndrome” [11] was avoided.
The implementation of twelve process-sensitive tools for the two PIEs was significantly
facilitated by the generic tool architecture and the reuse of the generic implementation
framework.

6 Related Work
Whereas the main focus of our approach is to establish a process integration of the tools
used in a PIE, most research contributions do not consider the integration of tools in PCEs
although the problems of a-posteriori integration of existing CASE tools have been widely
recognized (e.g. [35,11,36,15]). Recent publications therefore argue that “a posteriori tool
integration (e.g. by means of wrappers) could be less effective since a tool is still seen as
a monolithic ’operator’ “ [4]. Consequently, existing PCEs do not offer process-integrated
tools.

An exception, where partial process-integration of the tools is offered, is the GTSL
approach [12] developed within the GOODSTEP project [37] which aims at thegeneration
of specific tool services, schemata, and consistency checks from tool specifications which
are coupled with process models. This approach mainly provides solutions to the service
and data integration problem, but does not provide means for the invocation of method
fragments nor for the dynamic adaptation of the tool behavior according to the process
definition and the enactment state.

Meta-CASE environments or CASE shells like MetaEdit [38] or Phedias [39] are based
on the generation of tools according to a (meta model) specification. They focus mainly
on notational and ontological aspects, but lack process-orientation (see also [40]).

Existing process modelling languages almost neglect the definition of tools, although
some provide low-level constructs for the invocation of foreign programs like black
transitions in SLANG [4], thecall –Statement in Marvel [5], or the binding of abstract
process operators to tools during process instantiation in ALF [41]. On the other hand,
control-oriented tool integration approaches like FIELD [22] and its commercial derivatives
(such as HP’s BMS [23] and Sun’s ToolTalk [24]) as well as object-oriented distribution
infrastructures like CORBA [25] or OLE [42] store tool (service) descriptions in their
message servers/object brokers, but do not consider the process models.

As a consequence, if at all, tool and process models coexist in the message server repos-
itory and in the process repository without a systematic approach for assuring consistency.

Many PCE approaches like SPADE [4], Process WEAVER [9], EPOS [43], and Merlin

[21] employ such mechanisms for invoking tool services, although the tool model used
by the message server and the process model used by the enactment domain are not sys-
tematically integrated. In addition, tool invocation in existing PCEs is restricted to atomic
actions while user guidance by adapting the accessible objects and operations through
guidance services is not systematically supported; i.e. the tools of these environments are
not process-sensitive.

In contrast, our approach takes a different stance on process and tool modelling. Among
others, it offers a uniform way to express enactment and tool services by which service
and data integration between the enactment and performance domains can be achieved,
and the foundation for process-sensitive tools is established.

The FIELD-based Forest environment [44] is an attempt to establish a central description
of processes and tools. Forest extends the tool-related message distribution patterns stored
in the message server by so-called policy descriptions which can be regarded as primitive
process definitions. Although this approach improves the integration of tool and process
models it provides no means for establishing process-sensitive tools and for supporting the
invocation of method fragments.

In summary, the problem of tool integration in PCEs was recognized and some partial
solutions to the problem exist. So far, no comprehensive approach was proposed which
establishes process integration of tools and, on the other hand, enables the humans
performing the process to play a more active role by initiating the execution of method
fragments.

7 Conclusions
Our contextual approach for fine grained and adaptable method support in process cen-
tered environments presented in this paper is based on the requirements for the process-
integration of interactive engineering tools elaborated in section 2. The consideration of
those requirements have led to a significant improvement of our previous solutions for
process-integrated tools described in [2].

To meet the requirements we argued that from a modelling perspectivetools should
no longer be treated as second class citizens. Instead tools, as the processes, have to
be explicitly defined. We presented a contextual meta model for defining the process
(method) support and atool meta modelfor defining the basic capabilities of the interactive
engineering tools used to perform the processes. We then proposed to relate the available
tool support with the method definition. The interrelation of the tool and method definitions
can be supported by automated consistency checks, e.g. it can be checked if a tool is able
to perform the associated services (executable and choice contexts) defined in a method
fragment.

The integration of the tool and the method definitions forms anenvironment model.
Based on an interpretation of the environment modelprocess-sensitive toolsare established.
The tools are able toadapt themselves automaticallyaccording to the method definitions.
Moreover, the engineeringtools can initiate the enactment of predefined method fragments
by matching user interactions and method definitions.

Our overall approach has been validated by implementing ageneric architecture for
process-integrated engineering environmentswhich consists of three main components (en-
actment architecture, tool architecture, and process-aware control integration mechanism).
Each of these components interprets the environment model and thereby assures that the
environment “behaves” according to the method definitions.

These applications have shown that our approach significantly facilitates the adaptation
of fine-grained method support to organizational and project specific needs as well as the

integration of new method fragments. For example, the approach has proven very useful
for defining and enforcing project specific trace services, i.e. to guide the engineers in
capturing trace information in accordance to a contract [45].

Future research is concerned with the detection and the execution of choice contexts
across tool boundaries. Moreover we plan to validate the TECHMOD environment in an
industrial setting and investigate in the generation of basic executable services based on
model definitions, like the ones applied in the MetaEdit+ CASE shell [38] or in GTSL [12].

Acknowledgments: The authors like to thank their colleagues R. Klamma, R. D¨omges, P. Haumer and M.
Jarke for many fruitful discussions and comments on early versions of the paper. Without the enthusiasm of our
students S. Brandt, S. Ewald, M. Hoofe, T. R¨otschke, K. Schreck, W. Thyen the implementation of the generic
architecture and the PRO-ART 2.0 and TECHMOD environments would not have been possible.
This work was in part founded by the European Community under ESPRIT Reactive Long Term Research 21.903
CREWS and by the DFG Project 445/5–1 “Prozeßintegration von Modellierungsarbeitsplätzen”.

References
[1] M. Dowson. Consistency Maintenance in Process Sensitive Environments. InProc. of the Process

Sensitive Software Engineering Environments Architectures Workshop, Boulder, Colorado, USA,
Sept. 1992.

[2] K. Pohl. Process Centered Requirements Engineering. RSP marketed by J. Wiley & Sons Ltd.,
England, 1996.

[3] J. Lonchamp. An Assessment Exercise. In A. Finkelstein, J. Kramer, and B. Nuseibeh, editors,
Software Process Modelling and Technology, pages 335–356. RSP, London, 1994.

[4] S. Bandinelli, E. Di Nitto, and A. Fuggetta. Supporting Cooperation in the SPADE-1
Environment.IEEE Transactions on Software Engineering, 12(12):841–865, 1996.

[5] N. Barghouti. Supporting Cooperation in the MARVEL Process–Centered Software Development
Environment. InProc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 21–31, New York, New York, USA, 1992.

[6] W. Deiters and V. Gruhn. The FUNSOFT Net Approach to Software Process Management.Intl.
Journal of Software Engineering and Knowledge Engineering, 4(2), 1994.

[7] T. Mochel, A. Oberweis, and V. S¨anger. Income/star: The petri net simulation concepts.Journal
of Mathematical Modelling and Simulation in Systems Analysis, 13:21–36, 1993.

[8] P. Heimann, G. Joeris, C.-A. Krapp, and B. Westfechtel. DYNAMITE: Dynamic Task Nets for
Software Process Management. InProc. of the 18th Int. Conf. on Software Engineering, pages
331–341, 1996.

[9] C. Fernström. Process WEAVER: Adding Process Support to Unix. InProc. of the 2nd
International Conference on Software Processes, pages 12–26, Los Alamitos, CA, USA, 1993.

[10]A. I. Wasserman. Tool Integration in Software Engineering Environments. In F. Long, editor,
Proc. of the Intl. Workshop on Software Engineering Environments, pages 137–149, Berlin,
Germany, 1990. Springer-Verlag.

[11]C. Montangero. The Process in the Tool Syndrome: is it becoming worse? InProc. of the 9th
Intl. Software Process Workshop, pages 53–56, Arlie, Virginia, USA, Oct. 1994. IEEE Computer
Society Press.

[12]W. Emmerich.Tool Construction for Process–Centred Software Development Environments based
on Object Databases. PhD thesis, University of Paderborn, Paderborn, Germany, 1995.

[13]M. Dowson and C. Fernström. Towards Requirements for Enactment Mechanisms. In B. War-
boys, editor,Proc. of the 3rd Europ. Workshop on Software Process Technology, number 772 in
LNCS, pages 90–106, Villard de Lans, Frankreich, Feb. 1994. Springer-Verlag.

[14]C. Fernstr¨om. State Models and Protocols in Process Centered Environments. In W. Sch¨afer,
editor, Proc. of the 8th Intl. Software Process Workshop, pages 72–77, Wadern, Germany, Mar.
1993. IEEE Computer Society Press.

[15]C. Fernstr¨om and L. Ohlsson. Integration Needs in Process-Enacted Environments. InProc. of
the 1st Intl. Conf. on the Software Process, pages 142–158, 1991.

[16] I. Thomas and B. A. Nejmeh. Definitions of Tool Integration for Environments.IEEE Software,
8(2):29–35, 1992.

[17]ECMA-NIST. A Reference Model for Frameworks of Software Engineering Environments.
Number TR/55 Version 3. ECMA & NIST, 1993.

[18]G. Valetto and G. E. Kaiser. Valetto, g. and e. kaiser, g. InValetto, G. and E. Kaiser, G., pages
40–48, July Valetto, G. and E. Kaiser, G.

[19]K. Pohl, R. Dömges, and M. Jarke. Decision Oriented Process Modelling. InProc. of the 9th Intl.
Software Process Workshop, pages 124–128, Arlie, Virginia, USA, Oct. 1994. IEEE Computer
Society Press.

[20]N. S. Barghouti and B. Krishnamurthy. Using event contexts and matching constraints to monitor
software processes. InProcs 17th Intl. Conf. on Software Engineering, Seattle, Washington, USA,

pages 83–92, May 1995.
[21]G. Junkermann, B. Peuschel, W. Sch¨afer, and S. Wolf. MERLIN: Supporting Cooperation in

Software Development Through a Knowledge–Based Environment. In A. Finkelstein, J. Kramer,
and B. Nuseibeh, editors,Software Process Modelling and Technology, pages 103–130. RSP,
London, 1994.

[22]S. P. Reiss. Connecting Tools Using Message Passing in the FIELD Environment.IEEE Software,
4(7):57–67, July 1990.

[23]M. Cagan. The HP SoftBench Environment: An Architecture for a New Generations of Software
Tools. Hewlett–Packard Journal, 41(3):36–47, June 1990.

[24]SunSoft. The ToolTalk Service (White Paper). Technical report, SunSoft Inc., June 1991.
[25]OMG. CORBA: Architecture and Specification. Object Management Group, Inc., 1995.
[26]L. A. Suchmann.Plans and Situated Actions: The problem of human machine communication.

Press Syndicate of the University of Cambridge, 1987.
[27]R. Stallman and G. Sussman. Forward Reasoning and Dependency-Directed Backtracking in a

System for Computer-Aided Circuit Analysis.Artificial Intelligence, 9(2):135–196, 1977.
[28]V. Dhar and M. Jarke. On modeling processes.Decision Support Systems, (9):39–49, 1993.
[29]C. Potts. A Generic Model for Representing Design Methods. InProc. of the Eleventh Intl. Conf.

on Software Engineering, Pittsburgh, PA, May 1989.
[30]G. Fischer. Integrating Construction and Argumentation in Domain-Oriented Design Environ-

ments. InProc. of the First Intl. Symp. of Requirements Engineering, page 284, San Diego, CA,
Jan. 1993. IEEE Computer Society Press.

[31]M. Jarke, K. Pohl, C. Rolland, and J.-R. Schmitt. Experience-Based Method Evaluation and
Improvement: A Process Modeling Approach. InIFIP WG 8.1 Conference CRIS ’94, Maastricht,
Netherlands, 1994.

[32]C. Rolland and N. Prakash. Reusable Process Chunks. InProc. of the Intl. Conf. Database and
Expert Systems Applications, Prague, Slovakia, Sept. 1993.

[33]C. Rolland and G. Grosz. A General Framework for Describing the Requirements Engineering
Process. InProc. of the Intl. Conf. on Systems, Man, and Cybernetics, San Antonio, Texas, USA,
Oct. 1994. IEEE Computer Society Press.

[34]K. Pohl, R. Klamma, K. Weidenhaupt, R. Dömges, P. Haumer, and M. Jarke. A Framework for
Process-Integrated Tools. Technical report, RWTH Aachen, 1996.

[35]A. Fuggetta and C. Ghezzi. State of the Art and Open Issues in Process-Centered Software
Engineering Environments.Journal of Systems and Software, 26:53–60, 1994.

[36]M. Anderson and P. Griffiths. The Nature of the Software Process Modelling Problem is
Evolving. In Proc. of the 3rd European Workshop on Software Process Technology, EWSPT
’94, LNCS 772, pages 31–34, 1994.

[37]GOODSTEP-Team. The GOODSTEP Project: General Object-Oriented Database for Software
Engineering Processes. InProc. of the Asia-Pacific Software Engineering Conference, pages
410–420, Tokyo, Japan, 1994.

[38]S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ — A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. InProc. of the 8th Intl. Conference on Advanced
Information Systems Engineering, LNCS 1080, pages 1–21, Heraklion, Crete, Greece, 1996.

[39]X. Wang and P. Loucopoulos. The Development of Phedias: a CASE Shell. InProc. 7th. Int.
Workshop on CASE, Toronto, Canada, pages 122 – 131. IEEE Computer Society Press, 1995.

[40]P. Marttiin, K. Lyytinen, M. Rossi, V. Tahvanainen, and J.-P. Tolvanen. Modeling requirements
for future CASE: Issues and Implementation Considerations.Information Resources Management
Journal, 8(1):15–25, 1995.

[41]G. Canals, N. Boudjlida, J.-C. Derniame, C. Godart, and J. Lonchamp. ALF: A Framework
for Building Process-Centred Software Engineering Environments. In A. Finkelstein, J. Kramer,
and B. Nuseibeh, editors,Software Process Modelling and Technology, pages 153–186. RSP,
London, 1994.

[42]K. Brockschmidt.Inside OLE, Second Edition. Microsoft Press, Redmond WA, 1995.
[43]R. Conradi, M. Hagaseth, J.-O. Larsen, M. Nguyen, B. Munch, P. Westby, W. Zhu, M. Jaccheri,

and C. Liu. EPOS: Object–Oriented Cooperative Process Modelling. In A. Finkelstein, J. Kramer,
and B. Nuseibeh, editors,Software Process Modelling and Technology, pages 33–70. RSP,
London, 1994.

[44]D. Garlan and E. Ilias. Low-cost, Adaptable Tool Integration Policies for Integrated Environ-
ments. InProc. of the 4th ACM SIGSOFT Symposium on Software Development Environments,
volume 15, 1990.

[45]K. Pohl, R. Dömges, and M. Jarke. Towards Method-Driven Trace Capture. InProc. of the 9th
Intl. Conf. on Advanced Information Systems Engineering, Barcelona, Spain, June 1997.

