
CREWS Report Series 97-13

The Albert II Specification

Animator

Patrick Heymans
August 12th, 1997

Computer Science Department,
University of Namur

This paper reports on work that has been and is currently accomplished within the ESPRIT IV LTR project
CREWS (Cooperative Requirements Engineering With Scenarios)

The Albert II Specification Animator Technical Report

2

The Albert II Specification Animator 1

Patrick Heymans , Computer Science Dept., University of Namur

Abstract

Writing requirements specifications of complex composite systems makes it necessary to have a language

which is both formal to allow reasoning on specifications and declarative enough to allow the analyst to

express himself in a natural way. Albert II is a language that tries to achieve these goals and, besides that,

provides templates that guide the analyst in writing the specification. However, because of its formality, the

resulting specification cannot in general be read by the various stakeholders. Validation tools are therefore

required, among which an animator. In this paper we aim at giving an overview of the functionnalities and

the architecture of the animator for Albert II specifications.

1. Introduction

The validation task which takes place during the Requirements Engineering (RE) of software-based systems
certainly cannot be considered as a solved problem yet. The most important reason for this is that the analysts
in charge of writing the requirements specification and the stakeholders from whom the necessary information
has to be elicited do not speak the same language: while the former still often make use of software-oriented
modelling techniques supporting an operational style of specification, the latter would like to have a declarative
statement specifying which of their needs will be taken into account rather than the description of how some of
them (which ones?) are solved.

Besides this need for declarativeness of specification languages, there is also a need for expressiveness,
especially when people have to deal with composite systems2 and want to unambiguously express constraints
involving such things as real-time aspects, undeterminism and concurrent behaviours.

Orthogonally to its declarative and expressive aspects, it may be chosen to give a specification language a
formal semantics i.e. an unambiguous interpretation in terms of a mathematical structure associated to the
specification by the means of well-defined rules. Major advantages of formal languages are the possibility to
make use of (semi-)automated techniques allowing to reason about the specification or to derive a prototype
from it. The major drawback of such languages is the notation which is generally borrowed from mathematics
and logics and therefore not often understood by anyone apart from the analyst. A rough classification of the
various techniques that can be used in support to the validation of formal requirements specifications is as
follows:

• Conversion techniques are used to convert the specification into a form which is more easily
understandable by all the stakeholders (e.g. graphical representation, paraphrasing). Semantic equivalence
with the original specification is anyhow hard to obtain in a fully-automated way.

• Behavioural techniques are, in our opinion, all those which permit, in a broad sense, to observe, experience
and test the dynamic properties of a specification. It involves (possibly symbolic) execution of a prototype
which is, according to the level of executability of the language, the specification itself or a program
derived from it. Simulation is also part of these techniques.

1 This work is funded by the European Community within the framework of the ESPRIT IV LTR project CREWS (Cooperative Requirements
Engineering With Scenarios).
2 We call composite system a system made of heterogeneous components ranging from software and/or hardware components up to human and/or
device components

The Albert II Specification Animator Technical Report

3

• Analysis techniques apply either to the specification (like model-checking and theorem proving) or to
results delivered by the use of some behavioural techniques like the study of execution traces.

The Albert II language [DuB95, DuB97] has been designed with both the aforementioned declarativeness and
expressiveness properties in mind in order to address the problem of identifying and specifying the various
components of a system. Each of these components either belongs to the exisiting environment or the 'machine'
(system) [Jac95] to be installed. The other major concern when designing the language has been a
methodological one which resulted in identifying a set of typical constraints patterns that the analyst has to fill
in in order to write the specification. Albert II is a formal language whose patterns are written on top of a real-
time temporal logic for which reasoning techniques are currently under study.

The approach we take for validating Albert II specifications can be classified among the behavioural
techniques and we call it animation [Dub93, Dub94,Hey97]. Animation consists for a user or a community of
users to dynamically build a behaviour made of the behaviours of the various components of the system and its
environment. This behaviour will be progressively created by interacting with a tool (called animator) which
will check if the behaviour respects the constraints of the specification. In other terms, our approach really
comes down to test if a given scenario [Rol96], proposed by one or several stakeholders, is compatible with the
requirements specification.

The main challenges we want adress in our animation tool are the following :

• to provide a distributed tool which allows different stakeholders to cooperatively animate a specification,
each of them being responsible of animating the part of the system / environment he is interested in ;

• to provide backtracking facilities in order to explore alternative (more or less normative, more or less

exceptional) scenarios ;

• to provide feedback of the animation in a vocabulary that can be understood by its users. At least, this

vocabulary is the one used in the specification and it reflects the application domain. In any case, we want
to hide, as much as we can, the technical details of the semantics which underlies the specification
language ;

• to deal appropriately with undeterminism. As already mentioned, Albert II is able to express

undeterminism, which is very useful in the early stages of system development but is of little help when the
goal is to animate a specification since executability is not present, as shown in [Dub93]. Whenever
undeterminism is encountered, the animator asks the user to make a decision in order to remove it. Not
overloading the user with too many and/or too technical questions is therefore a major goal.

In section 2, we introduce the Aditec production cell case study which we will reuse for illustration purposes at
various places afterwards (this case study is also the one used in the project for the purpose of demonstrating
the results of the cooperation between Aachen and Namur teams. Section 3 gives an overview of the constructs
of language with the help of the example. There, we also try to give a sufficient intuition of the concepts
underlying the formal semantics of the language so that the main concepts of the animation be understood.
Section 4 presents our approach and situates it wrt the main approaches usually proposed for animation.
Section 5 sketches the architecture of the tool and section 6 introduces how it will have to be used. The paper
finally concludes on what has been accomplished so far and what is still left to do.

2. The Aditec Production Cell Example

Overview

The example we will use throughout this paper is the one of a manufacturing production cell which is close to
the production cell we could observe at the Aditec factory in Aachen. Aditec is a test factory which builds gear

The Albert II Specification Animator Technical Report

4

boxes for cars and whose goal is not to make profit but to serve as a laboratory for new technologies coming
from research before they are applied in industry.

Production management is a complex task. It involves three computer-assisted tasks to be performed :
production planning (PP), detailed scheduling (DS) and shopfloor data collection (SDC). Production itself is
concentrated at the shopfloor level. Customer orders are first processed by PP which performs coarse-grained
association of required parts (and sub-parts) to machine groups. It is also able to provide time boundaries for
the order to be accomplished. All this information is then passed to DS which has a fine-grained vision of how
production is organized from the point of view of machines. Taking into account the processing of other orders,
DS tries to optimize the machines’ productivity. Detailed scheduling information is then put into the SDC’s
database. A foreman handles this information and dispatches it to workers in charge of specific machines. The
information consists of the machine order to be performed at the current time and is displayed on the terminal
associated with the concerned machine. Workers, besides controlling the machines, are invited to give feedback
on the progress of the order they are performing at the terminal. The information thereby given feeds back PP
and DS so that rescheduling and supervision can happen at higher level.

The production cell

For our purposes, we decided to restrict our attention to the shopfloor level of the factory. The use of the Albert
II language and animator will therefore be illustrated with the help of a specification we have written and
which models a generic production cell. Rather than trying to model a particular production cell present at
Aditec (with all its set of specific details), we have tried to abstract the main elements from the cells we could
observe in order to keep the example largely understandable by anyone and still be able to illustrate the main
concepts of our language and tool. Nevertheless, we want to insist on the fact that having written an abstract
specification is not only a trick we used to keep the example simple enough for our illustration purposes, this is
also a technique which is often used in real life situations. For example, if one wants to describe a system
working in some environment, he might be interested in specifying the system’s components in detail but will
be satisfed with a very loose definition of the environment components, just concentrating of what has an
impact on the system's requirements. Another use of a loose style of specification might be to avoid making
design decisions that should be made at later stages of system development. Both these uses will be illustrated
in the specification.

The production cell is composed of three main elements : (i) a machine, (ii) a worker who operates and
supervises the machine and (iii) a terminal on which the worker can observe the orders he has to process and
which is also the device he uses to keep the scheduling system informed of what is actually being done at the
shopfloor level. Now, we will, in turn, characterize more precisely each of the components of the production
cell.

The worker

The behaviour of the worker is highly undeterministic in the sense that it is not possible (nor even
recommended) to model it as a strict sequencing of actions. Anyway, for identifying the basic actions he is able
to perform we have thought it was a good idea to start from two typical scenarios :

Scenario 1 : Manual mode
(1) The worker asks the terminal to display the current order. (2) He reads it and (3) signals
the terminal he starts setting up the machine in order to process it. (4) He loads the
approriate tools on both machine’s slots and (5) asks the machine to load the requested NC-
program3. (6) He signals the terminal the machine is starting to processing the order.(7) He
puts a few parts in the input buffer until set-up is complete and then (8) asks for one part to
be produced. While it is produced, he (9) puts additional parts in the input buffer. (8) and (9)

3 NC-program stands for "Numerical Control program" which is a kind of program that guides the operation that are performed by machine-tools
in manufactures.

The Albert II Specification Animator Technical Report

5

are performed several times up to the time all the necessary input parts have been
introduced. Then (9) is performed a few times again and, while the machine is working, (10)
he takes produced parts from the output buffer. (11) He finally signals the terminal that the
processing of the order is finished.

Scenario 2 : Batch mode
Steps (1) to (7) are the same as in the first scenario. (8) The worker asks the machine to
perform production in batch mode. During this time (9) he adds parts in the input buffer and
(10) gets produced parts from the output buffer. (11) He finally signals the terminal that the
processing of the order is finished.

We insist that these two scenarios are only a starting point to identify actions performed by the worker. The set
of all the possible behaviours that we want to model in the specification contains much more that the ones
depicted above. Many deviations can be considered : batch mode is interrupted because the worker as not put
enough parts in the input buffer, the worker does not report on the progress of the order’s processing, tools
and/or NC-program do not have to be loaded because they were the same as for the previous order processed,
the machine can produce junk parts, etc... Furthermore, we have to note that, even if we restrict ourselves to the
two scenarios above, we would have undeterminism anyway since it can be noticed that the sequencing and
number of occurrences of actions is not at all defined in every situation.

The machine

The machine we consider here transforms parts (as opposed to (dis)assembling them). The transformation the
parts have to undergo is recorded by an NC-program which has to be loaded into the machine before any
transformation process can start. The transformation inside the machine is performed by a set of tools which
have to be mounted on specific locations and which are also necessary for a transformation process to be
started. We will consider that there are two such locations on the machine. The machine also has an input and
an output stock. We do not have to suppose that these are physically differentiated, we just consider them
logically differentiated.

The behavior of the machine can be represented by the state-transition diagram shown in fig.1 which is quite
dependent from the way the machine has been specified in Albert II but which, nevertheless, gives a good idea
of its required behaviour. We use the convention that the start of an action act is represented by <act and its
end by act> ; an instantaneous action is represented by <act>. Requests from the worker are instantaneous
actions and have the prefix w.

Other comments that are not trivial from this state-transition diagram are that :

• the NC-program is supposed to perform some not explicitely modeled initialization operations just after
having been loaded. This lasts 3 minutes and makes the production impossible during this period ;

• when the worker requests for Batch mode production, the machine puts itself in a state (WaitForPart) in

which input parts are processed iff the following conditions are satisfied : (1) a part must be available in
the input buffer and (2) the output buffer must not be full. If production cannot take place during 1 minute,
the machine automatically returns in StandBy state.

The Albert II Specification Animator Technical Report

6

Figure 1 : State-transition diagram of the machine

The terminal

In order not to take into account the scheduling system, the functionning of the terminal (including part of the
actual shopfloor data collection) has been drastically simplified. The orders that have to be fulfilled are just put
into a queue whose content is not allowed to be changed dynamically (which is the consequence of the
rescheduling that happens in the real system). The worker is only requested to process another order if he has
completed the following sequence of tasks for the previous order : report on set-up, report that the machine has
started production for the order, report that the order has been completely processed.

The only thing the terminal does is therefore to display the current order. The terminal is thus assumed to be
working according to the very simple state-transition diagram shown in fig.2 and where int-act represents any
internal action performed by the terminal in response to an action of the worker. There is a one-to-one
correspondence between the actions of the terminal and the worker’s requests which have already been
explained in the subsection devoted to the worker and that we will therefore not detail more.

Figure 2 : State-transition diagram of the terminal

Processing StandBy

int-act>

 <int-act

Off

LoadingNC

StandBy
ProduceOne

WaitForPart BatchProductio

 <w.TurnOn>

 <w.TurnOff>

 LoadProg>

<LoadProg

 <ProduceOne

ProduceOne>

<w.RequestBatchProduction>
<StopBatchProduction>

<ProduceOneBatch>

 ProduceOneBatch>

Batch mode

Manual mode

The Albert II Specification Animator Technical Report

7

Some excerpts of the specification that resulted from this analysis is shown in section 3 below where we present
the constructs of the language. The full Albert II specification of the production cell can be found in the
Appendix.

3. Overview of the Albert II language

Syntax

Albert II specifications are made of two main parts : (1) the 'static' part, made of type and operation definitions
and (2) the 'dynamic' part related to the specification of agents. The 'static' part is written at the beginning of
the specification because it defines types and operations which will be needed at a variety of places afterwards.
An example is the type ORDER which is a constructed type defined as a cartesian product with four fields : the
first denotes the type of the required input parts, the second specified the quantity to be produced, the third, the
NC-program needed by the machine and the fourth, the status of the order (Waiting, Started, Done, etc...).

ORDER=CP [inputType : INPUT_PART_TYPE , quantity : POSITIVE_INTEGER , ncProg :
NC_PROG , status : ORDER_STATUS]

Facilities to build types and operations are present in the language. First of all, there exists a set of predefined
types (INTEGER,STRING,RATIONAL,...) and associated operations. Type constructors (as CP,SET,...) are also
available together with a series of operations on parametrized types (e.g. Empty ? : SET (#) -> #).

The 'dynamic' part generally represents the main part of the specification. Agents correspond to entities of the
real world that appear to have some 'autonomy' (e.g. a person, a subsystem, an external machinery). The
decomposition of the specification into several agent specifications allows to reduce the dependencies between
the various parts. The agents of the specification of the cell are the Worker, the Machine and the Terminal.
Agents are grouped into societies. In our example, there is a single society grouping all the agent and we have
called it Cell. In general, societies can form a arbitrarily complex hierarchy whose agent represent the terminal
nodes. The specification of an agent is itself decomposed into a declaration part and a part which consists of
constraints. This part aims at pruning the number of admissible behaviours (or lives) an agent can have.
Society are not further specified since their behaviour in fact is just the 'sum' of the behaviour of the agent they
contain : they are just used to structure the specification more clearly. In our example, the society structure is as
follows :

SOCIETY CELL

 (Machine)

 (Terminal)

 (Worker)

Agents are usually responsible for some 'data' they maintain. In this case, the terminal (representing also part of
the shopfloor data collection) has to record information about the orders which have to be communicated to the
worker in order to be processed. Therefore, the terminal possesses a state component called Orders which is
defined as a table whose domain elements are of type ORDER (see above). Similarly, every machine has two
slots where tools can be mounted in order to perform machining operations : ToolLocation1 and ToolLocation2
which can take either a value of type TOOL or the special UNDEF value which here denotes that no tool is
mounted in the slot (adding UNDEF to the set of values defined by a type is done by adding a * after the type
name).

STATE COMPONENTS

ToolLocation1 instance-of TOOL* → Cell.Worker

ToolLocation2 instance-of TOOL* → Cell.Worker

The Albert II Specification Animator Technical Report

8

STATE COMPONENTS

Orders table-of ORDER indexed-by POSITIVE_INTEGER → Cell.Worker

Agents are able to perform actions that can have parameters like the action InstallTool1(TOOL) which is
performed by the worker in order to mount a tool in the first slot. Both actions and state components can be
exported by their owner agent to one or several other agent(s). Exportation is represented by an arrow
preceding the name of the agents to which the action/state component can be shown.

InstallTool1(TOOL) → Cell.Machine

As already mentionned, the rest of the specification of an agent is made of a series of constraints restricting the
set of possible lives of the agent. There are several types of constraints and each type has an associated syntactic
pattern which serves as a methodological guideline for the specifier who wants to express something. The types
of constraints are grouped into four families : (1) basic constraints, (2) declarative constraints, (3) operational
constraints and (4) cooperation constraints. Basic constraints are used to describe the initial state of an agent
(initial valuation constraints) and to give the derivation rules for the derived state components (derived
components constraints). A commented example of each of them is given below :

DERIVED COMPONENTS

The output buffer being full is determined by its content being

equal to its capacity.

OutputBufferFull ́ (Card(OutputBuffer) = MaxOutputBufferCapacity)

INITIAL VALUATION

Initially, the machine is assumed to be off, with no tool

mounted and no NC-program in memory.

ToolLocation1 = UNDEF

ToolLocation2 = UNDEF

Status = Off

Prog = UNDEF

Declarative constraints allow to express in a declarative manner constraints on the whole behaviour of an
agent. State behaviour constraints are used to express conditions that have to be satisfied at each moment of the
agent's life. Action composition constraint restrict the occurrences of actions to certain conditions of
sequencing, parallelism, alternative, repetition etc... Action duration constraints can give the actions maximum,
minimum or exact durations. These three types of constraints are illustrated below :

STATE BEHAVIOR

The output buffer's content can never be greater than its capacity

 [] Card(OutputBuffer) ≤ MaxOutputCapacity

ACTION COMPOSITION

A (perceived) request to produce a part is immediately processed

comp2 ↔ w.RequestProduceOne <0 sec> ProduceOne(_)

Producing a part in batch mode can either succeed of fail

TryProduceOneBatch ↔ ProduceOneBatch(_) ⊕ ProduceOneBatchFail(_)

The Albert II Specification Animator Technical Report

9

ACTION DURATION

Producing a part takes at least 70 seconds

ProduceOne(_) ≥ 70 sec

Producing a part takes at most 85 seconds

ProduceOne(_) ≤ 85 sec

Operational constraints are preconditions, effects of actions and triggerings. The semantics of such patterns is
broadly self-evident except for effects of actions for which we have to give some precisions. Actions can have a
pre- and a post-effect. In the constraint's syntax, they are separated by an (optional) part between square
brackets which is a condition determining if the post effect takes place or not. Another point is that the pre-
effect only lasts until the end of the action occurrence while the post-effect lasts until the affected state
components are changed by other action occurrences.

PRECONDITIONS

Installing a tool in the first slot requires that the machine is either loading an
nc-program, off or in standby. It also requires that the first tool location is
empty.

InstallTool1(_) :(Cell.Machine.Status = LoadingNC ∨ Cell.Machine.Status = StandBy ∨
Cell.Machine.Status = Off) ∧ ToolLocation1 = UNDEF

EFFECT OF ACTIONS

Producing a junk part has the effect of temporarily switching the machine's status
(see state-transition diagram). It also removes a part from the input buffer.

ProduceOneFail(p1) :
Status := ProduceOne ;
InputBuffer := Remove(p1, InputBuffer)
 []
Status := StandBy

TRIGGERINGS

Stopping batch production has to take place when the machine has been waiting for
a part for exactly 60 seconds

Lasted60 secs Status = WaitForPart / 0 secs → StopBatchProduction

Finally, cooperation constraints specify how an agent interacts with its environment, i.e. how it lets the other
agents know what actions it performs (action information), how it shows parts of its state to other agents (state
information), how it perceives actions from other agents (action perception) and how it can see part of the state
of other agents (state perception). Commented examples follow :

STATE INFORMATION

The content of a tool location is always made visible to the worker

.(ToolLocation1.w / TRUE)

ACTION INFORMATION

Getting a part from the output stock is always made visible to the machine

. (GetOutputPart(_).m / TRUE)

The Albert II Specification Animator Technical Report

10

We are not going here to detail of each type of constraint (this is provided in [DuB97]). The specification in
the Appendix can also be used to have a more precise idea of the expressiveness associated with the constraint
patterns. One important remark about the constraints we have just shown is that they introduce a lot of
undetermism, or, more precisely, their absence (or the presence of weak constraints) often yields
undeterminism. For example, if no initial valuation constraints are specified for some state component (and if it
is not constrained by a state behaviour constraint), its value at the starting point of an animation can be any
value defined by its type and a choice has to be made by the person in charge of animating the concerned agent.
From the point of view of actions, the absence of (or the presence of weak) preconditions allows an action to
take place anytime, supposing that no other constraint restricts its occurrences, as it is possible for triggerings,
state behaviours or compositions. But the same also applies to these constraints. E.g., if no composition
constraint requires that two actions always have to follow each other in some defined order, their occurrences
can take place in any way. Also from the point of view of action duration, looseness of specification is possible.
If they are not declared as instantaneous or with a precise duration, actions can take any duration (possibly
within some defined boundaries). The time at which the action begins and the time at which an action ends are
therefore one of the most common decisions the users of the animator will have to make. Finally, we should
also mention that information and perception of action occurrences or state values, if not (‘sufficiently’)
constrained by cooperation constraints may or may not happen at some points in time. Again, when animating,
the users will have to make the choice.
Places where undeterminism can take place in a specification are too many to mention here. What is important
to remember is that it is present all over the specifications and that the main way by which it is solved in the
animator is interactivity.

Semantics

The semantics of an Albert II specification is given by mapping it to a real-time temporal logic called Albert-
KERNEL . The set of axioms which results from the translation of an Albert II specification into Albert-
KERNEL defines a set of models of the specification. Each of these models is made of the 'sum' of the lives of
the instances of agents it contains. It is important to note that at the level of a model we talk about agent
instances while, at the level of the specification, agents (classes) are declared. In a particular model and unless
otherwise stated in the specification (by declaring the agent as single), there can be arbitrarily many instances
of an agent. While the number of instances can vary from a model to another, it remains constant within a
particular model.

The life of an agent instance is an (possibly infinite) alternate sequence of states and state transitions (see fig.3
below)4. The sequence is indexed by a real-time value which increases throughout the sequence.

4 In order to resolve the frame problem [Bor92], state transitions (more precisely, the events they contain) are considered the only way by which
state components can change their value.

<act1 act1>
<act2

<act1
> act2>

a
b

1 a 1 a 1 a
b

1
2

State Component
Value

 State

Action
OccurenceState Transition

Time

3'22'' 3'24'' 3'25'' 3'28''

The Albert II Specification Animator Technical Report

11

Figure 3 : Partial life (or behaviour) of an agent instance

A state of an agent instance represents the value of all its state components in a time interval during which they
remain unchanged. A state transition groups together all the events that affect an agent instance at a given
point in time. The Albert-KERNEL notion of event is made necessary to give a semantics to the Albert II
notion of action. In fact, action occurrences can have some duration (see, e.g., act2) or can be instantaneous (as
the second occurrence of act1). Actions have been therefore associated with events : each of them has a start-
and an end-event which, in the case of instantaneous action occurrences, happen at the same time.

Finally, a model (or admissible life / behaviour) of the specification is built by combining the lives of several
agent instances (at least one per class and exactly one per single agent), i.e. putting them on a common time
line by adding states (if needed) and checking compatibility wrt cooperation constraints. Such a model defines
an admissible behaviour of a composite system. Animating Albert II specifications consists in operationalising
the construction of such behaviour but, as we will see later, with the distinction that animated behaviours can
be admissible or not.

4. Approaches to the animation of formal specifications

Generally, when doing animation of specifications written in a formal language, there are roughly two possible
approaches:

• one is to translate the specification into a program. Depending on the language and on the tool, different
levels of automation of the translation process are possible, going from fully automatic to manual, the latter
being of course not very practical. It is also possible that the specification is itself an executable program
(whose execution mechanism is often embedded in an existing programming language). Typically, the
programming languages that are used for this kind of tasks are declarative : functionnal or logic
programming languages.

• a second possible approach is to establish a mapping from the specification language’s constructs to

automata modelling the allowed states and transitions as defined in the specification. This approach, which
is generally used for model checking [Hen94, Ras97a] of formal specifications, is now also being used for
animation. Currently, the tool sets described in [Her97, Alg95, Statemate] propose both exhaustive (model-
checking) and interactive (animation) techniques. Regarding the category of systems that map specifications
to automata, we are particularly interested in the ones that translate temporal logic specifications into
automata. Currently, there is some work performed on mapping more and more expressive temporal logics
to automata. In particular, [Ras97a] describes how to perform such a translation for a logic which is close to
Albert-KERNEL .

The approach we have adopted cannot be classifyied in any of the two above but before caracterizing it more
precisely, we are now going to motivate our choice by giving the pros and cons of the two approaches above.

The first approach requires that, to a very large extent, the specification language be operational. This implies
that, although non-determinism might be present [Hay89], it is not as widespread as in languages like Albert
II. Languages like Z [Spi92] or VDM [Jon91], which are the main languages for which animation systems of
the first kind have been built [Sid97, Bre94, One92], are languages that are used to specify isolated functions or
operations of the system without modelling explicitely whole behaviours of the system together with its
environment. Languages like Albert II, on the other hand, aim at embodying the environment in the
specification. Besides that, languages like Albert II do not limit their scope to isolated functions or operations
but they allow to specify whole system and environment behaviours (i.e. all the possible sequences of actions
that can be performed by all the agents). All this, of course, requires more expressiveness which, when it comes
down to animation, necessitates the usual techniques to be rethough. For example, it is quite easy to understand
that animating a Z specification consists for a user to enter the input of some function or operation and observe
what are (all) the (possible) output produced [Bre94]. On the contrary, for a language like Albert II , we must
be aware that beside setting the parameters of actions, animating involves such things as chosing the time at
which actions take place, chosing one of the possible outputs of an operation call (since it will necessary in
order to continue to elaborate the behaviour in progress), determining the perception by some agent of a state or
an action coming from another agent,... A first thing we can conclude then is that, in our case, a much more

The Albert II Specification Animator Technical Report

12

interactive animation technique is required. As we will see further, our approach does not completely abandon
the technique we have just criticized but reuses it embedded in a higher-level mechanism, restricting its usages
for tasks where little undeterminism is involved, that is, where little interactivity is needed, like evaluating a
precondition, computing the effect of an action,...
Besides that, there are two other main problems with this approach. One of them is the fact that, in order to
become executable, the specification often has to be transformed and, thereby, concepts that are not of interest
to the specifier have to be introduced and others, which are of interest for him, become hidden in the resulting
executable form. It is the case, for example, when one tries to transform a first order logic specification into a
Prolog program : formulae are rewritten as Horn clauses, additional predicates have to be introduced (due to
skolemisation transformations),... The other problem is of course expressiveness : not all specifications can be
executed because the style they allow to express simply some properties would cause non terminating programs
to be produced.

The second approach we have identified is the one which makes use of automata. Although, as we have already
mentionned, work has been performed in order to translate more and more expressive logics into automata, we
still do not have any method to translate Albert II to automata. In fact, in order to do this, the following
transformation steps would have to be defined :

1. transform an Albert II specification into an Albert-KERNEL set of axioms (this task is currently
being finalized within the Albert team in the context of another project) ;

2. transform the Albert-KERNEL axioms into axioms of a simpler logic which can be translated to
automata like it has been done in [Ras97b] for mapping the MTL logic with dense time semantics
to MTL with fictitious clock semantics using the framework of abstract interpretation ;

3. transform the set of axioms of the simpler logic into automata.

If we do that, we will not only be able to animate a specification but we will also have a decision procedure for
Albert II specifications. We would therefore be able to do model checking of specification and also check
various liveness and safety properties on it. Nevertheless, the automata-based approach suffers some drawbacks
from the animation point of view. First, and similarly to the previous approach, the transformation the
specification will have to endure will make it almost unrecognizable to the people who have written the Albert
II specification. One big advantage of the approach we have chosen, as we will see, is that we keep the dialog
with the users at the Albert II level. With the first semantics of the language (as defined in [DuB95]), which
was based on the Albert-CORE logic, the problems were that additional arguments of predicates had to be
introduced for keeping track of action occurrence numbers, that new predicates were introduced for giving a
semantics to the information and perception mechanisms, that the agent hierarchy was flattened,... The new
Albert-KERNEL logic tends to solve some of these problems but these will reappear anyway at the second step
of the transformation.
A second drawback is the loss of expressiveness due to the second step of the transformation which has to
restrict the logic so that it can be tranformed to automata. Nevertheless, loss of expressiveness in inevitable
when one wants to animate an Albert II specification since it is written in a dense-time temporal predicative
logic which is far too expressive to be animated as it is.
But, besides the two drawbacks mentioned above, one big advantage of the automata-based approach is that an
automaton corresponding to a specification only admits sequences of transitions which belong to models
(admissible behaviours) of the specification. Since the behaviours one can build by interacting with the
animator can only be finite (because, of course, they can only be constructed in a finite time), they consist in
prefixes of possible lives of the agents. That these prefixes are parts of admissible lives is guaranteed by
construction of the automaton while, with our approach, no guarantee can be given : the constructed part of
behaviour may be such that it will generate future obligations that no life of the system would never be able to
verify and we have no way to check that since it would require building the behaviour until the end (which is
infinitely far from the starting point).

Finally, in order to be complete wrt to the examination of the pros and cons of all approaches, we have to
mention that the automata-based approach suffers from a serious drawback know as the state-explosion
problem [Hen94] which causes the size of the automata and (therefore) the computation time to increase
exponentially as the specification grows in size and which, in order to be reduced, requires optimization
techniques such as symbolic encoding of states or on-the-fly generation of the automata.

The Albert II Specification Animator Technical Report

13

 How can our approach be characterized ?

 The approach we have chosen can be described as the direct encoding of the upper level of the Albert II
language’s semantics in an algorithm that will take the specification as input. Since this algorithm, in order to
animate, requires the specification (which, to a certain extent, is some kind of algorithm) as input, it is often
refered to as meta-algorithm.

 As we have already mentioned in section 3, Albert II is made of a series of patterns on top a real-time temporal
predicative logic. The way these patterns are translated into temporal logic expressions is defined by axiom
schemas. This means that the temporal logic statements corresponding to filled-in patterns are always
translated to logic formulae with the same structure and, therefore, similar meanings. We thus estimate that the
semantics of these statements could be safely 'hard-coded' into a meta-algorithm which operationalises the
properties that the specification has to satisfy by performing particular actions (e.g. checking conditions,
requiring events to take place, refusing events to take place, ...) at definite moments of the animation. We will
not go here into the detail of such an algorithm (it will be detailled in a subsequent report), we will just give an
example.

 Operationalising action duration constraints is done by the animator in the following way. When the beginning
of an action is selected by a user, by examining the constraints, the animator computes the closest and the latest
time at which the end of the action has to take place. This information is put into the ‘obligations’ which are
constraints that are passed by each step of the animation to the next one until they are satisfied. The user will
thus not be allowed to terminate the action occurrence if the value of the closest time in the obligations is
greater that the current time. And, vice-versa, he will not be allowed to continue the animation if the current
time is equal to the latest occurrence time in the obligations.

 We have said here above that we were not completely giving up the approach that consists in transforming
specifications into declarative programs. In fact, we are reusing similar techniques for computations on parts of
the specification which do not conform to a strict predefined structure and which, therefore, cannot be 'hard-
coded' in the meta-algorithm. This is typically the case for arbitrarily complex logical or free expressions that
can appear in particular slots of some constraint patterns. Of course, only a restricted subset of these constraints
can be treated but, fortunately, they are much less used than more constrained patterns. The strategy we adopt
for developing the animator is first to start from more constrained parts and then progressively extend the
coverage to more unconstrained ones.

 Finally, we have to insist on the fact that, since the declarative properties of the specification are translated
(amongst other things) into checks that are made at definite moments of the animation, there could be cases in
which, at a given time during the animation process, the agents sublives we have constructed up to the current
timepoint are not admissible sublives wrt to the constraints expressed in the specification. For example, if we
have an action composition constraint imposing that all occurrences of the action TurnOn of some agent are
followed, within 2 minutes, by an occurrence of the SetUp action and if, at the current time in the animation,
an occurrence of TurnOn takes places, we will only be able to conclude, 2 minutes after, that the SetUp action
can or cannot actually take place by looking at the values of its context (preconditions, etc...) at that moment.
The reason for this is that, since undetermism is largely used in Albert II specifications, future contexts cannot
be determined as they require choices being made by the users of the animation.
 As a conclusion for this remark, we can say that while automata-based techniques provide proof that there will
always be an admissible behaviour beginning with the animated prefix, our technique does not allow to do that.
But, on the other hand, we have to consider two things :

• One is that this claim should be attenuated by the fact that with our technique we are still able to give the

list of obligations that the animation of a life’s prefix has generated for the future (even though we are not
able to prove that they can be satisfied). This list is very important : the users may be able to estimate with a
reasonable certainty that some obligations will be satisfied and/or that some will not. And, even if they are
not able to do that, we can imagine that, for some critical properties, the list of obligations may be used as
input for a theorem proving system [Cha97] which, in this perspective, is seen as a complemetary technique
to animation.

The Albert II Specification Animator Technical Report

14

• Not being able to make proof is not has serious as not being able to find errors in specifications. And, not
only we are able to find errors, but we are also able to give feedback on them in terms which are the terms
of the people who have written the specification.

5. Architecture of the tool

At a high level of granularity, the architecture of the tool can be represented as shown in fig.4.

Figure 4 : High-level architecture of the Albert II specification animator

The specifications used in the animator are produced with the support of the Albert II CAT-Edit tool and are in
ASCII format. A translation utility will parse the specification file and generate MiniTelos internal
representation which is then merged with animation-specific information and used throughout the tool.
MiniTelos is thus what we use for managing data within the animator. It consists of a library of reusable Java
classes. Its internal representation is made of `serializable’ Java objects that can be either written to a file or can
be converted by MiniTelos into an ASCII file containing frames that can then be used by ConceptBase [Jar95].
These are the two ways persistent information can be stored. Animation client and server applications embed
MiniTelos within their set of classes and use it to manage information. Animation clients only need

Editor

Parser,
Telos

Generator

MTD
Viewer /
GeneratorAnimator (client +

server)

Spec
(ASCII)

MiniTelos
Internal
Format

Traces

MiniTelos

MiniTelos

ConceptBase

Other CREWS tools…

The Albert II Specification Animator Technical Report

15

information about agents managed locally and therefore only deal with views of the global MiniTelos base
which is managed by the server.

On the other end of the animator, there is the production of traces. First, we intend to have very basic
generation of textual traces but we plan to extend it afterwards by generating traces in extended MTDs
(Message Trace Diagrams) notation and with the possibility to extract views on certain alternative paths, agents
and/or time intervals.

As we will see in the next section, the animation server is used by the coordinator of the animation i.e. the
person who is in charge of controlling the global flow of the animation. Lower level operations related to the
control of agent instances are performed by users of the client applications. More precisely, they are done
within Agent Managers which are windows that are created on the machines where clients are located for each
agent instance of the animation. The use of the animation client itself is just to allow the users to connect to the
animation server : management of local MiniTelos bases is performed by Agent Managers.

6. Using the tool

As we will now see, the animation is distributed in the sense that different stakeholders animate different agent
instances of the specification. They can create initial states, consult states, give values to undetermined
expressions and perform actions with a certain degree of autonomy. On the other hand, decisions regarding the
flow of the animation (what is the time at the beginning, from which state are we building a transition) have to
be made by a single person we call the coordinator. Besides these tasks performed autonomously or centrally,
there are also tasks which require cooperation. In the rest of this section, we will go into the details of tasks
pertaining to each this three types. The logic we will to follow is the one of the typical steps of an animation.

Creating an animation

When the coordinator has started the animation server, he is given the choice either to open an existing
animation from the repository or to create a new one. In order to go through most of the steps, we make the
assumption that creation of a new animation is selected.

As this selection is made, three tabbed folders for animation management are displayed. The first one (see
fig.5) is dedicated to general properties of the animation. It is here that the coordinator associates the
animation with the specification it will animate by clicking on the "Import..." button and then chosing a file
among those produced by the CAT-Edit tool. Also in this folder, the animation is given a name and, possibly, a
textual description.

Figure 5 : Setting the general properties of an animation

The Albert II Specification Animator Technical Report

16

The second folder (see fig.6) is used to fix the agents' population and distribute it to the other users. When a
new animation is created, the default instantiation is of one instance per agent or society class. If an agent or
society instance is an instance of a class whose number of instances is not limited to one, the user can click on
the button "Duplicate" to create an additional instance. The "Delete" button has the effect of deleting an
instance but it will not always work since every class has to have at least one instance. Note that
duplicating/deleting a society instance will perform the operation recursively for everyone of its imbedded
society or agent instances. When created, agent or society instances are given a default name (made of their
class name and an identifying number) which can be changed by clicking on the "Rename..." button.

After the coordinator has started the animation and the other users have started animation clients, the users are
able to connect to the animation server and identify themselves (not shown). The server therefore knows who
are the users which are connected and, by clicking on the "Assign to user..." button when an agent or society
instance is selected, the coordinator is able to associate the instance with the user who will animate it. (The
coordinator is also able to reuse a configuration of the distribution from a previous animation session if the
animation is not a new one. This is done through the use of the "Recover Distribution" command). Note that
assigning a society instance to a user means to associate all its embedded society and agent instances to that
user.

Figure 6 : Populating and distributing agent instances

Starting the animation

Once every instance has been associated with a user, it is possible to start the animation. For this, the
coordinator goes to the third folder where the structure of the global behaviour will be represented as it will be
constructed (see fig.11 further in this section). At this moment, since the animation has just been created, it is
empty. The only thing the coordinator can do is thus to create an initial state. He clicks on the appropriate
button and is asked to enter a begin time for the state. Note that as soon as a state is created, it is not possible
anymore to change the agents and societies population since, in Albert II , the population is considered
constant in every possible behaviour.

Setting the initial state

The other users are now automatically prompted to enter the values of the state components for the initial state.
Every user then sees a window per agent instance he is responsible for appearing on his screen (called Agent
Manager window and entitled with the name of the agent instance). A bit of explanation is necessary at this
point regarding the Agent Manager which is the main interface given to users. Every such window allows a
user to browse through a series of "frames". Each frame represents a couple state transition/state that is part of

The Albert II Specification Animator Technical Report

17

the animation built so far and where a state is always associated with the state transition that created it.
Therefore, every frame contains two folders : the state transition folder and the state folder. The only exception
is for the initial states which are not associated with any state transition since state components are supposed to
have a value at the beginning of the agents' lives. State folders are of two kinds : state editing folders (for the
initial states under construction) and state consulting folders (for states, either intial or not, that have already
been built). State transition folders are also of two kinds : state transition editing folders (for the transitions
under construction) and state transition consulting folders (for transitions that have already been built).

If we come back to the current task of setting the initial state, we notice that every Agent Manager displays a
state editing folder containing the list of the agent instance's state components and slots for entering their value.

Figure 7 : Setting the initial state of an agent instance

State components which are imposed unique value by some constraints (derived components, initial valuation,
state behaviour) do not have to be instantiated. Once users have instantiated all the other state components, the
users "Lock" their changes. Incompatibility of the entered value for some state component with some constraint
of the specification or typing errors are notified to the user (see fig.8) and he is prevented to lock until every
state component is given an acceptable value. The "Log" button on the error box below allows to record that an
unexpected behaviour happened at some point in time regarding some particular user action and violating some
constraint(s) of the specification. The "Log" functionality will also be extended in order to offer the possibility
of storing remarks the users want to express regarding unexpected reactions of the animator but that were not
considered by the animator as not fitting with the specification. All this information will be usefull in order to
correct the specification after the animation.
Besides the "Lock" functionality, the users are able to interrupt the state instantiation process or to stop it
definitively it is not necessary nor possible to go further on testing the scenario.

Figure 8 : Getting feedback when constraints are violated

After locking its instantiation of the intial state, the user is asked to enter the truth values of the information /
perception conditions that are not defined by the specification. Values of state components that are shown to

The Albert II Specification Animator Technical Report

18

other agent instances will be passed to the animation server in order to be redispatched to the right agent
instances. After this is done, Agent Managers are able to display the initial states of the agent instances they
manage. Both the list of the agent instance's own state components and the list of those perceived from other
agents are displayed. As they are selected, their values appear on their right.

Figure 9 : Consulting the initial state of an agent instance

Together with the notification that a new intial state has been created, the animation server has received from
the various animation clients the lowest time bound for the agents' obligations5. We will explain below how this
is used.

Building the transition to the next state (server's side)

In order to build a transition from a state to another (to be created), the coordinator has to select the starting
state and click on the "Create Change" button. Then each user is prompted to enter the closest time (wrt the
time the chosen starting state begins) at which he wants (at least) one of its agent instances to perform an
action. Then, for the lowest time bound of obligations and the minimum of the values just entered by the users,
the animation server will compute again the minimum which will be the time for the next change and, of
course, also the time for the end of the chosen starting state. But this does not mean that the open time interval
associated with the starting state becomes closed. In fact, as we will see later, if the state is chosen again to be
the starting point of an alternative change, the end time of the state will be different. Therefore, what informs
us on the end time of a state wrt to a particular path is the begin time of the next state (or of the state transition)
in the same path.

At this point, it is up to the animation clients' users to construct the state transitions of all the agent instances.

5 The obligations of an agent instance in a certain state is a set of beginnings and ends of action occurrences and state changes that will have to
take place in the future. This set is deduces by the animator wrt to the constraints of the specification, the values of the past states and the events
that have taken place in the part of the behaviour that has already been built.

The Albert II Specification Animator Technical Report

19

Building the transition to the next state (client's side)

In order to build the transition that will lead to a new state, the user has to display in the Agent Manager the
frame corresponding to the transistion/state couple whose transition has been asked for creation by the
coordinator. The frame contains a state transition editing folder (see fig.10) and an empty state folder (since
the state cannot be computed until the change is fixed).

Figure 10 : Building a state transition

The user can move from a transition/state to another by using the browser-like "Back" and "Next" buttons with
the exception that, since there may be alternative paths followed, there may also be several next
transitions/states from which one must be selected before clicking on the "Next" button. Since, so far, we have
only created an initial state, the only browsing the user is able to do is to go back to the intial state and consult
it.

Now, let us come back to the state transition editing folder. The process of constructing a transition is as
follows. The list of actions that have been declared for the agent are displayed as a list on the Agent Manager
windows of any of their instances. Actions can be selected and, by clicking on the "Beginning", "End" or
"Instant" button, one can decide to add to the current transitions an event representing respectively the
beginning of an action, its end or both events (i.e. an instantaneous action occurrence). If the event includes the
beginning of an action having parameters, a dialog box appears for entering them. There are also two other
tasks the users have to fulfill at this point : (i) attachment of the actions to higher-level composed actions
(TBD), (ii) chosing to show or not an action to other agent instances when no condition is present in the
specification and (iii) chosing to perceive or not the events that are shown by the other agent instances when no
condition is present in the specification.

In the same way as for the initial state (see above) messages are displayed whenever the events proposed by the
user are not compatible with the specification. Similarly, the source of the contradiction (i.e. some constraints
of the specification + context of the animation) is shown and logging is possible. Messages originating from the
user (as opposed to the animator) can also be recorded.

When a user has finished, he has to lock his changes. No "Lock" can take place if some user has chosen to stop
the animation or before all the events that had to take place were actually selected and full information
concerning their occurrence was given by the user. When all the users have locked the state transitions of all
the agent instances they are responsible for, the next state of every agent instance is computed. For states
components whose information/perception conditions are not defined, input is requested from users. Note that
the state resulting from the effects of the selected events may be an unadmissible state wrt the specification.
This results in a dead-end branch which cannot be further investigated. Such states are especially marked both
in the Agent Manager Windows and on the coordinator's display. The other possible origin of a dead-end

The Albert II Specification Animator Technical Report

20

branch is the fact that some user has decided to stop building the current change because he was prevented to
perform the events he inteded to. When one user pushes on the "Stop" button, all the other users can do is also
to stop. As for initial state instantiation, interruption is also possible.

Building more state transitions and initial states

For building other transitions, all the coordinator has to do is to select an initial state or another state from the
animation's tree structure built so far. If it is a initial state, it must be done (i.e. it cannot have been stopped or
suspended or found unadmissible by the animator wrt to the specification´s constraints). If it is not an initial
state it must be done also (i.e. the change that lead to it must be done, in the same sense as for the initial state,
and the state must have been checked as admissible wrt the specification´s constraints).

If the state that is selected as starting point of a transition already has a transition following it, an alternative
branch is constructed in the animation’s tree. If not, it is just appended at the end of the current branch.

Figure 11 : Creating an alternative branch

Another point is that the number of initial states is not restricted to one. Just in the same way as we have
explained it at the beginning of this section, other initial states can be created. This will cause alternative
branches to be built from the top of the tree.

7. Conclusion and outlook

We have reported here on the development of the animator for specifications written in the Albert II language
insisting on the fact that the goal pursued by the language (to be well-suited for Requirements Engineering of
complex systems) made it necessary to work on a new approach to animate specifications. Work has been
accomplished and is still in progress in designing a tool that deals with the most used and constrained parts of
the language and whose main qualities are that (1) many undeterministic aspects are treated by 'intelligent'
interactions with users, (2) it is distributed and allows cooperative work between stakeholders, (3) it allows to
explore alternative behaviours and (4) it tries to keep the dialog at the level of the vocabulary used in the
specification. Work has also been accomplished (but not reported in this paper) in cooperation with the
CREWS team at the RWTH-Aachen in order to examine how our validation technique can be coupled with
their elicitation techniques so that each (validation or elicitation) phase can take advantage of the output
produced by the other in order to improve the Requirement Engineering process.
Future work is expected to take on the followings issues : (1) progressively extending the set of constructs the
animator is able to deal with, (2) producing traces from animations, (3) using information about exceptional
and normative scenarios in order to guide the animation and, finally, (4) see what is feasible wrt building a

The Albert II Specification Animator Technical Report

21

domain-specific graphical layer on top of some agent manager windows in order to keep interaction even closer
to users’ terms.

The Albert II Specification Animator Technical Report

22

8. Bibliography

[Alg95] Algayres, B., Lejeune, Y., Hugonnet, F., GOAL : Observing SDL Behaviors with GEODE. Paper
presented at the 7th SDL Forum, Oslo, Norway, 26-29 September, 1995.

[Bor92] Borgida, A., Mylopoulos, J. and Reiter, R. ...and nothing else changes : The frame problem in
procedure specification. Technical Report DCS-TR-281, Dept. of Computre Science, Rutgers University, 1992.

[Bre94] Breuer, P.T. and Bowen, J.P., Towards Correct Executable Semantics for Z, in B owen J.P. and Hall
J.A. (Eds.), Z User Workshop, Cambridge, Workshops in Computing, Springer-Verlag, 185-209, 1994.

[Cha97] Chabot, F., Semantic Embedding of Albert-CORE within PVS. Presented at the Doctoral Consortium
of the Third IEEE International Symposium on Requirements Engineering (RE’97), Annapolis MD, January
1997.

[Dub93] Dubru, F. Prototypage de Spécifications Formelles des Besoins: d'ALBERT vers OBLOG. Master
thesis, Computer Science Department, University of Namur, Namur (Belgique), June 1993.

[Dub95] Dubois, E., Du Bois Ph. and Dubru, F., Animating Formal Requirements Specifications of
Cooperative Information Systems. In Proc. of the Second International Conference on Cooperative Information
Systems - CoopIS-94}, Toronto (Canada), May 17-20, 1994.

[DuB95] Du Bois, Ph., The Albert II Language: On the Design and the Use of a Formal Specification
Language for Requirements Analysis. PhD thesis, Computer Science Department, University of Namur, Namur
(Belgique), September 1995.

[DuB97] Du Bois, Ph., The Albert II Reference Manual, Technical Report, University of Namur (Belgium).
Available at http://www.info.fundp.ac.be/~phe/albert.html

[Hay89] Hayes, I.J. and Jones, C.B., Specifications are not (necessarily) executable. Software Engineering
Journal, 4(6):330-338, November. 1989.

[Her97] Hernalsteen, C., de Jacquier, A., Massart, Th., A Toolset for the Analysis of ET-LOTOS
Specifications, paper prensented at the Meeting on Validation and Verification of Formal Descriptions of the
Fundamental Computer Science F.N.R.S. Contact Group, Namur (Belgium), May 6, 1997.

[Hen94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model checking
for real-time systems. Information and Computation 111:193-244, 1994. A preliminary version appeared in the
Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science (LICS 1992), pp. 394-406.

[Hey97] Heymans, P., Some Thoughts about the Animation of Formal Specifications written in the Albert II
Language. Presented at the Doctoral Consortium of the Third IEEE International Symposium on Requirements
Engineering (RE’97), Annapolis MD, January 1997.

[Jac95] Michael Jackson and Pamela Zave. Deriving Specifications From Requirements: An Example. In Proc.
of the 17th International Conference on Software Engineering - ICSE'95, Seattle WA, April 1995

[Jar95] Jarke, M. and Gallersdorfer, R. and Jeusfeld, M.A. and Staudt M. and Eherer S. (1995) ConceptBase -
a deductive object base for meta data management. Journal of Intelligent Information Systems, Special Issue on
Advances in Deductive Object-Oriented Databases, 4(2):167-192, 1995.

[Jon91] Jones, C.B., Systematic Software Development using VDM. Prentice Hall International Series in
Computer Science, 1991.

[One92] O'Neill, G., Automatic Translation of VDM specifications into Standard ML programs. The Computer
Journal, 35(6):623-624, 1992.

The Albert II Specification Animator Technical Report

23

[Ras97a] Raskin, J.-F. and Schobbens P.-Y., State Clock Logic: a Decidable Real-Time Logic. In the
proceedings of Hart'97: Hybrid and Real-Time Systems, published as volume 1201 of the serie Lecture Notes
in Computer Science (Sringer Verlag), pp 31-47, Grenoble (France), March 26-28, 1997.

[Ras97b] Raskin, J.-F. and Schobbens P.-Y., Real-Time Logics : Fictitious Clock as an Abstraction of Dense
Time. In the proceedings of Tacas'97: Tools and Algorithms for the Construction and Analysis of Systems,
published as volume 1217 of the serie Lecture Notes in Computer Science, Twente (Springer Verlag), pp165-
182, Twente (The Netherlands), April 2-4, 1997.

[Rol96] Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N.A.M., Jarke, M., Haumer,
P., Pohl K., Dubois, E., Heymans, P., A Proposal for a Scenario Classification Framework (CREWS Report 96-
01). Available at http://SunSite.Informatik.RWTH-Aachen.DE/CREWS/reports.html

[Sid97] Siddiqi, J.I., Morrey, I.C., Roast, C.R. and Ozcan, M.B., Towards Quality Requirements via Animated
Formal Specifications, to appear in Annals of Software Engineering , Vol 3, (1997).

[Spi92] The Z Notation : A Reference Manual. Prentice Hall International Series in Computer Science, 2nd

Edition, 1992.

[Statemate] StateMate Magnum by i-Logix. Information available at http://www.ilogix.com/

The Albert II Specification Animator Technical Report

24

Appendix : Specification of the production cell

SPEC CELL

BASIC TYPES

An NC-program is an 'atomic' concept of the specification

NC_PROG
A tool is an 'atomic' concept of the specification

TOOL

CONSTRUCTED TYPES

States originating from state-transition diagram of the machine

MACHINE_STATUS=ENUM[Off, StandBy, LoadingNC, ProduceOne, WaitForPart,
BatchProduction]

There are three types of input part that fit the input buffer slots

INPUT_PART_TYPE=ENUM[in_type1, in_type2, in_type3]
There are three types of output parts that fit the output buffer slots

OUTPUT_PART_TYPE=ENUM[out_type1, out_type2, out_type3]

POSITIVE_INTEGER=INTEGER
An input part is of a certain type and has a number which makes it different from
all the other parts in the input buffer

INPUT_PART=CP [type : INPUT_PART_TYPE , number : POSITIVE_INTEGER]
An output part is of a certain type and has a number which makes it different from
all the other parts in the output buffer

OUTPUT_PART=CP [type : OUTPUT_PART_TYPE , number :
POSITIVE_INTEGER]

An order can be either (1) waiting to be processed, (2) being processed by machine
set-up, (3) being processed by machine production or (4) finished.

ORDER_STATUS=ENUM[Waiting, SetUp, Started, Finished]
An order concerns a certain quantity of input parts to be transformed.

It requires a particular NC-program to be used and has a current status.

ORDER=CP [inputType : INPUT_PART_TYPE , quantity : POSITIVE_INTEGER ,
ncProg : NC_PROG , status : ORDER_STATUS]

States originating from state-transition diagram of the terminal

TERMINAL_STATUS=ENUM[StandBy, Processing]

OPERATIONS

The transform operation gives the type of the part the machine produces given the
type of the input, the NC-program loaded and the tools installed.

Transform: INPUT_PART_TYPE x NC_PROG x TOOL x TOOL
→ OUTPUT_PART_TYPE*

The Albert II Specification Animator Technical Report

25

SOCIETY CELL

 (Machine)

 (Terminal)

 (Worker)

AGENT CELL.MACHINE

DECLARATION

STATE COMPONENTS

A machine has a current status

Status instance-of MACHINE_STATUS → Cell.Worker
A cell may have a program loaded

Program instance-of NC_PROG*
There are two slots in the machine on which tools can be mounted. This is the
first one

ToolLocation1 instance-of TOOL* → Cell.Worker
This is the second one

ToolLocation2 instance-of TOOL* → Cell.Worker
The machine has an input buffer

InputBuffer set-of INPUT_PART → Cell.Worker
The machine has an output buffer

OutputBuffer set-of OUTPUT_PART → Cell.Worker
The size of the input buffer is a constant

*MaxInputCapacity instance-of POSITIVE_INTEGER
The size of the output buffer is a constant

*MaxOutputCapacity instance-of POSITIVE_INTEGER
The input buffer being full is determined by its current content and its maximum
capacity

InputBufferFull instance-of BOOLEAN derived-from InputBuffer, MaxInputCapacity →
Cell.Worker

The output buffer being full is determined by its current content and its maximum
capacity

OutputBufferFull instance-of BOOLEAN derived-from OutputBuffer, MaxOutputCapacity →
Cell.Worker

ACTIONS

In manual mode, a machine can produce an output part from

an input part if the right NC-program and the right tools are loaded.

ProduceOne(INPUT_PART)
In manual mode, a machine can fail to produce an output part from

an input part if the wrong NC-program or the wrong tools are loaded.

The Albert II Specification Animator Technical Report

26

ProduceOneFail(INPUT_PART)
In batch mode, a machine can produce an output part from

an input part if the right NC-program and the right tools are loaded.

ProduceOneBatch(INPUT_PART)
In batch mode, a machine can fail to produce an output part from

an input part if the wrong NC-program or the wrong tools are loaded.

ProduceOneBatchFail(INPUT_PART)
In batch mode, if at least an input part is present in the

input buffer and if it is not already processing, the machine

has to process an input part (see triggerings). But the result

depends on the NC-program and on the tools. Therefore,

the production operation will either succeed or fail

(see compositions - → alternative)

TryProduceOneBatch
Batch mode stops if production has been impossible for

60 seconds (because no input part was available or

because the outputbuffer was full)

*StopBatchProduction
When asked to by the worker, the machines loads the requested NC-program

LoadProg(NC_PROG)
Composed action #1 (see compositions)

comp1
Composed action #2 (see compositions)

comp2

BASIC CONSTRAINTS

DERIVED COMPONENTS

The input buffer being full is determined by its content being

equal to its capacity.

InputBufferFull ́ (Card(InputBuffer) = MaxInputBufferCapacity)
The output buffer being full is determined by its content being

equal to its capacity.

OutputBufferFull ́ (Card(OutputBuffer) = MaxOutputBufferCapacity)

INITIAL VALUATION

Initially, the machine is assumed to be off, with no tool

mounted and no NC-program in memory.

ToolLocation1 = UNDEF

ToolLocation2 = UNDEF

Status = Off

Prog = UNDEF

The Albert II Specification Animator Technical Report

27

DECLARATIVE CONSTRAINTS

STATE BEHAVIOR

The input buffer's content can never be greater than its capacity

 [] Card(InputBuffer) ≤ MaxInputCapacity
The output buffer's content can never be greater than its capacity

 [] Card(OutputBuffer) ≤ MaxOutputCapacity

ACTION COMPOSITION

A (perceived) request to load an NC-program is immediately processed

comp1 ↔ w.RequestLoadProg(ncp) <0 sec> LoadProg(ncp)
A (perceived) request to produce a part is immediately processed

comp2 ↔ w.RequestProduceOne <0 sec> ProduceOne(_)
Producing a part in batch mode can either succeed of fail

TryProduceOneBatch ↔ ProduceOneBatch(_) ⊕ ProduceOneBatchFail(_)
Occurrences of these actions are restricted to compositions.

{comp1, comp2, w.RequestLoadProg, LoadProg,
w.RequestProduceOne, ProduceOne,
TryProduceOneBatch, ProduceOneBatch,
ProduceOneBatchFail}

ACTION DURATION

Producing a part takes at least 70 seconds

ProduceOne(_) ≥ 70 sec
Producing a part takes at most 85 seconds

ProduceOne(_) ≤ 85 sec
Producing a junk part takes at least 70 seconds

ProduceOneFail(_) ≥ 70 sec
Producing a junk part takes at most 85 seconds

ProduceOneFail(_) ≤ 85 sec
Producing a part in batch mode takes at least 70 seconds

ProduceOneBatch(_) ≥ 70 sec
Producing a part in batch mode takes at most 85 seconds

ProduceOneBatch(_) ≤ 85 sec
Producing a junk part in batch mode takes at least 70 seconds

ProduceOneBatchFail(_) ≥ 70 sec
Producing a junk part in batch mode takes at most 85 seconds

ProduceOneBatchFail(_) ≤ 85 sec
Loading an NC-program takes 15 seconds

LoadProg(_) = 15 sec

The Albert II Specification Animator Technical Report

28

OPERATIONAL CONSTRAINTS

PRECONDITIONS

Producing a part can only take place if there is an admissible part in the input
buffer

ProduceOne(p) : p ∈ InputBuffer ∧ transform (type(p), Program, ToolLocation1,
ToolLocation2) ≠ UNDEF

Producing a junk part can only take place if there is an unadmissible part in the
input buffer

ProduceOneFail(p) : p ∈ InputBuffer ∧ transform (type(p), Program,
ToolLocation1, ToolLocation2) = UNDEF

Producing a part in batch mode can only take place if there is an admissible part
in the input buffer, if the output buffer is not full and if the machine is
waiting for a part

ProduceOneBatch(p) :Status = WaitForPart ∧ p ∈ InputBuffer ∧ ¬
OutputBufferFull ∧ transform (type(p), Program, ToolLocation1, ToolLocation2) ≠
UNDEF

Producing a junk part in batch mode can only take place if there is an
unadmissible part in the input buffer, if the output buffer is not full and if the
machine is waiting for a part

ProduceOneBatchFail(p) : Status = WaitForPart ∧ p ∈ InputBuffer ∧ ¬
Empty(InputBuffer) ∧ ¬ OutputBufferFull ∧ transform (type(p), Program,
ToolLocation1, ToolLocation2) = UNDEF

Batch production stops only when the machine has been waiting for a part during 60
seconds

StopBatchProduction : Lasted60 secs Status = WaitForPart

EFFECT OF ACTIONS

Producing a part has the effect of temporarily switching the machine's status (see
state-transition diagram). It also removes a part from the input buffer and add a
part to the output buffer.

ProduceOne(p1)
with type(p2) = transform(type(p1),Program,ToolLocation1,ToolLocation2)
∧ ¬ ∃ p3 (p3 ∈ OutputBuffer ∧ number(p3) = number(p2)) :
InputBuffer := Remove(p1, InputBuffer) ;
 Status := ProduceOne ;
 []
Status := StandBy ;
OutPutBuffer := Add(p2,OutputBuffer)

Producing a junk part has the effect of temporarily switching the machine's status
(see state-transition diagram). It also removes a part from the input buffer.

ProduceOneFail(p1) :
Status := ProduceOne ;
InputBuffer := Remove(p1, InputBuffer)
 []
Status := StandBy

Producing a part in batch mode has the effect of temporarily switching the
machine's status (see state-transition diagram). It also removes a part from the
input buffer and add a part to the output buffer.

The Albert II Specification Animator Technical Report

29

ProduceOneBatch(p1)
with type(p2) = transform(type(p1),Program,ToolLocation1,ToolLocation2)
∧ ¬ ∃ p3 (p3 ∈ OutputBuffer ∧ number(p3) = number(p2)):
Status := BatchProduction ;
InputBuffer := Remove(p1, InputBuffer) ;
 []
Status := WaitForPart ;
OutPutBuffer := Add(p2,OutputBuffer)

Producing a junk part in batch mode has the effect of temporarily switching the
machine's status (see state-transition diagram).

ProduceOneBatchFail(p1) : Status := BatchProduction ;
 []
Status := WaitForPart ;
InputBuffer := Remove(p1, InputBuffer)

StopBatchProduction : [] Status := StandBy
Loading an NC-program has the effect of temporarily switching the machine's status
(see state-transition diagram) and putting the requested program in the machine's
memory.

LoadProg(ncp) : Status := LoadingNC ;
 []
Status := StandBy ;
Program := npc

Perceiving a request for batch production has the effect of putting the machine in
the status of waiting for a part(see state-transition diagram).

w.RequestBatchProduction :
 []
Status := WaitForPart

When the worker gets an output part from the machine, this has the effect of
removing a part from the machine's output buffer

w.GetOutputPart(p) :
 []
OutputBuffer := Remove(p,OutputBuffer)

When the worker adds an input part from the machine, this has the effect of adding
a part to the machine's input buffer

w.AddInputPart(p) :
 []
InputBuffer := Add(p,InputBuffer)

When the worker turns on the machine, this has the effect of putting it in standby
status

w.TurnOn :
 []
Status := StandBy

When the worker turns off the machine, this has the effect of putting it in off
status

w.TurnOff :
 []
Status := Off ;
Prog := UNDEF

The Albert II Specification Animator Technical Report

30

When the worker installs a tool in the first location, this has the effect of
putting the tool in the location !

w.InstallTool1(t) :
 []
ToolLocation1 := t

When the worker installs a tool in the second location, this has the effect of
putting the tool in the location !

w.InstallTool2(t) :
 []
ToolLocation2 := t

When the worker uninstalls a tool from the first location, this has the effect of
giving an undefined value to the content of the location

w.UninstallTool1 :
 []
ToolLocation1 := UNDEF

When the worker uninstalls a tool from the second location, this has the effect of
giving an undefined value to the content of the location

w.UninstallTool2 :
 []
ToolLocation2 := UNDEF

TRIGGERINGS

Trying to produce a part in batch has to happen when the machine waits for a part,
when its input buffer is not empty and when its output buffer is not full.
Triggering of the action is then instantaneous.

Status = WaitForPart ∧ ¬ Empty(InputBuffer) ∧ ¬ OutputBufferFull / 0 secs →
TryProduceOneBatch

Stopping batch production has to take place when the machine has been waiting for
a part for exactly 60 seconds

Lasted60 secs Status = WaitForPart / 0 secs → StopBatchProduction

COOPERATION CONSTRAINTS

ACTION PERCEPTION

For a request to produce in manual mode to be processed by

the machine, some conditions must be met : (1) the machine

must be in stand-by status, (2) tools have to be mounted in

the 2 slots, (3) there must be places left in the output buffer

and (4) an NC-program must have been loaded since at least

3 minutes.

;.(w.RequestProduceOne /
Status = StandBy
∧ ToolLocation1 ≠ UNDEF
∧ ToolLocation2 ≠ UNDEF
∧ ¬ OutputBufferFull
∧ ¬ Empty(InputBuffer)
∧ (Lasted3 min (Program = ncp))
∧ ncp ≠ UNDEF)

The Albert II Specification Animator Technical Report

31

For a request to produce in batch mode to be processed by

the machine, some conditions must be met : (1) the machine

must be in stand-by status, (2) tools have to be mounted in

the 2 slots, (3) there must be places left in the output buffer

and (4) an NC-program must have been loaded since at least

3 minutes.

;.(w.RequestBatchProduction /
Status = StandBy
∧ ToolLocation1 ≠ UNDEF
∧ ToolLocation2 ≠ UNDEF
∧ ¬ OutputBufferFull
∧ ¬ Empty(InputBuffer)
∧ (Lasted3 min (Program = ncp))
∧ ncp ≠ UNDEF)

When the worker gets an output part, the machine always undergoes its effect

.(w.GetOutputPart(_) / TRUE)
When the worker adds an input part, the machine always undergoes its effect

.(w.AddInputPart(_) / TRUE)
The worker can only turn on the machine when it is off.

;.(w.TurnOn / Status = Off)
The worker can only turn off the machine when it is on.

;.(w.TurnOff / Status = StandBy)
The worker can only request the machine to load an NC-program when it is in
standby status.

;.(w.RequestLoadProg(_) / Status = StandBy)
Installing a tool is always made visible to the machine

.(w.InstallTool1 / TRUE)
Installing a tool is always made visible to the machine

.(w.InstallTool2 / TRUE)
Uninstalling a tool is always made visible to the machine

.(w.UninstallTool1 / TRUE)
Uninstalling a tool is always made visible to the machine

.(w.UninstallTool2 / TRUE)

STATE INFORMATION

The content of a tool location is always made visible to the worker

.(ToolLocation1.w / TRUE)
The content of a tool location is always made visible to the worker

.(ToolLocation2.w/ TRUE)
The status of the machine is always made visible to the worker

.(Status.w / TRUE)
The content of the input buffer is always made visible to the worker

The Albert II Specification Animator Technical Report

32

.(InputBuffer.w / TRUE)
The content of the output buffer is always made visible to the worker

.(OutputBuffer.w / TRUE)
The content of the input buffer being full is always made visible to the worker

.(InputBufferFull.w / TRUE)
The content of the output buffer being full is always made visible to the worker

.(OutputBufferFull.w / TRUE)

AGENT CELL.TERMINAL

DECLARATION

STATE COMPONENTS

The orders that have to be processed are initially

put into a table. They are indexed with positive integers.

The first order to be processed is the one indexed with

number 1 (initial value of CurrentOrder). The following

orders are processed (increasing the value of CurrentOrder

by 1) until an order with value UNDEF in encountered.

Orders table-of ORDER indexed-by POSITIVE_INTEGER → Cell.Worker
Denotes the index value of the order the worker claims

to be processing at a certain time.

CurrentOrder instance-of POSITIVE_INTEGER → Cell.Worker
This variable tells if at a certain time the terminal displays

the current order.

ShowCurrentOrder instance-of BOOLEAN
see state-transition diagram

Status instance-of TERMINAL_STATUS → Cell.Worker

ACTIONS

The terminal can obey to a request from the worker to

show him the current order

ShowOrder
The terminal can obey to a request from the worker to

record the fact that he has started the set-up for the current

order to be processed.

RecordSetUpBegin
The terminal can obey to a request from the worker to

record the fact that he has started production of the current

order.

RecordWorkingBegin
The terminal can obey to a request from the worker to

record the fact that he has finished production of the current

The Albert II Specification Animator Technical Report

33

order.

RecordWorkingEnd
Composed action #1 (see compositions)

comp1
Composed action #2 (see compositions)

comp2
Composed action #3 (see compositions)

comp3
Composed action #4 (see compositions)

comp4

BASIC CONSTRAINTS

INITIAL VALUATION

Initially, the worker is asked to process the first order.

CurrentOrder = 1
The worker does not have automatically acces to the

current order, he has to request it.

ShowCurrentOrder = FALSE
Initially, the terminal does not perform any operation.

Status = StandBy

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

A (perceived) request to display the current order is immediately processed

comp1 ↔ w.RequestOrder <0 sec> ShowOrder
A (perceived) request to record that processing of the current order is in its
set-up phase is immediately processed

comp2 ↔ w.RequestSetUpBegin <0 sec> RecordSetUpBegin
A (perceived) request to record that processing of the current order is in its
working phase is immediately processed

comp3 ↔ w.RequestWorkingBegin <0 sec> RecordWorkingBegin
A (perceived) request to record that processing of the current order is finished
is immediately processed

comp4 ↔ w.RequestWorkingEnd <0 sec> RecordWorkingEnd
Occurrences of these actions are restricted to compositions.

{comp1, comp2, comp3, comp4,
w.RequestOrder, ShowOrder,
w.RequestSetUpBegin, RecordSetUpBegin,
w.RequestWorkingBegin, RecordWorkingBegin,
w.RequestWorkingEnd, RecordWorkingEnd}

OPERATIONAL CONSTRAINTS

The Albert II Specification Animator Technical Report

34

EFFECT OF ACTIONS

Showing the current order temporarily puts the terminal in 'processing' status and
makes the current order visible.

ShowOrder : Status := Processing ;
 []
ShowCurrentOrder := TRUE ;
Status := StandBy

Recording that the processing of the current order is being set-up temporarily
puts the terminal in 'processing' status, makes the current order invisible and
changes its status to 'sset-up' the shopfloor data collection.

RecordSetUpBegin :
Status:= Processing ;
ShowCurrentOrder := FALSE ;
 []
Orders[CurrentOrder] :=
<inputType(Orders[CurrentOrder]),quantity(Orders[CurrentOrder]),ncProg(Orders
[CurrentOrder]), SetUp>;
Status := StandBy;

 ShowCurrentOrder := FALSE ;
Recording that the processing of the current order has begun temporarily puts the
terminal in 'processing' status, makes the current order invisible and changes its
status to 'started' the shopfloor data collection

RecordWorkingBegin :
Status:= Processing ;
ShowCurrentOrder := FALSE ;
 []
Orders[CurrentOrder] :=
<inputType(Orders[CurrentOrder]),quantity(Orders[CurrentOrder]),ncProg(Orders
[CurrentOrder]), Started>;
Status := StandBy;

ShowCurrentOrder := FALSE ;
Recording that the processing of the current order has finished temporarily puts
the termianl in 'processing' status, makes the current order invisible and changes
its status to 'finished' the shopfloor data collection

RecordWorkingEnd :
Status:= Processing ;
ShowCurrentOrder := FALSE ;
 []
Orders[CurrentOrder] :=
<inputType(Orders[CurrentOrder]),quantity(Orders[CurrentOrder]),ncProg(Orders
[CurrentOrder]), Finished>;
CurrentOrder := CurrentOrder+1 ;
Status := StandBy

COOPERATION CONSTRAINTS

ACTION PERCEPTION

A request to show the current order is always perceived from the worker

The Albert II Specification Animator Technical Report

35

.(w.RequestOrder / TRUE)
A request to record that processing of the current order is being set up is always
perceived

.(w.ReportSetUpBegin / TRUE)
A request to record that processing of the current order has started is always
perceived

.(w.ReportWorkingBegin / TRUE)
A request to record that processing of the current order has finished is always
perceived

.(w.ReportWorkingEnd / TRUE)

AGENT CELL.WORKER

DECLARATION

ACTIONS

The worker can request the machine to perform batch production

*RequestBatchProduction → Cell.Machine
The worker can request the machine to produce a part

*RequestProduceOne → Cell.Machine
The worker can get a part from the machine's output stock

*GetOutputPart(OUTPUT_PART) → Cell.Machine
The worker can add a part to the machine's input stock

*AddInputPart(INPUT_PART) → Cell.Machine
The worker can turn on the machine

*TurnOn → Cell.Machine
The worker can turn off the machine

*TurnOff → Cell.Machine
The worker can request the machine to load an NC-program

*RequestLoadProg(NC_PROG) → Cell.Machine
The worker install a tool in the first appropriate slot of the machine

InstallTool1(TOOL) → Cell.Machine
The worker install a tool in the second appropriate slot of the machine

InstallTool2(TOOL) → Cell.Machine
The worker uninstall a tool from the first appropriate slot of the machine

UninstallTool1 → Cell.Machine
The worker uninstall a tool from the second appropriate slot of the machine

UninstallTool2 → Cell.Machine
The worker can request the terminal to display the current order

*RequestOrder → Cell.Terminal
The worker can request the terminal to record that processing the current order is
being set up

The Albert II Specification Animator Technical Report

36

*ReportSetUpBegin → Cell.Terminal
The worker can request the terminal to record that processing the current order
has started

*ReportWorkingBegin → Cell.Terminal
The worker can request the terminal to record that processing the current order
has finished

*ReportWorkingEnd → Cell.Terminal

OPERATIONAL CONSTRAINTS

PRECONDITIONS

Getting an output part requires that there is (at least) a part in the output
buffer

GetOutputPart(p) : p ∈ m.OutputBuffer
Adding an input part requires that the part being added does not already belong to
the input stock and that the input buffer is not full

AddInputPart(p) : ¬ p ∈ m.InputBuffer ∧ ¬ m.InputBufferFull
Installing a tool in the first slot requires that the machine is either loading an
nc-program, off or in standby. It alos requires that the first tool location is
empty.

InstallTool1(_) :(Cell.Machine.Status = LoadingNC ∨ Cell.Machine.Status =
StandBy ∨ Cell.Machine.Status = Off) ∧ ToolLocation1 = UNDEF

Installing a tool in the second slot requires that the machine is either loading
an nc-program, off or in standby. It alos requires that the second tool location
is empty.

InstallTool2(_) :(Cell.Machine.Status = LoadingNC ∨ Cell.Machine.Status =
StandBy ∨ Cell.Machine.Status = Off) ∧ ToolLocation2 = UNDEF

Uninstalling a tool from the first slot requires that the machine is either
loading an nc-program, off or in standby. It alos requires that the first tool
location is not empty.

UninstallTool1(_) :(Cell.Machine.Status = LoadingNC ∨ Cell.Machine.Status =
StandBy ∨ Cell.Machine.Status = Off) ∧ ¬ ToolLocation1 = UNDEF

Uninstalling a tool from the second slot requires that the machine is either
loading an nc-program, off or in standby. It alos requires that the second tool
location is not empty.

UninstallTool2(_) :(Cell.Machine.Status = LoadingNC ∨ Cell.Machine.Status =
StandBy ∨ Cell.Machine.Status = Off) ∧ ¬ ToolLocation2 = UNDEF

Requesting the current order to be displayed by the terminal requires that it is
not processing.

RequestOrder : Cell.Terminal.Status ≠ Processing
Requesting to record that processing of the current order is being set up requires
that the terminal is not processing, that there is a current order and that it is
in 'waiting' status.

ReportSetUpBegin : Cell.Terminal.Status ≠ Processing ∧
Cell.Terminal.Order[Cell.Terminal.CurrentOrder]≠ UNDEF ∧
status(Cell.Terminal.Order[Cell.Terminal.CurrentOrder]) = Waiting

Requesting to record that processing of the current order has begun requires that
the terminal is not processing, that there is a current order and that it is in
'setup' status.

The Albert II Specification Animator Technical Report

37

ReportWorkingBegin : Cell.Terminal.Status ≠ Processing ∧
Cell.Terminal.Order[Cell.Terminal.CurrentOrder]≠ UNDEF ∧
status(Cell.Terminal.Order[Cell.Terminal.CurrentOrder]) = SetUp

Requesting to record that processing of the current order has finished requires
that the terminal is not processing, that there is a current order and that it is
in 'started' status.

ReportWorkingEnd : Cell.Terminal.Status ≠ Processing ∧
Cell.Terminal.Order[Cell.Terminal.CurrentOrder]≠ UNDEF ∧
status(Cell.Terminal.Order[Cell.Terminal.CurrentOrder]) = Started

COOPERATION CONSTRAINTS

STATE PERCEPTION

The content of the machine's first tool location is always perceived

.(m.ToolLocation1 / TRUE)
The content of the machine's second tool location is always perceived

.(m.ToolLocation2 / TRUE)
The machine's status is always perceived

.(m.Status / TRUE)
The content of the machine's input buffer is always perceived

.(m.InputBuffer / TRUE)
The content of the machine's output buffer is always perceived

.(m.OutputBuffer / TRUE)
The machine's input buffer being full is always perceived

.(m.InputBufferFull / TRUE)
The machine's output buffer being full is always perceived

.(m.OutputBufferFull / TRUE)

ACTION INFORMATION

Requests to do batch processing are always made visible to the machine

. (RequestBatchProduction.m /TRUE)
Requests to produce a part are always made visible to the machine

. (RequestProduceOne.m / TRUE)
Getting a part from the output stock is always made visible to the machine

. (GetOutputPart(_).m / TRUE)
Adding a part to the input stock is always made visible to the machine

. (AddInputPart(_).m / TRUE)
Turning it off is always made visible to the machine

. (TurnOff.m / TRUE)
Turning it on is always made visible to the machine

. (TurnOn.m / TRUE)
Requests to load an NC-program are always made visible to the machine

The Albert II Specification Animator Technical Report

38

. (RequestLoadProg(_).m / TRUE)
Installing a tool in the first slot is always made visible to the machine

. (InstallTool1(_).m / TRUE)
Installing a tool in the second slot is always made visible to the machine

. (InstallTool2(_).m / TRUE)
Uninstalling a tool from the first slot is always made visible to the machine

. (UninstallTool1(_).m / TRUE)
Uninstalling a tool from the second slot is always made visible to the machine

. (UninstallTool2(_).m / TRUE)
Requesting the current order to be displayed by the terminal is always made
visible to the terminal

. (RequestOrder.t/ TRUE)
Requesting to record that processing of the current order is being set up is
always made visible to the terminal

. (ReportSetUpBegin.t/ TRUE)
Requesting to record that processing of the current order has begun is always made
visible to the terminal

. (ReportWorkingBegin.t/ TRUE)
Requesting to record that processing of the current order has finished is always
made visible to the terminal

. (ReportWorkingEnd.t/ TRUE)

