
1

                       Scenario-Based Requirement Analysis1

Alistair Sutcliffe

Centre for HCI Design
School of Informatics

City University
Northampton Square

London EC1V 0HB, UK
Tel: +44-171-477-8411

e-mail: A.G.Sutcliffe@city.ac.uk

Abstract

A method for scenario based requirements engineering is described.  The method uses
two types of scenario, structure models of the system context and scripts of system
usage.  A modelling language is reported for describing scenarios, and heuristics are
given to cross check dependencies between scenario models and the requirements
specification.  Heuristics are grouped into several analytic treatments that investigate
correspondences between users’ goals and system functions; input events and system
processes to deal with them; system output and its destination in the scenario model,
and acceptability analysis of system output for different stakeholders. The method is
illustrated with a case study taken from the London Ambulance Service report.  The
prospects for scenario based RE and related work are discussed.

1. Introduction

In spite of the increasing attention that scenarios have attracted  in requirements
engineering [1], few methods have merged to guide the practice of scenario based
requirements analysis or validation.  Several different interpretations have appeared
ranging from scenarios as a basis for generating user cases [2], descriptions of system
usage to help understand socio-technical system implications [3], and experience based
narratives for requirements elicitation and validation [4], [5].  However, few authors
give advice on how to use scenarios in the process of analysis and validation.  One of
the exceptions is the Inquiry Cycle of Potts [4] which describes scenario scripts of
system use with a method for goal-oriented requirements analysis.  Dependencies
between the events originating in the scenario are validated against the requirements
specification, and the requirements are elaborated to deal with obstacles or problems
that prevent successful system operation. Unfortunately, the Inquiry Cycle does not
give detailed advice about how scenarios are used to generate questions; furthermore it
leaves open to human judgement how dependencies between system output and users
are determined.  Nevertheless, the Inquiry Cycle has demonstrated its utility in
industrial scale case studies [6].

                                                          
1 This research has been partially funded by the European Commission ESPRIT 21903 ’CREWS’ (Co-
operative Requirements Engineering With Scenarios) long-term research project.
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This paper builds on the concepts of the Inquiry Cycle with the aim of providing more
detailed advice about how scenarios can be used in requirements analysis and
validation.  In our previous work we proposed a scenario based requirements analysis
method (SCRAM) that recommended a combination of concept demonstrators,
scenarios and design rationale [7], [5].  Scenarios described typical user tasks and
concept demonstrators portrayed an early design vision of the required system.
SCRAM, however, gave only outline guidance for a scenario-based analysis.

Scenarios have been used with many different connotations.  One important distinction
is between scenarios that form part of the specification of the required system, or are
derived from it, versus scenarios that are captured from actual experience and do not
originate from a system design.  The former view has been adopted in user cases in the
object oriented literature [2, 8, 9], in which a use case embodies a projected vision of
user interaction with the designed system.  Scenarios are threads of interaction which
may occur through the network of a user case that describes several pathways in user-
system interaction.  Scenarios of this type have several precedents, for instance,
viewpoints in CORE [10] described interaction between an intended system and
external agents, as did context diagrams in structured systems analysis [11].  We use
scenarios in the second sense, as descriptions taken from reality before a system is
implemented, and used to validate the required system.  This concords with scenario
scripts as  advocated by the Inquiry cycle [4].

Validating requirements by focusing on dependencies between the intended system and
its immediate environment has been researched by Jackson [12] who points out that
domains impose obligations on a required system.  Jackson formalises event
dependencies between the system and its environment that are inherent in the laws of
physics, e.g. obligations for a required system in avionics and other real time
applications, and events that may arise from human failure, but the causality of such
failure is not explicitly analysed and the obligations of systems to users are not
addressed.  Modelling relationships and dependencies between people and systems has
been investigated by Mylopoulos et al [13] and Chung [14].  Their i* framework is
composed of strategic dependency and strategic rationale enterprise models which
facilitate investigation relationships between requirements goals, agents and tasks.  The
models make no judgement about the system boundary; instead, the framework is
applied to a socio-technical system.  Although scenarios do not appear in the i*
framework, enterprise models may be derived from scenarios of the intended system
environment.  This research and others in the enterprise modelling tradition [15], [16]
suggest some approaches for validating requirements at the social level, but no detailed
guidance is given so the practitioner is left with the problem of extracting general
lessons from examples.  In conclusion methods are required to unlock the potential of
scenario based RE; furthermore, the relationship between investigation based on
examples and models need to be understood more clearly. With this motivation in mind
this paper reports on development of the second generation SCRAM method that
integrates scenarios with model based requirements analysis.

The paper is organised in three sections. First we introduce scenario based
requirements analysis, a schema for representing scenario based knowledge and explain
the background to the case study of the London Ambulance service, a well known
system failure caused by poor Requirements Engineering (RE).  Section 3 describes a
walkthrough method for scenario based requirements validation that investigates both
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inbound and outbound event dependencies.  Each step is illustrated by the case study.
Finally we discuss related work and future prospects for scenario based requirements
engineering.

2. Scenario Based Requirements Analysis

First it is necessary to define a knowledge representation schema for scenarios.  This is
a prerequisite for the walkthrough method that analyses the dependencies between the
system components and their environment.  Although we describe the dependency
checking in two separate sections, one for inbound and one for outbound events, in
practice analysis of both is interleaved.

For our purposes scenarios are defined as "facts describing an existing system and its
environment including the behaviour of agents and sufficient context information to
allow discovery and validation of system requirements". Scenarios are instances of
actual experience with a system captured from users.  Since agent’s behaviour is a key
component in scenarios, we adapt scripts proposed in the Inquiry Cycle [4], i.e. an
instant storyline of events describing system operation. To scripts we add further detail
of the system environment so the context of activity can be evaluated.  Scenario-based
models are created to describe the system environment which can then be investigated
for connections and dependencies between the system and its environment.  Scenario
modelling may appear to be similar to system modelling, indeed the content of a
system or environment model depends on where the boundary of the intended system is
placed. System boundaries will frequently change during a requirements investigation,
hence we see a single model of the intended system-environment upon which a
boundary will be eventually imposed.  Furthermore, within the model alternative
technical system specifications may be explored.  When the boundary of the required
system becomes fixed, use cases may be constructed to describe interaction between
stakeholders and the system, facilitating the migration from requirements analysis
described in this paper to object oriented specifications. The method described in this
paper is intended to extend and complement the early phases of object oriented
development following use case approach (e.g. UML, Rational 1997[17].  The
relationship between scenarios and the requirements specification is illustrated in figure
1. Scenarios contain information about operation of the current system and its
environment.  While scenarios are usually examples of interaction at the instance level,
e.g. "Jane filled in the order form and pressed the enter key to send it to the database",
they may also contain contextual information about the system environment, e.g. " Jane
worked in a busy office, she was frequently interrupted which made concentrating on
order entry difficult".  Scenarios may contain descriptions of activities in manual
systems, interaction with legacy systems, descriptions of agents, roles, and their
organisation settings.  The requirements specification is an artefact that emerges during
the RE process evolving from simple lists of functional desiderata to models that
constitute a requirements specification.  The method described in this paper uses
scenarios as test data and validates requirements by investigating the dependencies
between events that originate in the environment (i.e. described in the scenario), on
requirements specification and system error.  In the latter case scenarios are used
projector stories of system use.
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Scenarios are captured as text narratives, sketches and informal media.  As analysis
progresses informal representations may be replaced by models.  The first question is
how far should the modelling endeavour be extended from the system core outwards
into the social domain? Ultimately the whole of society could be modelled, but
economics dictate that modelling be restricted to the essential set of facts that are useful
in shaping the new system.  Modelling is limited by time and available resources,
however, the methods indicates the extent of modelling by describing facts about the
system environment that should be captured for requirements validation. The second
question is what sort of facts should be captured for modelling? To address this point a
scenario-based modelling language is proposed to support understanding of new
application domains.  Finally scenarios contain instance information as they describe
real world events that happen to individuals.  This raises the problem of how instant
level information is related to types and classes and how much instant information is
explicitly modelled in scenarios, rather than leaving it as an example based narrative
description.

Scenarios
Requirements 
specification

 
system output impacts  
on the social domain

inbound events 
imply process  
requirements

examples, and instance level 
descriptions of system usage in a context

user agents,  
usage scripts

Figure 1   Scenarios and models of the required system and its environment

The method stages that use of scenarios in requirements discovery and validation is
illustrated in figure 2.  Two types of scenario are proposed: scenario scripts that
describe system usage; and scenario structure models containing facts about the system
environment. Structure models capture a broad view of the modelled domain to support
investigation of the relationship between a required system and its environment.
Scripts on the other hand take a more detailed view of agents’ behaviour for
dependency analysis.

The first part of the method analyses the user’s goals (1) and checks whether they are
supported by system functions.  This creates a first cut requirements specification
which describes high level system processes.  The requirements specification is
elaborated by investigating dependencies between  input events (2) described in the
scenario script and requirements functions.  This identifies requirements to deal with
inbound events from users and the system environment of different types as well as
analysing unexpected events. Inbound events are described in scenarios of interaction
between users and the proposed system.  This analysis leads to 1st cut decisions about
the extent of the automation and user-system boundary as the requirements
specification is updated to add functions to deal with different inbound events. System
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outputs will be motivated by the users goals in step (1) and described in terms of
process and outline content in the requirements specification.  This enables
acceptability and impact of system output on users to be assessed, first by specifying
the output in more detail in step (3) and then analysing the requirements to support
users tasks in step 4.  This is followed by tracing the destination and use of output by
different stakeholders  and investigating whether the system provides the necessary
support for users’ work and does not make any unacceptable demands on them (social
impact analysis in step 5).  Finally a stakeholder cost benefit analysis is carried out to
complete the prognosis of how people may react to the required system (step 6).  The
scenario  structure model is used to assess the impact of system output and coupling
between the technical and social systems. Scenarios may be imaginary stories of use for
the new system, or based on real examples.  Although the method implies a sequential
process in figure 2, in practice many of the stages will be interleaved as understanding
about the system and its environment increases during requirements analysis.
Alternative versions of the requirements specification may be produced depending on
decisions on the extent of automation, and scenarios created to explained different
versions to users.  The method is described in more detail in section 3, where the sub-
sections maps methods to step in figure 2, before proceeding to the method it is
necessary to define the models used to represent the scenarios
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Figure 2. Outline of method steps, showing input from scenarios to requirements
analysis

2.1 Scenario knowledge representation schema

The schema components use semantics that are familiar from software engineering
specifications which we have adapted from our previous research [18] for scenario
modelling.  The schema is summarised in figure 3.



7

ObjectsStructure 
objects

Agents Activities

Goals Resources

achieve 

Events

States

describeare 
changed 
by

provide 
context for

owned 
by

responsible 
for

contribute 
to

change

initiate

Figure 3. Schema for scenario modelling expressed as an entity relationship
diagram

Objects
Objects are the subject matter of transactions and therefore undergo change.  Objects
may be physical and subject to laws such as gravity and momentum, or conceptual
objects without physical instantiation. Object have properties, i.e. attributes that
describe them in quantitative and qualitative terms.

Agents
Agents have properties and methods.  Agents are specialisations of objects and carry
out activities.  Agents can be sub-typed as human or automated agents to describe a
required computer system and its users.  Agents have roles that describe the allocation
of activities or tasks that an agent has assumed responsibility for.  Properties describe
the agent’s knowledge of the domain and task, which is useful in determining an agent’s
competence to carry out a task and in specifying training requirements.

Structure objects
Structure objects represent visio-spatial information and physical environmental facts
which would not normally appear in data models, e.g. warehouse, library, air-corridors
in air traffic control.  Structure objects model approximations to the real world entities
which must be persistent, have spatial properties and express containment or
possession of objects; for example, a library contains books. Structure objects model
physical units such as departments and buildings; however, logical units of
organisation, with no physical manifestation, are modelled as objects or classes.

Resources
Objects, which are necessary for an activity, but are not consumed by it,  are described
as resources.  Resources are a necessary complement; for instance a flight plan is a
necessary resource for navigating an aircraft from a start location to its destination.

Goals
Goal states describe a future, required state which the system should satisfy, maintain
or, sometimes, avoid.  Goals are held by agents and may express requirements that are
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functional, i.e. implementable in a design, or relate to performance and quality goals
which are not immediately implementable as design features.  Requirements are usually
expressed linguistically as intentions, aims or objectives. These statements can be
refined into more formal expressions of a future goal state which the system should (or
should not) attain.

Activities
Activities are processes that achieve a goal.  Activities belong to agents and are
processes which normally run to completion resulting in state change of objects. In
addition, activities model human tasks.  Activities can be decomposed into actions
organised in procedures with control constructs of sequence, selection and iteration.

Relationships
Relationships model structural, informational and functional associations between
objects.  Three high level relationship types are distinguished.  Generalisation-
specialisation model class hierarchy relationships between objects; aggregation
describes part-of and compositional associations; and functional relations denote that
objects are associated in achieving some system activity.  If an association results in
state change it is a functional relationship, otherwise it serves for information access.
At a lower level relationship sub-types are introduced to model further dependencies:

Responsibility: models the association between an agent and an activity or goal which
it has the duty to carry out, e.g. < agent, is-responsible-for, goal | activity>.
Authority: describes the relationship between two agents in which a dominant agent
has authority over the behaviour of a subordinate, or ability of an agent to permit
another agent to initiate action or consume some resource; e.g. <agent, has-authority-
over, agent [activity | resource]>

Dependency: models the need for an activity to achieve a goal, or for sub-goals to be
achieved to enable a subsequent goal to be completed, or the need for a resource or
agent to complete an activity, e.g. <goal, depends-on, sub-goal>.

Contribution: this is a specialisation of dependency for non-mandatory relationships
when an agent may contribute towards achieving a goal, even though it is not
absolutely necessary for completing the goal, e.g. <agent | resources, contributes-to,
activity | goal>.

Location: is used to describe the location of an object in a point in space with co-
ordinates, or location with respect to a structure object. In this case an object may be
contained within a structure object even though it is not part of it, e.g. <aircraft, is-
located-in, air corridor>.

States
States describe properties of objects or agents that persist for a detectable time and are
changed by state transitions.

Events
An event is a single point in time when something happens, following Allen’s [19]
conception of temporal semantics. Events are treated as semaphores which initiate a
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state transition. For instance, the dispatch of goods from the warehouse to customer is
triggered by a customer order (a request event).

This completes the knowledge representation schema.  In the following section we
describe how the schema is used for creating a scenario model.  First a scenario
structure model is created using the schema to describe the major components in the
domain and their activity. Then more detailed descriptions of behaviour and interaction
between agents are described and illustrated with user cases and event trace diagrams
to integrate with standard OO approaches [17].  These detailed descriptions are referred
to as scenario scripts and record the event sequences in real life examples of system
operation.  As scenario scripts are collected, more event trace diagrams will be added
to document the scenario.  However, the structure model should remain reasonably
constant, although it may need updating if a script introduces a new agent or activity.

2.2. Modelling scenarios

At this stage the case study of the London Ambulance Service, a well documented
failure in requirements engineering and system design [20] is introduced.  The
application is a complex, socio-technical system which has a documented requirements
specification and material from which scenarios can be constructed.  As space
precludes an exhaustive analysis of the whole system, we illustrate operation of the
method with selected elements of the system.

2.2.1 Case study description

The London Ambulance Service (LAS) Computer-Aided Dispatch System was
initiated in 1991 as a new computer-aided ambulance dispatch system for London.  The
intention was to replace a resource-intensive manual system with a computerised one
that would, in essence, enable one human controller to manage an entire incident from
call-taking to the arrival of the ambulance at the incident scene. The implementation in
October 1992 encountered many problems and operations reverted to the manual
system one month later after a series of well-publicised catastrophic failures.

The London Ambulance Service is a large organisation.  It had, in 1992, over 2700
staff (operational staff, control assistants, managers, administrators, maintenance and
ancillary).  It also had 305 accident and emergency ambulances, 445 patient transport
service ambulances, 2 emergency control vehicles, rapid response units and even 1
helicopter.  Much of its operations are real-time and mission critical, in that people can
die if an ambulance does not arrive in time.  It requires information about patients,
emergencies, hospitals, road conditions, ambulance locations and calls to function
effectively.  The system is also both distributed and embedded, in that it relies on much
hardware to define the location of ambulances, communicate with ambulance crews
and so on.  Indeed, the mobile nature of its operations in London make the system very
complex and prone to problems.

The original system had evolved over a considerable amount of time.  Ambulance
crews had considerable knowledge of London as well as emergency conditions, and the
control room staff worked as closely-knit teams in constant communication with each
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other to dispatch the most appropriate ambulance to the right accident.  The system
relied on skilled individuals with extensive domain knowledge, including the
geography of London.

The Computer Ambulance Dispatching (CAD) system (figure 4) had four main
functions: call-taking from the public; resource (ambulance) identification; resource
(ambulance) mobilisation; and resource (ambulance) management.  Call-taking
involved telephone operators and control assistants who used local knowledge and a
map book to complete an incident form. These incident forms were passed to resource
controllers and allocators who allocated resources to calls.  The incident report was
amended and passed to the dispatcher who either sent it to the local ambulance station
for action or made radio contact with ambulance crews.  The ambulance was then
dispatched. The new CAD system was intended to automate as much of this process as
possible, thus reducing the workload and reliance on control room staff. It included a
computer-based gazetteer of London, a resource proposal system linked to an
Automatic Vehicle Location System (AVLS) that tracked the ambulance locations.

Call taking

Resource 
identification

Resource 
mobilisation

Resource 
management

Ambulance 
crews

Control 
centres

Hospitals

Dispatchers

Management

CAD system  functions

AVLS

Patients

Public
emergency 
calls

treat & 
transport instruct

report to

Figure 4. The  Computer Aided Dispatch (CAD) system, showing agents, system
functions and communication channels

The original manual system had these functions but they were distributed over more
roles: call takers, resource allocators, dispatchers and radio operators. Immediately
following the system cut-over, the call traffic load increased (but not to exceptional
levels). The AVLS could not keep track of the status and location of ambulances.  This
led to an incorrect database so that ambulances were not being dispatched optimally;
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frequently, more than one ambulance was being assigned to one call. As a consequence
there were a large number of exception messages and the system slowed down as the
message queue grew.  Unresponded exception messages generated repeat messages and
the message lists scrolled off the top of the screens so that important messages were
lost from view.  Ambulance crews were frustrated and, under pressure, were slow in
notifying the status of the unit.  They could not, or would not, use their Mobile Data
Terminals (MDTs) and used incorrect sequences to enter the status information.  The
public were repeating their calls because of the delay in response. The AVLS no longer
knew which units were available and the resource proposal software was taking a long
time to perform its searches. As a result the entire system ground to a halt.  It was taken
off-line and the LAS reverted to the manual dispatching system.

The scenario structure model for the system is illustrated in figure 5.

Answer 
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& drive
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Activities

Objects

Resource

Structure object

Figure 5. A partial structure model for the Ambulance-crew sub-system. Events
and states have been omitted

Note that the model contains information which is not explicitly stated in the scenario
such as the responsibilities and goals of the crews.

2.2.2  Scenario scripts

The user case scenario of the manual system is shown in figure 6.  It commences with
a member of the public placing a call that is received by a call operator who takes
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details on the incident and records it on a paper form.  The location of the incident is
ascertained by using maps and a gazetteer of London streets.  The incident details are
passed to the resource allocator who decides which ambulance or ambulance station
should answer the call.  The resource allocator uses knowledge of crew status and
ambulance locations from status reports to allocate resources to calls.  The allocation
decision is passed to the dispatcher who prepares instructions for the ambulance crews.
Instructions are then passed to the local stations or to the radio operator who makes
direct contact with the crews.

Public Control 
assistant

Resource 
allocator Dispatcher

Radio 
operator

Ambulance 
crew

Local 
station

record 
details

emergency 
call

complete 
form

locate 
incident

eliminate 
duplicates
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resource

create 
message instructions

instructions

status 
reports

status 
reports

drive to 
incident

Figure 6. Scenario script of the manual system illustrated as a use case diagram.
In the new system usage scenario many of these roles are merged.  An automatic
call receiving system assists gathering details and locates the incident with map

displays and a gazetteer.

The intended sequence of events in the new CAD system is shown in figure 7.  A
member of the public calls the Ambulance service. The dispatcher locates the call and
finds the nearest appropriate ambulance.  This depends on the ambulance’s location
being accurately notified to the system by the AVLS.  The dispatcher then gives
instructions to the crew who drive to the accident location and carry out their
paramedic duties.  The crew take the patient to hospital or otherwise complete the call
and report back to the dispatcher. However, this idealised scenario assumes all goes
well.

Three agents are involved; the member of the public who makes the emergency call,
the dispatcher who instructs the ambulance, and the crew to take the patient to hospital.
In the manual system there were two additional agents, the telephone operator and
control assistant. They handled the emergency call and recorded the detail of the



13

accident and its location.  The new computer system was intended to simplify the
process by eliminating this interface.  As the dispatchers’ work would be increased the
computer system has to provide effective decision support.

The scenario consists of two models: the structure model that describes the LAS
domain, its agents and activities; and one or more behaviour models expressed as event
traces.
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Figure 7. Scenario script for the LAS, covering crew and dispatcher sub-systems,
illustrated as a use case-event trace diagram. The approximate sequence of events

reads from top to bottom.

3. Scenario-Requirements Validation

The essence of the method is to compare scenarios with a developing requirements
specification.  The method makes no recommendation about the format of the
requirements specification.  This may be a formal language, a list of requirements
goals, or an artefact such as prototypes or storyboards.  From preliminary fact gathering
initial scenarios and models are created.  A decision is taken on first cut partitioning of
the model into the intended system and its environment.  Alternative partitionings and
system designs may be created and followed through the method stages. Different
boundaries and automation decisions  may also be regarded as scenarios for the future
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system and user case techniques may be employed to represent them.  The number of
alternatives that can be explored depends on resource constraints.  The environment
becomes the usage scenario which is cross checked against the system.  Analysis will
stimulate further fact gathering as understanding of the domain increases.  This, in turn,
will lead to more elaborate models of the system and its environment which can be
checked more thoroughly.  The method proceeds by iterative cycles of fact gathering,
modelling and requirements elaboration/validation.

In the following section the walkthrough method and question templates are described
that guide the analyst when checking the requirements specification against the
scenario and vice versa.

3.1 Goal analysis

Goals in the scenario structure model are compared with the requirements
specification. Using the following heuristics each user goal in the scenario is cross
checked with functional goals with the requirements specification.

• Does the user’s goal require computerised support? If so then a functional
requirement should be added to the requirements specification; otherwise
implications for non- functional requirements should be considered.

• Does the goal describe a quality or performance property that the system should
achieve? These properties indicate non-functional requirements that may not be
directly implemented. NFR-goals should be linked with agents and activities that
may help to achieve them.

• If a goal does not require computerised support, can it be achieved by manual
procedures? This points to the need for developing operating procedure manuals for
activities in the social system.

• Does the goal require a management decision about resources and responsibilities?
Management responsibility goals should be linked to the appropriate agent in the
scenario model.

• Can the scenario goal and its associated activity be fully automated? If it can then
transfer the segment of the scenario model to the requirements specification; if only
partial automation is required then further elaboration of the model and the
requirements specification is needed.

Case Study

In the LAS system, the users’ goals were never explicitly analysed, apart from the aims
of senior management; moreover the failure to investigate all the stakeholders’ needs
was one of the main contributions to the system failure.  Four main stakeholder groups
were involved: the public, ambulance crews, dispatchers and management.  The
original system was driven by management’s goals. We may surmise that the
stakeholders’ goals were as follows:

Public: to receive prompt response and quick arrival of an ambulance.
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Ambulance crews: to obtain accurate information about the accident and its location,
and helpful instructions for completing the job (e.g. traffic congestion reports); to drive
to the accident location as quickly as possible; to give paramedical attention to the
causality; to remove the casualty to hospital as quickly and safely as possible.
Dispatchers: to determine the location and priority of the accident, to plan dispatch of
the nearest, appropriate ambulance to the call; to monitor progress of the call; and to
obtain accurate information on the status of the call and ambulance crews.
Managers: to deliver an efficient service and reduce costs; to optimise the use of
ambulances and crew resources.

When these goals are compared to activities in the structure model it appears that many
goals are supported only by human activities. Planning and scheduling is a key activity
that depends on several goals, and these goals are held by different stakeholders. Even
in this high level analysis the seeds of conflict are apparent.  The automated system
appeared to support the dispatchers goals but as becomes apparent later in the analysis,
this support was inappropriate.  Little support was provided for the crews, whereas the
system was intended to support management’s objectives of reducing manpower and
improving resource utilisation.

3.2.  Investigating Inbound event dependencies

A cornerstone of the method is checking dependencies from the environment to the
system that commences by tracing the source of all potential input events. Events may
originate from two sources:

• Agents in the environment, usually people who generate system input.
 

• Objects in the environment that produce naturally occurring events, such a
thunderstorms, movement of animals, etc.

Events may have a complex origin in human-machine systems when one agent controls
another. For instance, a pilot initiates events in the flight plan of an aircraft by sending
a message to the autopilot which causes the aircraft to change direction. In such
complex events we prefer to model the human agent as the event originator.

At the top level the scenario is analysed to identify all the event generating agents and
objects. In information systems most of the events of interest will emanate from human
users; in real time systems many events will originate from the physical world or
another system, e.g. an oil refinery will create events communicating pressure and
temperature changes to the control system.

Using the scenario script, for each inbound event ascertain:

• Is there a system function to deal with it? If not then new functional requirements
should be elaborated.

• Does the event require the system to attain a goal state? If so does a process exist to
carry out the necessary change?

• Does the event imply that the system should maintain a goal state? If so then
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• Can the system interpret deviation from that state?
• Can the system take remedial action to return to the desired state? Answers

to this question suggest functional requirements to monitor normal states and
correct deviations from the ideal state.

Once the requirements have been established to deal with normal events, exception
analysis is undertaken to elaborate system requirements to deal with abnormal event
patterns.  If the event is created by a human agent then production may not be reliable.
Events that emanate from inanimate objects may be more reliable but detecting them
may not be. The following questions check for possible permutations that may occur.
These may be suggested or ruled out by the scenario; however, the questions can be
used to generate further scenario scripts as well as for analysing scripts describing
normal behaviour.

• What happens if the event doesn’t arrive? Can the system continue to function? If
the event is essential will the system signal a malfunction?

• What happens if the event arrives too early or too late? Is the system time sensitive?
Can early events be buffered until processed; if so how many can be buffered? Can
late arriving events be tolerated? If so can the system halt other tasks and resume on
arrival; if not can a malfunction be reported?

• What happens if an event arrives in the wrong order? Is the system sequence
dependent? If so can mal-ordered events be buffered and sorted into an acceptable
order?

• What happens if a duplicate event arrives? Can the system detect duplicates and if
so, can it eliminate unwanted copies?

• What happens if an unexpected event arrives? Can the system deal with unknown
input? Can the system interpret extraneous events and report their presence?

• What happens if a corrupted event arrives? In this case can the system detect that an
event of the correct type has arrived but the contents of the message are damaged?
Can the system send a request for the event message to be retransmitted?

The design implications for these dependencies are well known in the software
engineering literature. Dealing with event permutation requires guarded commands to
be designed.  The requirements specification can be elaborated with entity life histories
which express patterns of correct and incorrect events in a sequential order; see
Jackson’s method [21], [22].  As Jackson points out, a filter process can be specified to
detect abnormal events by test probes in a normal input sequence and then take
corrective action if an unexpected event is detected.   If the dependencies between the
scenario and components in the intended system are predictable then validation
requirements for mal-formed inputs are easily specified; however, if event arrival is
random then requirements are more difficult to elaborate. Three main classes of events
imply the different responses by the system:

• Known events which can be validated for the order and timing of their arrival. In
this case there is a system requirement to detect the event order against an expected
life history and then take error correcting action.

• Known events which may arrive in any order.  The requirements in this case are to
check for the plausibility of events and provide undo facilities to correct user



17

mistakes or warning messages when events appear to be unusual, e.g. an aircraft
descends after leaving an airport.

• Unknown events.  The system should continue to function correctly so the
requirement is for an exception capture procedure; or a reporting mechanism so
human operators can investigate exceptional events.

 
Inbound events imply requirements for processes to trap the input and deal with normal
and abnormal patterns. For abnormal patterns error recovery is necessary and in safety
critical systems this can become complex, as the system may have to take action to
prevent undesired states.  This specialisation of requirements analysis is dealt with in
more depth by Sutcliffe [23].

The last part of inbound event validation is to trace the event of the source.  This is
important when security is a critical requirement.

• Can the source of the event be traced to a specific individual? If so was the
individual authorised to send the event-message? The requirements implications are
for logs to identify the message source and individual password protection.

In networked systems the source of an event is often difficult to detect. In these cases
an authorisation protocol may be required so that the origin of the event can be
checked. Additional security considerations are whether the event can be intercepted:

• Can the event-message be read by anyone else? If the message must be secure then
encryption is required.

Case Study

Using the inbound event heuristics the interesting finding for the first event, the
emergency call from the public, concerns duplicates. Several people might report the
same accident.  This suggests a requirement for identifying the caller, location and
nature of the accident so duplicates can be eliminated.  Duplicates also occurred
because of excessive response times in the real world system. Two types of duplicate
need to be tracked: repeat calls on the same case that require a progress report; and
duplicate calls for the original event to eliminate unnecessary dispatches.  Detecting
such events was not considered in the implemented system.  Another line of analysis is
triggered by unexpected events.  The ambulance service received many different calls
ranging from minor accidents to terrorist bomb injuries. Major disasters are rare, but
have dramatic implications.  A large number of ambulances might have to be
dispatched to one scene, thereby severely depleting resources for the whole service.
This indicates that event consequences can have knock on effects that need to be
investigated and suggests a further heuristic, that event types should be analysed to
determine their response requirements and implications for resources.

Two reporting events are shown in the scenario script; this is a considerable
oversimplification, as the real system required several reporting stages.  The
implications for any of the reporting failures is serious.  One requirement to deal with
exceptions might be periodic reminders for crews when report events do not arrive, but
as we shall see in the outbound analysis this might not be advisable. Report events that
are duplicates or arrive in the wrong order can be corrected or queried by reference to a
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report sequence template. Ambulance calls have set reporting procedures, so the
sequence of event arrival can be anticipated.

The instruction from the dispatcher to the crews is a key event.  If anticipated problems
trigger any of the heuristics the system will not work.  Communication with ambulance
crews is by radio so arrival can be checked by the dispatcher; however, accuracy of
information is vital.  This can not be assured as radio communications in large cities
are subject to considerable interference. The requirements should be explored for a
more secure transmission medium, or a procedure initiated to check that instructions
are clear and have been understood.

3.3 Categorising System output

Outbound validation is more difficult because the impact on a social system has to be
judged.  By their nature social systems are complex and unpredictable and change
introduced by a computer system frequently produces unanticipated and undesirable
side effects. This part of the method aims to detect the side effects at the requirements
stage; however, no guarantee can be given for detecting all side effects. Validation can
only be as good as the knowledge of the social system possessed by the requirements
engineer and the user. In many cases this will be incomplete.

System output may take the form of message displays, dialogue boxes, synthesised
speech, etc., and requirements specified in several formats e.g. lists, screen layout
charts, storyboards or prototype screens.  In highly interactive systems (e.g. virtual
reality) the dividing line between input and output is hard to draw, so the following
taxonomy will have to be adapted to different system types. The basic distinction is
between output events that convey information for human use and output events that
imply or demand human action. Five output event types are defined as follows:

• Direct commands: output message that requires human action, e.g. in a process
control system the system detects a dangerous condition and issues a command to
the human operator to take action.

• Indirect commands: in this case output may be warning messages or information
displays which imply human action should be taken.  Indirect commands will have a
gradation of force from those with explicit implications, e.g. the operating system
issues a ‘disc full’ warning and a request to delete unwanted files; to more implicit
events, e.g. reports of customer complaints imply action if they exceed a certain
level.

• Input requests: the system needs input from the user.  This might be either
mandatory, i.e. essential for interaction to continue, or discretionary.  Input requests
are specialisations of direct and indirect commands.

• Information displays: this type describes output when there is no immediate
implication for a human response. Information displays may have several functions.
Information may be necessary for the user to complete a task; it may be for
instruction, tuition or help. Information may also be provided for decision support;
and sometimes an information display may be the raison d'être of the system itself as
in information retrieval applications.
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• Metaphors and interactive worlds: this type of output blurs the distinction as
metaphors, simulation displays and virtual worlds all support input integrated with
output in multimedia format.

The output types are used to classify the requirements specification either at the
component level, i.e. the system will produce output of type (x) from sub-system (y);
alternatively, output can be classified at the event level when the requirements
specification becomes more detailed.

3.4. Output requirements analysis

This is driven from both the requirements specification and the scenario. First the
scenario and requirements specification are cross referenced to ensure output is
generated when it is needed.  Steps in the user’s task that imply an information need are
identified in the scenario; so if a user needs information at a particular point in the
scenario script does a system output function exist to provide it? Using the
requirements specification and the scenario script, the following checklist is used to
help analyse possible user needs.

• Using the requirements specification, for each component that produces output, is
there a corresponding user requirement for information in the scenario?

• Does a user require information at a scenario stage and is the information produced
when it will be needed? The coupling between system output and the user task will
depend on the application type.  In safety critical system synchronisation should be
precise.

• Does the user require information for decision support?  This points to output
requirements when the system should provide information to help the user’s decision
making or provide instruction for carrying out the task.

• Is the user’s goal in the scenario information seeking?  This points out information
retrieval requirements, which may characterise the whole application, or may be
embedded within other tasks.

The questions help to identify the information requirement dependencies between the
users and the system, and in doing so, help to assign output types.  A further question
focuses attention on how appropriate the output information is for the user’s task:

• Is the information content of the system output appropriate for the user’s task or
goal? The answer to this question may require a detailed task analysis and is beyond
the scope of this paper; however, more detail can be found in the Task-based
Information Analysis Method [23].

Tracing output to the recipient agent is important when security is required. The
destination of system output is assessed using the following questions:

• Who should receive the output information? If circulation of output should be
restricted, functions are required to track the destination of output, obtain
certification that it arrives at a correct destination, and possibly prevents
unauthorised access during delivery by encryption.
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• What happens if the wrong person receives the output?  If the distribution of
messages can not be guaranteed, yet the destination is important, then encryption
should be considered.  Another possible requirement is for an audit trail to log who
acquired the output.

• What happens if the output gets lost?  Is the output message critical to the
functioning of the whole, socio-technical system? Answers to this question imply
requirements for logging message arrival and the ability to request re-sends if the
original output does not arrive. The ability to detect lost messages within a time
period (e.g. timestamp) and to identify individual messages via a unique code should
be considered.

• What happens if the output arrives too late or too early? This question is important
when accuracy is vital. Out of date information may be useless, while information
that arrives too early may have missed key updates.  Answers to this question imply
requirements to ensure timely arrival, e.g. network prioritisation, timestamp priority;
or controlling database update integrity for reporting information.

• What happens if the output arrives in the wrong order?  If output order has to be
geared to a set sequence, then functions to ensure the sequential integrity of the
output are required, e.g. by numbering messages or designing a protocol to
acknowledge receipt of one message before the next is sent.

• What happens if the information is inappropriate or incorrect?  This question
focuses on the link between the system output and the user’s task.  The answer may
depend on a thorough task information analysis [23]; however, cross checking with
the scenario may suffice to generate an answer.  In some cases the user’s task may
not be predictable, hence requirements for a clarification dialogue or configurable
information displays are indicated.

Case Study

The output from the LAS-CAD system contained direct commands from the dispatcher
to the crews and mandatory input requests for the crews to report their location and
status. Information displays were critical for the dispatcher.  The gazetteer display was
supposed to show the locations of calls and ambulances overlaid on a map of London.
The schedule proposer displayed allocation lists of crews to calls.

Tracing the system output reveals some discrepancies between the stakeholders’
information needs and the system output. For instance the crews needed information on
traffic congestion and road works, but this was not provided by the system.  Indeed the
crews had only indirect contact with the system output via the dispatcher.  The
information displays should have been adequate for supporting the dispatchers’
decisions, but most of their decision making had been usurped by the call allocation
proposer.  As the responsibility for the crew allocation decision was no longer clear,
the dispatchers became frustrated.  This was exacerbated by the inaccurate information
which prevented them from taking decisions themselves.

Even if the information were accurate, the output display could have been improved by
providing better information on possible routes and projected journey times.  Often the
closest ambulance to the accident location might not be the first to arrive because of
one way streets and road works.  This information was not provided to dispatchers or
crews, even though it was readily available from local radio and police reports.
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Applying the outbound event heuristics points to potential problems in tracking system
output to the appropriate agents. Instructions from dispatchers might be received by the
incorrect crew, so a crew identification check is necessary.  This existed in the manual
system. More seriously, instructions to crews can be overheard by the general public
and this can lead to undesirable consequences, such as voyeurs causing congestion at
major accidents.  Secure communications should be considered.  As messages can get
lost or arrive in the wrong order, a message recording log is needed to  help dispatchers
trace call progress and diagnose miscommunication problems. Furthermore, messages
could be replayed from the log to avoid composing then again.

The effect of incorrect output for the dispatchers was one of the prime causes of system
failure.  Because accurate information is vital and the possibility of late or lost
reporting events can not be ruled out, a requirement for cross checking accuracy needs
should have been investigated.  This could be implemented by a simple instruction that
dispatchers make their understanding of the crew’s location explicit in the call
allocation instructions.  Any deviation should be detected by the crew and corrected.
Error tolerances for inaccurate information and incorrect events should be studied to
establish their impact of performance of the user tasks.  If the dispatcher can tolerate,
say 1% inaccurate events without a performance degradation then correction protocols
may not be necessary.

3.5 Social impact analysis

It should be stated at the outset that this is a difficult task to achieve as success depends
on three unknowns:

(a) accurate social theories that predict human behaviour in response to computer
systems.

(b) sufficient knowledge of a particular social system to make predictions using (a).

(c) a stable system environment so that predictions made by (a) using (b) remain valid
while the system is being constructed and implemented.

Given that the above three sources of knowledge are not complete, and some would
contend can not be complete, judgement of impact in the social domain must be
tentative. Nevertheless, some guidance can be given which may uncover a few
potential problems.

Investigation begins by assessing the coupling between the social and technical
systems. The system output commands, both direct or indirect, are counted. The more
commands there are, the closer the coupling between the social and technical systems
will be. Close coupling increases dependencies and makes the whole socio-technical
system prone to failure. General design advice is to divide the system into autonomous
sub-systems to reduce coupling. Closely coupled human computer systems should be
reviewed to either change the design for more automation (computer autonomy) or
increase human control and design the computer system for an advisory rather than a
controlling role
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The style of coupling in socio-technical systems has implications for the organisational
culture. In hierarchical organisations, lines of authority are clear and power
relationships defined by the structure.  Close coupling may be possible in hierarchical
organisations, although such systems may be brittle and prone to failure if the social
environment changes.  Networked organisations have loose coupling, so the technical
systems in such organisations should reflect this.

The scenario structure model is elaborated to propose different technical system
solutions and consequently different system boundaries. The implications of people’s
reactions to computer systems may vary widely according to where the boundary is
drawn. This involves partitioning tasks/activities between people and computers.
Heuristics to guide these judgements have been given by several authors, e.g.[24], [25],
[26].  Some impact heuristics to bear in mind at the requirements stage are that:

1. Excessive automation diminishes human responsibility. This may in turn have an
adverse impact on motivation.

2. Excessive automation diminishes human awareness of the whole system; this
reduces the user’s capacity to respond to abnormal events. The dangers of this in
safety critical systems are pointed out by Leveson [27].

3. Automation which leaves users with menial, undemanding tasks will increase
boredom, lower motivation and lead to more errors.

4. Automation with closely coupled interaction imposes new work practices on people.
This may cause them to reject the system as it constrains human activity in an
unnatural manner.

5. Coupling between users and automated systems should be sensitive to the users’
skills and knowledge. If the users have to take decisions imposed on them by the
computer system, then they should be given the necessary training.

6. Care should be exercised to ensure that introduction of the computer system does
not alter responsibilities and power relationships between people.  Although new
computer systems invariably alter responsibilities, these changes should be assessed
and ameliorated where possible.  Furthermore, the changes should be explained and
justified to the users .

Once the technical system boundary has been established, power and authority relations
can be traced to check whether the system output will fulfil users’ goals,  and that
authority relationships are clear and do not contradict each other (e.g. two agents in
charge of one activity, conflict in authority).  Information output may have unexpected
consequences.  The effect of providing information for an agent should be assessed to
see if it will alter that person’s role or potential power.  For instance providing one
person with another person’s work schedule gives an opportunity for mischief, e.g. the
first agent may tell the second to do something in the wrong order.  Such problems are
difficult to detect a priori, and a better defence is to have well motivated, well trained
staff who are unlikely to create misdemeanours. However, in financial applications
where security is paramount, asking whether information is likely to be misused by a
receiving agent is advisable. Power relations may be implicit in the form of  incentives
and monitoring results rather than by direct reporting.  The scenario structure model is
used to assess the impact of commands by tracing the output event to its destination in
the social system and asking the following questions:
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• Does system output trigger an activity that a human agent is responsible for? This
indicates a direct command.

• Is the system output a necessary input for human activity or does it imply the need
for decision making? This suggests an indirect command.

• Is system output a helpful, although not strictly necessary, resource for completion
of a human activity? This indicates an indirect dependency.

Once system commands have been identified their impact can be assessed by tracing
the output to the recipient agents and their goals, responsibilities, roles and authority in
the social domain.  The following questions point out potential problems and guide the
analyst towards issues that may need to be investigated.

For each system output-command, trace which agents will be involved to assess: if the
appropriate person being asked to comply with the command.  The answer can be
found by:

a) inspecting the agent’s properties to determine whether they have the necessary skills
or knowledge to undertake the task or take the decision. If they do not, then there are
implications for personnel selection or training.

 
b) inspecting the role and tasks the agent is responsible for. If the command is being

directed to the wrong person then the social system should be changed.
 
c) Can the person respond in time and in an appropriate manner? Investigate the time

demands for decision making or carrying out tasks and checking the user’s training
and role.

The next step is to establish whether the users are likely to comply with system
commands. Possible reasons why they may not are lack of motivation, or that they see
the command as an imposition on their responsibilities.  Pointers to answers may be
found by tracing the responsibility and authority relationships of the agent to ascertain:

a) does the command create a clash in responsibilities, e.g. the system asks an agent to
take a decision which exceeds their responsibility?

b) does the command infringe the user’s authority, e.g. the system requires the user to
take a decision at the wrong time or takes the decision for them?

c) does the command alter the power relationships between human agents, e.g. the
command diminishes one person’s authority and increase another’s?

A complete investigation of these questions goes beyond requirements analysis into
socio-technical system design.

3.6 Stakeholder analysis

Finally a stakeholder cost benefit analysis can help to summarise the previous
investigations and highlight potential reactions of personnel to introduction of the new
system.  This technique assess the impact of system design on different users or
stakeholder groups. The analysis can be repeated on alternative system designs to



24

assess trade-offs for various stakeholder.  Each stakeholder group is assessed against
the following questions:

• will the new system de-skill their job? Excessive automation is often the culprit.
• could the new system threaten their job security?
• will their responsibilities be diminished by the new system? This may be caused by

automating part of a stakeholder’s job or re-distributing responsibilities in the social
system.

• will the system adversely effect working practices? This may have several causes,
such as excessive coupling which directs human operators and allows no flexibility;
removing the ability to take decisions and autonomous action; change in authority
requiring clearance before action can be taken; and not providing sufficient
information to complete a task

The potential benefits of enhanced responsibility, more stimulating job descriptions,
opportunities for self advancement and promotion should be offset against these
downsides.  If any stakeholder group has a preponderance of downsides then their
motivation and willingness to co-operate with the new system will be decreased.  This
can lead to more mistakes, non-compliance with responsibilities and duties and
ultimately sabotage.  The answers may be gathered by interviewing stakeholders
directly for their opinions or by judgement of independent experts.  Cost benefit
analysis may be conducted at the sub-system or component level if necessary.

Case Study

The LAS-CAD system was closely coupled as a consequence of event-messages
between the crews and the dispatchers. System output imposed a large number of
commands on the crews to report their location and status.  The call allocation proposer
also functioned as an indirect command to the dispatcher because the decision making
had been nearly completely automated.

The scenario structure model for part of the CAD system is illustrated in figure 8.  This
shows the relationships between the agents, goals and activities that are traced during
the impact analysis.  As the figure shows the dispatchers role has become complex with
many responsibilities.

When the costs and benefits for each group of stakeholders are analysed it can be seen
that management were the only significant gainers; see table 1.  Both the crews and
dispatchers suffered from fears of deskilling and possible loss of their jobs as a result
of the system. The system also imposed more demands on the crews than the manual
system.  It is not surprising that the crews did not comply with the reporting procedures
and the dispatchers became demoralised and frustrated.

Inspecting the agents’ roles and tasks suggests that the manual system had an
appropriate allocation of tasks to agents. The dispatchers and crews both had extensive
domain knowledge that they used to carry out tasks.  This might present a problem for
new personnel, so training had to be thorough.  The call allocation proposer infringed
the dispatchers’ decision making authority as it never had accurate information for
planning.  Even if the computer system had accurate information to function
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competently there are good social reasons for not completely automating this function.
One of them is the need to maintain user knowledge for flexible responses. A fully
automated system will deskill dispatchers.  If people do not actively take decisions they
rapidly deny responsibility for those decisions. When a disaster occurs they may have
lost vital domain knowledge to enable them to plan a response to an event that no
automated scheduler is designed to deal with.  Furthermore, the dispatcher’s response
may be delayed by the tacit assumption that the automated system is responsible and
therefore can cope.  The impact heuristics point to an insensitivity in design of the
system automation that deskilled the crews and misallocated power and responsibility
relationships by assuming the computer system could do too much.  History proved
that allocation of a decision making role to the unproven computer system was a
serious mistake.

Public Crews Dispatchers ManagementHospital

report status

emergency 
call

plan response
instruct 
crewsarrive at 

accident
stabilise 
patient

report
transport 
patient

report
Policies

Planning 
response 
strategies

locate call 
eliminate dups

Figure 8. Scenario structure model for part of the CAD system. Goals are shaded
ellipses, agents are in rectangles and activities in unshaded ellipses. Speed and

safety are non-functional requirements.

Table 1. Stakeholder analysis for the CAD system.

stakeholders Job security Responsibility Control Workload
Managers ++ ++
Supervisors + + +
Dispatchers - - - +
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Ambulance
crew

- - -

4. Discussion

Retrospective case studies inevitably suffer from the benefit of hindsight.  It is not clear
what the relative contribution of the method and its human user were to the
recommendations produced by the analysis.  The LAS inquest report dwells on failures
in the social domains such as the failure to consult the ambulance crews and the
problems of deskilling the dispatchers; however, we have uncovered a wealth of
problems that are not mentioned in the report, so we may make some modest claims for
effectiveness of the method.  Moreover, we may hypothesise that the method has
uncovered problems which are still inherent in the current system.  The inquiry report
blamed management for an inept approach to system development and ascribes the
major causes of failure to hardware and system integration issues, such as
communications failure between the CAD and AVLS systems, poor software testing
and inadequate preparation for system cut-over.  We contend that had the developers
corrected all these mistakes, there is still a very good chance of failure because of poor
requirements analysis in the social domain.

Parts of the scenario based method reported in this paper are related to the enterprise
modelling approach of Mylopoulos et al [13] and Chung [14].  They create models of
the system and its immediate environment using similar  semantics.  Their strategic
dependency and rationale model allow tracing of dependencies between agents, the
goals and tasks with limited reasoning to identify trade offs between functional
requirements and non-functional requirements (referred to as soft goals).  However the
i* enterprise modelling method does not give advice about creating enterprise models,
nor does it contain detailed event dependency analysis such as we have reported.

Dependencies between systems and their environment have been analysed in detail by
Jackson and Zave [28] who point out that input events impose obligations on a required
system.  They propose a formalism for modelling such dependencies.  Formal
modelling is applicable to the class of system they implicitly analyse, e.g. real time and
safety critical applications, but it is less clear how such models can deal with the
uncertainties of human behaviour. Models of user’s goals and their operationalisation in
system requirements can be described in the KAOS language [29] which enables
behavioural requirements and constraints to be formally specified; however, KAOS
does not use scenarios as test data for requirement validation. We believe our scenario
based approach is more appropriate to deal with uncertainty caused by human
behaviour as it focuses on eliciting requirements for dialogue and system function to
repair problems caused by unreliable human behaviour.

So far the method has not dealt with non functional requirements. Scenarios can
capture the necessary criteria which would have to be expressed in quantifiable terms,
for instance by the Goals-  Quality-metric approach  [30], or in a similar manner by
Boehm’s [31] win-win analysis.  The dependency checking proposed in the paper lends
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itself to assessing some non functional requirements. For instance, each inbound/
outbound event that involves a human agent will be mediate by a user interface.
Usability criteria could be attached to these dependencies, while usability guidelines
provide the suggestions for how to satisfy this non functional requirement (see ISO
9241, parts 10,12,13, 16,17). [32] Performance requirements could be assessed by
checking the volume and temporal distribution of events against system requirements,
while security as a non functional requirements have been partially dealt with in the
heuristics in this paper. Elaborating the scenario based approach to cover non
functional requirements is part of our ongoing research.

Scenarios have been used for assessing the impact of technical systems by several
authors [1], [3], [5]. However, these reports give little prescriptive guidance for
analysis, so the practitioner is left with examples and case studies from which general
lessons have to be extracted.  The ORDIT method [16] gives limited heuristics that
advise checking agent role allocations, but these fall far short of the comprehensive
guidance we have proposed.  A more comprehensive enterprise modelling schema is
proposed by Rummler and Brache [33] for analysis of business processes according to
critical success factors.  Our approach has the potential to bridge the gap between
business modelling and requirements engineering via further elaboration of the social
impact analysis.

In many senses the method we have proposed does not contain radically new concepts;
instead its strength lies in integration of previous ideas.  We have brought concepts
from safety critical system assessment [34], [35] to bear on requirements analysis, and
integrated these with scenario based approaches to RE.  We acknowledge the heritage
of the Inquiry Cycle [4]; however this paper has reported a walkthrough method and a
wealth of heuristics that give more comprehensive guidance to solving RE problems.
Stakeholder analysis is another influence which has been extensively researched [36],
but bringing it together with social impact analysis adds further value because the
reasons for stakeholders’ opinions can be made explicit by scenario modelling.
Specification of a requirements analysis process for socio-technical system implication
is a novel contribution where we have broken ground beyond the previous informal
analyses [3], [15].  While some may contend that formalising analytic heuristics can
not capture the diversity of problems in social domains, we answer that some heuristics
are better than none and point out that the method is incremental and grows by
experience.  Failure to formalise knowledge about social implications can only hinder
RE.

One problem with an eclectic approach is that it builds a baroque method, which may
seen to be unwieldy.  Practitioners invariably want ’quick and dirty’ methods [37].  Our
approach does not preclude adoption of lean methods.  Scenario based analysis can be
partitioned into different layers of complexity and developed into variants method to
suit systems with varying levels of complexity forms part of our future work.  Tool
support is also a necessary component of method success.  Accordingly we will
develop intelligent tools that embed the heuristics as a Requirements Engineer’s guide.
A report of an early prototype is given in [38], that guides the analyst through an
agenda of questions and provides suggestions for developing requirements.

In spite of the advances that scenario based RE may offer, we have still to demonstrate
its effectiveness in practice. There is evidence that the approach is effective in



28

empirical studies of earlier versions of the method which did use scenarios but without
the heuristics [5]. Further validation with industrial case studies is part of our research
agenda.  Also we will improve the social impact analysis where we have only just
begun to address the complexities of understanding what might go wrong when
computer system are introduced into the social domain.
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