
1

PRIME:

Towards Process-Integrated Environments1

Klaus Pohl, Klaus Weidenhaupt, Ralf Dömges,

Peter Haumer, Matthias Jark, Ralf Klamma

Lehrstuhl Informatik V (Information Systems)

RWTH Aachen

Ahornstr. 55, D-52056 Aachen, Germany

7R�DSSHDU�LQ��$&0�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ�DQG�0HWKRGRORJ\������

1 The PRIME framework is a result of the Project 445/5-1 "Prozeßintegration von
Modellierungsarbeitsplätzen" funded by the Deutsche Forschungsgemeinschaft. The PRIME
framework has been used to implement two prototypical process-integrated environments within
the ESPRIT Reactive Long Term Research 21.903 Project CREWS (funded by the European
Community) and the Collaborative Research Center (SFB) 476 IMPROVE (funded by the
Deutsche Forschungsgemeinschaft).

2

$EVWUDFW�

Research in process-centered environments (PCEs) has focused on project management support and

has neglected method guidance for the engineers performing the (software) engineering process. It

has been dominated by the search for suitable process modeling languages and enactment

mechanisms. The consequences of the process orientation on the computer-based engineering

environments, i.e. the interactive tools used during process performance, have been studied much

less. In this paper, we present the PRIME (PRocess-Integrated Modeling Environments) framework

which empowers method guidance through process-integrated tools. In contrast to the tools of

PCEs, the process-integrated tools of PRIME adjust their behavior according to the current process

situation and the method definitions. Process-integration of PRIME tools is achieved through

- the definition of tool models;

- the integration of the tool models and the method definitions;

- the interpretation of the integrated environment model by the tools, the process-aware control

integration mechanism, and the enactment mechanism;

- the synchronization of the tools and the enactment mechanism based on a comprehensive

interaction protocol.

We sketch the implementation of PRIME as reusable implementation framework which

facilitates the realization of process-integrated tools as well as the process-integration of legacy

tools. We define a six-step procedure for building a PRIME-based process-integrated environment

(PIE) and illustrate how PRIME facilitates change integration on an easy-to-adapt modeling level.

Following the six-step procedure we have implemented two process-integrated environments

(PRIME-CREWS and TECHMOD) which have been applied in small case studies.

&DWHJRULHV�

D.2.1 [Software Engineering]: Tools

D.2.2 [Software Engineering]: Computer-aided software engineering (CASE)

D.2.6 [Software Engineering]: Integrated environments

D.2.6 [Software Engineering]: Interactive environments

D.2.11 [Software Engineering]: Software Architectures

D.2.13 [Software Engineering]: Reusable Software

D.3.3 [Programming Languages]: Frameworks

H.4.1 [Information Systems Applications]: Workflow Management

J.6 [Computer aided engineering]

K.6.3 [Software Management]: Software process

.H\ZRUGV:� process-centered environments, process-integrated environments, method guidance,

process modelling, process-sensitive tools, tool modelling, tool integration, PRIME

3

�� ,QWURGXFWLRQ

1.1 Process-Centered Environments

During the last decade a tendency of moving from product-oriented computer supported

development environments to process-oriented environments, so-called process-centered

environments (PCEs), could be observed. The process improvement paradigm popularized by

approaches such as the SEI Capability Maturity Model [1] or Total Quality Management [2]

stresses the necessity to focus on the production process in order to achieve better product quality

at decreased costs. Hence, product-oriented environment support in form of data integration

mechanisms (such as repositories or standards for data exchange formats) have to be

complemented by process-oriented support functionality. Striving for continuous process

improvement implies that process knowledge is never stable. Accumulated experiences from

former projects may indicate better ways for performing certain parts of the process. Moreover,

each project imposes its own specific restrictions on how development processes should be carried

out.

The explicit definition of processes in PCEs is a prerequisite for an easy adaptation of the

development processes to project specific needs and the integration of process changes. In contrast,

the process support offered by product-oriented environments is hard-coded. There exists no explicit

process definition. Process changes require reprogramming, and are thus hard to accomplish.

PRGHOLQJ�GRPDLQ

method definition

②�SURFHVV�VXSSRUW
DQG�FRQWURO

③�IHHGEDFN
①�LQVWDQWLDWHG
����SURFHVV�PRGHO

process execution

process enactment

SURFHVV
HQJLQH

SHUIRUPDQFH�GRPDLQ

HQDFWPHQW�GRPDLQ

)LJXUH����7KUHH�GRPDLQV�RI�VRIWZDUH�SURFHVV�VXSSRUW�

PCEs comprise three conceptually distinguishable domains [3], [4]: the modeling, the

performance, and the enactment domains (Figure 1). The PRGHOLQJ�GRPDLQ�comprises all activities

for defining and maintaining process models using a formal language with an underlying operational

4

semantic which enables mechanical interpretation of the models. The HQDFWPHQW� GRPDLQ

encompasses what takes place in a PCE to support (guide, enforce, control) process performance;

this is essentially a mechanical interpretation of the process models by a so-called process engine.

The SHUIRUPDQFH�GRPDLQ is defined as the set of actual activities conducted by human agents and

non-human agents (computers).

Process support provided by PCEs can be characterized by the typical interactions between the

three domains (Figure 1):

1. A process model is instantiated by binding process parameters such as resources and time

scheduling to project specific values, and then passed to the enactment domain;

2. Based on the interpretation of the instantiated model, the enactment domain supports,

controls, and monitors the activities of the performance domain;

3. The performance domain provides feedback information on current process performance to

the enactment domain. This is a prerequisite for adapting process model enactment to the

actual process performance and enabling branches, backtracks, and loops in process model

enactment.

Research in the PCE area has concentrated on the modeling and enactment domains [5]. It has

resulted in a set of mature process modeling languages and enactment mechanisms, e.g. [6], [7], [8],

[9], [10], [11], [12], [13], [5], [14]. Excellent overviews on the research in the PCE area and

comparisons of different approaches can be found in, e.g., [15], [16], [17], [18], [19], [4].

Unfortunately, the consequences for the interactive tools of the environment have been studied

much less. The tools of PCEs do not provide integrated, definition-conform stakeholder guidance.

1.2 Project Management Support vs. Method Guidance

Existing PCEs focus mostly on SURFHVV� �SURMHFW��PDQDJHPHQW�VXSSRUW. Method guidance for the

engineers who are actually performing the (software) engineering process has largely been

neglected. Process management support offered by existing PCEs and method guidance for the

engineers performing the process differ in two main aspects.

- The primary concern of project management support provided by PCEs is to FRRUGLQDWH WKH

LQWHUZRUNLQJ�RI�SHRSOH at the task level, for example, to ensure that tasks (reviewing a design

document, testing a module etc.) are performed in a certain order, information flows

correctly, or time constraints are met. In contrast, method guidance aims at supporting the

engineers performing these tasks [20], [21] such as to guide the engineer during the

refinement of an entity type and the required adjustment of the data flow diagrams, or to

enforce the recording and use of traceability information[22];

- The artifacts managed in current PCEs and the artifacts considered by method guidance vary

significantly in their granularity. While most PCEs consider the products under development

5

and their relations at the OHYHO� RI� GRFXPHQWV (such as Entity Relationship diagrams, design

documents, or test modules) method guidance requires the consideration of a more ILQH�

JUDLQHG�SURGXFW�VWUXFWXUH like entities, relationships, attributes.

Thus, PHWKRG�JXLGDQFH�DLPV�DW�VXSSRUWLQJ�WKH�VWDNHKROGHU�SHUIRUPLQJ�D�WDVN�based on the

explicit definition of best practice gained by generalizing from (individual) experiences. Whereas

process support is defined in so called process models/definitions, method guidance is specified in

method models/definitions. In well understood domains, method guidance could be very restrictive.

For example, the handling of an insurance claim and the criteria for accepting or rejecting the claim

could be precisely defined. The tools used to process the claims should thus enforce and support the

employees in meeting the actual claim handling definitions. Such kind of support is requested by and

researched in the workflow community (cf., e.g., [23]).

In the case of more creative tasks such as design activities, a complete and strict definition of the

task is not possible. But also in creative processes certain sub tasks must be performed in pre-

defined situations, and/or the performance of some sub tasks can be restricted by some predefined

criteria. Those subtasks can be predefined and used to guide the process execution. For example, it

might be defined that whenever a change request requires an adaptation of an approved document,

the change request has first to be approved following a predefined procedure and each change in the

document has to be reported to all stakeholders influenced by the change. Process execution should

thus in general be unrestricted, but support the execution of predefined procedures (sub tasks)

whenever possible. Examples for areas in which such kind of support is required are method-

conform development of conceptual models [20], [21], ensuring consistency between design

documents [24], managing inconsistencies during system development [25], or constructing and

simulating flowsheet models for chemical plants [26].

1.3 Providing Integrated Method Guidance

A prerequisite for method guidance is that there are efficient ways to communicate the project-

specific method definitions to the stakeholders and, as far as possible, ensure that the stakeholders

actually apply the definitions during process execution. There are three principal solutions to

achieve this: KDQGERRNV��VHSDUDWH�JXLGDQFH�WRROV, and�LQWHJUDWHG�JXLGDQFH�

+DQGERRNV: This kind of support is widespread in current industrial practice, where guidelines

and instructions for performing a process or task are provided in handbooks. The usual way of

orchestrating method support in the handbook and the actual process performance is: during a

learning phase each stakeholder learns the guidelines, instructions etc. If the humans performing

the process/task do not remember the guidelines in the corresponding situations, the method

support will not be used. In other words, the actors must know what are "legal" or "good" steps

according to the handbook and under which circumstances these steps can be applied. Of course,

the stakeholder can use the handbook as reference manual to look for details concerning the

method definitions (support), but they have to know (and remember) when to look and for what.

6

Changes in the project-specific definitions cause obvious problems: each potential actor must be

informed about the change and it must be ensured, e.g. by training, that everybody adapts his/her

knowledge according to the change. Using handbooks for providing method guidance also hinders

method improvement. The method definitions can be of high quality, but can be neglected during

task performance. If the method definitions are neglected, the recorded trace and monitoring data

can wrongly indicate the need for a method improvement.

6HSDUDWH� *XLGDQFH� 7RROV: In contrast to handbooks, a separate guidance tool offers direct

support for the process performer. It presents the project-specific method definitions applicable in

a given situation to the stakeholders. Such a tool can range from a web-based browser providing

selective access to the documented method guidance to a task manager which guides, e.g., the

engineer by notifying him about the task to be performed next. Moreover, the guidance tool can be

empowered to invoke the execution of an action or tool, to set up a special working environment,

or to remind the stakeholder about existing definitions. If project-specific adaptations of the

method definitions are integrated in the guidance tool, then the new definitions are immediately

used during process execution by all actors. Furthermore, the performance of a task can be better

controlled, monitored and traced. Thus, compared with a handbook, a guidance tool offers

significantly better support.

Nevertheless, providing project-specific method guidance in a separate tool has some

shortcomings such as:

- 7KH� QXPEHU� RI� XVHU� LQWHUIDFHV� LQFUHDVHV. The user has to interact with the tools used to

perform the tasks and with the guidance tool to report the status of task performance. This is

especially difficult if detailed feedback information is required.

- 3URFHVV�SHUIRUPDQFH�DQG�JXLGDQFH�DUH�QRW�LQWHJUDWHG� The task performer is responsible for

keeping the guidance tool up to date, e.g. reporting the execution of an action, the results, the

actual state, etc. It can thus not be ensured that the current task status of the task performance

is known in the guidance tool.

- *XLGDQFH�LV�W\SLFDOO\�FRDUVH�JUDLQHG. The separate guidance tool has only limited knowledge

about the actual process state which is mainly restricted to abstract document and task states.

In contrast to the interactive engineering tools a separate guidance tool does not know the

states of each product component nor the actions actually being performed. As a

consequence, the guidance offered is typically at a more abstract level (coarse grained).

- 7KH�DFWRU�FDQ�H[HFXWH�DQRWKHU�DFWLRQ, but report the execution of the action suggested by the

guidance tool. Thus the feedback information can simply be wrong, imprecise or idealized to

meet certain expectations. Capturing wrong traceability information can lead to unintended

method "improvement" (it can even spoil the method definitions).

Separate guidance tools such as task managers are typically being used in PCEs to inform the

user about the enactment state and to obtain feedback information about the execution of a task.

7

,QWHJUDWHG�0HWKRG�*XLGDQFH: The limitation of a separate guidance tool can be avoided if the

project-specific method guidance is integrated into the interactive tools used to perform the

activities or tasks, e.g. a tool for handling insurance claims, a CAD tool or a UML editor.

Integrating method guidance into the interactive tools means that the interactive tools

- inform the user about the actual method definitions applicable for the current situation. This

includes to notify the users about existing method guidance for performing the activity and/or

task at hand;

- guide the user in choosing among defined alternative ways of performing an activity or task;

- remind the user if the actual task performance leads to a violation of the best practice

definitions, e.g. to data inconsistencies;

- restrict the services provided according to the method definitions. For example, if the method

definition does not allow a specialization of an entity in certain situations, the tool should

disable the functionality.

The advantages gained by providing integrated method guidance are:

- The stakeholders need not necessarily be aware of the project-specific method definitions

since their interactive tools act as on-line assistant during process performance.

- Updates of the method guidance are directly available in the tool environment of each

workplace.

- Less training effort on “best practices” is required. Integrated method guidance ensures that

the "best practice" is actually being applied, and thus products of higher quality are produced,

errors are avoided and expensive rework is reduced.

Integrated method guidance should, however, not be too restrictive. The user should always be

able to neglect the method guidance offered and to abort the method definition being enacted.

Technically, integrated method guidance can be achieved by either hard-coding the guidance in

the tool environments or by providing the guidance based on the interpretation of explicit method

definitions. Hard-coding the method guidance might be well suited for domains in which the defined

best practice (method guidance) is stable. If there are frequent changes in the method definitions

(like in creative processes) method guidance should, similar to process guidance in PCEs, be based

on the interpretation of explicit method definitions.

To empower the tools in the performance domain to offer model-based, integrated method

guidance and to provide detailed feedback information according to the method definition, a better

integration of the engineering tools and the enactment mechanism is required. Such an integration is

also essential for achieving a synchronization of the enactment and performance domains. The

synchronization is required to adjust the support offered to the current performance state and to

provide sufficient feedback information. The need for a tighter integration of the enactment and the

8

performance domains has been widely recognized, e.g. [27], [3], [28], [29], [30], [31], [32],[33], [5],

[34], [4], [35], [36], [37], but no systematic approach has been proposed so far.

1.4 Structure of this Paper

To achieve model-based, integrated method guidance, we argue in this paper that the interactive

engineering tools of the computer-based environment must be process-integrated. In Section 2 we

define a set of requirements for SURFHVV�LQWHJUDWHG�HQYLURQPHQWV (PIEs).

Towards an ideal solution for achieving these requirements we sketch the basic ideas underlying

our PRIME framework (Section 3). We show that process-integration of tools can be achieved

through

- the definition of the tool capabilities in tool models, the integration of the tool models with

the method definitions and the interpretation of the so gained integrated HQYLURQPHQW�PRGHO

during process execution (Section 4);

- an integration of the enactment and performance domains by an LQWHUDFWLRQ�SURWRFRO and a

SURFHVV�DZDUH�FRQWURO�LQWHJUDWLRQ mechanism which controls message distribution based on

the interpretation of the integrated environment model (Section 5).

Based on these integration ideas, we derive an architecture for process-integrated modeling

environments, called 35,0((Section 6). The generic architectural components of PRIME have

been implemented as an object-oriented implementation framework.

To facilitate the process-integration of legacy tools we outline an extension of the generic tool

architecture of the PRIME implementation framework and elaborate on a set of APIs (application

programming interfaces) to be provided by a legacy tool to be fully process integrable. Using those

extension we sketch the process-integration of VISIO, a commercial CAD tool (Section 7).

For building a PRIME-based process-integrated environment (PIE) we outline a six-step

procedure (Section 8) and demonstrate how PRIME supports the integration of changes on an easy-

to-adapt modeling level (Section 9). Finally, we summarize the main contributions of the PRIME

framework and provide an outlook on future work (Section 10).

PRIME has been used to implement two prototypical process-integrated environments, PRIME-

CREWS and TECHMOD. Throughout the paper we refer to the two environments for illustrating

certain aspects.

9

��5HTXLUHPHQWV�IRU�3URFHVV�,QWHJUDWHG
(QYLURQPHQWV

In the enactment domain, method definitions2 are enacted to drive the modeling process. In the

performance domain, humans use (interactive) tools to execute the proposed method or process

steps. Providing integrated method guidance for the engineers requires an integration of the

enactment and performance domain. Such an integration mainly has to cope with aspects of data,

control and process integration. While we share Wasserman’s view on data and control integration

[38] (see also [39]), we claim that process integration requires certain features which are not

discussed in literature so far.

The requirements elaborated in the next subsections are thus significantly more comprehensive

than those discussed, for example, by [40], [3], [28], [30], [31], [37],[41], [32] whose analysis is

mainly based on the weak integration of the enactment and performance domains in existing PCEs.

They slightly extend the requirements discussed in [42].

2.1 Data Integration

The process engine must pass data to the tools of the performance domain such as parameters of a

service request. The tools return feedback information to the enactment domain, for example, the

results obtained from executing the requested service.

Both kinds of data exchange require an agreement about the information to be exchanged. The

data to be exchanged can be coarse-grained or fine-grained depending on the granularity of the

method definition. Roughly speaking, data integration can be achieved by defining a common data

base schema and recording the data in a logically centralized database (such as PCTE [43], [44]),

and/or by agreeing on the data and their format for each message type (e.g., CDIF [45], XMI/SMIF

[46]). Whereas the second kind of integration requires that the data is actually included in each

message, the first one enables the exchange of object identifiers or views on the common data base

which is especially convenient and efficient for exchanging large amounts of data.

2.2 Service Integration

A WRRO�VHUYLFH is a functionality provided by a tool which can be called from outside such as the

creation of a certain artifact, the compilation of source code, or printing a document. Tool services

can vary in their complexity. To ensure that the tools of the performance domain can execute the

services requested from the enactment mechanism, the tools must be considered when defining

method definitions.

2 For the process-integration requirements discussed in this sections, the terms method
definitions/models can be seen as equivalent to process definitions/models.

10

Therefore, the method engineer has to collect information about the available tools, their

services and the service invocation such as parameters required from various sources such as

manuals, program documentation, personal knowledge and/or experience. Considering the

heterogeneous environments and work settings which exist today in industry, mechanisms are

required which systematically support the method engineer in finding and assigning adequate tool

support to certain method steps. If the capabilities of the tools like their services and the in and out

parameters of the services are defined at a conceptual level the method engineer can be supported in

relating the tool services to the method definitions. For example, the tool and method definitions can

be compared and discrepancies, such as lack of sufficient tool functionality or wrong assignments,

can be detected.

Current process modeling formalisms lack comprehensive modeling concepts for representing

tool resources at the same conceptual level as processes. They offer only limited, low-level

constructs for representing service invocation. Examples include the black transitions in SPADE [7],

or the wrapping techniques for the black-box integration employed in the OZ environment [32],

[36].

2.3 Invocation of Method Fragments

Methodical support for creative processes cannot be fully predefined. Many criteria which

influence the actual performance are not known a priori and some method steps themselves are

poorly understood. The actual method execution is thus often driven by humans who, depending

on the given situation, decide what to do next. Method execution depends on intelligent and

creative individuals who make the right decisions. It is thus important that the computer-based

environment does not restrict the humans in their creativity.

On the other hand, even in creative processes there exist steps which are well understood, do not

depend on unknown criteria and, thus, can be predefined and must be followed [47], [4]. Examples

for such "steps" are the integration of change requests of formally approved documents,

documentation and traceability guidelines imposed by a contract, or the assessment of the

creditability of a customer. To increase the productivity and the quality of the product under

development, such method knowledge should be used, whenever possible, to guide the engineer. As

a consequence, the understood steps should be defined in, what we call, PHWKRG�IUDJPHQWV.

In contrast to a method definition which typically defines a whole method, a method fragment is

a partial definition which specifies the guidance for a well understood method part. Nevertheless, a

method fragment can and should be used to guide the users of a computer-based environment

whenever the current situation demands/indicates the execution of the method fragment.

The computer-based environment should, of course, support the user in the invocation of a

predefined method fragment. Process-integrated tools must thus provide means for initiating the

execution of predefined method fragments. This can be achieved by comparing the current process

situation with the method fragment definitions.

11

2.4 Process Sensitive Tools (Informing the User about the
Enactment State)

A tight integration between the enactment and performance domains can only be achieved if both

domains consider the process status of each other. The enactment domain has to consider the

current performance state for deducing the steps to be performed next (Section 2.5), whereas the

current enactment state has to be reflected in the performance domain.

Only if the user is aware of the enactment state and the method definitions she or he is able to

understand the guidance provided by the enactment domain. Moreover informing the user about the

current enactment state (i.e. the current performance state assumed by the enactment domain)

empowers the user to correct wrong and change undesired states. In existing PCEs the enactment

state is, if at all, typically accessible for the user via a separate user interface (tool). As a

consequence, the actual state is often not considered when interacting with the computer-based

engineering tools. To ensure that the user is aware of the current enactment state, we argue that the

interactive tools used should be process sensitive.

A process sensitive tool adapts its behavior (the user interactions allowed and the services

provided) according to the current enactment state and the method definitions. For example, the

selectability of product parts may be restricted to the ones allowed in the current state, or the product

parts on which a service can be performed might be highlighted to draw user attention to them.

Moreover, a process sensitive tool empowers the user to activate predefined method fragments.

Since method fragment definitions are subject to frequent change, the activation of predefined

fragments should not be hard-coded in the tool. Instead, the activation should be based on the actual

method fragment definitions. In other words, the tools have to be process-aware and have to know

the activation criteria for the defined method fragments.

Supplying the performance domain with knowledge about the enactment state is straightforward

in situations where a particular service has to be performed on a specific product part. In this case,

the relevant product parts are passed as parameters of the service request. For example, if the entity

"book" should be deleted, the entity "book" is passed as parameter of the delete service.

If there are alternatives among which the user can choose passing the required information to the

performance domain is much more complicated. The enactment domain must inform the tools about

the alternative services (strategies) allowed and the product parts on which the services can be

applied. For example, assume that for integrating a certain type of requirement, the user can choose

between two alternative services, namely the definition of a new entity and the refinement of an

existing entity. To guide the user, the tool must display the allowed alternative services together with

the existing ER-diagram. Moreover, the tool should only enable the selection of entities since the

two services can only be performed on entities. Attributes, relationships, role names and cardinalities

should thus not be selectable.

12

2.5 Feedback Information (Informing the Process Engine
about Performance State)

For adjusting the enactment state according to the actual process execution, the performance

domain must provide feedback information about service executions. The data to be exchanged

depends on the service executed. Consequently, the feedback data has to be defined as out-

parameters for each service type (see service integration above). In addition, information about the

current performance state including unforeseeable events such as a process deviation have to be

provided. This information can either be created by observing (monitoring) activities, or directly

provided by the user.

Technically, a control integration mechanism should be used to take care of correct distribution

of the feedback information.

The problem of gathering feedback information from the performance domain has been widely

recognized. For example, SPADE [7] has introduced a specific Petri-Net construct, the user input

place. Message events generated by the tools have to be reified into tokens of such places. In

Provence [48], [49] the enactment mechanism captures events from the performance domain via a

monitoring system for operating system traps such as file system accesses. But mapping

performance domain events to feedback information understood by the enactment mechanism is by

far not trivial, e.g. deducing that saving a file in a text editor means that a bug fix in the source file

has been completed.

2.6 Synchronization of Enactment and Performance Domains

The definition of an interaction protocol and its consideration within each domain is a prerequisite

for synchronizing the states of both domains. In current PCEs, the interaction between the

enactment domain and the tools is typically established by an implicit client-server relationship:

The enactment domain acts as a client which requests the execution of a tool service. Conversely,

the tool plays the role of a server which executes the service and returns the results (feedback

information) to the enactment mechanism. This simple cooperation pattern is sufficient as long as

we consider traditional tools which are not process-integrated.

The more active role of process-integrated tools (Section 2.3 - 2.5) requires an interaction

protocol between the two domains more elaborated than the client-server. Such a protocol should,

for example, distinguish between different process states such as normal process performance,

process deviations, the performance of automated services, or user choices.

2.7 Process-Aware Control Integration Mechanism

In contrast to service integration, which considers the service interfaces, a control integration

mechanism is required for transmitting particular service requests and feedback information

13

between the components of a process-integrated environment. A control integration mechanism is

responsible for passing the requested service to a tool which is able to execute the service. To

enable correct physical distribution of the service requests and the feedback information provided

after service execution, the control integration mechanism has to be aware of the services provided

by a particular tool. In addition, service and feedback distribution have to consider relevant

knowledge defined in the method model. For example, when distributing a service the control

integration mechanism has to consider if the model restricts the allocation of possible resources

needed for performing the service, or if the model explicitly defines a particular service provider.

Thus, either the control mechanism must be process-aware, i.e. it must know the relevant parts of

the actual method definition, or the enactment domain must instruct service distribution according

to the method definition. Most existing PCEs (e.g. SPADE [50], MELMAC [11], Merlin [51],

Process WEAVER [12]) offer neither a process-awareness of the control mechanism nor the

ability of the enactment domain to control service distribution.

Existing control integration mechanism like FIELD [52], BMS of HP’s Softbench [53], ToolTalk

[54], CORBA [55] or (D)COM [56] provide an excellent foundation for implementing a process-

aware control integration mechanism.

��35,0(��.H\�6ROXWLRQ�,GHDV

Our PRIME framework provides solutions to the seven requirements discussed in Section 2.

PRIME is based on three basic ideas:

1. The explicit definition of WRRO�PRGHOV and their integration with method definitions (Section

4). We argue that, from a modeling perspective, tools should no longer be treated as second

class citizens. Instead, the capabilities of tools should be explicitly defined and related with

the process/method definitions. The integration of the tool and the method definitions forms

an HQYLURQPHQW�PRGHO which lays the foundation for the process-integration of the interactive

engineering tools and for a tighter integration of the performance and enactment domains.

2. The LQWHJUDWLRQ� RI� WKH� SHUIRUPDQFH� DQG� WKH� HQDFWPHQW� GRPDLQV (Section 5). The

synchronization of both domains is achieved by a comprehensive LQWHUDFWLRQ�SURWRFRO which

defines the principal behavior of both domains. The interaction protocol defines a richer

interaction pattern which, in contrast to most PCEs, empowers both domains to act as a

client. The enactment domain can request the execution of tool services and the performance

domain can request the enactment of predefined method fragments. Model conform

distribution of service requests and feedback information is guaranteed by the SURFHVV�DZDUH

FRQWURO� LQWHJUDWLRQ mechanism which controls message distribution based on the

interpretation of the environment model.

3. *HQHULF� DUFKLWHFWXUHV for process-integrated tools and enactment mechanisms which,

together with a process-aware control integration mechanism, comprise the PRIME

14

implementation framework (Section 6). Both architectures ensure that method execution is in

accordance with the environment model and the interaction protocol. The generic tool

architecture facilitates process sensitivity by supporting the invocation of predefined method

fragments and guaranteeing that the guidance provided to the user corresponds to the method

definition and the current process situation. The generic enactment architecture handles

enactment requests of the performance domain by enacting the requested method fragments

and provides means for an easy integration of existing enactment mechanisms.

HQDFWPHQW�GRPDLQ

SHUIRUPDQFH�GRPDLQ

ab
or

t
re

qu
es

ten
ac

tm
en

t

PRGHOLQJ�GRPDLQ

method
definition

tool
models

HQYLURQPHQW�PRGHO JHQHULF
WRRO

DUFKLWHFWXUH
6HFWLRQ��

LQWHJUDWLRQ�RI�SHUIRUPDQFH
DQG�HQDFWPHQW�GRPDLQV
➫�process aware control integration
➫ interaction protocol

6HFWLRQ��

LQWHJUDWLRQ�RI�SHUIRUPDQFH
DQG�HQDFWPHQW�GRPDLQV
➫�process aware control integration
➫ interaction protocol

6HFWLRQ��

JHQHULF�WRRO�DQG�HQDFWPHQW
DUFKLWHFWXUHV
➫ process sensitivity
➫ correct feedback information
➫ invocation of process fragments

6HFWLRQ��

JHQHULF�WRRO�DQG�HQDFWPHQW
DUFKLWHFWXUHV
➫ process sensitivity
➫ correct feedback information
➫ invocation of process fragments

JHQHULF
SURFHVV�HQJLQH
DUFKLWHFWXUH

VH
UY
LFH
�UH
TX
HV
W

IH
H
G
E
D
FN

6HFWLRQ��

WRRO�PRGHOV�	�WKHLU�LQWHJUDWLRQ
ZLWK�PHWKRG�GHILQLWLRQV
➫�data integration
➫ service integration
➫ foundation for

➫ process sensitivity
➫ correct feedback information
➫ invocation of process fragments

6HFWLRQ��

WRRO�PRGHOV�	�WKHLU�LQWHJUDWLRQ
ZLWK�PHWKRG�GHILQLWLRQV
➫�data integration
➫ service integration
➫ foundation for

➫ process sensitivity
➫ correct feedback information
➫ invocation of process fragments

WRRO
GHILQLWLRQ

LQVWDQWLDWHG
PHWKRG�IUDJPHQW

PHWKRG�IUDJPHQW�GHILQLWLRQ

WRRO�GHILQLWLRQ

)LJXUH����7KH�WKUHH�NH\�VROXWLRQ�LGHDV�RI�35,0(��<pohl2.ps, pohl2.tif >

&RPSDULVRQ�ZLWK�5HODWHG�:RUN

Whereas the main focus of PRIME is to establish integrated, model-based method guidance

based on a tight integration between the enactment and the performance domain (i.e. the process

engine and the interactive tools used to perform the process), most research contributions do not

consider the integration of tools in PCEs although the problems of a posteriori integration of existing

CASE tools have been widely recognized (e.g.[19], [34], [57], [31]). Bandinelli et al. argue that

�D�SRVWHULRUL�WRRO�LQWHJUDWLRQ��H�J��E\�PHDQV�RI�ZUDSSHUV��FRXOG�EH�OHVV�HIIHFWLYH�VLQFH�D

WRRO�LV�VWLOO�VHHQ�DV�D�PRQROLWKLF�µRSHUDWRU¶���>��@�

Consequently, existing PCEs do not offer process-integrated tools.

An exception, where means for white-box integration are offered, is the GTSL approach [29]

developed within the GOODSTEP project [58] which aims at the JHQHUDWLRQ of specific tool

services, schemata, and consistency checks from tool specifications which are coupled with process

15

models. GTSL mainly provides solutions to the service and data integration problem, but does not

provide means for the invocation of method fragments or for dynamic adaptation of the tool

behavior according to the process definition and the enactment state.

Meta-CASE environments like MetaEdit+ [59] are based on the generation of tools according to

a specification. They focus mainly on notational aspects, but lack process-orientation (see [60] for a

detailed comparison of the complementary adaptability mechanism provided by MetaEdit+ and

PRIME).

Existing process modeling languages focus on the constructs and their semantics needed to

define processes and enactment mechanisms which can be used to interpret the definitions. They

mainly neglect tool definitions. Some provide low-level constructs for the invocation of foreign

programs like black transitions in SLANG [7], or the binding of abstract process operators to tools

during process instantiation in ALF [61].

Control-oriented tool integration approaches like FIELD [52] and its commercial derivatives

(such as HP’s BMS [53] and Sun’s ToolTalk [54]) as well as object-oriented distribution

infrastructures like CORBA [55] or (D)COM [56] store tool (service) descriptions in the interface

repositories accessed by the message servers/object brokers. However, they provide limited means

for defining processes.

As a consequence, if at all, tool and process models coexist in the message server repository and

in the process repository without a systematic approach for assuring consistency. Many PCEs like

SPADE [7], Process WEAVER [12], EPOS [62], and Merlin [51] employ such mechanisms for

invoking tool services, although the tool models used by the message server and the process models

used by the enactment domain are not (systematically) integrated.

Tool invocation in existing PCEs is mostly restricted to the invocation of "atomic" tool actions

or services. User guidance by adapting the accessible objects and operations through guidance

services is not (systematically) supported. The interactive tools of existing environments are not

process-integrated.

In the Multi-Tool-Protocol (MTP) approach [36] the single/multi-user and single/multi-task

capabilities of tools are explicitly defined. The explicit tool classification empowers MTP to provide

better tool invocation support than conventional black box approaches. In contrast to PRIME, MTP

does not provide any means for facilitating the adaptation of tools according the process definition

and the actual process situation (enactment state). Nevertheless, the actual tool invocation in a

PRIME based environment could make use of the MTP facilities.

The FIELD-based Forest environment [63] is an attempt to establish a central description of

processes and tools. Forest extends the tool-related message distribution patterns stored in the

message server by so-called policy descriptions which can be regarded as primitive process

definitions. Although this approach improves the integration of tool and process models it provides

no systematic means for establishing process-sensitive tools. It does also not support the invocation

16

of method fragments, and thus, similarly to most other PCEs, it does not allow a more active role of

the humans executing the process which is one of the main achievements of PRIME.

Especially in desktop environments (Windows, MacOS), the document-centered paradigm has

become more and more popular in recent years. Document models such as OLE [56] or OpenDoc

[64] provide the technical foundation for blurring the boundaries between individual tools in that

certain functionality is (from a presentation perspective) no longer bound to specific tools but to

document objects. Document objects can be nested within container documents forming so-called

compound documents. The tool functionality is then presented to the user, e.g., through context-

sensitive menus which display only those functions which are applicable in the selected document

context. In this sense, the “document acts as an intelligent assistant of its user” [65] and the

individual tools providing the operations on the documents step aside from a user perspective.

However, the context sensitivity in the document-centered paradigm mainly deals with the functions

which are bound to the currently activated document context. It is not coupled to any method or

process definitions. Functionality across documents defined in method or process definition is thus

only rudimentarily supported. Moreover, there is no generic, model-based mechanism for defining

functionality across documents nor for attaching the invocation of method fragments to certain

document parts or even product constellations across different documents.

In summary, the need for tighter (process) integration of engineering tools was recognized and

some partial solutions to the problem exist. So far, no comprehensive approach was proposed which

establishes process-integration of tools and, in addition, enables the humans performing the process

to play a more active role.

�� ,QWHJUDWHG�7RRO�DQG�3URFHVV�0RGHOV

According to the requirements discussed in Section 2, there are�WKUHH�W\SHV�RI�VHUYLFHV in process-

integrated environments (PIE): automated, guidance, and enactment services [42].

$XWRPDWHG�VHUYLFHV require no user interactions and are executed by the tool according to the

service request obtained by the enactment domain. An example for an automated service is the

compilation of source code or the automated recording of traceability information.

*XLGDQFH� VHUYLFHV guide the user in making a selection among a set of alternative services

and/or product parts. If the execution of a JXLGDQFH� VHUYLFH is requested, the tool must adapt its

behavior (the services offered and the product parts displayed at its user interface) according to the

method definition and the information obtained with the service request. An example for a guidance

service is the refinement of an entity type which defines two alternatives: introducing a

discriminating attribute or specializing (subtyping) the entity type. The tool has to display the

defined alternatives to the user (e.g. as menu options), and the user has to choose the alternative to

be executed.

17

(QDFWPHQW� VHUYLFHV enable the tools to request the enactment of a complex method fragment

from the enactment domain. An example for a complex method fragment is the "subtyping" of the

entity. This fragment consists of a set of steps (services) which have to be performed in a certain

order. Thus, the fragment has to be enacted by the process engine. If the user chooses the subtype

alternative the ER editor has thus to request the execution of the complex method fragment by the

process engine.

Since a method model defines when and how a service (method fragment) should be performed,

the process meta model (process modeling language) must provide appropriate concepts to define

the three service types as well as their situated invocation (Section 4.1).

The tool model defines the services provided by a tool. A tool meta model (tool modeling

language) must thus provide appropriate concepts to define the capabilities of the interactive tools

used to perform the services (Section 4.2).

In Section 4.3 we describe the integration of the tool and process/method meta models into the

HQYLURQPHQW�PHWD�PRGHO. In Section 4.4 we summarize the contribution of the environment meta

model to the process-integration requirements outlined in Section 2.

4.1 The Process Meta Model: Defining Method Fragments

To define the three service types we suggest to use the contextual process meta model developed

in the ESPRIT project NATURE (see [66], [67], [68], [47], [4] for a detailed description). Figure 3

introduces the key concepts of the meta model and their relationships using the OMT notation

[69].

Briefly, a VLWXDWLRQ is built from product parts of the SURGXFW undergoing the development

process. An LQWHQWLRQ reflects the goal to be achieved in a given situation. A FRQWH[W represents a

meaningful relation between a situation and an intention. Thus, the meta model provides concepts

for the explicit representation of situations and the goals to be achieved in such situations. The

notion of context is further refined into executable, choice and plan contexts:

- ([HFXWDEOH�FRQWH[WV represent the part of the definitions which can be strictly enforced, or

even automated. An executable context is operationalized by performing the DFWLRQ related to

this context. Performing the action changes the product and may thus generate new

situations;

- &KRLFH�FRQWH[WV represent the part of the definitions in which the user has to make a decision.

For each choice context, at least two DOWHUQDWLYHs must be defined. An alternative can be

another choice, executable, or plan context. For each alternative, DUJXPHQWs (pros and/or

cons) can be provided to guide the application engineer in choosing one of the alternatives;

- 3ODQ�FRQWH[WV define a strategy to be followed to fulfill a particular intention (goal). A plan

context defines a certain order on a subset of arbitrary contexts. It can be used to enforce the

18

application engineer to deal with the contexts in the order defined. It thus corresponds to an

enactment service provided by the process engine.

UHODWHGBVLWXDWLRQ UHODWHGBLQWHQWLRQ

,QWHQWLRQ

3URGXFW

EDVHGBRQ

6LWXDWLRQ

&RQWH[W

3URGXFW

3ODQ

&RQWH[W

&KRLFH

&RQWH[W

([HFXWDEOH

&RQWH[W

$OWHUQDWLYH

$UJXPHQW

$FWLRQ

FRPSRVHGBRI

FKDQJHV

DSSOLHG
E\

SURFRQ

��
��

��

$FWLRQ

)LJXUH����7KH�1$785(�SURFHVV�PHWD�PRGHO�>��@��>��@�

4.1.1 Defining Method Fragments Using NATURE’s Process Meta

Model

To define method guidance, the process meta model has to be instantiated. Thereby a concrete

method definition is established. The definition of automated and guidance services is

straightforward.

$XWRPDWHG�VHUYLFHV are defined as executable contexts. For each executable context, the situation

and the intention which together specify the activation criteria have to be defined. Moreover, each

executable context has to be related to the action to be performed whenever the executable context is

activated.

*XLGDQFH�VHUYLFHV are defined as choice contexts. Similarly to executable contexts, also for each

choice context a situation and an intention has to be defined. Moreover, for each choice context the

allowed alternatives have to be defined. In addition, for each alternative arguments supporting or

declining their choice can be defined.

(QDFWPHQW� VHUYLFHV are defined as plan contexts. Whereas the definition of the criteria for

activating a plan context (situation and intention) is similar to the definition of executable and choice

contexts, the definition of the plan itself is more complicated. According to the process meta model a

plan context is composed of a set of choice, executable, and/or other plan contexts. In addition, the

sequence of activation of those contexts has to be defined by some kind of FRQWURO�IORZ. Thus, the

definition of the plan context requires a language with higher expressiveness. For defining the

control flow of plan contexts, we do not argue to extend the contextual meta model with additional

concepts and an operational semantics. Rather, we suggest to represent the concepts of our model in

19

an existing process modeling language which supports the definition of control flows and has an

operational semantics. The main requirements for such a language are enactability, modularity for

enabling the invocation of fine-grained method fragments, and composability for nesting method

fragments (arbitrary contexts). If a particular language has been chosen, the three context types and

the notion of situations and intentions must be represented by concepts provided by the language.

4.1.2 Service Definition in SLANG

For our prototypical environments (see Section 8.2) we have chosen the Petri-Net language

SLANG [7] and the imperative language C++. In both languages we have defined templates which

support the definition of the three context types. In the following, we sketch the context definition

in SLANG.

Plan contexts and choice contexts are modeled as sub-nets in SLANG. Executable contexts are

modeled as transitions (depicted as gray bars; see Figure 4). The situation type and the intention of

each context is mapped within a SLANG net to a set of situation places (depicted as circles

enclosing a square) and an intention place (depicted as circles enclosing a triangle). Each situation

place carries structured tokens representing the product parts of the corresponding situation type.

Thus, for each transition and for each sub-net representing a context, a set of "entry" places is

defined. Similarly, "output" places are used to define the result of the execution of a context. In the

case of executable and plan contexts, the output consists of a set of places representing the

created/changed product parts. The result of a choice context is defined by a set of situation/intention

place pairs which represent the possible alternatives of the choice context.

To activate a context defined in a SLANG (sub)net, the required tokens must be moved into the

corresponding situation and intention places, e.g. by mapping the output places of a preceding

context to the "entry" places of another context and by filling its intention place through additional

transitions. We call such additional transitions control transitions (see [70] for details).

4.1.3 Defining Method Guidance: An Example

To illustrate the definition of a plan context in SLANG we specify the method guidance for

subtyping an entity type and adjusting the corresponding data flow diagrams.

The subtyping of an entity type is likely to influence the definition of the data flow diagrams

(DFDs). For example, the entity being subtyped could correspond to a data store defined in a DFD.

In some cases it is useful to refine the effected data stores and/or the adjacent data flows or even to

create new processes which operate differently on the refined DFD elements. The guidance is thus

defined as plan context 3&B6XEW\SH(QWLW\QGGMXVW')'.

Figure 4 depicts the specification of this plan context in SLANG. Within the plan context

3&B6XEW\SH(QWLW\QGGMXVW')' the subtyping of an entity is defined by the plan context

20

3&B6XEW\SH(QWLW\ (see upper left part of Figure 4). This context is activated by the start transition

which maps the tokens of the situation place (QWLW\7R%H6XEW\SHG to the situation place 6XSHU(QWLW\

and fills the intention place 6XEW\SH(QWLW\. The data stores and adjacent flows related to the subtyped

entity are retrieved by the executable context (&B*HW'HSHQGHQW2EMHFWV. The situation places of this

context consist of the source object (pre-filled with the entity type to be subtyped) and the target

types of the dependent objects to be retrieved (pre-filled with a token of the type ')'B(OHPHQW). A

token is moved into the intention place of the executable context (&B*HW'HSHQGHQW2EMHFWV after the

plan context 3&B6XEW\SH(QWLW\ has been executed. The intention place *HW'HSHQGHQW2EMHFW is

defined as output place of the plan context (cf. Figure 4). This activates the executable context

(&B*HW'HSHQGHQW2EMHFW which retrieves the dependent objects. Those objects are passed to the

output place ')'B(OHPHQWV.

According to the definition of the plan context 3&B6XEW\SH(QWLW\QGGMXVW')', the user can

choose which DFD element is going to be adapted first, i.e. the place ')'B(OHPHQWV is defined as

situation place of the choice context &&B$GDSWB')'B(OHPHQW and the intention place of this

context is filled after the executable context (&B*HW'HSHQGHQW2EMHFW has been terminated. In

addition to the DFD element, the user has to choose one out of the four alternatives defined for this

choice context (middle part of Figure 4):

- $GDSW� WKH� VHOHFWHG� GDWD� IORZ� HOHPHQW: Method guidance for the adaptation of the DFD

element is defined as plan context (3&B$GDSW')'(OHPHQW). Among others, the plan context

contains a choice context offering three different alternatives to the requirements engineer,

namely to specialize an adjacent data flow of the data store which corresponds to the

specialized entity, to specialize the data store itself, or to partition the data store and

introduce new processes and flows which operate differently on the data stores;

- $GG�WR�WKH�WDVN� This alternative is defined as executable context (&B$GG7R7DVN/LVW which

adds the adaptation of the selected DFD element to the open task list of the requirements

engineer;

- /HDYH� ')'� HOHPHQW� XQFKDQJHG: The executable context 1R&KDQJH5HTXLUHG removes the

token representing the selected DFD element from the place ')'B(OHPHQWV, i.e. by choosing

this alternative the requirements engineer indicates that the selected DFD element (or

elements) need not to be changed;

- 4XLW�DGDSWDWLRQ: If the engineer chooses this alternative she or he indicates that the remaining

DFD Elements need not to be adapted and thus the plan context

3&B6XEW\SH(QWLW\QGGMXVW')' terminates.

21

DFD
Elements

SubtypeEntity Entity To Be
Subtyped

Super
Entity

Subtype
Entity

GetDependent
Objects Source

Object

DFD_Element

Target
Types

PC_SubtypeEntity
EC_GetDependentObjects

AdaptDFD
Elements

DFD
Elements

Source
Object

CC_Select
DFDElement

PC_Adapt
DFDElement

EC_AddTo
TaskList

Intention Place

DFD
Elements

No Change
Required

Quit
Adaption

Situation Place

Control Place

Control Transition

Executable Context

Sub-Net
(Choice/Plan Context)

)LJXUH�����6/$1*�GHILQLWLRQ�RI�WKH�SODQ�FRQWH[W�3&B6XEW\SH(QWLW\QGGMXVW')'�

We will reuse this plan context to illustrate the assignment of executable and choice contexts to

specific tool categories (Section 4.3) and to demonstrate the dynamic adaptation of the tool behavior

(Section 8.4).

4.2 The Tool Meta Model: Defining Tool Capabilities

Representing methods and tools at a conceptual level is a prerequisite for comparing and mapping

the services defined in the process/method model with the services offered by the tools of the

environment. For achieving process-sensitive tools we propose to model tools not only in terms of

the services provided (as in other PCE approaches), but also in terms of their graphical user

interface and interaction capabilities.

In the following, we outline our tool meta model which was designed to facilitate an easy

integration with the contextual process meta model. The cornerstone of the tool meta model is the

concept WRRO�FDWHJRU\. By instantiating this concept the tool categories provided in the environment

are defined such as an ER editor or DFD editor (Figure 5). The atomic services (actions) provided by

a tool are defined as instantiation of the concept DFWLRQ like the action &UHDWH,V$/LQN. In addition,

each atomic service (action) is related to the tool category via the SURYLGHVBDFWLRQ association. For

example, by instantiating this association one can define that the (5B(GLWRU provides the action

&UHDWH,V$/LQN. As a prerequisite for data integration the LQSXW and RXWSXW parameters for each action

have to be defined like the input of the &UHDWH,V$/LQN action (the VXSHU and VXE entity type) or the

output of the action (the created ,V$/LQN� cf. Figure 5).

22

The graphical presentation of the product parts is defined as instantiation of the association

GLVSOD\V between a graphical shape and a product part provided by the tool. As depicted in Figure 5

it can be defined that an (QWLW\ (instance of 3URGXFW) has to be displayed as a 5HFWDQJOH (instance of

*UDSKLFDO6KDSH).

$FWLRQ3URGXFW

GLVSOD\V

*UDSKLFDO

6KDSH

7RRO

&DWHJRU\

&RPPDQG

(OHPHQW

3XOO�'RZQ

0HQX
&RPPDQG

,FRQ

&RQWURO

.H\

SURYLGHV
DFWLRQ

LQSXW

RXWSXW

SURYLGHV�FRPPDQG

����

����

��

��

5HFWDQJOH

(QWLW\

,V$OLQN
&UHDWH

,V$OLQN
'RFXPHQW

(GLW

3UHIHUHQFHV

&WUO�,
(5

(GLWRU
GLVSOD\V

VXE

VXSHU

7RRO�0HWD�0RGHO

7RRO�0RGHO

)LJXUH�����7KH�WRRO�PHWD�PRGHO�

Besides the capabilities of a tool for displaying product parts, also the interaction capabilities

have to be defined. We assume that each tool enables the selection and de-selection of product parts

and thus we do not model these interactions. In contrast, the &RPPDQG(OHPHQWV provided by a tool

have to be explicitly defined. We distinguish three types of such capabilities, namely

3XOO'RZQ0HQX, &RQWURO,FRQs and &RQWURO.H\s3. For example, the three pull-down menus provided

by the ER editor ('RFXPHQW, (GLW, 3UHIHUHQFHV) are modeled as instances of the concept

3XOO'RZQ0HQX and related to the ER editor through instantiations of the SURYLGHVBFRPPDQG

association. Similar, the control key supported by the ER editor (&WUO�,) is defined as instance of the

class &RQWURO.H\ and related to the ER editor.

3 We currently support mainly window-based, interactive tools which enable user interactions via
icons, menus, shortcuts and pointers. If other interaction facilities are required the tool model has
to be adapted by defining corresponding concepts and relating them to the tool model and to the
context definitions (see next section for details about the interrelations between the tool and the
process definitions). However, as explained in detail in Section 6.2 the tools used in the
environment must be able to interpret the models and adapt their behavior accordingly.

23

4.3 The Environment Meta Model: Interrelating Process and
Tool Meta Models

The process meta model provides concepts for defining method fragments in terms of executable,

choice and plan contexts. The tool meta model provides concepts for defining the capabilities of

the tools available in the environment. By interrelating the tool and process meta models an

integrated meta model, the so-called HQYLURQPHQW�PHWD�PRGHO, is formed which defines how and

by whom a context has to be executed.

Since the tool meta model was designed with this interrelation in mind, the integration of the

tool and process meta models is fairly easy. The integration can be achieved by defining three types

of association between the two models (see Figure 6: dashed lines).

UHODWHGBVLWXDWLRQ UHODWHGBLQWHQWLRQ

3ODQ
&RQWH[W

&KRLFH
&RQWH[W

([HFXWDEOH
&RQWH[W

DOWHUQDWLYH

$UJXPHQW

,QWHQWLRQ

$FWLRQ3URGXFW

FRPSRVHGBRI

EDVHGBRQ

FKDQJHV

DSSOLHG
E\

SURFRQ

6LWXDWLRQ

&RQWH[W

�� ��

��

$FWLRQ

SURFHVV�PHWD�PRGHO

*UDSKLFDO
6KDSH

&RPPDQG
(OHPHQW

3XOO�'RZQ
0HQX

&RPPDQG
,FRQ

&RQWURO
.H\

SURYLGHV
DFWLRQ

LQSXW

RXWSXW

SURYLGHV�FRPPDQG

����

����

��

��

WRRO�PHWD�PRGHO

VKDUHG�FRQFHSWV

GLVSOD\BRIB
LQWHQWLRQ

SURYLGHV
([HFXWDEOH
&RQWH[W

SURYLGHV
&KRLFH
&RQWH[W

UHODWLRQV�EHWZHHQ
WRRO�	�SURFHVV�PRG�

GLVSOD\V
7RRO

&DWHJRU\

3URGXFW

)LJXUH�����(QYLURQPHQW�PHWD�PRGHO��,QWHJUDWLQJ�SURFHVV�DQG�WRRO�PHWD�PRGHOV�

4.3.1 Relating Tool Categories and Executable Contexts

Each executable context defined in the process model has to be associated with the tool category

responsible for executing the context. This responsibility is represented as an instance of the

association SURYLGHVBH[HFXWDEOHBFRQWH[W (Figure 6). For example, if the executable context

(&B&UHDWH(QWLW\ is related to a tool category (5B(GLWRU the ER editor has to perform the action

associated in the process model with this context.

Given an executable context (, the associated action $ and a set of tool categories�7� - 7Q, we

distinguish three types of assignment:

24

- DXWRPDWHG�DVVLJQPHQW: If there exists exactly one tool category 7L which offers the required

action $� this tool category can automatically be associated to the executable context (;

- FKRLFH� RI� WRRO� FDWHJRU\: If there exist two or more tool categories 7�� �� 7Q which offer the

required action $� the method engineer must relate exactly one tool category with the

executable context (;

- ODFN�RI�WRRO�VXSSRUW: If no tool category provides the required action, a new tool action has to

be implemented in a tool and defined in the corresponding tool model, or the process model

has to be changed.

For each assignment between a tool category and an executable context two consistency checks

can be performed to ensure that the input and output defined for the tool action in the tool model

corresponds with the process model definitions.

&RQVWUDLQW�(�: Ensure that the output associations defined in the tool model between the action

and the product parts are subsumed by the change associations defined for the action in the

process model. Given an action $. Let 3R be the set of product parts related to $ in the tool model

using RXWSXW associations and 3F the set of product parts related to $ in the process model via

FKDQJH associations. Then, 3R must be a subset of3F�.

&RQVWUDLQW�(�: Ensure that all product parts defined as input for the action are subsumed by the

situation of the executable context related to the action. Given an action $. Let 3L be the set of

product parts related to $ in the tool model via input associations. Let (be the executable context

associated to the action $ in the process model, 6 its situation and 3V the set of product parts

defined for the situation. Then 3L must be a subset of3V.

Only if both checks are successful, i.e. if the input and output parameters defined in the tool

model correspond with the process definitions, the tool category can be assigned to the executable

context.

4.3.2 Relating Tool Categories and Choice Contexts

Each choice context has to be related to exactly one tool category by a SURYLGHVBFKRLFHBFRQWH[W

association. Thereby the tool category assigned to the choice context is made responsible for

performing the choice context. Thereby a new guidance service is defined for the tool category.

In addition, for each context &M defined as alternative of the choice context && the presentation

of the intention , related to the context &M has to be defined. Since an intention like the intention

GHOHWH can be associated with more than one context, for example, the contexts GHOHWH(QWLW\ and

GHOHWH$WWULEXWH, a context dependent presentation of the intention is required. This is achieved by

relating the context &M to at least one command element using the GLVSOD\BRIBLQWHQWLRQ association

(see Figure 6).

25

As the relation of an executable context to a tool category, also the relation of a choice context

to a tool category can be supported by consistency checks:

&RQVWUDLQW� &��� Ensure that the tool category can display all intentions associated with the

alternatives of the choice contexts. Given a choice context && which is related in the process

model to a set of alternative contexts&$. For each context&[�∈�&$, the tool category 7 associated

(using the SURYLGHVBFKRLFHBFRQWH[W association) with the choice context && must be assigned to at

least one command element (via a SURYLGHVBFRPPDQG association) which is related (using a

GLVSOD\BRIBLQWHQWLRQ association) to the context&[�.

&RQVWUDLQW� &�� Ensure that the tool category can display all product parts associated with the

situations of all alternative contexts of the choice context: Given a choice context && for which a

set &$ of alternative contexts is defined in the process model, and a set of product parts 3&$ which

subsumes all products related to any situation 6 which is related to a context&[�∈�&$. If a tool

category 7 is associated to the choice context && then for all product parts 3L�∈� 3&$ a GLVSOD\V

relation between3L�, a graphical shape *�, and 7 must exist.

4.3.3 Environment Model: An Example

We illustrate the assignment of the contexts defined in the process model to the capabilities of the

tools defined in the tool model using a small example (Figure 7). For readability, we depicted the

name of the class of each instance in italics and brackets.

The upper part of Figure 7 depicts part of a process model where the choice context

&&B5HILQH(QWLW\ is related to two alternative contexts, namely the executable context

EC_CreateIsALink and the plan context 3&B6XEW\SH(QWLW\. In addition, the situations (2QH(QWLW\,

7ZR(QWLWLHV) and the intentions (&UHDWH,V$/LQN, 6XEW\SH(QWLW\) of the two alternatives, the product

parts ((QWLW\) related to the situations and the action &UHDWH,V$/LQN of the executable context are

defined in the process model.

The lower part of Figure 7 depicts part of the tool model where the tool category (5B(GLWRU

together with the supported control elements (the control key &WUO�, and the pull down menu (GLW) is

defined. The tool category (5B(GLWRU is further related to the concepts shared with the process

model, namely to the action &UHDWH,V$/LQN using a SURYLGHVBDFWLRQ association and to the product

(QWLW\ via a GLVSOD\BDV association.

In addition, the three associations defined in the environment meta model between concepts of

the tool and process meta models have been instantiated (depicted as dashed lines in Figure 7):

- 'LVSOD\BRIBLQWHQWLRQ: By instantiating this association the executable context

(&B&UHDWHB,V$/LQN is related to the control key &WUO�, and the pull down menu (GLW. Thereby

the way of displaying the intention &UHDWH,V$/LQN related to the executable context is

26

defined. Similar, the plan context 3&B6XEW\SH(QWLW\ is related to the pull down menu (GLW

(not shown in the figure);

- 3URYLGHVBFKRLFHBFRQWH[W: The tool category (5B(GLWRU is assigned to the choice context

&&B5HILQH(QWLW\ by an instance of the SURYLGHVBFKRLFHBFRQWH[W association. According to

constraint C2 it must thus be ensured that the tool category (5B(GLWRU can display the

intentions of both alternatives of the choice context, namely the intention related to the

contexts (&B&UHDWH,V$/LQN and 3&B6XEW\SH(QWLW\. The executable context

(&B&UHDWHB,V$/LQN is related to two command elements (the control key &WUO�, and the pull

down menu HGLW) which are both related to the tool category (5B(GLWRU via a

SURYLGHVBFRPPDQG association. Thus constraint C2 is satisfied (for simplification the relation

to the command elements of the plan context 3&B6XEW\SH(QWLW\ are not shown in the figure).

Constraint C1 is also satisfied, since all the product parts defined for the situations of both

alternatives (in both cases the product type (QWLW\) are related via a GLVSOD\V association to the

tool category (5B(GLWRU (see lower part of Figure 7);

- 3URYLGHVBH[HFXWDEOHBFRQWH[W: The tool category (5B(GLWRU can automatically be associated

to the executable context (&B&UHDWH,V$/LQN by a SURYLGHVBH[HFXWDEOHB�FRQWH[W association,

since the executable context (&B&UHDWH,V$/LQN is related to the action &UHDWH,V$/LQN in the

process model and this action is related to only one tool category, using the SURYLGHVBDFWLRQ

association, namely the tool category (5B(GLWRU. In accordance to constraint E1, the LQSXW

parameters defined in the tool model, (two product parts of the type (QWLW\) are subsumed by

the situation 7ZR(QWLWLHV assigned to the executable context in the process model. Likewise

the output (,V$/LQN) is subsumed by the FKDQJH association of the process model and thereby

constraint E2 is satisfied.

�,QWHQWLRQ�
Ref ineEntity

�3URGXFW�
Entity

�,QWHQWLRQ�
SubtypeEnt ity

�3ODQ�&RQWH[W�
PC_SubtypeEntity

(related_
intention)

�&KRLFH�&RQWH[W�
CC_RefineEntity

(alternat ive)

�6LWXDWLRQ�
OneEntity

�*UDSKLFDO6KDSH�
Rectangle

�6LWXDWLRQ�
TwoEntity

�([HF��&RQWH[W �
EC_CreateIsALink

�,QWHQWLRQ�
CreateIsLink

�&RQWURO�.H\�
Crt-I

�3XOO�'RZQ�0HQX�
Edit

�7RRO�&DWHJRU\�
ER_Editor

(related_intent ion)

(related_situation)

(alternat ive)

�$FWLRQ�
CreateIsALink

(based_on)

(based_on)

(based_on)

(related_situation)

(applied_by)

�3URGXFW�
IsALink

(displayed_
as)

(provides_
action)

(provides_
command)

(provides_
command)

(display_of_
intention)

(display_of_
intention)

(provides_executable
context)

(provides_choice
context)

defined in the
process model

shared concepts

defined in the
tool model

defined in the
process model

defined in the
environment model

defined in the
tool model

)LJXUH����$Q�HQYLURQPHQW�PRGHO��VLPSOLILHG���<pohl7.ps, pohl7.tif >

27

4.4 Environment Meta Model: Contribution to Process-
Integration Requirements

Representing both methods and tools at a conceptual level supports the method engineer in

assigning the required tool functionality to the method definitions. Moreover, the above mentioned

consistency constraints ensure correct assignments in the environment model. The environment

model represents an important conceptual foundation for achieving a process-integration of the

interactive tools in a PIE:

- 'DWD� LQWHJUDWLRQ is guaranteed by checking that the products subsumed by a situation

correspond to the products used as input parameters of the tool actions.

- 6HUYLFH� LQWHJUDWLRQ is achieved by the environment model through the interrelation of

executable and choice contexts defined in the process model and the corresponding tool

definitions.

- The IHHGEDFN� LQIRUPDWLRQ� UHTXLUHG after context execution is inherently defined by the

context types (in the case of executable contexts as output product types; in the case of

choice context the contexts defined as alternatives).

- The foundation for the LQYRFDWLRQ�RI�PHWKRG�IUDJPHQWV is established by the fact that a plan

context can be related as an alternative to a choice context. This makes the tools aware of

plan context definitions. The tools get to know the plan contexts which can be activated in a

given process situation. Vice versa, the environment model empowers the enactment domain

to invoke the tool responsible for executing a choice or executable context whenever such a

context becomes active during the enactment of a plan context.

- The definition of the allowed graphical and interaction capabilities for each context lays the

foundation for the DGDSWDWLRQ�RI�WKH�WRRO�EHKDYLRU.

Within our PRIME framework, process-integration is mainly achieved through the appropriate

interpretation of the environment model at run-time by all (!) three main components, namely the

WRROV, the HQDFWPHQW�PHFKDQLVP and the FRQWURO�LQWHJUDWLRQ�PHFKDQLVP.

��6\QFKURQL]DWLRQ�RI�3HUIRUPDQFH�DQG�(QDFWPHQW
'RPDLQV

Synchronization of the performance and enactment domain is achieved by a process-aware control

integration mechanism which directs message distribution based on the interpretation of the

environment model (Section 5.1) and an interaction protocol which defines the behavior of the

performance and enactment domain (Section 5.2).

28

5.1 Process-Aware Control Integration

The integrated environment model inherently assigns responsibilities for context execution.

Executable and choice contexts are executed by the interactive engineering tools of the

performance domain, while the process engine of the enactment domain is responsible for

enacting the plan contexts. The interrelation of the three context types through choice contexts

(via the DOWHUQDWLYH association) and plan contexts (via the FRPSRVHGBRI association) requires

interaction between the two domains.

In a process-integrated environment, message exchange should not be carried out in an

uncontrolled manner. Instead, the control integration mechanism has to direct the message

distribution according to the process definitions, respectively the definitions in the environment

model in the case of PRIME. In other words, the control integration mechanism must be SURFHVV�

DZDUH. For example, a service request from the enactment domain cannot be directed to an arbitrary

tool providing the requested service. Instead, the request has to be directed to the tool responsible for

performing the requested context according to the definitions in the environment model.

Technically, the interaction is carried out by message exchange which is typically employed by

a control integration mechanism such as ToolTalk, COBRA, OLE/COM Automation. In PRIME, the

information required for a process-aware control integration mechanism is represented in the

environment model. Thus process-aware control integration can be achieved by implementing a

trader on top of an existing control integration mechanism. The trader interprets the environment

model and controls the message distribution accordingly. This ensures that during process enactment

(and service brokering) service requests are directed to the tool assigned to the corresponding

context in the environment model.

5.2 Interaction Protocol

The message types allowed depend on the current states of both the performance and the

enactment domains. In contrast to conventional PCEs which are based on a simple client-server

pattern, the context model induces more elaborate interaction patterns.

To ground message exchange on a solid basis we define an interaction protocol. The interaction

protocol specifies the principal behavior of the enactment and performance domain in terms of the

states and possible state transitions which are triggered by the delivery and receipt of messages. In

addition, it defines the types of messages which can be exchanged between both domains.

We use the Statecharts formalism [71] for defining the interaction protocol. The behavior of the

enactment domain is defined by the Enactment-State superstate, whereas the Performance-

29

State superstate specifies the behavior of the performance domain (Figure 8)4 The coupling of

both superstates is expressed by associating the transitions, which represent interactions between the

two domains, with defined message types which are sent by one domain and received by the other.

3'�8QUHVWU ('�,QDFWLYH ('�$FWLYH

3HUIRUPDQFH�6WDWH (QDFWPHQW�6WDWH

([WHUQDO�&[W
5HTXHVWHG

6WG�&RQWH[W
$FWLYH

([HFXWH
&[W

�
�

��

3'��$ERUW

3ODQ�&RQWH[W
$FWLYH

([HFXWH
&[W

�
�

��
�

3'�5HVWU

�

�

��

,GOH

%URNHU
&RQWH[W

��
��

'HGXFH
&RQWH[W

:DLW�
5HVSRQVH

��
��

3&�(QDFWPHQW

('�$ERUW

��
��

��

��

��

)LJXUH����6WDWHFKDUWV�GHILQLQJ�WKH�VWDWHV�RI�HQDFWPHQW�DQG

������������SHUIRUPDQFH�GRPDLQV��VLPSOLILHG��

The contextual process model inspires the general distinction between the principal states of a

process integrated environment:

1. 5HVWULFWHG: Process performance is governed by plan context enactment (Figure 8; ED-

Active and PD-Restr superstates);

2. 8QUHVWULFWHG: Process performance is not restricted since no plan context is being enacted

(Figure 8; PD-Unrestr and ED-Inactive superstates).

In the ED-Inactive superstate the process engine is essentially passive. In the PD-Unrestr

superstate, more precisely in the Std-Context-Active state, a tool is able to perform any

executable context and choice context provided by the tool5.

If the user has activated an executable or choice context (see Section 8.4 for details) provided by

the tool, transition 1 is performed and thus the Execute-Cxt state is entered. After executing the

context the tool returns in the Std-Context-Active state by performing transition 2.

4 For the sake of brevity, the Statecharts described in the following have been heavily simplified. A
detailed description of our original interaction protocol, which defines about 30 different states
and substates and 55 transitions in both domains as well as 15 message types, can be found in [4].

5 Formally, the choices which are offered to the user in the PD-Unrestr state are modeled in the
environment model as a choice context, called standard context.

30

If the user has activated a choice or executable context not provided by the tool, the tool

sends a %URNHUB5HTXHVW message (transition 3) to the control integration mechanism and enters the

state External_Cxt_Requested. The control integration mechanism passes this message to the

process engine. If the process engine is in the ED_Active state, the tool request is queued and the

tool is informed. If the process engine is in the ED_Inactive state, it enters the Broker-

Context state (transition 12) and requests the execution of the context by sending a message to the

control integration mechanism (transition 13). The control integration mechanism determines the

tool responsible for executing the requested context (according to the environment model) and

passes the request to the tool.

If the user has activated a plan context, the tool sends an (QDFWPHQW�5HTXHVW (transition 5) to the

process engine and enters the Plan-Context-Active state. Receiving this message the process

engine enters the ED-Active superstate (transition 14). After having locked all required tool

resources (the locking sub-protocol is not shown here), the process engine determines in the

Deduce-Context state the context to be performed next and sends a &RQWH[WB5HTXHVW message

(transition 15) to the control integration mechanism; thereby it enters the Wait-Response state.

The control integration mechanism determines the tool responsible for performing the context

(according to the environment model) and sends the context execution request to the corresponding

tool. By receiving the context request the tool changes in the Execute-Cxt state (transition 6) and

returns, after having executed the context, in the Wait-Request state by sending a &[WB)HHGEDFN

message (transition 7). If an executable context was executed, the tool sends the feedback

information to the process engine as defined by the output associations in the environment model. If

a choice context was executed, the tool returns the selected alternative (context) to the process

engine. After receiving the &[WB)HHGEDFN message, the process engine enters the Deduce-

Context state (transition 16) and determines the context to be executed next.

Process enactment stops if the enacted method fragment (plan context) is completed or if the

user has requested to abort the context execution (see below). In both cases, the process engine

releases all previously locked tools (not shown here in details). As a consequence, the process

enactment domain enters the ED-Inactive state (transition 17 or 20), whereas the tools enter the

PD-Unrestr superstate (transition 8 or 11).

The user can notify the process enactment domain about a process deviation whenever the

enactment domain is active (ED-Active superstate). The user initiates such a request by choosing

the abort-enactment context provided by each tool. In this case, the tool sends an $ERUWB5HTXHVW

message to the enactment domain (transition 9). Receiving this message (transition 18) the

enactment domain enters the ED-Abort state and checks if the interruption of the user can be

31

applied, i.e. checks if the enactment can be aborted6. If the enactment can be aborted, the process

engine sends an $ERUW�2. message and enters the Idle state (transition 20), otherwise it continues

with the process enactment (transition 19). Correspondingly, the tool enters the Std-Context

Active state (transition 11) or if it receives an $ERUW�'HQLHG message it returns back to the Plan-

Context-Active state.

The interaction protocol sketched above defines the dynamic relationships between the

performance domain and the enactment domain. Synchronization between the domains is achieved

via special sub-protocols and message types, e.g. the messages exchanged during the locking phase

before actual enactment starts. This ensures that the relevant tool resources are available and ready

to accept the requests coming from the enactment domain.

The interaction protocol (together with the environment model) supports both UHDFWLYH and

SURDFWLYH process enactment styles which are extensively demanded in literature, e.g. [50]. Reactive

control means that the process performer can operate freely on his tools and at some point initiate a

request to the enactment domain. Proactive control means that the enactment domain initiates the

operations and governs the possible user choices in the performance domain. The 8QUHVWULFWHG and

5HVWULFWHG states of both domains reflect these two modes.

�� 7KH�35,0(�,PSOHPHQWDWLRQ�)UDPHZRUN

The environment model (Section 4.3), the process-aware control integration mechanism and the

interaction protocol (Section 5) provide the conceptual foundations for establishing a process-

integration in engineering environments.

To facilitate the development of a process-integrated environment (PIE) we developed the

PRIME framework which meets the technical requirements for PIEs derived from those conceptual

foundations (Section 6.1). The main architectural components of PRIME are the generic tool

architecture (Section 6.2) and the generic enactment architecture (Section 6.3). The PRIME

components have been implemented as a reusable, object-oriented implementation framework

(Section 6.4).

6 Since arbitrary interruption of context execution can cause data inconsistencies, we require that the
method engineer defines in the process model the situation in which process deviations are
allowed, i.e. in which the enactment can be aborted, and/or that she or he defines additional
actions to be applied for enabling a process deviation. The user can only abort the enactment of a
context if the process model allows the abortion. "Backtrack" mechanisms which, in the case of
an Abort Request, set the enactment back to a situation in which no data inconsistencies are
caused by the interruption of the process enactment, are an open research issue.

32

6.1 Requirements for the PRIME Components

The components of a process-integrated environment have to consider the definitions in the

environment model for a model-conform process performance and must obey the interaction

protocol for synchronizing the states of the enactment and the performance domains. This poses

several requirements on the three main components of PRIME.

The FRQWURO� LQWHJUDWLRQ�PHFKDQLVP�must be process-aware. It must distribute context requests

and feedback messages according to the context assignments expressed in the environment model.

The WRROV�RI�WKH�SHUIRUPDQFH�GRPDLQ have to fulfill the following requirements:

57���([HFXWLRQ�RI�H[HFXWDEOH�FRQWH[WV�DFFRUGLQJ�WR�HQYLURQPHQW�PRGHO: The activation of an

executable context in a tool must result in the invocation of the tool action related to

the executable context in the environment model. In addition, the results of executing

this action must be passed to the context invoker;

57� ([HFXWLRQ� RI� FKRLFH� FRQWH[WV� DFFRUGLQJ� WR� HQYLURQPHQW� PRGHO: The activation of a

choice context must result in a user interface adaptation of the tools according to the

definition of the choice context in the environment model. The tool must adjust the

products and command elements displayed at the user interface according to the

context definition and highlight the selectable products and command elements;

57� 'HWHFWLRQ� RI� FRQWH[W� DFWLYDWLRQ� DFFRUGLQJ� WR� HQYLURQPHQW� PRGHO: The tool must be

able to compare the product parts and command elements selected by the user with the

context definition.

57� 6\QFKURQL]DWLRQ�ZLWK�HQDFWPHQW�GRPDLQ�DFFRUGLQJ� WR� LQWHUDFWLRQ� SURWRFRO: The tool

must exchange messages with the enactment domain in accordance with the

interaction protocol defined in Section 5.2.

The�HQDFWPHQW�PHFKDQLVP has to fulfill the following requirements:

5(� (QDFWPHQW�RI�SODQ�FRQWH[W�GHILQLWLRQV: The enactment mechanism has to interpret an

activated plan context. It has to deduce the context to be executed next and it has to

initiate its execution. In addition, the enactment mechanism has to interpret the

feedback information obtained from the context execution for determining the context

to be executed next;

5(� 6\QFKURQL]DWLRQ� ZLWK� SHUIRUPDQFH� GRPDLQ� DFFRUGLQJ� WR� LQWHUDFWLRQ� SURWRFRO: The

enactment mechanism must exchange messages with the performance domain in

accordance with the interaction protocol defined in Section 5.2.

33

6.2 Generic Tool Architecture

We have designed a generic tool architecture which fulfills the requirements RT1 - RT4 outlined

above. Figure 9 depicts the main architectural components and their relations of the generic tool

architecture of PRIME. The generic tool architecture has two central subsystems: The

StateManager (Section 6.2.1) and the ContextManager (Section 6.2.2).

6WDWH0DQDJHU

&RQWH[W0DQDJHU

&RQWH[W
([HFXWRU

&RQWH[W
0DWFKHU

8,���%ULGJH
2EMHFW
7DEOH

,QWHQWLRQ
7DEOH

&RQWH[W
VSHFLILF

7RRO
VSHFLILF

7RRO�$FWLRQ��

�(&�

7RRO�6SHFLILF
8VHU�,QWHUIDFH

��JUDSKLFDO�VKDSHV��
LFRQV�

0HVVDJH
,QWHUIDFH

5HSRVLWRU\
,QWHUIDFH

msg events

context events
detection,
& results)

update
notification

update
propagation

invocation
(match / execute)

set read

update

load/store

load/store

invocation

send msg

HQDFWPHQW�
GRPDLQ

*HQHULF�7RRO�$UFKLWHFWXUH

WRRO�SURFHVV
PRGHOV

SURGXFW�GDWD

message
exchange

user guidance

user interactions

process
engine

PRGHOOLQJ
GRPDLQ

VWDNHKROGHU

context
loading

context
execution

context
detection

tool data

context defs.

enactment req
Cxt feedback

Executive Cxt req
Choice Cxt req

)LJXUH�����*HQHULF�WRRO�DUFKLWHFWXUH��<pohl9.ps, pohl9.tif >

6.2.1 The StateManager

The 6WDWH0DQDJHU subsystem (upper right part of Figure 9) ensures that the message exchange

with the process engine is carried out in accordance with the interaction protocol described in

Section 5.2 (requirement RT4). It governs the overall control flow in the tool and maintains the

tool state in response to events received. There are two types of events:

- ([WHUQDO� HYHQWV are initiated through the receipt of a message from the enactment domain

such as a request from the enactment domain to execute a context during plan context

enactment. The message receipt and delivery is handled by the MessageInterface which is

closely connected to the StateManager.

34

- ,QWHUQDO� HYHQWV are either generated by the ContextExecutor for reporting the results of a

context execution or by the ContextMatcher after the identification of a context to be

executed. If the identified context is a plan context or a context provided by another tool

(according to the environment model), the StateManager sends an enactment request together

with the situation data via the MessageInterface to the enactment domain. Otherwise the

StateManager requests the execution of the context from the ContextExecutor.

6.2.2 The ContextManager

The task of the &RQWH[W0DQDJHU is threefold. During the start-up phase the ContextManager

retrieves all context definitions specified in the environment model for the tool category and stores

them in a context cache. The &RQWH[W([HFXWRU subsystem is responsible for adjusting the tool

behavior and for providing user guidance according to the environment model (requirement RT1

and RT2). The &RQWH[W0DWFKHU subsystem is responsible for the identification of method

fragments (requirement RT3).

7KH�&RQWH[W([HFXWRU��$GDSWDWLRQ�RI�7RRO�%HKDYLRU

The ContextExecutor controls the execution of choice and executable contexts.

If the StateManager requests the execution of an automated service (executable context), the

ContextExecutor invokes the tool action associated to the executable context in the environment

model. The situation data obtained with the context execution request are mapped to the input

parameters. This is facilitated by defining the input parameters of the actions in the tool models

using the same product types as the ones used for defining the situation types associated to the

contexts in the process model.

If the StateManager requests the execution of a guidance service (choice context), the

ContextExecutor adapts the user interface of the tool according to the definition of the choice

context and the current situation data. More precisely, in the command region of the user interface

only those menu items and icons are displayed which are associated to an alternative of the choice

context and thus only the intentions associated to an alternative context are displayed. All other

menu items and icons not related to an intention of an alternative of the choice context become

unselectable. In the product region, all products corresponding to the situation data of the choice

context are KLJKOLJKWHG to draw user attention on them. Furthermore, all products which may

contribute to a situation of an alternative context are displayed as VHOHFWDEOH, whereas all other

product parts become XQVHOHFWDEOH. To support the choice of an alternative, the user can always

initiate the display of the arguments associated with the alternatives of a choice context. On user

request, the ContextExecutor displays the pros and cons for each alternative of the choice context

defined in the environment model in a special guidance window (see Section 8.4 for an example).

35

In the following we illustrate the adaptation of the tool behavior during the execution of a choice

context. The right part of Figure 10 shows an entity relationship (ER) editor which currently

executes the choice context &&B5HILQH(QWLW\ with the entity type SXEOLFDWLRQ as actual situation data.

The left part depicts parts of the corresponding environment model.

actual situation
(black - red)

publication

user
book

name

address

represents

loaned_by

not selectable
(gray)

selectable products
(white)

UHODWHGBLQWHQWLRQUHODWHGBVLWXDWLRQ
Situation Context Intention

Product
Choice
Context

Tool
Category

Command

Control
Icon

Pull-Down
Menu

Control
Key

OneEntity CC_RefineEntity ER_Editor CreateIsaLink.xpm

Edit

“Create IsA Link“

EC_CreateIsALink

PC_SubtypeEntity

EC_DiscriminateEntityEntityType

EDVHGBRQ

DOWHUQDWLYH
GLVSOD\BRIBLQWHQWLRQ

SURYBFRP�UHOBVLW

SURYLGHVBFKRLFHBFRQWH[W SURYLGHVBFRPPDQG

SURYLGHVB&&�

SURYBFRP�DOW�

DOW�

DOW�

EDVHGBRQ

UHOBLQWHQWLRQ

copy_of_publication

HQYLURQPHQW�PRGHO
�VLPSOLILHG�

PHWD�PRGHO

GLVSOD\BLQW�
GLVSOD\BLQW�

)LJXUH�����$GDSWDWLRQ�RI�WRRO�EHKDYLRU�DFFRUGLQJ�WR�WKH�HQYLURQPHQW�PRGHO�

The choice context &&B5HILQH(QWLW\ defines three different alternatives ((&B&UHDWH,V�$/LQN�

(&B'LVFULPLQDWH$WWULEXWH, and 3&B6XEW\SH(QWLW\) for the refinement of an entity. The menu items

displayed correspond to the definitions in the environment model. For example, according to the

associations specified in the environment model, the intention of the alternative context

(&B&UHDWH,V$/LQN appears as menu item in the (GLW pull-down menu and as icon in the icon bar

using the bitmap &UHDWH,V$/LQN�[SP in the ER editor (Figure 10).

In the product area, the entity type SURFHHGLQJV representing the actual situation data is

highlighted. According to the environment model, the situations of all three alternative contexts are

only based on entity types. Consequently, the ContextExecutor has marked all other objects as

unselectable (displayed in gray) and thus only the entity types ERRN��FRS\BRIBSXEOLFDWLRQ, and XVHU

are selectable (displayed in white).

7KH�&RQWH[W0DWFKHU��,QYRFDWLRQ�RI�0HWKRG�)UDJPHQWV

During the execution of a choice context, the user selects and deselects product parts and activates

command elements. The task of the ContextMatcher is to compare the user interactions with the

context definitions which are defined as alternatives of choice context active. More precisely, it

matches the activated command elements with the intentions associated to an alternative context

36

of the choice context and the selected product parts with the situations of the alternative contexts7.

Whenever the selected product parts and the intentions match with the definition of an alternative

context, the ContextMatcher requests the execution of the context from the StateManager.

HQYLURQPHQW�PRGHO
�VLPSOLILHG�

PHWD�PRGHO

publication

user
book

name

address

represents

loaned_by

UHODWHGBLQWHQWLRQUHODWHGBVLWXDWLRQ
Situation Context Intention

Product
Choice
Context

Tool
Category

Command

Control
Icon

Pull-Down
Menu

Control
Key

SubEntity

CC_Refine
Entity ER_Editor CreateIsa

Link.xpm

Edit

“Create IsA Link“

EC_CreateIsALink

EDVHGBRQ

DOWHUQDWLYH
GLVSOD\BRIBLQWHQWLRQ

SURYBFRP�

SURYLGHVBFKRLFHBFRQWH[W SURYLGHVBFRPPDQG

SURYLGHVB&&�

SURYBFRP�
DOW�

copy_of_publication

SuperEntity

TwoEntities

UHOBVLWXDWLRQ

0DWFKLQJ�VHOHFWHG�SURGXFW�SDUWV�DQG
FRPPDQGV��LQWHQWLRQV��ZLWK�FRQWH[W�GHILQLWLRQV

WKURXJK�XVHU�LQWHUDFWLRQ�VHOHFWHG�REMHFWV
�SURGXFWV�DQG�FRPPDQGV�

UHOBLQWHQW LRQ

)LJXUH�����0DWFKLQJ�D�FRQWH[W�

Figure 11 illustrates the context matching. The ER editor is in the choice context

&&B5HILQH(QWLW\. After the user has selected the menu item &UHDWH�,V$�/LQN, the ContextMatcher

compares the selected product parts (the two entities SXEOLFDWLRQ and ERRN) and the intention

associated with the selected menu item with the alternative contexts of the choice context defined in

the environment model8. Comparing the selected product parts and command elements, the

ContextManager detects that the selected items match with the definition of the executable context

(&B&UHDWH,V$/LQN.

According to the environment model this context is provided by the ER editor itself. Thus, the

StateManager passes the context execution request to the ContextExecutor of the ER editor which

executes the context according to its definition.

Note that the execution of any context is based on the interpretation of the environment model

by the ContextExecutor and the ContextMatcher. Changes in the method definitions require thus no

7 The matcher currently applies a best fit approach. It thus associates a situation slot with the most
specific selected product part.

8 For efficiency reasons the matching is performed whenever a command element (intention) has
been selected by the user.

37

re-programming and can mostly be achieved on a modeling level (see Section 9 for a detailed

discussion about the integration of method changes).

6.3 Generic Enactment Architecture

The generic enactment architecture drives process enactment by interpreting the process relevant

parts of the environment model. The architecture handles enactment requests of the performance

domain and initiates the enactment of the requested method fragments. Similarly to the tool

architecture, the enactment architecture consists of two central components: the ('B6WDWH0DQDJHU

and the ('B&RQWH[W0DQDJHU.

The ('B6WDWH0DQDJHU realizes the interaction protocol described in Section 5.2 from the

perspective of the enactment domain. It controls the current enactment state according to the

Statechart defined for the enactment domain (Section 5.2; requirement RE2).

During the enactment of a plan context, the ('B&RQWH[W0DQDJHU is responsible for deducing the

context to be performed by interpreting the plan context definition. It also initiates the execution of

the deduced context (requirement RE1).

The generic enactment architecture was designed with the purpose of enabling experimentation

with different process enactment languages. For an easy integration of existing enactment

mechanisms (e.g. for "plugging" in a SLANG net interpreter) the ('B&RQWH[W0DQDJHU offers

generic interfaces which provide functions to

- Inform the enactment mechanism about the activation of a plan context;

- Send a context execution request (executable or choice context) to the performance domain;

- Process the context execution results received from the performance domain.

From the dynamic point of view, the invocation of these functions is encapsulated in a single

state, namely the Deduce-Context state (see Section 5.2).

6.4 Implementation of the PRIME Framework

The generic parts of the architecture described in Section 6.2 and Section 6.3 have been

implemented as an object-oriented implementation framework in C++ on two different platforms

(Sun Solaris Unix and Windows NT). Figure 12 provides an overview of the 35,0(

LPSOHPHQWDWLRQ� IUDPHZRUN. The white parts depict the generic components of the framework

which are re-used without any adaptations for implementing a process-integrated modeling

environment for a particular application domain such as requirements engineering or chemical

engineering. The black parts denote application domain specific components.

The SURFHVV�UHSRVLWRU\ stores the environment model (the product, process and tool models and

the integration associations). It has been implemented on top of a relational DBMS (Sybase 11

38

server). The environment meta model presented in Section 4 has been transformed into a relational

schema consisting of 27 tables.

The four PHWD�PRGHOLQJ�WRROV facilitate the creation and maintenance of product models, method

fragments, tool models, and their interrelations in the repository.

The JHQHULF� WRRO� IUDPHZRUN of the performance domain facilitates the implementation of

interactive, process-integrated tools. It provides libraries for context management, state

management, and user interface adaptation. We have carefully separated the user interface library

from the context and state management libraries to allow an easy adaptation of the framework to

another user interface toolkit. The context management library consists of a repository layer for

loading context definitions from the repository and components for matching and executing

contexts. The state management library provides components for handling the receipt and delivery of

messages (including parsing and unparsing of messages) and for maintaining the current tool state

according to the interaction protocol. Both libraries comprise about 70,000 lines of C++ code. The

user interface library provides a user interface bridge for the ILOG Views toolkit. The components

of this library map, among others, command elements defined in the environment model to ILOG

Views specific menu classes. The user interface library comprises about 15,000 lines of C++ code.

Conformance to common usability standards is largely ensured by the ILOG Views toolkit

which supports both Motif and Windows look-and-feel. Moreover, the definition of common menus,

short-keys, command icons, and standard shapes ensures that similar functionality can be uniformly

accessed in all tools.

We initially expected a general degradation of tool performance due to the processing of each

object (de-)selection and menu activation by the context matcher. But even in tests with more than

200 product objects and choice contexts with more than 100 alternative contexts no noticeable

increase in the response time to user events could be observed. This is mostly due to the fact that

after loading the tool relevant context definitions from the process repository during the tool startup

phase, they are maintained in a context cache within the tool. The loading of the context definitions,

however, slightly increases the startup time (about one second in average; depending on the number

of contexts defined for a tool).

39

message interface
ED-state-manager

ED-Context-Deducer

enactment mechanism

JHQHULF�SURFHVV
HQJLQH�IUDPHZRUN

&��
����NORF�

&��
����NORF�

context context
executor matcher

bridge

WRRO�DFWLRQV��VKDSHV
FRPPDQG�HOHPHQWV

PD-state-manager
message interface

JHQHULF�WRRO
IUDPHZRUN

&��
,/2*�9LHZV
����NORF�

products and
traceability
information

rel. schema of
environment
meta model

method, product,
tool, env. models

process
modeler

product
modeler

tool
modeler

environ.
modeler

5'06
�6\EDVH����

SURFHVV�UHSRVLWRU\�	
PHWD�PRGHOLQJ�WRROV

PRGHOLQJ�GRPDLQ SHUIRUPDQFH�GRPDLQ

HQDFWPHQW�GRPDLQ

7RROWDON
,3&�VRFNHWV

SURFHVV�DZDUH
FRQWURO�LQWHJUDWLRQ

PHFKDQLVP

interface
user

)LJXUH������,PSOHPHQWDWLRQ�RI�WKH�35,0(�IUDPHZRUN�

The JHQHULF� SURFHVV� HQJLQH framework of the enactment domain facilitates integration of an

enactment mechanism for a given plan context definition language by providing abstract base classes

for context deduction. To embed a specific enactment mechanism these base classes have to be

specialized. The implementation of the generic process engine framework shares considerable parts

with the generic tool framework such as the base classes of the state manager and the message

handling components. Altogether, the implementation framework for the enactment mechanism

comprises about 35,000 lines of C++ code.

The SURFHVV�DZDUH�FRQWURO�LQWHJUDWLRQ�PHFKDQLVP has been realized using the standard socket

library (both for Solaris Unix and Windows NT), and in an alternative implementation using the

more convenient services provided by SUN’s ToolTalk [54] (only Solaris Unix). The process-aware

trader defined on top of these mechanisms maintains knowledge about the running tool instances. It

controls the message exchange between the performance and enactment domain based on this

knowledge and the interpretation of the environment model. For example, it sends a context

execution request to the tool responsible for executing the requested context.

�� ,QWHJUDWLRQ�RI�/HJDF\�7RROV

To achieve a process-integration of a legacy tool, the requirements RT1 - RT4 described in

Section 6.1 must be fulfilled. Since most existing tools do not meet these requirements,

40

appropriate wrappers must be designed and implemented. The wrappers make use of the

application programming interfaces (APIs) provided by the tools and add additional functionality

to a tool which achieves a process-integration of the legacy tool by fulfilling the requirements RT1

- RT4.

We first elaborate on the kinds of APIs a legacy tool must provide in order to be fully process

integrable (Section 7.1). We then describe an extension of the generic tool architecture of the

PRIME implementation framework which facilitates the integration of legacy tools (Section 7.2).

We illustrate the use of the extended architecture to realize the process-integration of VISIO, a

commercial CAD tool, in the PRIME-based environment TECHMOD (Section 7.3).

7.1 Required Application Programming Interfaces (APIs)

The tool requirements sketched in Section 6.1 require that a legacy tool has to provide certain

APIs (application programming interfaces) to be process integrable:

$�� A VHUYLFH� LQYRFDWLRQ $3, required for activating the actions provided by the tool including

passing of the actual parameters on which the action should be performed (requirement RT1);

$�� A IHHGEDFN� LQIRUPDWLRQ $3, required for accessing the results obtained from executing an

action (requirement RT1);

$�� A FRPPDQG� HOHPHQW $3, required for introducing new/additional command elements like

menu options or graphical icons defined in the environment model (requirement RT2);

$�� A SURGXFW� GLVSOD\� $3, required for highlighting the product parts constituting the actual

situation of a choice context (requirement RT2);

$�� A VHOHFWDELOLW\� $3, required for adapting the user interface of the tool according to the

definitions of the active choice context and its alternative contexts (requirement RT2);

$�� A VHOHFWLRQ� QRWLILFDWLRQ� $3, required for obtaining notifications about user selections of

products and command elements. This is a prerequisite for matching the user interactions

with the context definitions and thereby supporting the activation of a predefined context

(requirement RT3);

Achieving a synchronization with the enactment domain (requirement RT4) does not require a

special tool API. Definition conform synchronization can be ensured by a wrapper which uses the

APIs A1 - A6 in accordance to the interaction protocol definition.

If a legacy tool provides the six APIs sketched above, a process-integration of the legacy tool

can be achieved by designing and implementing appropriate wrappers.

The process-integration of legacy tools which only provide a subset of the required APIs is by

far not easy. To support the process-integration of such tools, a more comprehensive framework is

required. Such a framework should support the process-integration along four major lines:

41

- Providing a check list and criteria for assessing the degree of process-integration which can

be achieved for a legacy tool based on the APIs provided by the tool and its technical

implementations;

- Providing generic wrapper components which can be reused (adapted) for achieving a

process-integration of a legacy tool;

- Defining the relations between the generic wrappers and the assess criteria to support the

selection of the wrappers based on the assessment of the tool;

- Relating those wrappers to the generic tool architecture to enable as much reuse as possible.

Establishing a comprehensive framework for the process-integration of any kind of legacy tool

is a major future research activity. The definition of such a framework could start from the solution

provided for legacy tools which provide the required APIs. In the following we describe the process-

integration of legacy tools which provide the six APIs defined above and can thus can be fully

process-integrated.

7.2 Integrating Legacy Tools Using the Generic Tool
Architecture

There are two main alternatives for designing and implementing the wrappers. The wrappers can

be designed in a way which foresees a direct interaction between the wrappers and the enactment

domain. Alternatively, the wrappers can be designed to wrap the legacy tools into the generic tool

architecture provided by the PRIME implementation framework. In this case, the enactment

domain interacts with the generic tool architecture which itself wraps the legacy tool. The latter

alternative stands to reason since the functionality to be provided by the wrappers is, to a large

degree, covered by the functionality provided by the generic tool architecture. Examples are the

consideration of the interaction protocol, the context matching and the context execution.

The main problem hindering a simple wrapping of legacy tools into the generic tool architecture

is that even if a tool provides the APIs with the functionality sketched above, the signature of the

functions provided by the various APIs and the invocation protocols for using the APIs significantly

differ between legacy tools. We have thus investigated in an extension of the generic tool

architecture which facilitates the process-integration of legacy tools and minimizes the

implementation efforts and the legacy tool specific influence on the generic tool architecture.

As depicted in Figure 13 we extended the generic tool architecture of the PRIME

implementation framework with two adapter layers which encapsulate the generic parts of the

architecture (StateManager, ContextExecutor, ContextMatcher, Object Table, Intention Table).

Technically, the adapter layers are realized as a set of classes whose abstract interfaces (virtual

methods) are used by the generic parts of the PRIME implementation framework.

42

To achieve a process-integration of a legacy tool, these classes are specialized by overwriting

the virtual methods by specific methods which bridge the functionality provided by the adapter

layers and the APIs provided by the legacy tool.

The $FWLRQ$GDSWHU (lower left part of Figure 13) maps the actions defined in the tool model to

the service invocations provided by the legacy tool. Consequently it makes use of the VHUYLFH

LQYRFDWLRQ and IHHGEDFN�LQIRUPDWLRQ APIs (A1 and A2). More precisely, the adapter classes between

the tool actions and the context executor are specialized using the corresponding APIs to assign each

executable context defined for the legacy tool to its service. A main task of the adapter class is

thereby to map the product data embedded in a situation instance to the data format of the input

parameters required by the service invocation API of the legacy tool and vice versa.

6WDWH0DQDJHU

&RQWH[W0DQDJHU

&RQWH[W
([HFXWRU

&RQWH[W
0DWFKHU

8,���%ULGJH

2EMHFW
7DEOH

,QWHQWLRQ
7DEOH

&RQWH[W
VSHFLILF

7RRO
VSHFLILF

0HVVDJH
,QWHUIDFH

5HSRVLWRU\
,QWHUIDFH

msg events

context events
detection,
& results)

invocation
(match / execute)

set read

load/store

load/store

invocation

send msg

HQDFWPHQW�
GRPDLQ

*HQHULF�7RRO�$UFKLWHFWXUH

WRRO�SURFHVV
PRGHOV

SURGXFW�GDWD

user guidance

user interactions

process
engine

PRGHOOLQJ
GRPDLQ

VWDNHKROGHU

tool data

context defs.

enactment req
Cxt feedback

Executive Cxt req
Choice Cxt req

$FWLRQ
$GDSWHU

8,
$GDSWHU

/HJDF\�7RRO

$� $� $� $� $� $�

used
APIs

)LJXUH�����$GGLQJ�DGDSWHU�OD\HUV�WR�WKH�JHQHULF�WRRO�DUFKLWHFWXUH�IRU�LQWHJUDWLQJ�OHJDF\�WRROV�

The 8VHU,QWHUIDFH$GDSWHU (lower right part of Figure 13) bridges the object and intention table

of the generic tool architecture with the user interface(s) of the legacy tool. For this purpose, the

APIs A3 - A6 of the legacy tools are used in the specialized adapter classes.

43

The UserInterfaceAdapter ensures that the user interface of the tools corresponds with the actual

status of the intention and object tables. More precisely, the adapter ensures that in the user interface

only the command elements of the intention table can be activated and that all products which may

contribute to a situation of an alternative context are displayed as selectable, whereas all other

products become unselectable. Moreover, it ensures that all products corresponding to the situation

data are highlighted. Since the object and intention table is updated by the Context Executor

according to the choice context definition and the actual situation data, the UserInterfaceAdapter

indirectly guarantees that the user interface of the tool is adapted according to the context definition

and the actual situation data. Moreover, the UserInterfaceAdapter ensures that the user interactions

(selection and de-selection of products and intentions) lead to an update of the intention and object

tables. Thereby the detection and activation of a predefined context is achieved, since the Context

Matcher compares the intention and object table with the context definition.

To summarize, the extended generic tool architecture of the PRIME implementation framework

facilitates to a large degree the process-integration of legacy tools which provide the required APIs:

- The implementation effort for building a wrapper is significantly reduced. Only the classes of

the adapter layers have to be specialized for using the specific APIs of the legacy tool at

hand;

- The tool builder responsible for wrapping a legacy tool does not have to care about possible

interdependencies between the use of the individual tool APIs and their interplay with the

enactment architecture since this is already defined and realized by the generic tool

architecture;

- The tool builder responsible for wrapping a legacy tool does not have to care about the

correct consideration of the environment model during context detection and context

execution. Similarly he does not have to worry about implementing wrappers which ensure a

correct tool behavior as defined in the synchronization protocol (correct message and event

handling). All this is guaranteed through the wrapping of the tool into the extended generic

tool architecture of the PRIME implementation framework.

7.3 Integrating Legacy Tools Using the Generic Tool
Architecture: An Example

The goal of the Collaborative Research Center SFB-476 IMPROVE (funded by the Deutsche

Forschungsgemeinschaft), is to establish computer-based support for the design of chemical

processes and chemical plants for producing new chemical products in the large scale [72], [73]. In

this project, integrated method guidance for the engineers defining and simulating conceptual

models of chemical processes and plants is achieved through a PRIME-based environment, called

TECHMOD (Traced Engineering of CHemical process MODels) [74], [76]. Within the SFB-476

IMPROVE many commercial tools are used to support the design and construction of a chemical

44

plant including CAD tools, simulators and model builders. To achieve integrated method guidance

those tools must be "process-integrated" with the TECHMOD environment.

We have experimented with the integration of three legacy tools. One of them, VISIO, offers all

six APIs defined above. In the following we sketch the process-integration of VISIO into the

TECHMOD environment and illustrate the use of the extended generic tool architecture.

VISIO is a CAD tool which provides special graphical icons and functions for constructing flow

sheet diagrams. Flow sheets are a common abstraction used in the chemical industry to describe

chemical processes. VISIO runs under WINDOWS 95/NT and provides OLE/COM application

programming interfaces for extensions.

To achieve a process-integration of VISIO we first defined the services and the command

elements provided by VISIO using the concepts of the tool meta model. The resulting VISIO tool

model was integrated with the method definitions. There was no difference in modeling the

capabilities of VISIO in comparison to the definition of the capabilities of a new tool, implemented

using the generic tool architecture.

For embedding VISIO in the generic tool architecture we specialized the ActionAdapter and the

UserInterfaceAdapter. The specialization (implementation) of the adapters was straightforward. The

tool action invocations initiated by the context executor were mapped by a specific adapter class to

the services provided by VISIO. Similarly, the user interface facilities of VISIO were assigned to the

user interface bridge. However, two unexpected “conceptual” problems (1 and 2) and three technical

problems (3 to 5) worth mentioning occurred:

1. Each VISIO action could potentially occur in 14 different menu bars, each of which had

consequently to be controlled by the wrapper. The consideration of all possible menu bars

obviously caused additional effort to "wrap" the intention table of the generic tool

architecture with the command and selectability APIs of VISIO.

2. Some VISIO actions could be activated by drag-and-drop mechanisms. Since the PRIME

implementation framework does not support drag-and-drop mechanisms, we have

deactivated the drag-and-drop mechanism of VISIO9.

3. We originally planned to run VISIO and the PRIME implementation framework as separate

operating system processes where the former was invoked through the COM/WIN32 API as

Automation Server by the latter which acted as Automation Client. However, in this mode

VISIO (for some non-obvious reasons) does not provide the possibility to register for

notifications of menu selection events. The VISIO API (which is required for context

matching) is only available for "in-process" extensions of VISIO. The API can thus only be

used if the PRIME implementation framework is linked to VISIO during start-up as dynamic

9 We are currently extending the tool meta model and the implementation framework to support
command activation using drag-and-drop mechanism.

45

link library (DLL). Consequently, we had to transform the formerly static libraries of the

PRIME implementation framework into DLLs;

4. As a consequence of melting VISIO and the PRIME implementation framework there were

now two event loops within one operating system process: One of VISIO and the other one

of the PRIME implementation framework (for handling message events from the enactment

domain). Since these event loops initially interfered with each other, the PRIME event loop

had to be adjusted;

5. VISIO assumes that layout information of diagrams is stored in normal files in a proprietary

data format whereas PRIME stores the logical product information of the flow sheet diagram

being built in the process repository. Consequently, the Action Adapter has to establish and

to maintain links between the layout data in the VISIO files and the corresponding product

data in our process repository.

The technical problems closely correspond to the problems encountered when integrating

several implementation frameworks as described in [76].

To summarize, the process-integration of VISIO was facilitated to a large degree by wrapping it

with the generic tool architecture of the PRIME implementation framework. Since VISIO provided

the required APIs the wrapping of the tool services and the user interface was straightforward,

despite of the technical problems.

��%XLOGLQJ�35,0(�%DVHG�(QYLURQPHQWV
We have identified six steps for building a PRIME-based process-integrated environment (PIE).

In the following we elaborate on each step (see Table I for an overview).

7DEOH�,��6L[�VWHSV�IRU�EXLOGLQJ�D�35,0(�EDVHG�HQYLURQPHQW�

Step Description Modeling
Level

Implementation
Level

� Choose one or more plan context definition languages X

� Define method guidance in the process model X

� Define tool capabilities of the legacy and new tools in
the tool model

X

� Define the environment model X

� Implement domain-specific tool functionality and/or
wrapper for legacy tools

X

� Integrate required enactment mechanism(s) X

46

8.1 Six Step Procedure for Building a PRIME-based
Environment

6WHS�����&KRRVH�2QH�RU�0RUH��3ODQ�&RQWH[W�'HILQLWLRQ�/DQJXDJHV: A plan context consists of a

set of contexts of any type. It defines a sequence of the embedded contexts by a control flow. For

defining the control flows one or more suitable languages have to be chosen. The choice of a

language depends on the expressiveness required. For example, a finite-state machine language

might be chosen if mainly sequential invocation should be defined, or an imperative programming

language might be chosen if many branches and conditional loops have to be defined.

To enable the embedding of a context in a plan context, templates have to be defined in the

chosen language(s) for representing the three context types, respectively their interfaces (situation

and intention). For example, in the case of the Petri-Net based language SLANG special place types

for expressing the situation and intention and sub-net templates for each of the three context types

have been introduced (see Section 4.1.2 for details).

6WHS�����'HILQH�0HWKRG�*XLGDQFH�LQ�WKH�3URFHVV�0RGHO: The method engineer defines the method

guidance using the concepts provided by the contextual process model. After defining the product

model, the method engineer identifies the relevant product constellations (modeled as situations).

In addition, she or he defines the goals to be achieved (modeled as intentions). By assigning an

intention to a situation she or he defines the contexts to be supported. Next the method engineer

specifies the guidance to be offered when the context is activated by specifying the

implementation for each context.

If the context is fine-grained enough to be implemented as a single action, the context is defined

as executable context and related to the action to be executed.

Decision points where user intervention is required are expressed by choice contexts. In

addition, the method engineer defines the pro and con arguments for the alternative of the choice

contexts and explanations for the contexts to be provided for the user during process execution (see

Figure 15).

Complex process fragments composed of several substeps are modeled as plan contexts. The

control flow of a plan context is defined using a language chosen in step 1.

6WHS� �� �� 'HILQH� 7RRO� &DSDELOLWLHV� LQ� WKH� 7RRO� 0RGHO: The tool model serves as high-level

specification of the tool capabilities.

In case of developing new tools the identification of the required tool categories is mainly

determined by the structure of the underlying product model. For each sub product model (document

type) a tool category is defined like an ER editor for ER diagrams. The tool category is then related

to the products and to all actions operating on these products in the process model. For example, all

47

actions dealing with ER diagrams or its components would be related to the tool category (5�HGLWRU,

whereas all actions operating on data flow elements would be assigned to a ')'�HGLWRU. In addition,

for each tool category the shapes used to display the products, the display association between the

products and the shapes, and the command elements to be provided must be defined.

For modeling a legacy tool, the capabilities accessible through its APIs are represented in the

tool model. The legacy tool is defined as WRRO�FDWHJRU\ and the actions (and their input parameters)

accessible through the service invocation API are defined as action types including the output

parameters accessible through the feedback API. Moreover, the command elements accessible

through the command element API and the product representations accessible through the product

display API are defined. All those definitions are related to the tool category of the legacy tool.

6WHS�����'HILQH�WKH�(QYLURQPHQW�0RGHO: Once the relation of a tool category to its products and

actions has been established in the tool model, the tool category can be made responsible for a set

of executable by instantiating the SURYLGHVB�H[HFXWDEOHBFRQWH[W association. In addition, the choice

contexts to be executed by the tool category are related to the tool category via the association

SURYLGHVBFKRLFHBFRQWH[W. Each alternative of an associated choice context must be related to a

command element of this tool category (via the association GLVSOD\BRIBLQWHQWLRQ) to define how

the intention of each alternative should be displayed (activated).

The process of modeling the tool capabilities (step 3) and then relating them to the executable

and choice contexts iterates until all executable and choice contexts are associated with a tool

category.

6WHS� �� �� ,PSOHPHQW� 'RPDLQ�6SHFLILF� 7RRO�)XQFWLRQDOLW\� DQG�RU�:UDSSHUV� IRU� /HJDF\� 7RROV�

Depending on whether a new tool is being built or an existing legacy is being wrapped the

implementation tasks differ.

In both cases the tool implementation framework significantly facilitates the implementation

effort. It relieves the tool builder from taking care about the general control flow, the message

exchange with the enactment domain, the context execution and the context detection. The generic

mechanisms ensure that whenever an executable context shall be executed the associated action is

invoked, and that whenever a choice context shall be executed the user interface is adapted

according to the choice context specification, and that the user interactions are matched against the

context definitions of the environment model.

The components beyond the generic implementation framework are the domain specific tool

actions, the specific user interface classes for displaying products using specific shapes, and the

repository layer for storing and retrieving tool specific product data.

For new tools the domain-specific tool components have to be implemented. The

LPSOHPHQWDWLRQ of a typical action requires about one to two pages of C++ code. The effort for

implementing a new product shape or control icon heavily depends on the user interface toolkit used,

but normally it does not exceed two pages of code.

48

For legacy tools wrappers for the domain-specific tool functionality have to be implemented by

overwriting specific adapter classes of the implementation framework. According to our experience,

ZUDSSLQJ a legacy tool action or user interface element requires approximately five to ten times less

code than implementing it from scratch (depending on the API provided by the legacy tool).

6WHS��� ��,QWHJUDWH�5HTXLUHG�(QDFWPHQW�0HFKDQLVPV: For each plan context definition language

chosen in step 1, an enactment mechanism (interpreter) has to be embedded in the generic process

engine framework. This is achieved by specializing the abstract base class representing the

Deduce-Context state (see Section 5.2). The amount of work required depends on whether an

enactment mechanism is available and whether it provides the required interfaces. If there exists

an enactment mechanism providing the required interfaces, the effort required for the integration

is marginal.

8.2 An Example: Building the PRIME-CREWS Environment

We illustrate the six steps by describing the implementation of the requirements engineering

environment PRIME-CREWS. All tools of the PRIME-CREWS environment were built from

scratch.

6WHS�����&KRRVH�2QH�RU�0RUH��3ODQ�&RQWH[W�'HILQLWLRQ�/DQJXDJHV: We first experimented with

the Petri-Net language SLANG. It was fairly easy to represent the concepts of the contextual

process meta model in SLANG (see Section 4.1.3). By applying SLANG to define the method

guidance (step 2) it turned out that defining complex control flows like branches and loops was

not always straightforward. We had to introduce many additional control transitions and places

which merely served for emulating common control constructs like loops and branches. We

therefore used the imperative language C++ for defining such contexts since C++ offers more

suitable constructs.

6WHS�����'HILQLWLRQ�RI�0HWKRG�*XLGDQFH�LQ�WKH�3URFHVV�0RGHO� The product model underlying the

PRIME-CREWS environment is structured according to the three dimensions of requirements

engineering [77]. It adds a conceptual goal model, and a model for structuring multi media

artifacts such as real world scenes to the product models provided by its pre-cursor environment

PRO-ART (ER model, data flow model, hypertext model, gIBIS-like decision model, the RSM-

model; see [4], [78] for details). Moreover, PRIME-CREWS extends the dependency model of

PRO-ART by adding link types for interrelating the scenes and the conceptual models. On top of

these product models 159 situation types have been defined. By relating these situation types to

the defined intentions, 245 executable contexts, 38 choice contexts, and 82 plan contexts have

been defined. The initially small number of choice contexts and plan contexts progressively

increased due to the acquisition of method knowledge during our trial applications (see Section

9.4 for an example).

49

6WHS�����'HILQLWLRQ�RI�WKH�7RRO�&DSDELOLWLHV�LQ�WKH�7RRO�0RGHO: For each of the eight product sub

models we defined a tool category, namely the ER editor, DFD editor, hypertext editor, decision

editor, dependency editor, RSM editor, goal editor, and the whiteboard editor. In addition, three

product independent tools were defined: the model browser providing an overview on the product

models, the task manager for managing pending tasks, and the topic manager for collecting and

structuring open topics. Moreover, the actions provided by each tool category have been defined.

Altogether we defined 245 elementary actions.

In addition we have predefined a set of common command elements such as the pull-down

menus 'RFXPHQW��(GLW��7RROV��3UHIHUHQFHV��+HOS and specific icons for opening a model, adding a

model element etc. These command elements are used by all tools. Thereby we ensured that an

intention provided in more than one tool is activated by the same command elements. Moreover, we

defined a set of generic shapes which can be used in all tools such as rectangular, circles, oval boxes,

triangles and uni/bidirectional arrows.

6WHS� �� �� 'HILQLWLRQ� RI� WKH� (QYLURQPHQW�0RGHO: In the environment model, the actions of the

eleven PRIME-CREWS tool categories were related to the 245 executable contexts defined in the

process model. Moreover, the choice contexts were related to the various tool categories,

including the assignment of at least one command element to each alternative of choice context.

6WHS� �� �� ,PSOHPHQWDWLRQ� RI� 'RPDLQ�6SHFLILF� 7RRO�)XQFWLRQDOLW\: All tools have been

implemented using the generic tool architecture of the PRIME implementation framework. For

each tool category the associated actions have been implemented by specializing the

corresponding classes of the generic framework. Similarly, command elements, special shapes and

the product layer have been implemented. Through the use of the generic framework all the tools

have the same structure and they share about 60-70 percent of their code.

6WHS� �� �� ,QWHJUDWLRQ� RI� WKH� 5HTXLUHG� (QDFWPHQW� 0HFKDQLVPV: We have realized enactment

mechanisms for C++ and SLANG. In the case of C++, the plan contexts were specified as

subclasses of the abstract class CplusplusPlanContext. Each of these subclasses specializes

the deduceNextContext method. This specialization defines the control flow of the

corresponding plan context. The specialized method is invoked by the generic process engine

architecture during the enactment of the plan context. For enacting plan contexts defined in

SLANG we have implemented a limited SLANG interpreter and embedded it into the generic

process engine architecture. In both cases the enactment mechanisms could be easily plugged into

the generic process engine architecture.

8.3 Lessons Learned

Building a domain specific PIE comprises four modeling and two implementation activities.

Whereas the modeling activities are typically performed by the method engineer, the

50

implementation activities are executed by the tool builder. We summarize our experience gained

from building the PRIME-CREWS and TECHMOD environments.

8.3.1 Method Engineer: Defining and Adapting Process, Tool and

Environment Models

It turned out that defining processes using the three context types offers some significant

advantages to the method engineer in comparison with just applying, e.g., a Petri-Net based

process modeling language. The three context types provide a guideline for the method engineer

on how to structure process models, regardless of the specific enactment language chosen. In

addition, and in contrast to other process modeling approaches, the method engineer is forced to

make decision points explicit (by defining choice contexts).

The explicit definition of the tool capabilities forces the method engineer to think about the

"right" granularity of tool functions defined as executable contexts. Moreover, the method engineer

is aware of the existing tool support.

The integration of services provided by the tools and the services defined in the process model

can be easily achieved. Moreover, the explicit definition of the tool capabilities empowers the

method engineer to consider the available tool support during the method definition. The explicit

tool definitions support her or him in defining method fragments with the right granularity.

Most importantly, the explicit definition of processes and tool capabilities enables an easy

adaptation of the guidance offered by the environment. This is essential if the support offered has to

be adjusted to project-specific needs and in (experimental) settings, in which new knowledge about

good process performance is constantly elicited and learned.

8.3.2 Tool Builder: Implementing Domain-Specific Process-Integrated

Tools

The implementation of 16 process-integrated tools for the PRIME-CREWS and TECHMOD

environments confirmed our assumption that the concepts of the tool model and their interrelation

with the concepts of executable and choice context are sufficient for defining tool services. There

was no single situation in which a tool service could not be adequately described using executable

or choice contexts. Moreover, the developers were forced to define process knowledge explicitly

in plan contexts instead of embedding it in the code of the tools. In other words, the "process in

the tool syndrome" [34] was avoided.

The implementation of the tools was significantly facilitated by the generic tool architecture and

the reuse of the generic implementation framework. It turned out that the generic architecture

enables the programmer to extend the tool functionality without investing time in understanding the

51

structure of the tool or having it implemented. For example, the implementation of an action

(executable context) was possible without being aware of the other tool actions and/or worrying

about the control flow of the program.

Moreover, the predefined "slots" of the framework and their interfaces enforced the

programmers to produce modular code. Thus tool maintenance was eased. Each tool could be easily

maintained and extended by any programmer. In addition, the architecture improved the

communication between the programmers and served us as means for distributing the work between

them.

Of course, the programmers have to be trained in implementing process-integrated tools using

the PRIME implementation framework. This requires about 2 weeks in average.

In comparison with the development of earlier prototypes we observed a time reduction by at

least a factor of two for implementing a tool like the DFD editor (for PRIME-CREWS) or the

FlowSheet editor (for TECHMOD), although the programmers of the new tools had not

implemented the previous ones.

8.4 A Sample Session with PRIME-CREWS

In the following we highlight the benefits a PRIME-based PIE offers for the application engineers.

We describe the enactment of the plan context 3&B6XEW\SH(QWLW\QGGMXVW')' defined in

Section 4.1.3 in the PRIME-CREWS environment to illustrate how a PRIME-based environment

- Supports the application engineer in activating method fragments (Section 8.4.1);

- Explains new method fragments to the application engineer (Section 8.4.2);

- Executes automated process steps (executable contexts; Section 8.4.3);

- Provides methodical advice during choice context execution (Section 8.4.4);

- Supports the engineer in providing correct feedback information (Section 8.4.5).

As background for the example we assume that the PRIME-CREWS environment is used for

modeling a library system. Anita, the application engineer, is receiving method guidance for

subtyping the entity type SXEOLFDWLRQ in the current ER diagram into ERRNV which can be checked out

for four weeks and MRXUQDOV which cannot be checked out.

In the following, the paragraphs written in normal font describe the application engineer’s

interactions, while the paragraphs written in italics give an explanation of what happens at the

technical level of the PRIME framework10.

10 The description of the user interactions and the explanation of what happens at the technical level
take a much longer time to read than it would take to experience the advantages yourself by using
the PRIME-CREWS environment.

52

8.4.1 Tool Supported Invocation of Method Fragments

Anita selects the entity type SXEOLFDWLRQ and the 6XEW\SH�(QWLW\ menu item in the ER editor (see

Figure 14). Since the interactions match with a context definition, Anita has activated the

execution of a context, in this case of the plan context 3&B6XEW\SH(QWLW\QGGMXVW')'. Note that

she needs not to be aware about the plan context definition, since a plan context is activated in a

process-integrated tool just like any other tool functionality (context).

)LJXUH�����$FWLYDWLRQ�RI�WKH�SODQ�FRQWH[W�3&B6XEW\SH(QWLW\QGGMXVW')'

�LQ�WKH�(5�HGLWRU�

The ContextMatcher of the ER editor matches the selected entity and the activated menu item

with the situation and intention of the context definitions. It identifies the activation of the plan

context PC_SubtypeEntityAndAdjustDFD and sends an enactment request to the enactment domain

with the context identifier and the situation instance (the selected entity publication) as parameter.

The process engine becomes active, loads the definition of the plan context

PC_SubtypeEntityAndAdjustDFD from the process repository, and initializes the input places of the

corresponding SLANG net with the parameters received with the enactment request. For example,

the situation place Entity_To_Be_Subtyped is filled with a data token representing the entity type

publication (illustrated in Figure 14).

8.4.2 Method Advice: Explanations of Method Fragments

As a result of the plan context invocation, PRIME-CREWS displays an explanation of the

activated plan context to Anita. The textual description explains the overall goal of the method

fragment and the sequence of steps to be performed. Anita can now decide whether the method

advice should be displayed the next time the context is invoked or not.

53

For each executable, choice, or plan context the method engineer should provide a textual

description. This description is retrieved when the method fragment is invoked and displayed in the

method advisor window. By clicking on the name of the sub context (in the case of a plan context)

or alternative context (in the case of choice context) the user can access more detailed information

for each step in a hypertext-like manner. The display of the method advice for a new defined context

is enabled by default. It can be disabled by the user for further invocations after it has been displayed

once.

Anita acknowledges the information obtained from the method advice window and presses the

disable button. Thereby she states that whenever this context is activated again, the textual

description should not be displayed automatically. Moreover, by pressing the 6WDUW�&RQWH[W button

she activates the enactment of the plan context (she could also have stopped the enactment of the

plan context).

According to the plan context specification, first the sub plan context PC_SubtypeEntity is

activated.

The plan context 3&B6XEW\SH(QWLW\ guides Anita during the specialization of the entity type. She

creates two sub entities, namely the entity book and the entity journal, for the entity

publication (not explained in detail here). In addition, the sub-entities are automatically related

to the super-entity via ,V$�OLQNV.

8.4.3 Automated Process Performance

According to the plan context definition, an automated process step (executable context) is

performed after the plan context 3&B6XEW\SH(QWLW\ is finished. This automated process step

retrieves all DFD elements from the repository which might be effected by the subtyping of the

entity. It thus represents a traceability strategy which ensures the use of recorded trace information

(in this case the dependencies between the entity and the DFD elements).

By performing the executable context EC_GetDependentObjects provided by the dependency

editor all data flow elements which are related to the entity publication via a dependency link are

retrieved from the repository11. Among the objects returned are the data store PUBLICATION and

its adjacent data flows. They build the situation of the choice context CC_SelectDFDElement which

is deduced as the next context to be executed by the process engine and passed to the dependency

editor, who is, according to the environment model, responsible for executing this context.

11 PRIME-CREWS’s mechanisms and models for supporting traceability between specification
objects (such as entity types and data stores) via a comprehensive dependency structure described
in [4] in detail.

54

8.4.4 Method Advice: Supporting User Choices

The dependency editor adapts its user interface according to the definition of the

&&B6HOHFW')'(OHPHQW context and the actual situation data. It displays the four intentions of the

alternatives as defined in the environment model and displays the tokens of the situation place,

namely the retrieved DFD objects and the entity proceedings.

To get more information on the four alternatives, Anita requests additional guidance from the

dependency editor by selecting the guidance menu item.

The arguments for choosing an alternative are retrieved from the process repository and

displayed in the method advice window (Figure 15). Again, it is possible to browse through the

alternatives.

)LJXUH�����'HSHQGHQF\�HGLWRU�SHUIRUPLQJ�WKH�FKRLFH�FRQWH[W�&&B6HOHFW')'(OHPHQW�

Anita looks at the arguments for the four alternatives and decides to adapt the flow publication

defined between the store PUBLICATION and the process bubble &KHFN�2XW. By selecting the shape

representing the flow in the dependency editor and choosing the menu item $GDSW')'(OHPHQW from

the (GLW menu, Anita initiates the execution of the plan context 3&B$GDSW')'(OHPHQW. This

complex plan context guides Anita in the adaptation of the selected data flow (not explained here).

After the adaptation is finished, the choice context &&B6HOHFW')'(OHPHQW is again activated in

the dependency editor. Now only the store PUBLICATION and flow publication from process book

to store PUBLICATION can be selected. These products are highlighted by the tool using dark

borders (Figure 15).

Due to the control flow of the plan context, the token which represents the adapted flow has

been consumed by the execution of the choice context described above. In the dependency editor

55

only product parts which are part of the actual situation (for which a token exists in the

DFD_Element place of the plan context) are displayed as selectable.

As the next item to be adapted Anita selects the flow SXEOLFDWLRQ (between the process bubble

DGGBERRN and the store PUBLICATION) and the menu option $GGWR7DVN/LVW since she is currently

not sure whether this element is actually effected.

This interaction matches with the executable context EC_AddToTaskList which is executed by

the task manager (brokered via the process engine).

Finally, she finishes the plan context enactment by choosing the alternative 4XLWB')'B

$GDSWDWLRQ.

8.4.5 Assuring Correct Feedback Information

The adaptation of the user interface during the execution of the choice context

&&B6HOHFW')'(OHPHQW ensures that the items selected by Anita are understood by the process

engine. It guarantees that an appropriate reaction to the feedback is defined by the process

fragment. Since the abortion of the adaptation of the DFD elements is offered as one alternative,

Anita can deviate from the guidance provided by the plan context execution whenever she wants,

but in a defined way.

8.4.6 Feedback Obtained from Users

In our early validation studies with the PRIME-CREWS and TECHMOD environments, most

users reported that the reflection of the actual method definitions and the current enactment state

in the behavior of the tools provides very helpful guidance; especially the adaptation of the user

interface according to the method definitions and the support offered for invoking predefined

method fragments. Since attention is automatically drawn to the applicable product parts and

services, wrong and unintended interactions are avoided. The uniform activation of tool services

(executable and choice contexts) as well as process fragments (plan contexts) was regarded as a

significant improvement.

In contrast to our previous prototypes (and most other process-centered environments) the

number of different interfaces the user has to cope with was reduced. Now the user essentially

interacts with the enactment domain via the normal development tools (not through isolated

guidance interfaces). This was also reported as a major improvement.

56

��&KDQJH�,QWHJUDWLRQ�LQ�D�35,0(�%DVHG
(QYLURQPHQW

Method guidance continuously evolves due to various reasons such as changes in organizational

and/or project policies, increase and/or revision of method knowledge, adding and/or modification of

tool functionality. The process of adapting a process integrated environment (PIE) to such changes is

thus as (or even more) important as building a PIE from scratch.

One major drawback of current process-centered engineering environments is that method

guidance is hard-coded in the tools. The adaptation to changes is thus difficult and labor-intensive, if

not impossible. Embedding a new tool in an environment is generally difficult since the method

guidance encoded in the tool interferes in most cases with the method definitions. Moreover, since

method guidance, tool capabilities and their interrelations are not explicitly represented, it is hard to

determine how a method change affects the tools and vice versa.

In contrast, a PRIME-based PIE facilitates the incorporation of a change in two major ways.

First, the conceptual modeling of processes, tools, and their integration in the environment

model empowers a change definition on the modeling level. Once a change is defined at the

modeling level, the effect of the change can be analyzed. Moreover, the environment meta model

supports the selective retrieval and thereby the reuse of method fragments (contexts of any type) and

tool functionality and thereby eases the change implementation.

Second, the interpretation of the environment model by all PRIME components ensures that

changes can be mainly accomplished at the modeling level. The integration of most changes requires

only an adaptation of the method, tool, and/or environment models. If changes at the implementation

level are required, for example, if a new elementary process step shall be implemented, the

implementation is supported by the generic components of the PRIME implementation framework.

For integrating a change into a PRIME-based environment, we propose a five step strategy:

(Step 1) &KDQJH�GHILQLWLRQ�LQ�WKH�HQYLURQPHQW�PRGHO: The environment model has to be adapted

according to a change request. In other words, the change is first defined at the modeling level;

(Step 2) $QDO\VLV�RI�FKDQJH�DIIHFWV: The meta models are used to analyze the existing definitions

in the current environment model and to retrieve those parts of the definition which are effected by

the changes made in step 1;

(Step 3) $GDSWDWLRQ� RI�HIIHFWHG� WRRO�DQG�RU�PHWKRG�GHILQLWLRQV: The effected tool and/or method

definitions have to be adapted in a way that the tool and method definition are consistent;

(Step 4) (VWDEOLVKLQJ� D� FRQVLVWHQW� HQYLURQPHQW� PRGHO: Newly defined or changed method

fragments and/or tool capabilities must be interrelated to achieve a consistent environment model

definition;

57

(Step 5) ,PSOHPHQWDWLRQ� RI� PLVVLQJ� WRRO� IXQFWLRQDOLW\: In some cases, a change cannot be fully

implemented through model adaptation and thus requires, in addition, the implementation and/or

wrapping of tool functionality.

The strategy outlined above can also be applied for transferring method guidance and tool

functionality between different application domains. As our experience with the development of the

TECHMOD environment indicates, many method fragments and tool functionality developed for the

requirements engineering environment PRIME-CREWS could be reused for the TECHMOD

environment. Most of the required adaptations could be achieved through model changes.

In the next sections we elaborate on the integration of a change request in a PRIME based

environment. Therefore, we classify change requests into three main categories, namely method

change requests (Section 9.1), tool change requests (Section 9.2), and responsibility change requests

(Section 9.3).

9.1 Integrating Method Change Requests

According to our experience, the adaptation of the method definitions is the most common change

request. Such changes are typically raised by the need to adjust the support offered to project-

specific needs, to implement new methodical knowledge or to enrich existing method fragments.

6WHS�����&KDQJH�'HILQLWLRQ�LQ�WKH�(QYLURQPHQW�0RGHO: For accommodating method changes in a

PRIME-based environment, the context definitions have to be adapted. According to our

experience method changes seldom require the definition of completely new method fragments.

Once a consolidated base of method fragments exists, method changes can be mainly achieved by

adapting existing contexts (for example, by adding a new alternative to a choice context or by

changing the control flow of a plan context) and/or composing existing contexts into an existing or

new plan context. The environment meta model provides an excellent starting point for retrieving

reusable method fragments. For example, if the method engineer defines the situation and/or

intention of the new context, she or he can retrieve all contexts which are potential reuse

candidates such as all contexts which are based on same or similar situation.

6WHS� �� ��$QDO\VLV� RI�&KDQJH�$IIHFWV: Modifying existing and/or adding new executable and/or

choice contexts can require an adaptation of the tool models. By applying the consistency

constraints defined in Section 4.3 the concepts of the tool models which are effected by the

method changes can be retrieved. For example, by applying constraint E1 and E2 it can be

checked if a tool category is responsible for the action assigned to an executable context and if

there is a mismatch between the input and output parameters defined for the action in the tool

model and the situation defined for the action in the process model. If no tool category is

responsible for executing the context, it can be checked whether a tool provides the required

action or whether the definition of a new tool action is required. Similar, by applying constraints

C1 and C2, it can be checked whether the tool responsible for the choice context is able to display

58

the intentions of all alternative contexts and whether all product types being part of a situation

type of any alternative context can be displayed.

6WHS�����$GDSWDWLRQ�RI�(IIHFWHG�7RRO�DQG�RU�0HWKRG�'HILQLWLRQV: The conflicts between the tool

definitions and the adapted method definitions detected in step 2 have to be resolved. This can

either be achieved by adapting the tool definitions or by changing the method definitions. In the

case of an executable context, for example, if the required action is not provided by any tool, the

method engineer can either define a new action and assign it to a tool category, or revise the

definition of the executable context. For example she or he can define a new plan context which

achieves the method guidance by composing more fine-granular actions provided by the tools.

Similarly, if there is a mismatch between the input and output definition of the actions either the

input/output parameters in the tool model are adapted or the definition of the executable context is

changed.

In the case of a new or changed choice context it might be the case that the tool which is or

should be responsible for executing the context does not offer all required command elements and/or

shapes. To solve this inconsistency, either the tool model is enhanced by defining the missing

command elements and/or the shapes, or, the method engineer adapts the choice context definition

instead of changing the tool model, or the adjustment is achieved by a combination of both.

6WHS��� ��(VWDEOLVKLQJ�D�&RQVLVWHQW�(QYLURQPHQW�0RGHO: The newly defined or changed method

fragments (contexts) and/or tool capabilities must be interrelated with each other. The definition

of the associations and the support provided by the meta models is described in Section 8.1, step 4.

6WHS�����,PSOHPHQWDWLRQ�RI�0LVVLQJ�7RRO�)XQFWLRQDOLW\: If in step 3 the tool definitions have been

changed, the implementation must be adapted according to those changes. This means that either

the wrappers of the legacy tools must be adapted, or that the missing actions, shapes, and

command icons have to be implemented. As described in step 5 (Section 8.1) the PRIME

implementation framework significantly facilitates those implementations. In contrast to the

actions, shapes and command items, the menu entries and the short-key bindings are automatically

generated by the PRIME implementation framework.

9.2 Integrating Tool Change Requests

Tool model modifications stem from enhancements or modifications of the available tool

functionality initiated through, e.g., a user request for a new tool action, or a completely new tool,

or the removal of an existing tool from the environment.

6WHS�����&KDQJH�'HILQLWLRQ�LQ�WKH�(QYLURQPHQW�0RGHO: Changes in the tool implementations must

be reflected at the modeling level by adapting the tool model accordingly. Ideally, changes are

first defined in the tool model and then, after establishing a consistent environment model,

implemented. For example, if a new tool action shall be implemented the action and the LQSXW and

RXWSXW parameters should be defined in the tool model. Similarly, if an existing tool shall be

59

replaced by a new tool, the capabilities of the new tool should be defined in the tool model. The

environment model can then be used to detect and analyze the differences in the capabilities

provided by the old and the new tools, for example, to detect capabilities provided by the old tool

but not by the new one.

6WHS�����$QDO\VLV�RI�&KDQJH�$IIHFWV: Changes of the tool capabilities do normally not affect the

method fragment definitions. However, if a capability required for executing an executable and/or

choice context is changed, the method definitions are effected.

For example, if the signature of an action has been modified, it has to be assured (by checking

constraint E1 and E2) that the new definition still fits with the situation defined for the action in the

method definitions. In the case of a legacy tool, it has in addition to be checked if the wrappers still

work as desired. Otherwise the association of the tool category with the corresponding executable

context becomes invalid. Or, a modification of command elements and/or the visualization of

products may interfere with the associations defined between the tool categories and the choice

contexts, for example, if a command element has been removed or changed, it must be checked

whether and which alternatives of a choice context are effected.

6WHS��� ��$GDSWDWLRQ�RI�(IIHFWHG�7RRO� DQG�RU�0HWKRG�'HILQLWLRQV: The modification of the tool

capabilities can cause certain adaptations of the method fragments and the associations defined

between the fragments and the tool capabilities. Similar to the integration of method changes, the

adaptation can be achieved by modifying the tool and/or method definitions. For example, if a

certain tool capability like an action or a shape has been removed the associated contexts have to

be changed or new capabilities have to be defined in the tool model. Similar, to enable the

execution of new actions defined in the tool model corresponding executable contexts have to be

defined in the process model.

6WHS�����(VWDEOLVKLQJ�D�&RQVLVWHQW�(QYLURQPHQW�0RGHO: see Section 9.1, step 4 for a description.

6WHS�����,PSOHPHQWDWLRQ�RI�0LVVLQJ�7RRO�)XQFWLRQDOLW\: If there are capabilities not provided by

the tools, those capabilities must be implemented. If additional capabilities provided by a legacy

tool shall be used, those capabilities must be wrapped as described in Section 7.

9.3 Integrating Responsibility Change Requests

Besides the method and tool changes, a change request can be concerned with assigning the

responsibility for a context execution to another tool.

6WHS� �� ��'HILQLWLRQ� RI� &KDQJH� LQ� WKH�(QYLURQPHQW�0RGHO: A change in the responsibility for

executing an executable or choice context can be achieved by adapting the associations defined

between the tool and process models.

60

6WHS�����$QDO\VLV�RI�&KDQJH�$IIHFWV: Before changing an assignment of an executable or choice

context, the consequences of this change should be explored.

For example, if instead of a tool category 7� a tool category 7� shall be responsible for executing

an executable context, it should be checked if 7� actually provides the action related to the

executable context and if the definition of the input and output parameters corresponds to the

situation of the executable context. This can be achieved by checking the constraints E1 and E2

(Section 4.3). Similarly, when assigning a choice context to another tool category, the method

engineer can check by using the constraints C1 and C2 if the new tool category provides all

command elements and product shapes required for displaying the alternatives of the choice context

to be re-assigned.

The steps three, four and five have only to be performed if the intended change requires the

definition of new tool functionality or the adaptation in the method definition. These cases are

described in Section 9.1 and Section 9.2 respectively.

9.4 Adapting Method Guidance: A Small Example

We illustrate the ability of PRIME-based environments to adapt to changes using an example of

the PRIME-CREWS environment. The example illustrates the adaptation of the method guidance

for specializing an entity and adjusting the effected data flow diagrams. According to our

experience, adapting the method guidance is by far the most frequent type of change in a PIE.

The original method guidance for the specialization of an entity was defined in a plan context

3&B6XEW\SH(QWLW\ which supports the creation of sub-entities and the ,V$�/LQNV�between the super-

entity and its sub-entities.

A review of the requirements specifications produced with the PRIME-CREWS environment

reveals that specialization in the entity relationship diagrams are often not accurately reflected in the

corresponding data flow diagrams. Therefore, the method engineer defined a new plan context

3&B6XEW\SH(QWLW\QGGMXVW')' which guides the requirements engineer in the specialization of

the entity and the adjustment of the data flow diagrams. We described this plan context already in

Section 4.1.3 (see also Figure 4).

In the following we briefly sketch how the definition of the new plan context was supported by

the modeling tools and achieved in the PRIME-CREWS environment.

6WHS��� ��&KDQJH�'HILQLWLRQ� LQ� WKH�(QYLURQPHQW�0RGHO: For defining the new plan context, the

method engineer (Fritz) first queried the environment model to obtain all contexts which deal with

the modeling of entities and the adaptation of data-flow diagram elements. From the 21 retrieved

contexts, Fritz selected four to be reused:

- The plan context 3&B6XEW\SH(QWLW\ which guides the specialization of an entity;

61

- The plan context 3&B$GDSW')'(OHPHQW which guides the adaptation of a single data-flow

diagram element;

- The executable context (&B*HW'HSHQGHQW2EMHFWV which selects objects with the specified

association from the repository;

- The executable context (&B$GG7R7DVN/LVW by which an open topic is added to the workplace

specific task list;

Fritz reused these contexts for defining the new method guidance in a plan context. He first

defined the situation and the intention of a new choice context (&&B6HOHFW')'(OHPHQW) which

allows the requirements engineer to select the dependent DFD object and choose an adaptation

strategy. He then associated the alternatives 3&B$GDSW')'(OHPHQW, (&B$GG7R7DVN/LVW,

1R&KDQJH5HTXLUHG, 4XLW$GDSWDWLRQ to the new choice context. According to the environment model

definitions, the alternatives 3&B$GDSW')'(OHPHQW, (&B$GG7R7DVN/LVW are executed by different

tools (the TaskManager and the DFD editor). He then embedded the choice context into the plan

context definition and completed the plan context definition by specifying the control flows and by

embedding additional contexts as shown in Figure 4.

As illustrated by the example, the definition of a new plan context is often an activity by which

existing contexts are "glued" together.

6WHS� �� ��$QDO\VLV� RI�&KDQJH�$IIHFWV: After finishing the method definitions, Fritz checked the

constraints on the current model definitions. As a result he noticed that the new choice context

&&B6HOHFW')'(OHPHQW is not related to any tool category.

6WHS�����$GDSWDWLRQ�RI�(IIHFWHG�7RRO�DQG�RU�0HWKRG�'HILQLWLRQV: In our example, there is no need

to adapt the tool models, since all required action and command elements are provided by the

defined tools.

6WHS��� ��(VWDEOLVKLQJ�D�&RQVLVWHQW�(QYLURQPHQW�0RGHO: Fritz thus just had to relate the choice

context &&B6HOHFW')'(OHPHQW to the tool category which should be responsible for executing the

context, namely the dependency editor. This assignment required in addition, that the intentions of

the four alternative contexts are related to command elements of the DFD editor (see Section 4.3.2

for details). Thereby the DFD editor was made responsible for executing the choice context.

6WHS� �� �� ,PSOHPHQWDWLRQ� RI� 0LVVLQJ� 7RRO�)XQFWLRQDOLW\: The definition of the new method

guidance in our example did not require any changes at the implementation level. Even the new

tool interoperations required by the changes were achieved without any single source code change.

As our experience indicates, changing method guidance in a PRIME-based environment requires

much less effort than adapting the method guidance in existing process-centered environments or in

conventional CASE tools.

62

��� &RQFOXVLRQV�DQG�2XWORRN

We presented PRIME, a framework for 35ocess-,ntegrated 0odelling (nvironments. The

development of the PRIME framework was driven by the requirements for process-integrated

environments elaborated in Section 2. PRIME differs significantly from current PCEs in that it

provides method guidance through process-integrated tools which are able to adapt their behavior

to the method definition and to the actual process situation. Thereby the tools offer situated

guidance to the humans performing the process. PRIME enables the user to initiate the enactment

of method definitions and thereby empowers the user to play a more active role in process

performance.

The main contributions of the PRIME framework (in comparison with existing PCEs) can be

summarized as follows:

,QWHJUDWHG�WRRO�DQG�SURFHVV�PRGHOV (Section �): We argued that tools should not longer be treated

as second class citizens and suggested to explicitly define the tool capabilities in addition to the

process models. Moreover, we proposed to integrate both types of models forming the so-called

environment model. The interpretation of the environment model by the components of the

PRIME framework and the LQWHJUDWLRQ�RI�HQDFWPHQW�DQG�SHUIRUPDQFH�GRPDLQV (Section �) build

the conceptual foundations for the process-integration of the interactive engineering tools.

Process-integrated tools offer integrated, definition-conform method guidance and thereby

significantly improve the consideration of the project-specific definitions by the stakeholders

executing the process.

,PSOHPHQWDWLRQ� IUDPHZRUN� IRU�SURFHVV�LQWHJUDWHG� WRROV (Section �): The implementation of the

generic tool architecture offers well-defined interfaces for embedding tool specific actions, shapes

and command elements. It thus defines a quasi standard way of implementing process-integrated

tools. The tool architecture ensures a synchronization with the enactment domain according to the

interaction protocol definitions. Moreover, it facilitates the realization of project-specific changes

and the implementation of a new tool through the automated adaptation of the tool behavior to

changes in the environment model. This is mainly achieved through the ContextMatcher which

supports the user in the unified activation of contexts of any type and the ContextExecutor which

ensures that the contexts are executed as defined. In the case of an executable context, it performs

the associated action; in the case of a choice context it restricts the selectable products, command

elements and menu options according to the choice context definition and the current enactment

state. Both components ensure that changes in the environment model are automatically reflected

in the tool behavior.

,PSOHPHQWDWLRQ�IUDPHZRUN�IRU�SURFHVV�HQJLQHV (Section �): The language used for defining plan

contexts depends on the type of support provided. For example, state-based languages are well

suited to define simple advice patterns, whereas the effective definition of more elaborated support

requires, to our experiences, the use of languages with a higher expressiveness such as Petri-Nets

63

or (visual) programming languages. Improving the method guidance could thus, at certain stages,

require the use of an additional plan context specification language and thus the integration of a

suitable interpreter in the PRIME-based environment. The integration of a new interpreter is

facilitated by the interfaces offered by the generic enactment architecture which ensures

interaction protocol conform synchronization with the performance domain.

3URFHVV�LQWHJUDWLRQ� RI� OHJDF\� WRROV (Section �): One cannot assume that for each required

functionality new process-integrated tools are implemented. Achieving a process-integration of

legacy tools the users are familiar with is thus essential. The PRIME framework significantly

facilitates the process-integration of legacy tools by wrapping the tool using appropriate user

interface and action wrappers into the generic tool architecture. Thereby a legacy tool is

empowered to offer integrated, definition-conform stakeholder guidance.

&KDQJH� LQWHJUDWLRQ� VXSSRUW (Section �): Easy change realization and appropriate change

integration support are two important prerequisites for adapting requirements management

environments to project-specific needs. Change integration is facilitated by the PRIME

implementation framework in two major ways. First, model-based change definition and change

analysis are empowered through the conceptual modeling of processes, tools, and their integration

in the environment model. Second, the effort required for a change realization is significantly

reduced. The interpretation of the environment model by the PRIME components ensures that the

change implementation can mainly be achieved through model adaptations. If the integration of a

change affects the implementation level, the realization is significantly supported by the generic

tool and enactment architectures.

The generic components of PRIME have been implemented as reusable object-oriented

implementation framework (approx. 120,000 lines of C++ code). In addition, modeling tools for

supporting the definition of the tool, process and environment models have been implemented. The

PRIME implementation framework and the associated development and customization strategies,

were validated by implementing two prototypical process-integrated environments, PRIME-CREWS

and TECHMOD, consisting of 16 process-integrated tools (approx. 240,000 lines of tool specific

C++ code). Moreover, the PRIME framework was validated by applying the environments in small

case studies and trial applications.

Most users of the PRIME-CREWS and the TECHMOD environments reported that the

reflection of the actual method definitions and the current enactment state in the behavior of the

tools provides very helpful guidance. The user is reminded of the project-specific definitions and, as

a consequence, the definitions are much better considered during process execution. The uniform

activation of tool services (executable and choice contexts) as well as method fragments (plan

contexts) was regarded as a significant improvement. Project-specific guidance can thus be invoked

by the user without even knowing their existence. Moreover, in comparison with our previous

prototypes (and most other process-centered environments) the number of different user interfaces

was reduced. Now the user essentially interacts with the enactment domain via the normal

64

development tools (not through isolated guidance interfaces). This was also reported as major

improvement.

We are currently extending the PRIME implementation framework to enable context detection

and invocation across tool boundaries. Moreover, to further reduce the implementation effort

required for building a process-integrated tool we enrich the PRIME framework with tool generation

approaches which enable the generation of tool specific functionality based on richer tool

specifications.

In addition, we are investigating in the application of the PRIME framework for the

implementation of SURMHFW�VSHFLILF� WUDFH� FDSWXUH� VWUDWHJLHV (see [22], [79] for details), and in the

development a FRPSUHKHQVLYH�IUDPHZRUN�IRU�WKH�SURFHVV�LQWHJUDWLRQ�RI�OHJDF\�WRROV. The framework

will define detailed criteria for determining the degree of process integration which can be achieved

for a given legacy tool. The process-integration of a legacy tool will be facilitated by generic

wrappers which can be adjusted according to the assessed capabilities of the tool. To empower as

much as possible reuse, the wrappers will be related to the generic tool architecture of the PRIME

implementation framework.

$FNQRZOHGJPHQWV�� The authors like to thank their students S. Brandt, S. Ewald, M. Hoofe, T.

Rötschke, K. Schreck, A. Spiegel, and W. Thyen. Without their enthusiasm, the implementation of

the generic architecture and the PRIME-CREWS and TECHMOD environments would not have

been possible.

5HIHUHQFHV
[1] M. Paulk, B. Curtis, M. Chrissis and C. Weber, &DSDELOLW\�0DWXULW\�0RGHO�IRU�6RIWZDUH�

9HUVLRQ������Technical Report SEI93-TR-24, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, February 1993

[2] W. E. Deming, 2XW�RI�WKH�&ULVLV, Massachusetts Institute of Technology, Center for Advanced
Engineering Study, Cambridge, 1986

[3] M. Dowson, &RQVLVWHQF\�0DLQWHQDQFH�LQ�3URFHVV�6HQVLWLYH�(QYLURQPHQWV� In: Proc. Process
Sensitive Software Eng. Environments Architectures Workshop, Boulder, Colorado, USA,
September, 1992

[4] K. Pohl, 3URFHVV�&HQWHUHG�5HTXLUHPHQWV�(QJLQHHULQJ� RSP marketed by J. Wiley & Sons
Ltd., UK, 1996

[5] J. Lonchamp, 6RIWZDUH�3URFHVV�0RGHOOLQJ�DQG�7HFKQRORJ\��&KDSWHU�$Q�$VVHVVPHQW�([HUFLVH,
In: A. Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software Process Modelling and
Technology, Student Research Press, Wiley & Sons, England, 1994, pp. 335-356

[6] V. Ambriola, G. A. Cignoni and C. Montangero, 7KH�2LNRV 6HUYLFHV�IRU�2EMHFW�0DQDJHPHQW
LQ�WKH�6RIWZDUH�3URFHVV, In: B. Warboys (Ed.), Proc. of the Third Europ. Workshop on
Software Process Technology, Villard de Lans, France, February, Springer-Verlag, LNCS,
1994, pp. 2-13

65

[7] S. Bandinelli, A. Fuggetta, C. Ghezzi and L. Lavazza, 63$'(��$Q�(QYLURQPHQW�IRU�6RIWZDUH
3URFHVV�$QDO\VLV��'HVLJQ��DQG�(QDFWPHQW� In: A. Finkelstein, J. Kramer and B. Nuseibeh
(Eds.), Software Process Modelling and Technology, RSP, London, 1994, pp. 223-248

[8] N. Barghouti, 6XSSRUWLQJ�&RRSHUDWLRQ�LQ�WKH�0$59(/�3URFHVV�&HQWHUHG�6RIWZDUH
'HYHORSPHQW�(QYLURQPHQW� In: Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, New York, New York, USA,
1992, pp. 21-31.

[9] N. Belkhatir, J. Estublier and W. L. Melo, TEMPO: (QKDQFLQJ�2�2��3DUDGLJP�IRU�0RGHOLQJ
6RIWZDUH�(QJLQHHULQJ�3URFHVVHV�In: W. Schäfer (Ed.), Proc. of the Eighth Intl. Software
Process Workshop: State of the Practice in Process Technology, Wadern, Germany, March
1993, pp. 37-39

[10] P. Boveroux, G. Canals, J.-C. Derniame, C. Godart, P. Jamart and J. Lonchamp, 6RIWZDUH
3URFHVV�0RGHOOLQJ�LQ�WKH�$/)�6\VWHP��DQ�([DPSOH� In: V. Ambriola, A. Fuggetta and R.
Conradi (Eds.), Proc. of the First Europ. Workshop on Software Process Modeling
Technology, Milan, Italy, CEFRIEL, AICA, Working Group on Software Engineering, May
1991, pp. 167-179

[11] M. Deiters and V. Gruhn, 7KH�)8162)7�1HW�$SSURDFK�WR�6RIWZDUH�3URFHVV�0DQDJHPHQW,
Intl. Journal of Software Engineering and Knowledge Engineering, Vol. 4, No. 2, 1994

[12] C. Fernström, 352&(66�:($9(5��$GGLQJ�3URFHVV�6XSSRUW�WR�81,;, In: L. Osterweil (Ed.),
Proc. of the Second Intl. Conf. on the Software Process, Berlin, Germany, IEEE Computer
Society Press, February 1993, pp. 12-26

[13] P. Heimann, G. Joeris, C.-A. Krapp and B. Westfechtel,�'<1$0,7(��'\QDPLF�7DVN�1HWV�IRU
6RIWZDUH�3URFHVV�0DQDJHPHQW� In: Proc. of the 18th Int. Conf. on Software Engineering,
1996, pp. 331-341

[14] T. Mochel, A. Oberweis and V. Sänger, ,QFRPH�VWDU��7KH�SHWUL�QHW�VLPXODWLRQ�FRQFHSWV�
Journal of Mathematical Modelling and Simulation in Systems Analysis, Vol. 13, 1993, pp.
21-36

[15] V. Ambriola, R. Conradi and A. Fuggetta, $VVHVVLQJ�3URFHVV�&HQWHUHG�6RIWZDUH�(QJLQHHULQJ
(QYLURQPHQWV� ACM Transaction of Software Engineering and Methodology, Vol 6, No 3,
1997, pp. 283-328

[16] P. Armenise, S. Bandinelli, C. Ghezzi and A. Morzenti, $�6XUYH\�DQG�$VVHVVPHQW�RI�6RIWZDUH
3URFHVV�5HSUHVHQWDWLRQ�)RUPDOLVPV� International Journal of Software Engineering And
Knowledge Engineering, Vol. 3, No. 3, 1993, pp. 410-426

[17] B. Curtis, M. Kellner and J. Over, 3URFHVV�0RGHOLQJ� Communications of the ACM, Vol. 35,
No. 9, 1992, pp. 75-90

[18] A. Finkelstein, J. Kramer, and B. Nuseibeh (Eds.), 6RIWZDUH�3URFHVV�0RGHOOLQJ�DQG
7HFKQRORJ\. Advanced Software Development Series, RSP marketed by J. Wiley & Sons Ltd.,
Taunton, England, 1994

[19] A. Fuggetta and C. Ghezzi, 6WDWH�RI�WKH�$UW�DQG�2SHQ�,VVXHV�LQ�3URFHVV�&HQWHUHG�6RIWZDUH
(QJLQHHULQJ�(QYLURQPHQW�� Journal of Systems and Software Vol. 26, 1994, pp. 53-60

[20] F. Harmsen and M. Saeki, &RPSDULVRQ�RI�IRXU�0HWKRG�(QJLQHHULQJ�/DQJXDJHV, In: S.
Brinkkemper, K. Lyytinen and R. Welke (Eds.), Method Engineering: Principles of
construction and tool support -- Proc. of the IFIP TC8, WG8.1/8.2 Working Conference on
Method Engineering, Atlanta, Georgia, USA, Chapman & Hall, London, England, August
1996, pp. 45-62

66

[21] J.-P. Tolvanen, M. Rossi and H. Liu, 0HWKRG�(QJLQHHULQJ��&XUUHQW�5HVHDUFK�'LUHFWLRQV�DQG
,PSOLFDWLRQV�IRU�)XUWKHU�5HVHDUFK��In: S. Brinkkemper, K. Lyytinen and R. Welke (Eds.),
Method Engineering: Principles of construction and tool support -- Proc. of the IFIP TC8,
WG8.1/8.2 Working Conf. on Method Engineering, Atlanta, Georgia, USA, Chapman & Hall,
London., England, August 1996, pp. 296-317.

[22] K. Pohl, R. Dömges and M. Jarke, 7RZDUGV�0HWKRG�'ULYHQ�7UDFH�&DSWXUH�� In: Proceedings
of the 9th International Conference on Advanced Information Systems Engineering, CAiSE
’97, Barcelona, Spain, June 1997, pp. 103-116

[23] G. Alonso, D. Agrawal, A. Abbadi and C. Mohan,)XQFWLRQDOLW\�DQG�/LPLWDWLRQV�RI�&XUUHQW
:RUNIORZ�0DQDJPHQW�6\VWHPV� IEEE Expert, 1996

[24] M. Nagl (Ed.), %XLOGLQJ�7LJKWO\�,QWHJUDWHG�6RIWZDUH�'HYHORSPHQW�(QYLURQPHQWV��7KH�,36(1
$SSURDFK� LNCS 1170, Springer Verlag, 1996

[25] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh, ,QFRQVLVWHQF\�+DQGOLQJ�LQ
0XOWL�3HUVSHFWLYH�6SHFLILFDWLRQV, IEEE Transactions on Software Engineering, Vol. 20, No. 8,
1994, pp. 569 – 578

[26] R. Dömges, K. Pohl, M. Jarke, B. Lohmann and W. Marquardt, 352�$57�&(��$Q
(QYLURQPHQW�IRU�0DQDJLQJ�WKH�(YROXWLRQ�RI�&KHPLFDO�3URFHVV�6LPXODWLRQ�0RGHOV� Modelling
and Simulation, Special Issue of ESM-96, Society for Computer Simulation International, pp.
1012-1017

[27] S. Arbaoui and F. Oquendo, 0DQDJLQJ�,QFRQVLVWHQFLHV�EHWZHHQ�3URFHVV�(QDFWPHQW�DQG
3URFHVV�3HUIRUPDQFH�6WDWHV, In: W. Schäfer (Ed.), Proc. of the Eighth Intl. Software Process
Workshop: State of the Practice in Process Technology, Wadern, Germany, IEEE Computer
Society Press, 1993, pp. 24-27

[28] M. Dowson and C. Fernström,�7RZDUGV�5HTXLUHPHQWV�IRU�(QDFWPHQW�0HFKDQLVPV� In: B.
Warboys (Ed.), Proc. of the 3rd Europ. Workshop on Software Process Technology, LNCS,
Villard de Lans, Frankreich, Springer-Verlag, No. 772, February 1994, pp. 90-106

[29] W. Emmerich, 7RRO�&RQVWUXFWLRQ�IRU�3URFHVV�&HQWUHG�6RIWZDUH�'HYHORSPHQW�(QYLURQPHQWV
EDVHG�RQ�2EMHFW�'DWDEDVHV� PhD thesis, University of Paderborn, Germany, 1995

[30] C. Fernström, 6WDWH�0RGHOV�DQG�3URWRFROV�LQ�3URFHVV�&HQWHUHG�(QYLURQPHQWV, In: W. Schäfer
(Ed.), Proc. of the Eighth Intl. Software Process Workshop: State of the Practice in Process
Technology, Wadern, Germany, IEEE Computer Society Press, 1993, pp. 72-77

[31] C. Fernström and L. Ohlsson, ,QWHJUDWLRQ�1HHGV�LQ�3URFHVV�(QDFWHG�(QYLURQPHQWV, In: Proc.
of the 1st Intl. Conf. on the Software Process, 1991, pp. 142-158

[32] M. A. Gisi and G. E. Kaiser, ([WHQGLQJ�D�7RRO�,QWHJUDWLRQ�/DQJXDJH, In: M. Dowson (Ed.),
Proc. of the First Intl. Conference on Software Process, Redondo Beach CA, IEEE Computer
Society Press, October 1991, pp. 218-227.

[33] M.Jarke, 6WUDWHJLHV�IRU�LQWHJUDWLQJ�&$6(�HQYLURQPHQWV� IEEE Software, March 1992, pp. 54-
61

[34] C. Montangero, 7KH�3URFHVV�LQ�WKH�7RRO�6\QGURPH��,V�,W�%HFRPLQJ�:RUVH? In: Proc. of the 9th
Intl. Software Process Workshop, Arlie, Virginia, USA, IEEE Computer Society Press,
October 1994, pp. 53-56.

[35] S. M. Sutton and M. H. Penedo, 3URFHVV�%DVHG�6RIWZDUH�(QJLQHHULQJ�(QYLURQPHQWV
$UFKLWHFWXUHV�6HVVLRQ�5HSRUW� In: Proc. of the Seventh Intl. Software Process Workshop:
Communication and Coordination in the Software Process, Yountville, CA, IEEE Computer
Society Press, 1991, pp. 14-21

[36] G. Valetto and G. E. Kaiser, (QYHORSLQJ�6RSKLVWLFDWHG�7RROV�LQWR�3URFHVV�&HQWHUHG
(QYLURQPHQWV, Journal of Automated Software Engineering, Vol. 3, 1996, pp. 309-345

67

[37] I. Thomas and B. A. Nejmeh, 'HILQLWLRQV�RI�7RRO�,QWHJUDWLRQ�IRU�(QYLURQPHQWV, IEEE
Software Vol. 8, No. 2, 1992, pp. 29-35

[38] A. I. Wasserman, 7RRO�,QWHJUDWLRQ�LQ�6RIWZDUH�(QJLQHHULQJ�(QYLURQPHQWV� In: F. Long (Ed.),
Proc. of the Intl. Workshop on Software Engineering Environments, Berlin, Germany,
Springer-Verlag, 1990, pp. 137-149

[39] A. Brown, A. Earl and J. McDermid, 6RIWZDUH�(QJLQHHULQJ�(QYLURQPHQWV��$XWRPDWHG
6XSSRUW�IRU�6RIWZDUH�(QJLQHHULQJ� McGraw-Hill, 1993

[40] M. Chen, and R. J. Norman, $�)UDPHZRUN�IRU�,QWHJUDWHG�&$6(� IEEE Software, March 1992,
pp. 18-22

[41] ECMA-NIST, $�5HIHUHQFH�0RGHO�IRU�)UDPHZRUNV�RI�6RIWZDUH�(QJLQHHULQJ�(QYLURQPHQWV,
No. TR/55 Version 3. ECMA & NIST, 1993

[42] K. Pohl and K. Weidenhaupt, $�&RQWH[WXDO�$SSURDFK�IRU�3URFHVV�,QWHJUDWHG�7RROV, In: Proc.
of the 6th Eurpoean Software Engineering Conference (ESEC) and 5th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Zürich, Switzerland, September,
LNCS 1301, Springer Verlang, 1997, pp. 176-192.

[43] G. Boudier, F. Gallo, R. Minot and I. Thomas, $Q�2YHUYLHZ�RI�3&7(�DQG�3&7(���In: J.-C.
Derniame (Ed.), Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symp. on
Practical Software Environments, Boston, MA, November 1988, pp. 28-30

[44] L. Wakeman and J. Jowett, 3&7(����7KH�6WDQGDUG�IRU�2SHQ�5HSRVLWRULHV, Prentice Hall, 1993

[45] EIA, 7KH�&',)������,QWHULP�6WDQGDUG�±�2YHUYLHZ, No. EIA/IS-106, ISBN 0-7908-0012-8.
Electronic Industries Association, 1994

[46] OMG, ;0,�6SHFLILFDWLRQ��Object Management Group, Inc., 1998,
ftp://ftp.omg.org/pub/docs/ad/98-10-05)

[47] K. Pohl, R. Dömges and M. Jarke, 'HFLVLRQ�2ULHQWHG�3URFHVV�0RGHOOLQJ� In: Proc. of the 9th
Intl. Software Process Workshop, Arlie, VA, IEEE Computer Society Press, October 1994,
pp. 124-128

[48] N. S. Barghouti and B. Krishnamurthy, $Q�2SHQ�(QYLURQPHQW�IRU�3URFHVV�0RGHOLQJ�DQG
(QDFWPHQW� In: W. Schäfer (Ed.), Proc. of the Eighth Intl. Software Process Workshop: State
of the Practice in Process Technology, Wadern, Germany, IEEE Computer Society Press,
1993, pp. 33-36

[49] N. S. Barghouti and B. Krishnamurthy, 8VLQJ�(YHQW�&RQWH[WV�DQG�0DWFKLQJ�&RQVWUDLQWV�WR
0RQLWRU�6RIWZDUH�3URFHVVHV� In: Proc. 17th Intl. Conf. on Software Engineering, Seattle,
Washington, USA, May 1995, pp. 83-92

[50] S. Bandinelli, E. Di Nitto and A. Fuggetta, 6XSSRUWLQJ�&RRSHUDWLRQ�LQ�WKH�63$'(��
(QYLURQPHQW� IEEE Transactions on Software Engineering Vol. 12, No. 12, 1996, pp. 841-865

[51] G. Junkermann, B. Peuschel, W. Schäfer and S. Wolf, 0(5/,1��6XSSRUWLQJ�&RRSHUDWLRQ�LQ
6RIWZDUH�'HYHORSPHQW�7KURXJK�D�.QRZOHGJH�%DVHG�(QYLURQPHQW� In: A. Finkelstein, J.
Kramer and B. Nuseibeh (Eds.), Software Process Modelling and Technology, RSP, London,
1994, pp. 103-130

[52] S. P. Reiss, &RQQHFWLQJ�7RROV�8VLQJ�0HVVDJH�3DVVLQJ�LQ�WKH�),(/'�(QYLURQPHQW� IEEE
Software Vol. 7, No. 4, July 1990, pp. 57-67

[53] M. Cagan, 7KH�+3�6RIW%HQFK�(QYLURQPHQW� $Q�$UFKLWHFWXUH�IRU�D�1HZ�*HQHUDWLRQ�RI
6RIWZDUH�7RROV��Hewlett-Packard Journal, Vol. 41, No. 3, June, 1990, pp. 36-47

[54] SunSoft 7KH�7RRO7DON�6HUYLFH�(White Paper), Technical report, SunSoft Inc., June 1991

[55] OMG, &25%$��$UFKLWHFWXUH�DQG�6SHFLILFDWLRQ� Object Management Group, Inc., 1995

[56] K. Brockschmidt, ,QVLGH�2/(, Second Edition, Microsoft Press, Redmond WA, 1995

68

[57] M. Anderson and P. Griffiths, 7KH�1DWXUH�RI�WKH�6RIWZDUH�3URFHVV�0RGHOOLQJ�3UREOHP�LV
(YROYLQJ� In: Proc. of the 3rd European Workshop on Software Process Technology, EWSPT
’94, LNCS 772, 1994, pp. 31-34

[58] GOODSTEP-Team, 7KH�*22'67(3�3URMHFW��*HQHUDO�2EMHFW�2ULHQWHG�'DWDEDVH�IRU
6RIWZDUH�(QJLQHHULQJ�3URFHVVHV� In: Proc. of the Asia-Pacific Software Engineering
Conference, Tokyo, Japan, 1994, pp. 410-420

[59] S. Kelly, K. Lyytinen and M. Rossi, 0HWD(GLW�����$�)XOO\�&RQILJXUDEOH�0XOWL�8VHU�DQG
0XOWL�7RRO�&$6(�DQG�&$0(�(QYLURQPHQW, In: Proc. of the 8th Intl. Conference on Advanced
Information Systems Engineering, LNCS 1080, Heraklion, Crete, Greece, 1996, pp. 1-21

[60] K. Lyytinen, P. Marttiin, J.-P. Tolvanen, M. Jarke, K. Pohl and K. Weidenhaupt, &DVH
(QYLURQPHQW�$GDSWDELOLW\��%ULGJLQJ�WKH�,VODQG�RI�$XWRPDWLRQ, Proc. of the 8th Annual
Workshop on Information Technologies and Systems WITS ’98, associated with the Intl.
Conference on Information Systems (ICIS), University of Jyväskylä, Finland, Computer
Science and Information System Reports TR-19, December, 1998

[61] G. Canals, N. Boudjlida, J.-C. Derniame, C. Godart and J. Lonchamp, $/)��$�)UDPHZRUN�IRU
%XLOGLQJ�3URFHVV�&HQWUHG�6RIWZDUH�(QJLQHHULQJ�(QYLURQPHQWV� In: A. Finkelstein, J. Kramer
and B. Nuseibeh (Eds.), Software Process Modelling and Technology, RSP, London, 1994,
pp. 153-186

[62] R. Conradi, M. Hagaseth, J.-O. Larsen, M. Nguyen, B. Munch, P. Westby, W. Zhu, M.
Jaccheri and C. Liu, (326��2EMHFW��2ULHQWHG�&RRSHUDWLYH�3URFHVV�0RGHOOLQJ, In: A.
Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software Process Modelling and Technology,
RSP, London, 1994, pp. 33-70.

[63] D. Garlan and E. Ilias, /RZ�FRVW��$GDSWDEOH�7RRO�,QWHJUDWLRQ�3ROLFLHV�IRU�,QWHJUDWHG
(QYLURQPHQWV� In: Proc. of the 4th ACM SIGSOFT Symposium on Software Development
Environments, Vol. 15, 1990

[64] R. Orfali, D. Harkey and J. Edwards, 7KH�(VVHQWLDO�'LVWULEXWHG�2EMHFWV�6XUYLYDO�*XLGH� John
Wiley & Sons, 1996

[65] F. Griffel, &RPSRQHQWZDUH��.RQ]HSWH�XQG�7HFKQLNHQ�HLQHV�6RIWZDUHSDUDGLJPDV� dpunkt
Verlag Heidelberg, Germany, 1998 (in German)

[66] C. Rolland and G. Grosz, $�*HQHUDO�)UDPHZRUN�IRU�'HVFULELQJ�WKH�5HTXLUHPHQWV
(QJLQHHULQJ�3URFHVV��In: Proc. of the Intl. Conf. on Systems, Man, and Cybernetics, San
Antonio, Texas, USA, IEEE Computer Society Press, October 1994

[67] V. Plihon and C. Rolland, 0RGHOOLQJ�:D\V�RI�ZRUNLQJ� In Proc. of the 7th Intl. Conference on
Advanced Information Systems Engineering (CAiSE ’95), Jyväskylä, Finland, Springer
Verlag, 1995, pp. 126-139

[68] C. Rolland, C. Souveyet and M. Moreno, $Q�$SSURDFK�WR�'HILQLQJ�:D\V�RI�:RUNLQJ�
Information Systems, Vol. 20, No. 4, 1995, pp. 337-359

[69] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, 2EMHFW�2ULHQWHG�0RGHOLQJ
DQG�'HVLJQ� Prentice Hall, 1991

[70] R. Klamma, 3UHVFULSWLYH�3URFHVV�'HILQLWLRQV��'HILQLWLRQ��,PSOHPHQWDWLRQ��DQG�9DOLGDWLRQ�LQ
3UR�$57� Master's thesis, RWTH Aachen, Aachen, Germany, 1995 (in German)

[71] D. Harel, 67$7(&+$576��$�9LVXDO�)RUPDOLVP�IRU�&RPSOH[�6\VWHPV� Science of Computer
Programming Vol. 8, 1987, pp. 231-274

[72] M.Nagl and W. Marquardt, SFB-476 IMPROVE: Informatische Unterstützung übergreifender
Entwicklungsprozuesse in der Verfahrenstechik, In; M. Jarke, K. Pasedach, K. Pohl, (Eds.)
Informatik ’97, Jahrestagung der Gesellschaft für Informatik, Aachen, Germany, Springer
Verlag, 1997, pp. 143-154. (in German)

69

[73] M. Nagl and B. Westfechtel (Eds.), ,QWHJUDWLRQ�YRQ�(QWZLFNOXQJVV\VWHPHQ�LQ
,QJHQLHXUDQZHQGXQJHQ� Springer-Verlag, Berlin, Germany, 1998

[74] M. Jarke and W. Marquardt, 'HVLJQ�DQG�(YDOXDWLRQ�RI�&RPSXWHU�$LGHG�3URFHVV�0RGHOOLQJ
7RROV� In: Intelligent Systems in Process Engineering, IPSE ’95, Snowmass, USA, 1995

[75] R. Dömges, K. Pohl, and K. Schreck, $�)LOWHU�0HFKDQLVP�IRU�0HWKRG�'ULYHQ�7UDFH
&DSWXUH� In: Proc. 10th Int’l. Conf. Advanced Information Systems Engineering (CAiSE
’98, Pisa, Italy, June 1998, pp. 237-250

[76] D. Garlan, R. Allan and J. Ockerbloom, $UFKLWHFWXUDO�0LVPDWFK�RU�:K\�LW
V�+DUG�WR�%XLOG
6\VWHPV�RXW�RI�([LVWLQJ�3DUWV� In: Proc. 17th Intl. Conference on Software Engineering,
Seattle, Washington, USA, 1995, pp. 179-185

[77] K. Pohl, 7KH�7KUHH�'LPHQVLRQV�RI�5HTXLUHPHQWV�(QJLQHHULQJ��$�)UDPHZRUN�DQG�LWV
$SSOLFDWLRQ��Information Systems, Vol. 19, No. 3, 1994, pp. 243-258

[78] P. Haumer, K. Pohl and K. Weidenhaupt, 5HTXLUHPHQWV�(OLFLDWLRQ�DQG�9DOLGDWLRQ�ZLWK�5HDO
:RUOG�6FHQHV� IEEE Transaction on Software Engineering, Vol. 24, No.12, December, 1998

[79] R. Dömges and K. Pohl, $GDSWLQJ�7UDFHDELOLW\�(QYLURQPHQWV�WR�3URMHFW�6SHFLILF�1HHGV�
Communication of the ACM, Vol. 41, No. 12, 1998

