
1

CREWS Validation Frames:
Patterns for Validating Systems Requirements1

N.A.M. Maiden, M. Cisse, H. Perez & D. Manuel

Centre for HCI Design,
School of Informatics,

City University,
Northampton Square,
London EC1V 0HB

United Kingdom
Tel: +44-171-477 8412
Fax: +44-171-477 8859

e-mail: n.a.m.maiden@city.ac.uk

Abstract

This paper proposes a pattern language for socio-technical system design to inform
validation of system requirements. The development of this language takes inspiration
from Alexander’s pattern language for building design in architecture. It identifies
different types of patterns which fulfil different roles in the requirements engineering
process. This pattern-based validation approach has been operationalised in the
CREWS-SAVRE software prototype. CREWS-SAVRE applies patterns to both
scenarios and requirements documents to detect missing and incorrect system
requirements, as well as to recommend new requirements which can improve the
design of the socio-technical system.

1 Patterns in Requirements Engineering

Patterns are a novel alternative technique to help us better acquire, model and validate
system requirements. In simple terms, patterns enable people to reuse knowledge about
old solutions to solve similar new problems. However, there is little reported research
into patterns for requirements engineering, in spite of the considerable current interest
in software patterns for system design and implementation (e.g. Gamma et al. 1995).
Indeed, each existing requirements engineering research initiative still tends to have a
singular focus on process, domain or language. In contrast, patterns for requirements
engineering, as we shall see, cuts across the divisions between process, domain and
language. After all, experienced engineers do not separate them when acquiring,
modelling and validating system requirements.

Patterns which describe the common elements of complex structures were first
documented in the field of building architecture. Christopher Alexander, in his book
"The Timeless Way of Building" (Alexander 1979), argues that "Beyond its elements,
each building is defined by certain patterns of relationships amongst its elements."
Patterns can be used to abstract away from the details of particular buildings and

1 This research has been funded by the European Commission ESPRIT 21903 ‘CREWS’ (Co-operative
Requirements Engineering With Scenarios) long-term research project.

2

capture something essential to the design, for example the principles underlying the
building, and the reason why the elements of the building are successful or
unsuccessful (Kelly & McDermid 1997).

In this paper, we advocate the use of patterns that capture something essential to the
design of socio-technical systems which include at least one significant software sub-
system. The patterns can then be reused to guide the acquisition, modelling and
validation of requirements for both socio-technical and software system design. This
paper presents examples of patterns which capture the essential elements of socio-
technical system design, introduces a software prototype which operationalises these
patterns, and proposes an agenda for future development of patterns to aid
requirements engineers.

The next section summarises some previous work on patterns in software engineering.
Section 3 describes the use of design patterns to validate system requirements as part of
the ESPRIT 21093 ’CREWS’ basic research project. Section 4 presents the prototype
CREWS-SAVRE software tool. The paper ends with a discussion of patterns in
requirements engineering, and future directions which the authors believe warrant
further research and development.

2 Current Patterns for Software Engineering

Influenced by Alexander’s work, there has been a recent increase in interest from
software designers in patterns and pattern languages (e.g. Gamma et al. 1995).
Although clearly useful to software designers, most current patterns and pattern
languages are small in size and narrow in focus. For example, the ’Singleton’ pattern
(Gamma et al. 1995) enables a programmer to ensure that a class has one instance with
a single, global point of access during low-level system design. Likewise, object-
oriented analysis patterns such as the ’Participant-Transaction’ pattern (Coad et al.
1995) enables an analyst to reuse two or three classes and their associations during the
development of an object model. Because of this narrow focus, these patterns often fail
to capture the essentials of a design because the design represented in the pattern is
incomplete, that is it does not contain sufficient contextual and causal information to
interpret the essential characteristics of the design.

However, new patterns for software engineering which do capture the essence of
Alexander’s original patterns are beginning to appear. One example is a language of
safety case patterns (Kelly & McDermid 1997). Safety cases present arguments that a
specific system is safe to operate. Across specific safety cases, patterns of argument
emerge through, for example, common approaches to addressing a standard
requirement or class of requirements, for example the ALARP (As-Low-As-
Reasonably-Practicable) pattern. The patterns, Kelly & McDermid claim, can be simple
and efficient solutions to general problems for the construction of a particular safety
argument. Other recent examples of these "Alexander-style" patterns have been
developed to inform design of human-computer interface guidelines, processes and
organisations, and workplaces to understand the possible impacts of new technologies
(Bayle et al. 1998).

3

From a "research and best practice" point of view, this move towards socio-technical
system design patterns gives rise to at least two important questions: (i) what form of
socio-technical system design pattern should we develop, and: (ii) how can such
patterns support the requirements engineering process? We attempt to answer these
questions by referring to Alexander’s original patterns to inspire and inform the
development of CREWS’s socio-technical system design patterns.

3 CREWS Patterns and Validation Frames

Alexander’s original patterns focus on the interactions between the physical form of the
built environment and how this form inhibits or facilitates various sorts of individual
and social behaviour in it. Bayle et al. (1998) report that this facilitation is more subtle
than the simple detection of certain properties which afford actions. Rather, the
emphasis is on the characteristics of the environment which might facilitate or inhibit
action. For example, in his original ’Beer Gardens’ pattern, Alexander suggests that
local pubs should have activities around the edges and large tables in the middle to
encourage people to cross through the centre, sit at tables and converse with their
neighbours. As such, the physical form, or design, of the pub facilitates desirable
behaviour in the customers. Furthermore, a pattern also captures the essentials of a
’good design’, in that it maximises those characteristics which facilitate desirable
actions over those that inhibit these actions.

If these pattern "characteristics" are applied to socio-technical system design patterns, a
good pattern must capture the essential elements of the software system, and how the
form of this system facilitates and inhibits desirable individual or social behaviour and
because of the system. The form of the design can include that of the software system
and the physical and social environments of the system’s use. Indeed, the pattern can
sometimes "design" individual and social behaviour in the context of the software
system. Furthermore, because the pattern captures the notion of a ’good’ design rather
than a ’bad’ design in the context of past experiences (e.g. prototypical design
examples), a requirements engineering team will have more confidence that the design
of the software and socio-technical systems will facilitate desirable actions.

3.1 Requirements, Scenarios and Patterns

As a starting point for designing socio-technical system patterns, we map the key
elements of Alexander’s patterns to CREWS system requirements, scenarios and
patterns:

• the form of the software system is expressed as functional and non-functional
requirements statements in a requirements document;

• desirable individual and social behaviour in the environment is expressed as
scenarios which are sequences of events and actions which describe desirable future
system use in the environment;

• ’good’ socio-technical system design is expressed in patterns which capture elements
of the software system form (i.e. the requirements) which facilitate or inhibit
desirable behaviour (i.e. the scenarios).

4

Thus validation is achieved by matching the desirable behaviour in the environment
(scenarios) to the form of the software system (requirements) using models of good
design (patterns). We can view each pattern as being ’superimposed’ on different parts
of the scenario and requirements document to detect requirements which are missing or
which inhibit desirable behaviour. This solution has been implemented in the CREWS-
SAVRE prototype software tool developed as part of the European Union-funded
ESPRIT 21903 ’CREWS’ (Co-operative Requirements Engineering With Scenarios)
long-term research project. Before describing this software tool, let us first demonstrate
the nature of CREWS’s socio-technical system design patterns using 3 prototypical
examples.

The MACHINE-FUNCTION Pattern: this first pattern captures something essential
to the design of the requirements document rather than to the system itself. In broad
terms, it states that a good requirements document shall include at least one functional
requirement statement for each action which the software system is involved in.
Implementing the functional requirement will thus ensure that the system undertakes
the action described in the scenario. For example, consider a dealer who uses a
financial foreign currencies trading system to record information about a currencies
deal:

ACTION: a dealer enters data about a transaction into the software system;
REQUIREMENT: the system shall enable a user to enter information about a
financial transaction into the dealing system.

This pattern fulfils the prerequisites for a socio-technical system design pattern,
although at first glance it might not appear to do so. The form of the design (in this
case the requirements document) has characteristics which facilitate the desirable
behaviour of its users (i.e. the systems developers) to produce a complete and correct
systems design. We envisage that this pattern will be used primarily for validating an
existing requirements document using a scenario which acts as a ’test-script’ for the
document.

The COLLECT-FIRST-OBJECTIVE-LAST pattern: the second pattern is more true
to Alexander’s notion of a pattern, in that it captures something essential to the good
design of a mechanical device with which a person interacts using one or more
personal items to achieve an objective. The objective is that the person should not leave
the personal items behind at the device at the end of a transaction with it. To ensure
this, the device imposes a prescriptive sequence so that the person must first collect all
items to achieve the objective. Consider a passenger who uses a travel ticket to pass
through automatic gates at the entrance to a London Underground station:

OBJECTIVE: to pass through the automatic gates and enter the station;
PROBLEM: passengers sometimes forget to take their valid ticket with them;
SOLUTION: a passenger must collect the ticket from the machine for the gates to
open.

This pattern can be seen in the design of other automatic gate machines, for example at
entrances to stations on the Paris Metro and Tyne & Wear Metro networks. It can also

5

be seen in the design of ticket collection points where a customer uses their credit card
to collect pre-purchased cinema tickets. It also fulfils the prerequisites for a socio-
technical system design pattern. The form of the device design has characteristics
which facilitate desirable behaviour, that is the user shall not leave their personal items
with the device. The pattern includes the rationale as well as successful and
unsuccessful elements of the design.

The INSECURE-SECURE-TRANSACTION pattern: the third pattern is also
true to Alexander’s notion of a pattern, but this time it captures something essential to
the good design of a wider socio-technical system. It is called the INSECURE-
SECURE-TRANSACTION pattern. Central to this pattern is the objective that a secure
transaction between a person (or people) and the software system shall not become
insecure due to negligence from the person/people. To ensure that this objective is met,
the pattern imposes one or more requirements and/or constraints on the design of the
socio-technical system. Let us return to our dealer who is using a financial foreign
currencies trading system to record information about a currencies deal:

OBJECTIVE: to ensure that the deal-recording transaction system remains secure;
PROBLEM: dealers are often interrupted when entering a transaction, thus
potentially making the system insecure;
SOLUTION: to ensure that the system remains secure. Solution options include: (i)
warning the dealer that the system is insecure through a visual or audio signal, so that
the dealer might return to the transaction; (ii) closing the transaction so that no person,
including the original dealer, can access it without going through the normal
transaction access routines; (iii) stopping the dealer from being interrupted during the
transaction, through either physical barriers or rules which control the socio-technical
system; (iv) using physical barriers or socio-technical system rules to stop other people
other than the original dealer using the transaction.

Clearly, in the trading system domain, the last two options are not applicable because
of the open and interactive nature of financial dealing room floors.

3.2 Socio-technical System Design Pattern Types

The three examples of patterns presented so far in this paper reveal subtle differences
in their nature and role in the requirements engineering process. The development of a
comprehensive pattern language also requires the pattern authors to better understand
these differences. To this end, CREWS uses NATURE’s distinctions between the
usage, system, development and subject models, known as worlds, from requirements
engineering research to categorise its patterns (NATURE 1996). It proposes four
pattern categories:

• SYSTEM DESIGN patterns which capture elements of good design of a socio-
technical system. The form of the socio-technical system facilitates desirable agent
actions in the environment. The focus is on NATURE’s usage world which describes
how the system is used to achieve work in the organisation (NATURE 1996). The
INSECURE-SECURE-TRANSACTION pattern is an example of a system design
pattern;

6

• DEVICE DESIGN patterns which capture elements of the design of devices with
which an agent interacts to achieve desired behaviour. These patterns also relate to
the usage world, but their focus is often on a single agent who interact directly with
the software system and/or device in which the software system is embedded. The
COLLECT-FIRST-OBJECTIVE-LAST pattern is a good example of a device
design pattern;

• SOFTWARE DESIGN patterns which capture elements of the design of the device
and/or system hardware to facilitate the required emergent behaviour of the software
system. The focus here is on NATURE’s system world (NATURE 1996) which
contains information about the design and implementation of the software;

• SPECIFICATION DESIGN patterns which capture elements of the requirements
document to facilitate or inhibit desirable behaviour of the system designers. These
patterns relate to NATURE’s development world which contains information about
the processes and agents which lead to development of the socio-technical system.
The MACHINE-FUNCTION pattern is a good example of a specification design
pattern.

It is interesting to note that CREWS’s pattern types differ from software and
specification patterns advocated by other authors. For example, the object modelling
patterns in Coad et al. (1995) belong to NATURE’s subject world which models
information about the real-world problem domain that the software system maintains
information about (NATURE 1996). This distinction underlines the different focus of
the CREWS patterns on requirements scoping, acquisition and validation rather than
system modelling processes.

The remainder of this paper describes how CREWS uses system, device and
specification design patterns to inform the scenario-based validation of system
requirements. It puts particular emphasis on its operationalisation of patterns in the
form of validation frames in the CREWS-SAVRE software prototype.

4 CREWS-SAVRE’s Validation Frames: Implementing Patterns

CREWS-SAVRE supports the two approaches to scenario-based requirements
validation shown in Figure 1. The first is guided walkthrough of scenarios by a team of
requirements engineers and other stakeholders. The team walk through the sequence of
events in the normal and alternative courses of the scenario to detect incomplete and
incorrect requirements. Although it improves on the current ad hoc use of scenarios
reported by Weidenhaupt and his colleagues (1998), the large number and complex
nature of both the scenarios and the requirements means that the team are still likely
not to find all of the missing and incorrect requirements in the requirements document.

In the second approach, CREWS-SAVRE delivers each pattern as one or more
validation frames to validate system requirements in a requirements document using an
automatic checker. The output is an agenda of issues to be addressed by the
requirements engineering team. Each issue identifies a possible missing or incorrect
requirement in the requirements document, a missing or incorrect event/action in the
scenario, and advice often in the form of new requirements to resolves these errors and
omissions. The team can use these issues to change the requirements document, the

7

scenario or both, then to recheck the requirements document again with the automatic
checker. It continues this iterative change-and-check process until there are either no
remaining issues for that scenario and requirements document, or the remaining issues
have been recorded and can be tolerated by the requirements engineering team. The
algorithm which is used to validate one or more system requirements with a scenario is
a simple, two-pass algorithm to check: (i) each event/action against all requirements,
and: (ii) each requirement against all event/actions. The ’intelligence’ of the approach,
however, is in the validation frames which encapsulate ’good’ design practice in the
CREWS patterns. Let us look at these validation frames in more detail.

A

A

B

A

D

C

A

A

C

R1

R2

R8

R5

R3

Scenario Requirements

A

B

A C

R8

R5

Validation frames

requirements engineering team

2

automatic
checking

1

guided
walkthrough

Figure 1 An overview of CREWS-SAVRE’s requirements validation approach using
validation frames.

4.1 CREWS Validation Frames

Each validation frame has five parts:

• a unique identifier for the frame;
• the CREWS pattern(s) which the frame operationalises;
• the situation which specifies the desirable behaviour in the environment;
• the requirement(s) which specifies the form of the designed socio-technical system;
• the consequences of detecting or failing to detect requirement(s) for the desirable

behaviour.

Each time the validation algorithm applies a frame, the algorithm searches the scenario
for a unique combination of interconnected events, actions, agents and objects of
predefined types which is the signature of the frame. This combination defines the
situation part of the frame. When the algorithm detects this combination, it looks for
one or more requirements of a predefined type and content which, according to the
frame, should be present in the document to facilitate the desirable behaviour. This
form is the requirement part of the frame.

One of the major strengths of our validation frames is that CREWS-SAVRE does not
require a domain-specific lexicon or model to apply, although a lexicon can be added
to enhance validation. Rather, it combines simple pattern matching with a strong type
model of requirements, events, actions, agents and objects. To type system
requirements, we combine the VOLERE method and PS055 standard (Mazza et al.

8

1994) to type each requirement as a functional, behavioural, physical, performance,
usability, interface, operational, timing, resource, verification, acceptance testing,
documentation, security, portability, quality, reliability, maintainability or safety
requirement. Each requirement in a document must have one and only one type.

Likewise each event, action, agent and object in the scenario has must have one of a
predefined set of types specified in the CREWS-SAVRE use case/scenario meta-model
(Maiden et al. 1998). Each action is either cognitive, physical, system-driven,
communicative or complex. Each agent is either a human agent, machine agent or
composite agent. Each object does or does not undergo a state change as a result of an
action. Each agent-action involvement relation is specialisable to performs, initiates,
ends, etc., and each action uses one or more objects. Furthermore, events can be linked
in the scenario in a temporal sequence. Although these types, on their own, appear
simple, their use when combined with a pattern matcher is very powerful, as we
demonstrate through the validation frames for three CREWS patterns presented earlier.

Consider the validation frame F1, the operationalisation of the MACHINE-
FUNCTION pattern. The situation-part is simple. It states that the frame shall be fired
if and only if the scenario under analysis contains an event which starts an action, and
this action involves an agent which a machine agent which is the software system
under analysis. For each scenario event for which this situation exists, the automatic
checker searches for one or more requirements which are defined in the requirement-
part of the frame. For frame F1, these requirements are functional requirements which
have a similar semantic content to the action which is started by the event in the
scenario. To determine whether an event/action and a requirement are semantically
equivalent, CREWS-SAVRE uses either a simple keyword checker or CREWS’s
natural language parser (Achour & Rolland 1997) to parse the natural language
descriptions and determine a degree of equivalence which is either above or below a
predefined threshold. If no such requirements can be detected, the consequence-part of
the frame is accessed to produce recommendations which appear in CREWS-SAVRE’s
agenda list.

Validation-frame
Frame Identifier: F1
Design Pattern: MACHINE-FUNCTION
Situation:

event(Ev) starts action(Ac) and
action(Ac) involves agent(Ag) and
agent(Ag) is-type = "Machine" and

Requirement:
action(Ac) word-matches requirement(R) and
requirement(R) is-type = "Functional requirement"

Consequence
If found: link requirement(R) to event(Ev) in trace table;
If not found: write to agenda: requirement type message = "Missing mandatory
functional requirement".

End validation-frame

9

The second validation frame, F13, has a similar structure but a more complex situation
which reflects the more complex nature of the COLLECT-FIRST-OBJECTIVE-LAST
pattern. The situation-part states that the frame shall be fired if the scenario under
analysis contains one event which ends one physical action which involves an agent
which is a machine and uses an object, and a second, later event which starts a second
physical action which involves a different human agent who uses the same object. Each
time the situation occurs, the frame recommends design advice to ensure user collects
object before completion of task so that item is not forgotten.

Validation-frame
Frame Identifier: F13
Design Pattern: COLLECT-FIRST-OBJECTIVE-LAST
Situation:

event(evA) ends action(acA) and
action(acA) is-type = "physical" and
action(acA) involves agent(agX) and
agent(agX) is-type = "machine" and
action(acA) uses object(obA) and
event(evB) starts action(acB) and
action(acB) is-type = "physical" and
action(acB) involves agent(agY) and
agent(agY) is-type = "human" and
action(acB) uses object(obB) and
object(obA) = object(obB) and
event(evA) before event(evB)

Requirement:
no condition, fire for all cases

Consequence:
Write to agenda: requirement type message = "Device design advice: ensure
user collects object before completion of task so that item is not forgotten".

End validation-frame

The third validation frame, F10, also has a more complex situation to reflect the nature
of the INSECURE-SECURE-TRANSACTION pattern. The situation-part states that
the frame shall be fired in the scenario under analysis contains two events which
involve the same two agents, one of those agents is a machine, and there are a
significant number of events not involving the machine agent which occur in-between
the two original events. For each scenario event for which this situation occurs, the
automatic checker searches for semantically-equivalent functional requirements in the
document. If no such requirements are found, the relevant issue is written to CREWS-
SAVRE’s agenda list.

Validation-frame
Frame Identifier: F10
Design Pattern: INSECURE-SECURE-TRANSACTION
Situation:

event(evA) starts action(acA) and
event(evB) starts action(acB) and

10

event(evA)�HYHQW�HY%��DQG
action(acA) involves agent(agA) and
action(acB) involves agent(agB) and
agent(agA)=agent(agB) and
agent(agA) is-type = "machine" and
not consecutive(evA,evB) (events between evA and evB > 2)

Requirement:
action(Ac) word-matches requirement(R) and
requirement(R) is-type = "Functional requirement"

Consequence:
If found: link requirement(R) to event(Ev) in trace table
If not found: write to agenda: requirement type message = "Missing functional
requirement: the system shall warn or autologout the user after period of system
inactivity".

End validation-frame

These three validation frames demonstrate the different forms of advice that can be
offered to the requirements engineering team. The first frame, F1, recommends the
inclusion of new requirements statements of the given type. The second, F13, gives
more general advice about the design of the device, with subsequent implications for
the requirements document. The third, F10, recommends generic requirements
statements which the team can specialise and adapt for inclusion in the requirements
document.

4.2 Implementing the Validation Frames

Most reported software patterns have not been implemented computationally, that is
are not retrieved and exploited using software tools during systems development (e.g.
Gamma et al. 1995). In contrast, CREWS-SAVRE exploits the precise specification of
the validation frames to implement them in the software tool. As well as speeding up
the requirements validation process, it ensures validation because CREWS-SAVRE
uses each pattern to cross-check each scenario and scenario event with each
requirement in the requirements document.

5 The CREWS Requirements Validator

CREWS-SAVRE is a prototype software tool which has been designed to guide
systematic scenario-based requirements engineering. It has been developed on a
Windows-NT platform using Microsoft Visual C++, VisualBasic5 and Access, thus
making it compatible for loose integration with commercial requirements management
and computer-aided software engineering software tools. It has been designed to be
integrated with Rational’s RequisitePro requirements management tool. This tool
handles system requirements, thus enabling the development team to focus on novel
implementations such as use case modelling, scenario generation and scenario-based
requirements validation. The requirements validator component of CREWS-SAVRE
supports dialogue with the requirements engineering team to select the requirements,
scenarios and frames for validation, a validation algorithm which applies validation
frames to detect all scenario and requirement omissions and errors, a natural language

11

checker to detect possible semantic equivalence between one requirement statement
and one scenario event/action, and validation frame administrator to enable a user to
add, change and remove validation frames from the component.

Let us demonstrate the requirements validator with a simple banking ATM example. A
requirements engineer called Roderick has already used CREWS-SAVRE’s domain
and use case modeller components to generate a number of scenarios to validate the
high-level requirement "the system shall enable a customer to withdraw cash from it".
One of the generated scenarios which describes the most frequent sequence of events is
shown in Figure 2. The bottom left-hand corner shows the normal course of the
generated scenario as a sequence of events which start or end actions in use cases. The
type of each action is also shown prior to the action description. Roderick uses the
"Back" and "Next" buttons to navigate through the scenario and select events. On the
right-hand side are alternative courses generated automatically from Roderick’s
selection of generic, permutation and problem exception classes, see Maiden et al.
(1998) for details. For each selected event, the tool presents alternative courses linked
by the tool to that event, and advises Roger to decide whether each alternative course is
(a) relevant, and (b) handled in the current requirements specification. Roderick has
also generated a document in RequisitePro containing a small number of behavioural,
functional and physical system requirements for the ATM. These requirements are also
shown in Figure 2. These requirements and Roderick’s scenario are the starting point
for requirements validation.

Figure 2 The starting point for requirements validation. The scenario is shown in
CREWS-SAVRE’s scenario presenter component. The system requirements are stored

in a RequisitePro document.

Roderick uses CREWS-SAVRE’s requirements validator component to validate the

12

system’s requirements. To enable validation, he must select a number of mandatory
parameters including the scenario to use to validate the requirements, the requirements
to validate, and the types of requirements which are to be checked. When validation is
complete, Roderick can click on the ’See agenda table’ to see results of the validation in
the form of a list of issues for him to address. Each issue identifies one event/action in
the scenario, one requirement in the requirements document and a message which
identifies possible omissions and/or errors, and solutions to overcome these problems.
Part of the agenda list generated from the scenario and requirements document in
Figure 2 is shown in Figure 3. This part of the list shows missing functional
requirements identified using validation frame F1 which implements the MACHINE-
FUNCTION pattern. Such issues are not surprising given the richness of the scenario
and small number of requirement statements in the requirements document. Elsewhere
in the agenda list is advice given from firing frames F10 and F13 which implement the
COLLECT-FIRST-OBJECTIVE-LAST and INSECURE-SECURE-TRANSACTION
pattern. Roderick uses the issues in the agenda list to change system requirements,
elaborate the scenarios and revalidate requirements using CREWS-SAVRE until
validation of the document is complete.

Figure 3 Part of the requirement validator’s agenda list showing issues to resolve for
the scenario and requirements document shown in Figure 2.

6 An Agenda for Patterns Development in Requirements Engineering

One of the main conclusions from the work reported in this paper is the effective
synthesis of scenarios and patterns to validate system requirements. Indeed, scenarios
and patterns share several important traits. First, both enable us to model both general-
level and instance-level information in a single model. As the CREWS pattern
language is extended, we envisage inclusion of domain-specific properties of agents,
objects and actions, as well as domain-specific requirements and indeed software
solutions to complement our generic definitions of situations and requirements.
Second, both a single scenario and a single pattern can model information at different
levels of precision and formalism (Rolland et al. 1997). Such flexible models are

13

important in the requirements engineering process. Third, and most importantly in our
view, scenarios often model system/user interaction (e.g. Jacobson et al. 1992, Graham
1996) central to Alexander’s definition of a good pattern. Thus, scenarios are essential
for the application of socio-technical system design patterns. We have only just began
to explore the overlaps and relationships between scenarios and patterns.

As reported in the introduction, there has been little reported research and development
into patterns in requirements engineering. To encourage and direct this work, we
believe that a research and development agenda is needed. This paper presents our
initial thoughts. The first agenda item is to develop a better understanding of the type,
coverage and content of socio-technical system design patterns to scope and inform
research and development activities. The tentative classification of patterns reported in
this paper suggests that we can distinguish between patterns according to the nature of
interaction between design form and desirable actions, with implications for different
roles of patterns in requirements engineering. On the other hand, determining pattern
coverage is more difficult because it often depends on technological advances. For
example, the COLLECT-FIRST-OBJECTIVE-LAST pattern would not have been a
common device interaction pattern two decades ago. The final point of this first item,
determining the content, and in particular the situation-part of patterns, forces pattern
authors to think about the semantics of scenarios and requirements. The CREWS meta-
schema’s model of requirement, event, action and object types is sufficient to generate
a first-draft pattern language. However, in the longer term, patterns will we believe
become more problem domain-specific to capture the richness of pattern situations and
solutions.

A second, perhaps more important agenda item, is how to develop a pattern language
for socio-technical system designs. As well as observing good designs in existing
systems, we propose to use knowledge elicitation techniques such as laddering and card
sorts to elicit design patterns from highly-experienced requirements engineers,
consultants and system designers. Such people recall and reuse mental abstractions
when specifying new requirements. Rosch (1983) argues that peoples’ mental
representations are accounted for by the structure of their environment, so these mental
categorisations should provide an accurate categorisation of problems and hence good
design patterns. Direct elicitation of such expertise is a cost-effective approach which,
if handled carefully, can provide important information about design patterns.

The third agenda item is to determine the possible uses of socio-technical systems
design patterns in the requirements engineering and wider systems engineering
processes. Although originally intended to guide requirements validation, the patterns
reported in this paper also have clear roles for deriving a high-level system design,
bounding that design and acquiring requirements for software systems and devices to
be developed as part of that design. One possible consequence is the development of a
requirements patterns book to record and make these designs available to inform high-
level systems engineering processes. Indeed, we see patterns as a central mechanism
for making knowledge of different types reusable during the requirements and systems
engineering processes. Such large-scale reuse provides an exciting vision of the future
of the systems development process.

14

Acknowledgements

The authors wish to thank everybody who have contributed to the development of the
patterns and software tool. They also thank the other members of the CREWS project
for comments and advice. This research has been funded by the European Commission
ESPRIT 21903 ‘CREWS’ (Co-operative Requirements Engineering With Scenarios)
long-term research project.

References

Achour C.B. & Rolland C., 1997, 'Introducing Genericity and Modularity of Textual
Scenario Interpretation in the Context of Requirements Engineering', CREWS
Technical Report, Centre de Recherche en Informatique, Universite Paris 1, France.

Alexander C., 1979, ’The Timeless Way of Building’, NY: Oxford University Press.

Bayle E., Bellamy R., Casaday G., Erickson T., Fincher S., Grinter B., Gross B.,
Lehder D., Marmolin H., Moore B., Potts C., Skousen G. & Thomas J., 1998, 'Putting
It All Together: Towards a pattern language for interaction design: A CHI97
Workshop’, SIGCHI Bulletin, 30(1), 17-23.

Coad P., North D. & Mayfield M., 1995, ’Object Models: Strategies, Patterns and
Applications’, Englewood Cliffs, Prentice-Hall.

Gamma E., Helm R., Johnson R. & Vlssides J., 1995, ’Design Patterns: Elements of
Reusable Object-Oriented Software’, Addison-Wesley.

Guindon R., 1990, 'Designing the Design Process: Exploiting Opportunistic Thoughts',
Human-Computer Interaction 5, 305-344.

Kelly T.P. & McDermid J.A., 1997, 'Safety Case Construction and Reuse Using
Patterns', Proceeding SAFECOMP97, Springer Verlag.

Maiden N.A.M., Minocha S., Manning K. & Ryan M., 1998, 'CREWS-SAVRE:
Scenarios for Acquiring and Validating Requirements', Proceedings 4th International
Conference on Requirements Engineering (ICRE98), IEEE Computer Society Press.

Mazza C., Fairclough J., Melton B., De Pablo D., Scheffer A. & Stevens R., 1994,
’Software Engineering Standards’, Prentice Hall.

NATURE, 1996, 'Defining Visions in Context: Models, Processes and Tools for
Requirements Engineering', Journal of Information Systems, 21(6), 515-547.

Weidenhaupt K., Pohl K., Jarke M., Haumer P., Maiden N.A.M. et al., 1998, 'Scenario
Usage in Systems Development: A Report on Current Practice', IEEE Software, March
1998.

