
Scenario-Based Techniques for Supporting the

Elaboration and the Validation of Formal

Requirements

PATRICK HEYMANS

Institut d’Informatique, University of Namur
Rue Grandgagnage 21, B-5000 Namur, Belgium

Patrick.Heymans@info.fundp.ac.be

ERIC DUBOIS

S.W.I.F.T,
Avenue Adèle 1, B-1310 La Hulpe, Belgium

Eric.Dubois@swift.com

CREWS report 98-30
Technical Report of the University of Namur

October 1998

This is a draft version of a paper published in the Requirements Engineering
Journal (1998) 3:202-218, Springer-Verlag .

1

Abstract
Developing complex, safety critical systems requires precise, unambiguous specification of re-

quirements. A formal specification language is thus well suited to this task. Formal specification
languages require, but also exacerbate, the need for tools. In particular, tools should support the
elaboration (how to build the formal specification?) and the validation (how to check the adequacy
of the specification towards the informal needs of the various stakeholders?).

This paper focuses on the language Albert II, a formal language designed for the purpose of ex-
pressing requirements for distributed real-time systems. It presents two contributions supporting its
use. The first contribution aims at improving the elaboration process by providing a method for con-
structing an Albert II description from scenarios expressing the stakeholders’ requirements. These
are represented through Message Sequence Charts extended to deal with composite systems. The
second contribution takes the form of a requirements validation tool (a so-called animator) that the
stakeholders can use interactively and cooperatively in order to explore different possible behav-
iours (or instance-level scenarios) of the future system. These behaviours are automatically checked
against the formal requirements specification.

Keywords : Scenarios, Formal Methods, Animation, Message Sequence Charts.

1 Introduction

In this paper, we study two possible roles played by scenariosa [35,4] in the context of producing
Software Requirements Documents (SRD) for real-time distributed systems. More specifically, we
will focus on the functional part of the SRD and will use a formal requirements language for express-
ing its content.

The SRD is the central output of the Requirements Engineering (RE) process. A large variety of
stakeholders with different backgrounds (users, customers, domain experts, designers, maintainers,
etc.), are involved in this process. To ensure readability by each of them, this document is written in
natural language (sometimes complemented with diagrams and figures). Several standards (see [39]
for example) and authors (see, e.g., Meyer [27]) have produced recommendations aimed at improving
the quality of the produced document. Besides usual qualities like completeness and consistency, there
are some rules related to the structure of the natural language statements (e.g., like ’no more than one
verb per sentence’). Of particular interest also are recent recommendations about the exact nature of a
requirement. For example, Jackson and Zave [44,23] make clear that (i) requirements have to be
grounded in the reality of the problem environment and that (ii) it should be possible in the SRD to
make a clear distinction between indicative statements related to the behaviour of the environment and
optative statements (that is, the requirements) associated with the desired system to be installed.

Throughout the paper, we will illustrate our ideas by exemplifying them using the Lift System case
study inspired by that presented at IWSSD’87 (we refer to [40] for an informal introduction). In Figure
1, we present a context diagram (an old idea from structured analysis recently reinstated by Jackson
[23]) to keep track of the interactions of the system (the Controller) with its environment. Below, a set
of optative statements associated with the Controller are presented. Such requirements are carefully
structured and written in English :

� The controller can send a request to any floor to activate the door-opening mechanism.
� Resetting a button has to happen simultaneously with the request for opening a door.
� The controller sends requests for opening a door at the floor where the door is located.

a Our research on scenarios and animation is supported by the EU-funded ESPRIT LTR research project 21.903 CREWS

(Cooperative Requirements Engineering With Scenarios) and by the Wallon Region’s CAT project.

2

� …

Writing the SRD is a complex activity where the analyst should start from various, redundant, in-
complete and fragmented sources of information coming from the different stakeholders. To support
his task, various techniques, relying on suitable ontologies of concepts, have been proposed. They help
in the clarification and the structuring of the different knowledge pieces given by the stakeholders. For
example, the use of an Entity-Relationship model has proved useful for modelling the information
aspects (e.g., see Wieringa [42] for an example of the use of these techniques at the RE level). For
more complex systems (like safety-critical systems), more formal techniques are useful to analyse
properties of the critical part of the system behaviour and validate this part with a high degree of cer-
tainty. In this paper, because we are concerned with application domains pertaining to real-time com-
posite systems [11], we will consider the Albert II language, a formal requirements language that we
designed in 1992 and which is the topic of the development of several tools [10] and of practical real-
size industrial experiences [43].

Albert II was designed with naturalness in mind; i.e., it aims at preserving the structure of the in-
formal requirements expressed by the stakeholders as far as compatible with a formal semantics. This
helps in maintaining traceability links between the SRD and the formalised SRD (see Figure 2), and in
the validation by stakeholders. In Section 2, we introduce the Albert II language and illustrate its use.

Animation

Traceability
links

Stakeholders

Analyst

Elaboration

Formal Albert
Requirements

Software
Requirements

Document

Producing the formal Albert II requirements document is not an easier activity than producing the
informal SRD from scratch. However, because the language relies on formal semantics and on a suit-

Figure 1 : Context diagram of the lift system.

Figure 2 : Suggested requirements engineering process.

3

able ontology of concepts, more guidance can be provided to the analyst. In this paper, we will focus
on the support provided by the language for the analyst when interacting with the stakeholders. In
particular, we will suggest how a scenario-based approach can enrich these interactions.

First of all, it is clear that the elaboration of an Albert II requirements document cannot be made in
one shot. Several iterations are required during which various sources of information (see Figure 2) are
analyzed, discussed and exploited. To address this problem, in the recent past, we studied the possibil-
ity of using (diagrammatic) semi-formal notations before producing the formal document [43]. In
particular, MSCs (Message Sequence Charts [41]) are of particular interest for specifying reactive
composite systems. Therefore, we have decided to adopt them and integrate them with the Albert II
language. At this level, integration means to give a definition to MSCs which is compatible with the
one underlying Albert II. For example, in Albert II, because actions can have an external effect, we
need to enrich classical MSCs. Another advantage coming from this conceptual proximity is the pos-
sibility to express rules and heuristics guiding the elaboration of Albert II requirements from the
MSCs produced. The result of this work is presented in Section 3.

Another basic problem of formal notation is readability. In particular, at the RE level, it is clear that
we cannot expect our various stakeholders to read mathematical formulae. As the reader will discover
in Section 2, an Albert II specification is also difficult to read. However, thanks to the traceability
property indicated above, informal statements can be produced in a semi-automated way from the
formal statements and integrated in the SRD. But the SRD is probably not sufficient for the RE vali-
dation activity where all stakeholders have to agree on the behaviour of the system described in the
SRD. For complex systems, reading the SRD document carefully (even several times) does not suffice
for stakeholders to get a precise idea of the system’s behaviour in all situations (in particular, the ab-
normal situations). This is why we are developing a so-called animator tool which allows stakeholders
to cooperatively explore different possible behaviours of the future system (as allowed by the formal
Albert II description). The purpose of the tool comes down to testing if a given scenario proposed by
one or several stakeholders is compatible with the requirements specification. In Section 4, we present
the functionalities offered by this tool and we briefly discuss its architecture.

2 The Albert II language

Albert II [8,9] is a formal requirements specification language based on a real-time temporal logic
[5]. The language has been designed in 1992 and from that time has been validated (and revised)
through the specification of non-trivial systems like Computer Integrated Manufacturing (CIM, see
[7]), process control and telecommunications systems [43]. Besides supporting the distinction made
between optative and indicative statements (see above), this language is also characterized by:

� its naturalness (see definition in previous section), where the objective is to avoid the introduc-
tion of extra elements (overspecifications) in the formal specification which do not have a
counterpart in stakeholders’ concepts. This naturalness property is guaranteed by the possibility
to write requirements by adopting an operational and/or a declarative style of specification;

� the existence of various templates associated with specific categories of statements. These tem-
plates provide methodological guidelines to the analyst in eliciting and structuring Albert II
specifications.

Such a specification is made of (i) a graphical specification component in which the vocabulary of
the specification is declared and of (ii) a textual specification component in which the admissible be-
haviours of agents are constrained through temporal logic formulae organized in terms of the tem-
plates introduced above.

4

Albert II organizes its specification around the agents identified in the environment and in the sys-
tem. An agent is an autonomous entity that can perform or suffer actions which change or maintain its
state (either physical state or state of knowledge about the external world) and/or the states of other
agents. Actions are performed by agents to discharge contractual obligations expressed in terms of
local constraints, applicable to the agent itself, and cooperation constraints, that apply to the interac-
tions between agents.

2.1 Graphical declarations

Hereafter, we illustrate the concepts of the language by applying them to the specification of the lift
system case study introduced in Section 1. Figure 3 contains the graphical declaration of the LiftCom-
plex (made of the Controller and its environment) according to the Albert II conventions. For lack of
space, we have omitted the TopFloor and GroundFloor agents. Note that this declaration provides a
refinement of the context diagram of Figure 1.

Each agent is represented by an oval and multiplicity is indicated by shadowing the ovals. Figure 3
also declares the internal structure of the Controller agent. It declares the state structure and the ac-
tions that may happen during the lifetime of an agent and which may change the state of the agent (and
possibly of other agents). State components are represented by (normal) rectangles and actions are
represented by rectangles with rounded corners. We also note that state components are typed and that
actions can have typed arguments.

......

...

IntermediateFloor

User

Booth

RequestMotorOn

RequestMotorOff

RequestDirectionUp

RequestDirectionDown

RequestDirectionIdle

ResetBoothButton

FLOOR

RequestOpenDoor

RequestCloseDoor

ResetUpButton

ResetDownButton

OutstandingRequestUpstairs

BOOLEAN

OustandingRequestDownstairs

BOOLEAN

Booth.MotorStatus

MOTOR_STATUS

Booth.ButtonPanel

BUTTON_STATUSFLOOR

Booth.Position
FLOOR

IntermediateFloor.Door

DOOR_STATUS

...

IntermediateFloor.DownButton

BUTTON_STATUS

...

.........

Controller

IntermediateFloor.UpButton

BUTTON_STATUS

Types may vary from simple data types to complex data types (recursively built using the usual
data types constructors like set, sequence, table, etc.). The structure of types is not defined graphically
and appears in the Data Type portion of an Albert II specification. For example, FLOOR is a user-
defined type associated with the identity of the different floors (that is, the TopFloor, the Ground-
Floor, and all the IntermediateFloors) and on which are defined a Next function (access to the floor
directly above) and the Higher and Lower predicates which test if a floor is above or below another
floor.

The information provided in Figure 3 is informally rephrased in the first part (Declarations) of the
specification (examples are given further in this section). Informal descriptions of declarations play the
role of designations [23]. From graphical conventions used in Figure 3, we understand that Button-

Figure 3 : Graphical declarations of LiftComplex.

5

Panel is a table indexed on FLOOR while Position is a single time-varying component of type
FLOOR. Finally, the boolean value of the OutstandingRequestUpstairs component is derived from the
values of other components (these derivation links have been omitted in the figure for clarity).

In addition, the graphical notation also expresses visibility relationships linking agents to the out-
side. Arrows in Figure 3 show (i) how agents make information (actions and state components) visible
to other agents (e.g., the RequestMotorOn action is made visible by the Controller to the Booth) and
(ii) how external agents may influence the agent’s behaviour through exportation of information (the
Controller is influenced, e.g., by the UpButton component of the IntermediateFloor).

Finally, it is important to note that, in Figure 3, all the information managed by the Controller sys-
tem is shared by the Controller with its environment. This typically results from the indica-
tive/optative statements perspective we adopted: statements associated with the Controller are optative
and expressed in terms of information shared with the external entitiesb; indicative statements (whose
values are possibly shared with the Controller) are expressed at the level of the agents located in the
Controller’s environment.

2.2 Classification of properties

Besides graphical declarations, textual constraints are used for pruning the (usually infinite) set of
possible lives associated with the agents of a system. As explained above, Albert II supports two styles
of specification. To guide the analyst in eliciting and structuring requirements specifications, the con-
straints are further classified into categories for each of which a characteristic template is defined. The
existence of these different templates results from the performance of several case studies and the
identification of typical patterns associated with the textual informal requirements. Besides Basic con-
straints, Local constraints define the behaviour of an agent using an operational (event-condition-
action) and/or declarative style of specification. Finally, Cooperation constraints refine the importa-
tion/exportation links introduced in the graphical declaration.

Hereafter, based on the example, we briefly describe some important templates. We also provide a
fragment of the textual specification associated with the Controller. A more complete account of the
language can be found in [9].

2.2.1 Basic constraints

Derived Components constraints express how the value of state components can be computed
from other state components (see examples in the specification below).

Initial Valuation constraints allow to fix the initial value of a state component. This type of con-
straint can express, for example, that initially the motor is off and that there is no pressed button in the
button panel:

INITIAL VALUATION

MotorStatus = Off
ButtonPanel[_] = Idle

2.2.2 Declarative constraints

b with the exception of Derived Components which just play the role of intermediate components that are used for simpli-

fying the expression of requirements.

6

State Behaviour constraints express restrictions on the possible values that can be taken by the
state components forming the state of an agent. These restrictions can be static (i.e., invariants which
hold at any time) or dynamic (i.e., depending on time). As an example, here is an indicative property
of the Booth agent telling that, in order to go from up to down (or down to up), the booth’s motor must
go through a neutral position:

STATE BEHAVIOUR

MotorDirection = Up Until! MotorDirection = Idle
MotorDirection = Down Until! MotorDirection = Idle

Duration constraints put restrictions on the duration of action occurrences. For example, in the
definition of the Floor agent, it is said that closing the door takes between 0.8 and 1 second:

ACTION DURATION

| CloseDoor | 8 0.8 sec
| CloseDoor | 7 1 sec

Action composition constraints define how actions may be refined in terms of finer-grained com-
ponent actions. They are also used to express desired temporal relationships between action occur-
rences (see example in the specification below).

2.2.3 Operational constraints

Effects of actions constraints express how the occurrence of an action (either from the agent or
from the outside) changes the state of an agent. Since actions can have durations, Albert II makes it
possible to distinguish between a pre-effect and a post-effect associated with an action occurrence. In
the agent Floor, for example, the action CloseDoor has the following effects:

EFFECTS OF ACTIONS

CloseDoor : DoorStatus := Closing
[]
DoorStatus := Closed

Preconditions describe under which conditions an action can occur (see example in the specifica-
tion below).

Triggering constraints express state conditions under which an action has to occur (see example in
the specification below).

2.2.4 Cooperation constraints

Examples of these constraints are given in the specification below.

State/Action perception constraints define under which condition an agent is sensitive to informa-
tion (part of state or occurrence of action) provided by other agents.

State/Action information constraints define under which condition an agent shows part of its state
or occurrences of actions it performs, to other agents.

7

Agent : LiftComplex.Controller

DECLARATIONS

STATE COMPONENTS

OutstandingRequestUpstairs
instance-of BOOLEAN
derived-from Booth.Position, Booth.ButtonPanel, GroundFloor.UpButton,

TopFloor.DownButton, IntermediateFloor.UpButton,
IntermediateFloor.DownButton

The controller knows that there are outstanding requests upstairs (wrt the floor where the
booth is located) from the status of buttons in the booth and at the floors.

…
ACTIONS

*RequestOpenDoor D LiftComplex.IntermediateFloor,

LiftComplex.TopFloor, LiftComplex.GroundFloor

The controller can send a request to some floor to activate the door opening mechanism. Such

an action is instantaneous
c

…

BASIC CONSTRAINTS

DERIVED COMPONENTS

OutstandingRequestUpstairs ·
\ d : (Higher(d,b.Position)

 ó (b.ButtonPanel(d) = Pressed
 ì d.UpButton = Pressed
 ì d.DownButton = Pressed))

There is an outstanding request upstairs iff a button is pushed at some floor higher than
the one where the booth is located or a button in the booth referring to some higher floor
is pressed

…

c Indicated by the * symbol.

8

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

{ResetUpButton, ResetDownButton, ResetBoothButton}

comp G RequestOpenDoor O (ResetUpButton + DAC)
 O (ResetDownButton + DAC)

O (ResetBoothButton(x) + DAC) with x = b.Position d

Resetting a button has to happen simultaneously with the request for opening a door.

…

OPERATIONAL CONSTRAINTS

PRECONDITION

ResetUpButton : b.Position.Door = Closed
ó b.MotorStatus = Off

ó b.Position.UpButton = Pressed
ó ((b.MotorDirection = Up ó OutstandingRequestUpstairs)
 ì (]OutstandingRequestsUpstairs ó]OutstandingRequestsDownstairs))

The controller can reset the up-button only if : the door is closed, the motor is off, the
up-button at the current floor is pressed and if one of the following is true:

- the direction of the motor is up and there are outstanding requests upstairs,

- there is no outstanding request at all.

…
TRIGGERRINGS

b.Position.Door = Open / 10 sec D RequestCloseDoor

The controller requests the current floor to activate the door closing mechanism when the
door has been open at this floor for ten seconds.

…

COOPERATION CONSTRAINTS

STATE PERCEPTION

n (b.Position / TRUE)

The controller always perceives the booth’s position.

…
ACTION INFORMATION

{n (RequestOpenDoor.f / f = b.Position)

The controller sends requests for opening the door at the floor where the booth is lo-
cated.

…

In the specification fragment above, we can see the informal comments that paraphrase each formal
statement (we are currently developing a tool to help in the semi-automatic reformulation of the for-

d In the Albert II statement, G relates the composed action to its component actions. x O y means that x and y have to

start and end at the same times. x + y means that either x or y takes place. DAC means “Dummy Action”, that is, no action
takes place. Finally, a sequence of action names between curly braces means that occurrences of these actions have to take
place as part of a composed action occurrence.

9

mal statements in natural language). These comments are the basic inputs of the final SRD document
(see the example requirements in the introduction).

2.3 Semantic issues

The semantics of an Albert II specification are given in two equivalent ways. The first defines
which lives (models) are admissible for each agent. Agent lives are then combined to form lives of the
society to which it belongs. The second semantics translates the Albert II language to a simpler real-
time first-order logic called AlbertKERNEL. It is important to note that at the level of a modele we talk
about agent instances while, at the level of the specification, agents (classes) are declared. In a par-
ticular model and unless the agent is declared to be unique in the specification, there can be arbitrarily
many instances of an agent. While the number of instances can vary from a model to another, it re-
mains constant within a particular model.

Time

State
Transition

<act1 act1>
<act2

<act1>
act2>

a
b

1 a 1 a 1 a
b

1
2

State Component
Value

 State

Action
Occurences

3’22’’ 3’24’’ 3’25’’ 3’28’’

End-event

Start-event

The life of an agent instance is an infinite alternate sequence of states and state transitions (see Fig-
ure 4). The sequence is indexed by a real-time value which increases throughout the sequence.

A state of an agent instance represents the value of all its state components in a time interval during
which they remain unchanged. A state transition groups together all the events that affect an agent
instance at a given point in time. The AlbertKERNEL notion of event is necessary to give a semantics to
the Albert II notion of action. In fact, action occurrences can have a duration (e.g., act2) or can be
instantaneous (as the second occurrence of act1). Actions have therefore been associated with events :
each action has a start- and an end-event which, in the case of instantaneous action occurrences, hap-
pen at the same time.

Finally, a model (or admissible life, or behaviour) of the specification is built by combining the
lives of several agent instances (at least one per class and exactly one per single agent), i.e. putting
them on a common time line by adding states (if needed) and checking compatibility wrt cooperation
constraints. Such a model defines an admissible behaviour of a composite system.

e To be understood as ‘a model of a society’.

Figure 4 : Part of the life of an agent instance.

10

3 Supporting the elaboration of an Albert II specification with ASCs

In the previous section, we have shown fragments of an Albert II specification as it results from
performing a complete RE process. It is obvious that such a process is complex and past experiences
have shown that the analyst could not produce the final Albert II output from scratch without consid-
ering intermediate products.

In this respect, we experienced [43] that semi-formal techniques are very useful during the initial
stages of the specification’s elaboration. For example, a context diagram (like the one presented in
Figure 1) helps in identifying the various agents of the system while a class-relationship diagram (like
an ERA diagram) can be used to discover the various static elements of the problem (agents, state
components and data types in the final Albert II specification). Both these notations are helpful mainly
because each of them focuses on one aspect of the problem at a time, in this case agents identification
and information modelling.

Another key aspect of the problem is of course behaviour. From our point of view, as we want to
provide efficient ways to deal with complex systems, we feel an exacerbated need for a specific inter-
mediate representation of behaviour which would (i) allow representation of knowledge expressed by
stakeholders and (ii) serve as a starting point for elaboration of the final specification. It was clear to
us that such a notation had to be based on the notion of scenario. Scenarios are now becoming widely
recognised as a very useful way to achieve a better understanding of stakeholders’ requirements. One
of their main advantages is that each of them is related to the modelling of a very restricted part of the
system’s behaviour at a time. Therefore scenarios avoid the analyst getting lost in the complexity of
tackling the entire behaviour. But, on the other hand, the pieces of information conveyed by the sce-
narios have to be consolidated to produce the final abstract specification.

In this section, we propose to further detail the behaviour issue by suggesting (i) how we have ex-
tended some usual scenario notation (viz. MSCs) to make it closer to the concepts required for Albert
II and (ii) what kinds of information from the scenarios can be exploited in the elaboration of a speci-
fication. In the following subsections, we suggest a progressive abstraction process made of three main
steps called (i) Scenario Definition, (ii) Scenario Analysis and (iii) Scenario Consolidation (see Figure
5). The process relies on a scenario notation that is defined in the first subsection.

3.1 Scenario Definition

Our contribution to support Scenario Definition mainly resides at the product level. We provide a
notation for the analyst to write scenarios no matter how he chooses to elicit them. As a process, he
could use, for example, goal-oriented scenario authoring techniques [3] or elicitation based on real-

Figure 5 : Scenario-based elaboration of an Albert specification.

11

world scenes [17]f and which are compatible with the notation we propose. This notation is based on
MSCs. The reasons for this are that :
- MSC-like notations are intuitive and therefore facilitate communication and understanding be-

tween the analysts and the stakeholders;
- MSC-like notations are particularly well suited for expressing interactions (as opposed to internal

actions) which is precisely what one should focus on at the RE activity level (adopting a black-box
view of the system).

Action Sequence Charts (ASCs) are a home-made variant of MSCs modified in order to deal with
descriptions of composite systems. ASCs focus on the description of possible sequences of action
occurrences performed by agent instances in order to fulfil some goal or functionality. The major dif-
ference between ASCs and MSCs is that, using MSCs (such as those that can be found in
[41,33,2,24]), one can only describe sequences of messages and internal actions, making it impossible
to model interactions other than message exchanges. This might not be a restriction when describing
the behaviour of systems (like telecommunication systems) where the protocol for interacting with the
environment is fixed. But this is not suitable for RE where, as we have seen in Section 2, we focus on
the role of the system in terms of its environment without defining the ‘how’, i.e., the internals of the
system and its message exchanges with the environment. At the RE level, one should be able to focus
on actions (among which are physical actions such as moving, pushing a button or manufacturing a car
part) and indicate their effect (with possible re-actions) on the agent that performs them and/or on
other agents.

User : u Floor : f Booth : Booth Controller :
Controller

PressUpButton(f)
RequestMotorDirectionUp

CloseDoor

PressBoothButton(e)

ResetUpButton

OpenDoor

ArriveAt(a)

ArriveAt(b)
ArriveAt(f)

ArriveAt(d)
ArriveAt(e)

EnterBooth

ExitBooth

ResetBoothButton(f)

SetMotorDirectionUp

RequestMotorOnSetMotorOn

RequestOpenDoor

RequestCloseDoor

SetMotorOn RequestMotorOn

SetMotorOff RequestMotorOff

OpenDoor
RequestOpenDoor

SetMotorOff RequestMotorOff

In Figure 6, we illustrate the use of our ASCs by presenting a typical scenario associated with a
typical flow of events allowing a user to move from a floor to a higher floor. In an ASC, an action is
represented by a dash if it is instantaneous (the beginning and end events happen at the same time) and
by a rectangle if it has a duration (the end event is after the beginning event). An arrow between agent
instances A and B, starting from the beginning and/or endg of an action occurrence of A, indicates
whether the action occurrence is shared with B, viz. if it has an effect on B (thick arrow) or if it sends
a message to B (thin arrow). We call such arrows interactions. Interactions and events which are on a

f The elicitation techniques given as an example are other research topics of the CREWS project with which we partici-

pate. Integration of the complementary approaches is an issue currently addressed in the project.
g An arrow can only depart simultaneously from the beginning and the end of an action occurrence if the action is instan-

taneous.

Figure 6 : Action sequence chart for a user moving to a higher floor.

12

same horizontal line happen simultaneously; if they are not, they happen at different times, unless a
simultaneity sign - is in the margin.

What our process suggests is to start by performing elicitation so that a first set of such scenarios is
produced.

3.2 Scenario Analysis

Producing ASCs is not sufficient for the analyst to get a precise understanding of the stakeholders’
requirements. In particular, ASCs do not make explicit the underlying causalities existing (i) between
action / interactions and reactions (i.e., other actions / interactions) and (ii) between action / interac-
tions and states. This knowledge being of utmost importance for writing the final requirements, our
approach suggests a way to elicit such information.

Asc <ASC_id>

Action occurrence <action_occurrence_id>

ASC-specific Generalised

Duration What is the duration of the action occur-
rence in the ASC?

- Are there other circumstances in which
the duration would be the same?

- Are there circumstances in which the
duration would be different? What
would be the duration?

Action composition In the circumstances given in the ASC,
what are the relationships between this action
occurrence and other action occurrences?

- Are there other circumstances in which
these relationships would be the same?

- Are there circumstances in which these
relationships would not hold?

Precondition What, in the circumstances given in the
ASC, allows the action to take place?

- Are there other circumstances in which
the action should be allowed?

- Are there circumstances in which the
action should not be allowed?

Triggerings What, in the circumstances given in the
ASC, forces the action to take place?

- Are there other circumstances in which
the action should be forced?

- Are there circumstances in which the
action should not be forced?

Effect
� Internal pre-effect What is the effect of the beginning of the

action occurrence on the agent instance that
performs it?

- Are there other circumstances in which
the beginning of the action would have
the same effect?

- Are there circumstances in which the
beginning of the action would have a
different effect? What would be the ef-
fect?

� Internal post-effect What is the effect of the end of the ac-
tion occurrence on the agent instance that
performs it?

- Are there other circumstances in which
the end of the action would have the
same effect?

- Are there circumstances in which the
end of the action would have a different
effect? What would be the effect?

� Condition on post-effect What, in the circumstances given in the
ASC, allows the end of the action occurrence
to have an effect on the agent instance that
performed it?

- Are there other circumstances in which
the end of the action should have an ef-
fect on the agent instance that per-
formed it?

- Are there circumstances in which the
end of the action should not have an ef-
fect on the agent instance that per-
formed it?

During the Scenario Analysis phase, causality-related information is added to the initial ASCs us-
ing three new types of artefacts :
- ASC forms;

Table 1 : Action occurrence form template.

13

- action occurrence forms;
- interaction forms.

We decided to create these artefacts as separated from the ASCs’ graphical representation in order
to keep simplicity and communicability of the latter.

ASC forms basically detail the circumstances under which the ASC holds, that is, its precondition
in terms of the states of the participating agents. In the example, the precondition is: the motor is off,
the direction is idle, there are no requests from other users, all doors are closed, the lift is located three
floors under the floor f at which the new request is going to be made and, finally, there are two other
floors above f, namely d and e. For conciseness, the analyst can write parts of this information using
Albert II as shown below – though, as the reader will see further, there remains an intellectual abstrac-
tion activity to be performed by the analyst to reach a specification.

Booth.Motor = Off ó Booth.MotorDirection = Idle
ó [fl : (fl.UpButton = Idle ó fl.DownButton = Idle ó Booth.ButtonPanel(fl) = Idle ó fl.Door = Closed)
ó Next(Booth.Position, a)
ó Next(a,b) ó Next(b,f) ó Next(f,d) ó Next(d,c)

The other two types of forms have to be filled in by asking details about particular elements of the
ASCs, namely action occurrences and interactions. The content of each form is structured into sections
corresponding to types of causalitiesh. These types of causalities are the same as those that lead to the
identification of Albert II specification templatesi. For each section there are two slots to be filled in
which differ in the abstraction level of their content: the first slot requires ASC-specific information
while the second requires partially generalised information. Tables 1 and 2 show the form structure
and the questions to be asked to elicit the requested information.

The answers put in the first slot define causalities that appear in the the concrete circumstances of a
particular point in the ASC. That is, they assume that the precondition held initially in the ASC and
that all the action occurrences and interactions previous to the point in the ASC have taken place, with
their effects possibly changing the conditions on states wrt the ASC’s precondition. From this infor-
mation, the analyst has to get more general information in order to fill in the second slot. He has to
check if the causality has a wider range of applicability than the given circumstances, what are the
exact elements that are part of the causality and how the relationships between the elements changes if
the circumstances vary. The type of elements than can have a role in a causality depends on the type of
the causality. For example, a precondition defines a dependency of an action and its arguments on
state component values (possibly, sequences of these values in time).

Table 3 shows a form fragment giving precondition information on the occurrence of ResetUpBut-
ton in the ASC of Figure 6. By asking whether such a precondition holds in other circumstances, the
analyst discovers that it is the case for f being any floor where the booth is located (which is captured
by the value of Booth.Position). This results in the partially generalised version of the statement (see
second slot in Table 3).

h Some types of causalities are further detailed into more precise types of causalities. For example, when dealing with ef-

fects of actions, we distinguish between pre-effect, post-effect and condition on the post-effect. A more complex decomposi-
tion exists for action composition but it is not detailed here for sake of place.

i The reader interested in the rationale behind the identification of the various templates and therefore of the various un-
derlying causality types can refer to [9].

14

ASC <ASC_id>

Action occurrence <action_occurrence_id>

Event {beginning | end | occurrence}

Originating agent instance <agent_instance_id>

Destination agent instance <agent_instance_id>

ASC-specific Generalised

External effect
� External pre-effect

(not applicable for end
event)

What is the effect of the beginning of the
action occurrence on the destination agent
instance?

- Are there other circumstances in which
the beginning of the action would have
the same effect on the destination agent
instance?

- Are there circumstances in which the
beginning of the action would have a
different effect on the destination agent
instance? What would be the effect?

� External post-effect
(not applicable for beginning

event)

What is the effect of the end of the ac-
tion occurrence on the destination agent
instance?

- Are there other circumstances in which
the end of the action would have the
same effect on the destination agent in-
stance?

- Are there circumstances in which the
end of the action would have a different
effect on the destination agent instance?
What would be the effect?

� Condition on external post-
effect

(not applicable for beginning
event)

What, in the circumstances given in the
ASC, allows the end of the action occurrence
to have an effect on the destination agent
instance?

- Are there other circumstances in which
the end of the action should have an ef-
fect on the destination agent instance?

- Are there circumstances in which the
end of the action should not have an ef-
fect on the destination agent instance?

Information : What, in the circumstances given in the
ASC, makes it possible for the interaction to
be shown / to affect the destination agent
instance?

- Are there other circumstances that
would make it possible for the interac-
tion to be shown / to affect the destina-
tion agent instance?

- Are there circumstances that would
make it impossible for the interaction to
be shown / to affect the destination
agent instance?

Perception : What, in the circumstances given in the
ASC, makes it possible for the destination
agent instance to perceive / to be affected by
the interaction?

- Are there other circumstances that
would make it possible for the destina-
tion agent instance to perceive / to be
affected by the interaction?

- Are there circumstances that would
make it impossible for the destination
agent instance to perceive / to be af-
fected by the interaction?

The main advantage of Scenario Analysis is to provide fine-grained information related to causali-
ties between actions and other actions and between actions and state components. Such information
improves the accuracy of the scenario-related information and is of major importance for writing the
requirements specification. More generally, we can summarise the potential results of Scenario Analy-
sis as follows :

� Identification of relationships between ASC elements and static model elements.
� Identification of relationships between ASC elements.
� Discovery of new static model elements or refinement of previous models. This is the case if,

for example, being questioned on the effects of an action occurrence, the stakeholder mentions
changes in state characteristics that did not yet appear in the static model. Therefore, new state
components will have to be created. This is true for all causality types.

� Creation of new ASCs. Adding detailed causality information to an ASC element (especially
expressing condition on states) often makes one think of what might happen in different situa-

Table 2 : Interaction form template.

15

tions (where some condition changes). If these situations need to be clarified, usually elicitation
of new ASCs is triggered.

� Creation of cross-references between ASCs. This is usually a corollary of the previous advan-
tage. Creation of cross-references might also appear a posteriori (during the scenario consoli-
dation phase), as we will illustrate in the next section.

� Discovery of real-time information.

3.3 Scenario Consolidation

The goal of this activity is to take profit of the information resulting from Scenario Analysis in or-
der to produce an abstract Albert II specification. To achieve this, the analyst has to complete the gen-
eralisation of the information contained in action occurrence and interaction forms. It is also at this
stage that inconsistencies between contents of forms can be discovered.

In order to produce Albert II constraints for a given action, the analyst has to bring together the in-
formation contained in all the forms attached to all the occurrences of the action (and their associated
interactions) in all the ASCs. For example, let us assume that ResetUpButton appears twice in the set
of ASCs. Information pertaining to all types of causalities must be consolidated for this action. We
continue to illustrate our approach with preconditions. The information that we want to aggregate is
the partially generalised information contained in Tables 3 and 4.

Asc MoveToHigherFloor_1

Action occurrence ResetUpButton

ASC-specific Generalised

Precondition f.Door = Closed
ó Booth.MotorStatus = Off

ó f.UpButton = Pressed

ó]OutstandingRequestsUpstairs
ó]OutstandingRequestsDownstairs

- Are there other circumstances in which
the action should be allowed?

Booth.Position.Door = Closed

ó Booth.MotorStatus = Off

ó Booth.Position.UpButton = Pressed
ó]OutstandingRequestsUpstairs

ó]OutstandingRequestsDownstairs

- Are there circumstances in which the
action should not be allowed?

All other circumstances.

A first thing that the analyst has to notice is that the two conditions are mutually exclusive and that
each of them ignores the existence of the other one by saying that in all other circumstances the action
should not be allowed. Clearly, there is an inconsistency. After having checked with the stakeholders
from whom the information was obtained, the inconsistency can be cleared by admitting that the
situations represented by the two conditions all allow the action to take place (and only these situation
allow it). So, first of all, in both forms, the negation of any other situation allowing the action to take
place is replaced by a reference to the other form. Then, the conditions can be put together in order to
provide the definitive precondition of action ResetUpButton (see specification in Section 2).

A similar process is followed for every action and for every causality type leading, possibly via
backtracks to previous phases, to the final Albert II specification.

Table 3 : Action occurrence form fragment.

16

Asc MoveToHigherFloor_2

Action occurrence ResetUpButton

ASC-specific Generalised

Precondition f.Door = Closed

ó Booth.MotorStatus = Off

ó f.UpButton = Pressed
ó OutstandingRequestsUpstairs

ó Booth.MotorDirection = Up

- Are there other circumstances in which
the action should be allowed?

Booth.Position.Door = Closed

ó Booth.MotorStatus = Off
ó Booth.Position.UpButton = Pressed

ó OutstandingRequestsUpstairs

ó Booth.MotorDirection = Up

- Are there circumstances in which the
action should not be allowed?

All other circumstances.

4 The Albert II Requirements Specification Animator

Checking the adequacy of a formal requirements specification towards the informal needs ex-
pressed by stakeholders is far from being a trivial issue. To overcome this problem, we can roughly
distinguish among three approaches:

� Analysis techniques allow the stakeholders to test if some properties (including goals [6]) hold
from the requirements specification. These properties are checked by using model-checking
[19] and/or theorem-proving techniques.

� Conversion techniques can be used to translate the specification into a representation which is
more easily understandable by some stakeholders. The result can be some graphical diagrams
that can be used for explaining the specification or a paraphrasing of the formal specification
into a natural language text [14,34]. Conversion techniques can be considered as ’static’ tech-
niques since they do not provide specific help to the stakeholders in exploring the different
possible behaviours that the specification associates to the composite system. It is only by
reading carefully the proposed translation that they can imagine the possible behaviours.

� Behavioural techniques support much more interactivity with stakeholders by making them
able to explore the different possible behaviours of the specified system. Two main approaches
exist. Prototyping is based on the (manual or semi-automatic) translation of the specification
into a program which can be executed. Several prototyping approaches [36,15,29] are based on
the use of logic (e.g. Prolog) and functional programming languages. A basic problem with this
approach is that, in order to be executable, the specification often has to be transformed and,
thereby, concepts that are not relevant for the stakeholders have to be introduced (e.g., inter-
mediate predicates during a Skolemisation process of transformation into Horn clauses) and
others, which are of interest for them, become hidden in the resulting executable form. In other
words, the consequence is that when the stakeholders discover an unexpected behaviour during
the execution of the prototype, they cannot know the requirements which cause this behaviour.
Another approach is animation. It allows the stakeholders to interact with a tool (called the
animator) which makes it possible to incrementally build possible behaviours and check them
with respect to the constraints of the requirements specifications. This approach really comes
down to testing if a given scenario, proposed by one or several stakeholders, is compatible with

Table 4 : Action occurrence form fragment.

17

the requirements specification. Examples of animators are those associated with Statecharts
[16], Troll [13], SCR [18] or Lotos [20].

4.1 The proposed approach

Animator User

constrains

constrains

suggests / forces

decides

deduces

An agent instance’s potential sublife

Formal
Albert

Requirements

For Albert II, our objective is to propose such an animator tool. However, a basic problem is that,
despite some recent results related to the mapping of real-time temporal logic into automata
[19,31,32], there is no existing automata technique proposing an expressiveness equivalent to the one
existing in Albert II. Therefore, the approach that we have followed is to develop an interpretation
algorithm taking the specification as an input and operationalising the semantic rules associated with
Albert II. To justify our approach, we have to recall that the language provides templates on top of
real-time first-order logic and that instantiations of a given template always map to logical statements
with similar structures. As a consequence, the objective of dealing with full real-time first-order logic
could be discarded. Our interpretation algorithm is made of a set of partially hard-codedj checks
(checks for conditions to allow/refuse events proposed by the users,…) and triggers (requiring events)
that take place at well-defined moments in the animation process. Computations are therefore also
very efficient.

Figure 7 summarises the overall approach followed for the animation. We can see the central role
played by the animator which permits to progressively build a possible system's behaviour respecting
the constraints of the specification by interacting with the stakeholders. At any moment of the anima-
tion, the interpreter has to determine which events (beginning or end of actions) can take place in order
to go from the current state to the next one. The identification of these candidate events is computed
from the sub-behaviour already built and from the requirements specification. Some of these events
have to take place because the specification's constraints force them to occur. Other events can take
place or not because the specification leaves their occurrence undetermined. In such cases, the inter-
preter interacts with the stakeholders who decide which events have to occur. For the sake of space,
we just give an example of the operationalisation performed by the animator.

Operationalising action duration constraints is done by the animator in the following way. When
the beginning of an action is selected by a user, by examining the constraints, the animator computes

j We say that the checks are partially hard-coded because the temporal parts of the check are dealt with in an ad hoc way

for each constraint template. On the other hand, we implemented a generic expression evaluator for the non-temporal parts.

Figure 7 : Overview of animation.

18

the closest and the latest time at which the end of the action has to take place. This information is put
into the animation’s obligations. Obligations are constraints that are passed by each step of the anima-
tion to the next one until they are satisfied. The user will thus not be allowed to terminate the action
occurrence if the value of the closest time in the obligations is greater than the current time. And, vice
versa, he will not be allowed to continue the animation if the current time is equal to the latest occur-
rence time in the obligations.

Finally, we have to insist on the fact that, since the declarative properties of the specification are
translated (amongst other things) into checks that are made at definite moments of the animation, there
could be cases in which, at a given time during the animation process, the agent instances' sub-lives
we have constructed up to the current timepoint are not admissible sub-lives wrt the constraints ex-
pressed in the specification. For example, if we have an action composition constraint imposing that
each occurrence of the action SwitchOn of some agent is followed, within 2 minutes, by an occurrence
of the SwitchOff action and if, at the current time in the animation, an occurrence of SwitchOn takes
places, we will only be able to conclude, 2 minutes later, that the SwitchOff action can or cannot actu-
ally take place by looking at its preconditions at that moment. The reason for this is that, since non-
determism is largely used in Albert II specifications, future contexts cannot be determined as they
require choices to be made by the users of the animation.

4.2 The architecture of the Albert II animator

The global architecture of the tool is represented in Figure 8. At the moment, we have a distributed
prototype which allows different stakeholders to cooperatively animate a specification, each of them
being responsible for the animation of a part of the system/environment he is interested in.

Mini-telos

Animation Client 1

Mini-telos

ConceptBase
Repository

Animation Server

Mini-telos

Animation Client 2

Mini-telos

Animation Client n

Agent Manager 1.1
Agent Manager 1.2

Agent Manager 2.1

Agent Manager n.1
Agent Manager n.2
Agent Manager n.3

Coordinator
Window

Internet

...

The specifications used in the animator are produced with the support of the Albert II Editor tool
(not illustrated in the figure) and are stored in the ConceptBase repository [25] using the Telos lan-
guage [28]. The information in the repository is augmented with additional animation-specific infor-
mation that is used throughout the animator. The server is assigned to the execution of the interpreta-
tion algorithm and is used by the coordinator of the animation, i.e., the person who is in charge of
controlling the global flow of the animation. Lower-level operations related to the control of agent
instances are performed by users of the client applications. More precisely, they are done within agent
managers (see next sub-section) which are windows that are created on the machines where clients are
located for each agent instance of the animation. The use of the animation client itself is just to allow
the users to connect to the animation server.

Figure 8 : Architecture of the animator.

19

Animation clients only need information about agents managed locally and therefore only deal with
views of the global ConceptBase repository which is managed by the server. Information exchanged
among the clients and the servers are in a so-called MiniTelos (CDIF-like) format. MiniTelos is a light
implementation of Telos (no deductive capabilities) that we have implemented in our university. It
consists of a library of reusable Java classes. Its internal representation is made of serialisable Java
objects that can be either written to a file or can be converted by MiniTelos into an ASCII file con-
taining Telos frames that can then be used by ConceptBase.

4.3 The functionalities offered by the animator

As described above, the animation is distributed in the sense that different stakeholders animate
different agent instances of the specification. For example, in the case of our lift case study, we can
imagine the following configuration:

� Stakeholder1 plays the role of the Controller;
� Stakeholder2 plays the role of the Booth;
� Stakeholder3 plays the role of the TopFloor, the GroundFloor and and Floor1, Floor2 and

Floor3 which are instances of IntermediateFloor. This means that, for the purpose of the ani-
mation, we consider a specific configuration with 5 floors. This number was not fixed at the
specification level (see Section 2) but needs to be fixed at the animation level because we are
now working at the instances’ level;

� Stakeholder4 … Stakeholder7 play the role of Users. A specific instance is called Eric.

As an example, let us consider the agent manager window associated with Stakeholder3's client and
which is in charge of controlling Floor3 (among other things) : the first folder in the window shows
the state of the agent instance while the second folder supports the building of a state transition.

Figure 9 shows the state folder of the window at some stage i of the animation. We can see the
three main state components associated with any floor, viz the UpButton, the DownButton and the
Door (in our example, there is no imported component). For each of these, we have access to its value.
In the figure, we can see that, at the current stage, the value of Door is Closed. Consulting the values
of the other components (not depicted in the figure) gives the values provided in the first column of
Table 5.

Stage i Stage i+1

UpButton On Off

DownButton Off Off

Door Closed Closed

Table 5 : Values of state components of Floor3 during animation.

20

Let us now consider the values of the same components at next stage (i+1) of the animation (see
second column of Table 5. The stakeholder has discovered a surprising behaviour where the UpButton
has been reset to Off while the Door remains Closed. To avoid interrupting the animation anytime an
unexpected behaviour happens; it is always possible for the stakeholder to attach a remark to any
component of a state or state transition built or being built. This will then be reused when analysing
the traces of the animation. In this case, the conclusion of the analysis of such traces will be that con-
straints have to be added in order to synchronise the occurrences of ResetUpButton with the occur-
rences of RequestOpenDoor. The specification fragment provided in Section 2 has already been cor-
rected to enforce this behaviour. This is done through the action composition constraintk.

Figure 10 shows the state transition folder of the window associated to the agent manager of Eric
(the instance of User animated by Stakeholder4). It is used to construct a state transition as follows.
The list of actions that have been declared for the agent User are displayed as a list on the window.
Actions can be selected by the stakeholder and, by clicking on the "Start", "End" or "Perform" button,
one can decide to add to the current transition an event representing respectively the beginning of an
action, its end or both events (i.e., an instantaneous action occurrence). If the event includes the begin-
ning of an action having parameters, a dialogue box appears for entering them. The stakeholder can
decide to add any event but will receive an error message if the proposed action occurrence violates
statements of the Albert II specification. In order to facilitate revisions, traceability within the anima-
tor allows the error messages to refer directly to the violated statements. For example, if we consider
that we are at the stage i described above, only the PressDownButton and the LeaveFloor actions are
possible because:

� there is a precondition preventing the triggering of PressUpButton if the button is already
pressed;

� there is a precondition preventing entering the Booth if the Door is closed;
� there is a precondition making it impossible to exit the Booth or to press a button on the panel

inside it if the User is not in the Booth.

k The precondition and triggering (not shown) constraints of ResetUpButton, which specialise the corresponding con-

straints of RequestOpenDoor, are also needed.

Figure 9 : The agent manager : state folder.

21

The stakeholder is referred to these statements if he tries to activate the corresponding actions.

Not shown in Figure 10, are the possibilities to reflect Albert II cooperation constraints which let
the stakeholder choose (i) to show or not an action to other agent instances when no (sufficient) con-
dition is present in the specification and (ii) to perceive or not the events that are shown by the other
agent instances when no (sufficient) condition is present in the specification. In our example, nothing
special has to be written since, in the requirements specification, it is said that there is a perfect and
deterministic communication between the agents.

The central role played by the animator server (which supports the task of the coordinator) is to
conduct the animation by centralising all the individual state transition requests issued by the different
stakeholders and building the new global state of the system (made of all the local instances’ states).
Note that this resulting state may not be an admissible state with respect to the specification. This re-
sults in a dead-end branch which cannot be further investigated. Such states are especially marked
both in the different agent manager windows and on the coordinator’s display. The other possible ori-
gin of a dead-end branch is the fact that some stakeholder has decided to stop building the current state
transition either because he was prevented from performing the events he intended to or because some
events he performed in previous stages now have unforeseen consequences. When one stakeholder
pushes on the "Done" button, all the other stakeholders can do is stop too.

Four other main functionalities are:
� When starting an animation, the coordinator is given the choice either to open an existing ani-

mation from the repository or to create a new one.
� When starting a new animation, the coordinator should fix the agent instances’ configuration

(see beginning of this sub-section) and distribute it among the different stakeholders. Then, the
coordinator should prompt the different stakeholders to enter the values of the state compo-
nents for the initial state and check that the values are valid with respect to the Initial Valuation
constraints given in the specification (see Section 2).

� At any moment of the animation, backtracking facilities are supported in order to explore alter-
native (more or less normative, more or less exceptional) scenarios.

Figure 10 : The agent manager : state transition folder.

22

� After an animation has taken place, it is possible to consult (textual) traces of the animation.
This is intended to allow further validation by stakeholders who did not directly take part in the
animation. Since user comments and problems found by the animator can be included in the
traces, these can serve as a basis for change requests transmitted to the analyst in order to im-
prove the specification.

Above, we have illustrated the main functionalities offered by the animator. There are others that
are not detailed in the paper for lack of space. However, the interested reader can find more informa-
tion in [21].

5 Discussions

In this paper, we have reported on the use of scenarios within the context of the elaboration and
validation of requirements expressed in terms of the Albert II language, a formal language designed
for complex real-time systems.

At the level of the elaboration of such requirements, we have introduced an MSC-like notation
(called ASCs) for capturing preliminary scenarios expressed by stakeholders for the desired system. At
the RE level, scenarios have to focus on the actions being performed by the different agents and on the
interactions taking place among agents. The work reported in this paper has been guided by our belief
that, in a general RE context, scenarios (and in particular those expressed with MSC-like notations)
are most suited for elicitation (because of their inherent communicability) than for specification. This
is indicated by the fact that the addition of constructs to MSCs proposed in the literature in order to
make them more abstract (that is, make them able to describe larger numbers of instance-level behav-
iours) tend to make MSCs complex (see [1,2]). With respect to other methods that make use of sce-
narios for the elicitation of formal specifications [22,12,37], we claim for a greater expressiveness and
naturalness of the resulting specification even if we are not able to build it in a fully-automated way.

Not discussed in the body of the paper is the issue of extracting scenarios and structuring them into
some scenario data-base. For extracting scenarios, we rely on complementary techniques elaborated
within the CREWS project, like goal-based authoring [3] or elicitation from real-world scenes [17].
Results from the project also show the usefulness of validating the scenarios before they are consoli-
dated. In this respect, tools and techniques presented in [26] help in checking and extending the cover-
age of exceptional situations by scenarios. Method and tool integration of the various CREWS tech-
niques is currently in process. For structuring scenarios, which is critical for dealing with real-size
problems, [33,1] provide interesting mechanisms like episodes (see also [30]), services and the well-
known use cases (introduced by Jacobson [24]). We are currently investigating adapting them to
structure our ASCs.

Other pending issues we are considering related to ASCs are as follows:
� Notations used in ASCs have been defined to be close to the Albert II concepts (actions,

events, etc.). However, at the moment, no semantics is provided for ASCs. In the future, we
expect to provide one with the benefit of using scenarios and the associated contextual infor-
mation (like the global precondition) for formally checking that they are admissible behaviours
from the Albert II requirements. Along these lines, current work is done on the definition of
adapted model-checking techniques for the Albert II language [31,32].

� At the moment, traces of animation are just textual. Another study therefore concerns the obvi-
ous relationship existing between these traces and their graphical representations through
ASCs. This visualisation of traces would make it easier to further interact with additional
stakeholders not involved in the animation and to serve as documentation (and test cases) for
the future implementation of the system.

23

At the level of the requirements validation, the animator allows cooperative work between
stakeholders and the exploration of alternative behaviours by fixing non-deterministic events interac-
tively. Furthermore, another feature of the tool is to keep the dialogue at the level of the vocabulary
used in the specification. Future work is expected to take on the followings issues :

� For the moment, we have built a first prototype of the animator. However, the interpretation al-
gorithm underlying its use has still to be extended in order to take a full account of all the pos-
sibilities offered by the Albert II language, like complex state behaviour constraints.

� Another issue is concerned with the guidance provided to the stakeholders when exploring dif-
ferent behaviours. Domain-dependent ’meta-knowledge’ could be added in order to guide the
animation by presenting normative as well as exceptional (less normative) behaviours. A clas-
sification of such ’meta-knowledge’ is provided in [26].

� A final issue is related to improving the user interface of the animator for making it more intui-
tive. A first problem is visualisation of sequences of events and values. Again, ASCs could be
useful. For sequences of state values, tables such as the one presented in Table 5 would im-
prove presentation. A second problem is that of building a domain-specific graphical layer on
top of some agent manager windows in order to keep the use of the animator even closer to us-
ers’ concepts.

Evaluation of the tool is currently under way on two industrial applications. These applications
have already given us some directions and priorities on how to extend the tool (especially regarding (i)
additional constraint templates to be dealt with by the algorithm and (ii) the user interface). Further
publications are planned to detail these results.

Finally, another issue we want to address in how our elaboration and validation techniques can
complement each other. In this respect, it is clear that existing ASCs can be replayed in the animator
for checking if the specification accepts them. But, more interestingly, combinations not yet apparent
in the current set of ASCs but produced by generalisation can be validated. This would provide an a
posteriori verification of the abstraction done by the analyst.

6 Acknowledgements

The work reported in this paper is supported by the ESPRIT Long Term Research project 21.903
CREWS (Cooperative Requirements Engineering With Scenarios) and by the Wallon Region’s CAT
project. The authors wish to thank the members of the CREWS project for fruitful discussions on the
topics of scenarios and animation. They are also grateful to the present and former members of the
Albert II team for collaboration and seminal work on formal specifications and animation. Finally, the
authors' gratitude also goes to Pierre-Yves Schobbens for his careful proof-reading and to Christophe
Bongartz for his preliminary work on linking Albert II descriptions with scenarios.

7 References

[1] Andersson M, Bergstrand J. Formalizing Use Cases with Message Sequence Charts. Tech. Rep. Dept. of Communica-
tion Systems. Lund University. Lund (Sweden). 1995.

[2] Ben-Abdallah H, Leue S. Expressing and analyzing timing constraints in Message Sequence Charts specifications. Tech.
Rep. 97-04. Electrical and Computer Engineering. University of Waterloo. Ontario. Canada. April 1997.

[3] Ben Achour C. Writing and Correcting Textual Scenarios for System Design. In: Proceedings of the Natural Language
and Information Systems (NLIS’98) Workshop. 28th August 1998. Vienna. Austria. 1998.

[4] Benner KM, Feather S, Johnson WL, Zorman LA. Utilizing scenarios in the software development process. In: Proc. of
IFIP WG 8.1 Working Conference on Information Systems Development Process. December 1992.

24

[5] Chabot F, Raskin JF, Schobbens PY. The Formal Semantic of Albert II. Technical report. Computer Science Depart-
ment. University of Namur. Namur (Belgium). May 1998.

[6] Dardenne A, Fickas S, van Lamsweerde A. Goal-directed concept acquisition in requirements elicitation. In: Proc. of
the 6th International Workshop on Software Specification and Design - IWSSD’91. Milano (Italy). October 1991.

[7] Dubois E, Petit M. Using a formal declarative language for specifying requirements modelled in CIMOSA. In: Proc. of
the European workshop on Integrated Manufacturing Systems Engineering (IMSE'94). François Vernadat (ed). Grenoble
(France). December 12-14. 1994. INRIA Rhône-Alpes. pp. 233 -241.

[8] Du Bois P, Dubois E, Zeippen JM. On the use of a formal RE language : the generalized railroad crossing problem. In :
Proc. of the IEEE International Symposium on Requirements Engineering (RE'97). Annapolis MD. January 6-10. 1997.
pp. 128—137. IEEE Computer Society Press.

[9] Du Bois P. The Albert II reference manual : language constructs and informal semantics. Research Report RR-97-002.
Computer Science Department. University of Namur. Namur (Belgium). July 1997. Available at
ftp://ftp.info.fundp.ac.be/publications/RR/RR-97-002.ps.Z.

[10] Dubois E. Albert : A formal language and its supporting tools for requirements engineering. In: Formal Aspecs of
Software Engineering (ETACS'98 Conference). LNCS. March 1998.

[11] Feather MS. Language support for the specification and development of composite systems. ACM Transactions on
Programming Languages and Systems. vol. 9. no. 2. April 1987. pp. 198-234.

[12] Glinz M. An integrated formal model of scenarios based on statecharts. In: Proc. of ESEC '95 - 5th European Software
Engineering Conference. Sitges (Spain). 1995. pp. 254—271. Springer.

[13] Grau A, Kowsari M. A Validation System for Object-Oriented Specifications of Information Systems. In : Manthey R,
Wolfengagen V. (eds). Advances in Databases and Information Systems. Proceedings of the First East-European Sym-
posium on Advances in Databases and Information Systems (ADBIS'97). St. Petersburg. September 2-5. 1997. Elec-
tronic Workshops in Computing. Springer.

[14] Gulla JA. Explanation Generation in Information Systems Engineering. PhD thesis. Trondheim. October 1993.

[15] Habra N. A Transformational Method for Functional Prototyping. PhD thesis. Computer Science Department. Univer-
sity of Namur. Namur (Belgium). September 1990.

[16] Harel D, Lachover H, Naamad A, et al. STATEMATE: A working environment for the development of complex reactive
systems. vol. 16. pp. 403—414. April 1990.

[17] Haumer P, Pohl K, Weidenhaupt K. Abstraction Guides: Interrelating Conceptual Models with Real World Scenes. In:
Fourth International Workshop on Requirements Engineering: Foundation for Software Quality (RESFQ). Pisa. Italy.
June 8th -9th. 1998.

[18] Heitmeyer C, Labaw B, Kiskis D. Consistency checking of SCR-style requirements specifications. In: Second IEEE
International Symposium on Requirements Engineering. March 1995. IEEE CS Press.

[19] Henzinger TA. Nicollin X. Sifakis J. Yovine S. Symbolic model checking for real-time systems. Information and Com-
putation. no. 111. pp. 193-244. 1994.

[20] Hernalsteen C, de Jacquier A, Massart Th. A toolset for the analysis of ET-LOTOS specifications. In: Proc. of Meeting
on Validation and Verification of Formal Descriptions of the Fundamental Computer Science (FNRS) Contact Group.
Namur (Belgium). May 1997.

[21] Heymans P. The ALBERT II specification animator. Tech. Rep. CREWS report 97-13. University of Namur. 1997.
Available at http://Sunsite.Informatik.RWTH-Aachen.DE/CREWS/.

[22] Hsia P. Samuel J. Gao J. Kund D. Toyoshima Y. Chen C. Formal approach to scenario analysis. IEEE Software. March
1994.

[23] Jackson M. Software Requirements and Specifications: A Lexicon of Practice, Principles and Prejudices. Addison
Wesley 1995.

[24] Jacobson, Christerson, Jonsson, Overgaard. Object-Oriented Software Engineering - A Use Case-Driven Approach.
Addison Wesley 1992.

[25] Jarke M, Gallersdorfer R, Jeusfeld MA, Staudt M, Eherer S. ConceptBase - a deductive object base for meta data man-
agement. Journal of Intelligent Information Systems. vol. 4. no. 2. pp. 167-192. 1995.

[26] Maiden NAM, Minocha S, Manning K, Ryan M. SAVRE: Systematic Scenario Generation and Use. In: International
Requirements Engineering Conference (ICRE’98). Colorado Springs. Colorado. USA. April 6-10. 1998.

[27] Meyer B. On formalism in specifications. IEEE Software. vol. 2. no. 1. 1985. pp. 6-26.

[28] Mylopoulos J. Borgida A. Jarke M. Koubarakis M. Telos: A language for representing knowledge about information
Systems. ACM Transactions on Information Systems. vol. 8. no. 4. pp. 325—362. October 1990.

25

[29] O’Neill G. Automatic translation of VDM into standard ML programs. The Computer Journal. March 1992.

[30] Potts C. Takahashi K. Anton A. Inquiry-based requirements analysis. IEEE Software. March 1994.

[31] Raskin JF, Schobbens PY. State clock logic: A decidable real-time logic. In: Proc. of HART’97 : Hybrid And Real-Time
Systems. Grenoble. March 26-28 1997. pp. 31—47. Springer-Verlag.

[32] Raskin JF, Schobbens PY. Real-time logics: Fictitious clock as an abstraction of dense time. In: Proc. of TACAS'97 :
Tools and Algorithms for the Construction and Analysis of Systems. Twente. April 2-4 1997. pp. 165—182. Springer-
Verlag.

[33] Regnell B, Andersson M, Bergstrand J. A hierarchical use case model with graphical representation. In: Proc. of
ECBS'96, IEEE International Symposium and Workshop on Engineering of Computer-Based Systems. IEEE. March
1996.

[34] Rolland C, Proix C. A natural language approach for requirements engineering. In: Proc. of the 4th Conference on
Advanced Information Systems Engineering - CAiSE'92. P. Loucopoulos (ed). Manchester (UK). May 12-15. 1992. pp.
257—277. LNCS 593. Springer-Verlag.

[35] Rolland C. Ben Achour C. Cauvet C. et al. A Proposal for a Scenario Classification Framework. In: Requirements
Engineering Journal. vol 3. no. 1. Loucopoulos P, Potts C (eds). Springer Verlag. 1998.

[36] Siddiqi JI. Morrey IC. Roast CR. Ozcan MB. Towards quality requirements via animated formal specifications. Annals
of Software Engineering. vol. 3. 1997.

[37] Somé S. Dssouli R. Vaucher J. Toward an automation of requirements engineering using scenarios. Journal of Com-
puting and Information. vol. 2. no. 1. pp. 1110—1132. 1996.

[38] Various authors. 2RARE (2 Real Applications for Requirements Engineering): Final report on user’s results. Available
at http://www.info.fundp.ac.be/~phe/2rare.html. August 1996. Esprit Contract Number 20424.

[39] Various Authors. IEEE Recommended Practice for Software Requirements Specifications. Std 830-1993. IEEE. 1993.

[40] Various Authors. Proceedings of the 4th International Workshop on Software Specification and Design - IWSSD’87.
Monterey CA. April 3-4 1987. Computer Society Press.

[41] Various authors. ITU-T recommendation z.120 : Message sequence charts (MSC). Telecommunication Standardization
Sector of International Telecommunication Union. Geneva. Switzerland. 1996.

[42] Wieringa RJ. Requirements Engineering: Frameworks for Understanding. Wiley 1996.

[43] Wieringa RJ. Dubois E. Integrating semi-formal and formal software specification techniques. Information Systems
Journal. June 1998.

[44] Zave P. Jackson M. Four dark corners of requirements engineering. ACM Transactions on Software Engineering and
Methodology. vol.6. no. 1. 1997. pp. 1-30.

