
CREWS Report 98-37

submitted to

4th International Symposium on Requirements Engineering, RE’1999.

Analysing Socio-Technical System Requirements

by

Alistair Sutcliffe and Shailey Minocha

Centre for HCI Design
School of Informatics

City University
Northampton Square
London EC1V 0HB

United Kingdom

+44 (0)171 477 8412
{a.g.sutcliffe, s.minocha}@city.ac.uk

2

Analysing Socio-Technical System Requirements1

Alistair G. Sutcliffe and Shailey Minocha

Centre for HCI Design,
School of Informatics,

City University,
Northampton Square,

London EC1V 0HB, UK
a.g.sutcliffe@city.ac.uk
Tel: +44-171-477-8411
Fax: +44-171-477-8859

Abstract

Few RE methods address analysis of socio-technical system requirements. This paper
describes a method for analysing dependencies between computer systems and
users/stakeholders in the operational environment. Domain scenarios describing the
system and its context are used to create an environment model based on the i*
notation. The dependencies between inbound and outbound events between the system
and its usage environment are analysed to elicit requirements to process system input or
generate system output. Coupling metrics are applied to these events to assess the
degree of dependencies between the system and the users. High level requirements are
suggested to deal with different types of organisational design. The method is
illustrated with a case study of a service engineer support system.

1 Introduction

Few methods have emerged to analyse socio-technical system requirements, even
though many problems in requirements engineering are known to have their origins in
complex social problems (Macaulay 1996, Lubars et al. 1993). Ethnographic
techniques have been applied to gather data on social issues and requirements do
emerge from this process (Sommerville and Sawyer 1997). However, there is little
generalisable knowledge, models or analytic methods that can be gleaned from
ethnography, so the quality of requirements analysis is dependent on the practitioner’s
experience.

Some socio-technical models have been proposed for RE, notably the ORDIT project
(Harker et al. 1993) which describes systems in terms of agents, task and roles.
However, few analytic techniques were reported so the requirements engineer was still
dependent on experience for interpreting such models. The Inquiry cycle (Potts et al
1994, Hsi & Potts 1995) uses scenarios to investigate barriers to effective use (called
obstacles) that may arise in the social domain. However, the Inquiry cycle does not give
detailed techniques for analysing socio-technical system dependencies. Analytic
guidance has been given in the stakeholder analysis methods (e.g. Macaulay 1996),
which advise modelling requirements according to different user categories or
viewpoints. Models of dependencies between people and systems in the i* framework
of enterprise models (Yu 1994, Yu & Mylopoulos 1994) enables the impact of different

1This research has been funded by the European Commission ESPRIT 21903 ’CREWS’ (Co-operative
Requirements Engineering With Scenarios) long-term research project.

3

technical solutions to be assessed, as well as giving techniques for trade-off analyses
between conflicting goals and non-functional requirements, but it does not provide an
analytic method or scenario-based RE.

This paper explores the problem of dependency analysis in socio-technical systems by
proposing a method for modelling and analysing event flows between users and the
intended system in order to derive high level requirements. This extends the work of
(Yu & Mylopoulos 1994) by addressing workflow problems via a coupling analysis
derived from concepts in modular software design (DeMarco 1978) and organisational
theory (Robbins 1990).

The paper is organised in four sections. The next section introduces the method and
this is followed by a more detailed description of the method stages, and coupling
analysis. A case study of service engineer support system (SESS) runs through these
sections to illustrate the method. The paper concludes with a brief discussion.

2 Method Outline and Models

The CREWS-SAVRE (Scenarios for Acquisition and Validation of Requirements)
method compares scenarios describing the domain with requirements specifications
and models, focusing on events or information flows between the system and its
environment. Analysis questions probe the dependencies between people and
computers across a tentative system boundary. The system boundaries will change
during a requirements investigation as alternative designs emerge; hence there is a
single model of the intended system-environment upon which a boundary is imposed.
The relationship between scenarios, use cases and the requirements specification is
illustrated in Figure 1.

Domain
Scenarios

user agents,
usage context
event sources

suggest

system
environment
model

event flow across
system boundary

use
cases

Requirements
Specification

elicited
from

validated
against

Figure 1 Relationships between Domain Scenarios, Environment Model and Use
Cases

4

The method uses "domain" scenarios that contain descriptions of activities in
manual systems, interaction with legacy systems, descriptions of agents, roles, and
their organisation settings gathered from real-life examples. These are used to elicit
facts for the system environment model.

2.1 CREWS-SAVRE Method outline

The method stages are summarised in Figure 2. The method is iterative, so once
the use cases and environment models have been created, all the other stages
proceed concurrently.

Users

Create Use
cases + Sys
env model

Use cases +
Environment model

Requirements
Specification

domain
facts

event
flows

agents

Inbound
event
analysis

Outbound
event
analysis

Coupling
Analysis

Coupling
metrics

Use cases +
domain scenarios

Domain
scenarios

input
depend
cies

impact
analysis

Figure 2 CREWS-SAVRE method stages and associated models

Stage 1. Use Case and System Modelling

The system environment model is created as an overview model. Then use cases
elaborate tasks and interactions between agents to provide more detail. Use case
modelling follows standard OO procedures (see Jacobson 1992), so it is not
described further in this paper. Use cases are expressed as interaction diagrams
(UML 1997) to map out the sequential dependencies of event flows between the
agents and the system.

Stage 2. Inbound Event Analysis

5

Each use case is elaborated by comparing it with one or more domain scenarios and
tracing events originating either from human agents or from other objects in the
system environment. Each event inbound from the system environment indicates a
requirement for a system action, as well as an action in the use case. In this manner
the event analysis helps to refine the use cases by identifying events and system
responses to deal with the events.

Stage 3. Outbound Event Analysis

Outbound validation is more difficult because the impact on a social system has to
be judged. By their nature social systems are complex and unpredictable and the
change introduced by a computer system frequently produces unanticipated and
undesirable side effects. The outbound event flows are traced to their destination
and then questions analyse the acceptability of the system output for the user. First,
the domain scenario and use case are cross referenced to ensure output is
generated when and where it is needed. Steps in the user’s task that imply an
information need are identified in the scenario; so if a user needs information at a
particular point in the scenario a system output function should exist in the
requirements specification.

Stage 4. Coupling Analysis

This assesses the dependencies between the social and technical systems. Coupling
analysis is based on software engineering concepts and organisational theory
(Mintzberg 1979, Robbins 1990) that advises that control based coupling should be
avoided. In human organisation control coupling occurs through lines of control,
commands, and obligations to carry out activities in response to others. The
motivation for avoiding control coupling is twofold. First, it decreases the
flexibility of user-system interaction and decreases autonomy. Secondly, too much
control imposes the system’s goals on the user’s working practices, and this may
lead to system rejection. The system input and output event flows are classified and
counted. The more commands there are, the closer the coupling between the social
and technical systems will be. Closely coupled systems are reviewed to either
change the design for more automation (computer autonomy) or to increase human
control, and design the computer system for an advisory rather than a controlling
role.

2.2 System Environment Model

Domain scenarios, captured as narratives or in other media, provide the basis for
creating the system environment model. This is an enterprise level model which
evolves through different versions as requirements analysis progresses. Rather than
invent yet another modelling notation, we have adopted the notion of i* model. This
consists of goals, soft goals (non- functional requirements), tasks, agents, and resources
(see Yu 1994). The two additions we make are to first, add a socio-technical system
boundary, and secondly, relationships to model dependencies between tasks, agents,
and objects:

6

• responsibility: models the association between an agent and an action/task or goal
which it has the duty to carry out, e.g. < agent, is-responsible-for, goal | action |
task>;

• authority: describes the relationship between two agents in which a dominant agent
has authority over the behaviour of a subordinate, or ability of an agent to permit
another agent to initiate task or consume some resource; e.g. <agent (x), has-
authority-over, agent (y) [task | resource]>;

• accountability: models the relationship by which the achievement of goal or task by
an agent is assessed or monitored, e.g. <agent (x), held accountable for, goal,| task,
by agent (y)>;

• capability: an agent has the necessary knowledge and abilities for carrying out an
action/task, e.g. <agent , has-capability-for, action | task>;

An example of a system environment model is illustrated in Figure 3. This introduces
the case study of the SESS (see the use case diagram in Figure 4). Four agents are
involved; the controller who receives calls from customers and then allocates the
service calls to engineers and schedules their work. The engineers respond to the
controllers’ commands, drive to the customer's location diagnose the problem with
photocopiers and other office equipment and then repair the faults. Engineers interact
with customers and the store control agent to obtain spare parts to replenish their local
stock. Engineers also have to report their progress, status and location to the controller.
The case study focuses on the controller’s task and the dependencies between the
controller and the engineers in his/her district. The engineer is accountable to the
controller for reporting progress on customer calls, and the controller has authority to
direct the engineers work.

7

customer

Service
Engineer

Provide service
to customers

controller
Reporting
calls

Provide
service to
customers

Stock
Controller

Vans / spare
parts

Agent

Goal Dependency

Task Dependency

Resource Dependency

Satisfy
customers

Depender Dependee

Diagnose Fault
& Perform
repairs

Equipment
Repair
manuals

Maintain
customer
information Maintain

inventory

<accountable to>

<authority over>

<capability>

<responsibility>

<.....> Dependency relationship

Key:

Figure 3. System Environment model for the SESS, following the i* modelling
notation

8

Figure 4 Use Case Diagram of SESS

3 Description of the CREWS-SAVRE Method

3.1 Inbound Events Dependency Analysis

The system environment model and domain scenarios are used for requirements
elicitation and validation by a walkthrough technique. Taking each external source
of system input in turn, number of different events types that originate from each
agent/object are recorded. For instance, a customer may communicate the event
types, requests, amends, cancel, agree and pay to a ticket reservation system on a
single event flow ‘reservations’. Requirements are added to deal with the inbound
event. Typical generic requirements are validation routines, calculations, matching
input to the database, retrieving data, or invoking an algorithm or sub routine.
Specification proceeds by adding requirements for the necessary outputs in
response to the input type (see Table I). The following questions are applied to
each inbound event-type to ascertain possible system requirements:

• Is there a system function to deal with the input event? If not, then a new
functional requirement should be elaborated.

• Does the event require the system to attain a goal state, e.g. an inventory
control system tries to satisfy all outstanding orders ? What activity is necessary
to attain the desired state ? A process should exist to carry out the necessary
change.

• Does the event imply that the system should maintain a goal state, e.g. a
thermostat control system has to keep room temperature within 5 degrees of a
setting ? If so, then

• Can the system interpret deviation from the desired state?

Controller

Diagnose Fault
& Perform
Repair

Service Engineer Store ControllerReport Repair
Activity

Maintain customer
information

Schedule calls

Monitor Service
Performance

Maintain
inventory of parts
/ assemblies

Key: Lower-level Use Case

9

• Can the system take remedial action to return to the desired state?
Answers to this question suggests functional requirements to monitor
normal states and correct deviations. More details on goal-oriented
analysis is given in (Sutcliffe & Maiden 1993) and in the KAOS Method
(van Lamsweerde et al. 1995)

For each inbound event ask “Can an error occur ?” This question initiates analysis
of validation requirements, and alternative paths in use cases. Three main classes
of error-events imply the different responses (and hence requirements) by the
system:

• Events that should arrive in a set order: In this case the system requirement is to
detect the order of event arrival against an expected life history and then take
corrective action.

• Events which may arrive in any order: The requirements in this case are to
check for the plausibility of events and provide undo facilities to correct user
mistakes or warning messages when events appear to be unusual, e.g. an
aircraft descends after leaving an airport.

• Unexpected events: The system should continue to function correctly so the
requirement is for an exception capture procedure; or a reporting mechanism so
that human operators can investigate exceptional events.

 If the dependencies between the scenario and components in the intended system are
predictable then validation requirements for mal-formed inputs are easily specified;
however, if event arrival is random then requirements are more difficult to elaborate.
The last part of inbound event validation is to trace the event of the source to define
event capture and system access requirements when security or safety are important
non-functional requirements.

 Table I Event Types and Generic Requirements

 Event Type Generic Requirements
 Data entry Validation, input dialogue, create record
 Data edit/change Editor function, locate & update record,

validation
 Data delete/ cancel Locate and delete record, warning dialogue
 Query Search function, query dialogue + editor,

retrieve and display data
 Display data Display/ print/ output function
 Command Execute function
 Receive message Find addressee, display message
 Send Message Input dialogue, capture address, dispatch

message, network protocol

 Case study

 For the inbound event dependencies one of the use cases - ‘Diagnose fault and repair
machine’ is investigated (see description of use case 1 and Figure A in Appendix). This

10

assumes a prototype design of SESS that provides information for the engineer. The
goal states are to retrieve appropriate information to support the engineer’s task of
finding out what is wrong with the machine, where the fault is located, removing the
faulty component and replacing it with a new part. The input actions and the
requirements implications are shown in Table II.

 Table II Inbound Event Analysis for the Diagnose Fault and Repair use case

 Input (from Engineer)
 (see Table I for Input Types)

 Requirements implied Output

 Machine type (data query) Look-up table of Machine
types, validation

 Display detail of Machine type

 Fault code (data query) Validation, matching fault code
to diagnostic advice, data
retrieval

 Text description of fault,
possible reasons for fault

 Part/sub assembly code
(data entry)

 Validation, matching code to
repair/maintenance instructions,
data retrieval

 Text and diagrams for
repair/maintenance instructions

 Spare parts used- code (data
entry)

 Validation, update parts
inventory

 Display parts to be used and
inventory

 Call sign-off- date and time
(Send message)

 Validation, date cues Display call ID, call details,
date and time

 This analysis only covers the normal course use case in which a repair proceeds to the
goal state. Alternative courses need to be added if the engineer can not diagnose or fix
the fault. Analysis of requirements implied by inbound events is inextricably linked
with the outbound analysis. Also assumptions made in the use case can have radically
different implications; for instance, the level of automation is assumed to be an
information system rather than a diagnostic expert system. The first event, entering the
machine type is a simple input, requiring the system to validate input and to match the
input code against a database of machine types. The output requirement in response to
this input event is a display of the machine details. The next input is an error code
which the engineer reads from the machine's on-board diagnostic system or is inferred
from preliminary tests. The requirements implications are for validation, database
matching, and information retrieval with output displays of the probable problem
causes and advice on repair strategies. The subsequent input events depend on this
assumption about the output. For instance, if the system displays a diagram of the
machine then the engineer’s next input event might be pointing at the part/sub
assembly on the diagram rather than entering a part code. This would add a
requirement for an event interpreter in the graphical user interface. Assuming a part
code is entered, the requirements implications are validation, matching, and data
retrieval. The use case proceeds with inbound events to record the parts used with
implications for updating the inventory database, and then recording the repair.

11

 This case study illustrates some of the complexities of inbound event analysis. Event
sequences depend on the assumptions made about the level of automation and on the
user system dialogue. Furthermore, inbound events have many levels of detail as the
specification of the user interface proceeds, (e.g. input commands for undo, escape, and
responses to erroneous input). Inbound event dependencies are analysed iteratively with
outbound events to add for more detailed requirements.

 3.2 Outbound Events Dependency Analysis

 Using the domain scenarios and the system environment model the following
questions are employed to analyse user requirements:

• Which users/stakeholders require information in the scenario and when it will

be needed ? The analyst should check that there is a system requirement to
produce the information.

• Is the information content of the system output appropriate for the user’s task or
goal ? The answer to this question may require a detailed task analysis and is
beyond the scope of this paper; however, more detail can be found in the Task-
based Information Analysis Method (Sutcliffe 1997).

• Which users require information for decision support ? This points to output
requirements to provide information or an interactive simulation to help the
user’s decision making.

• Is the user’s goal in the scenario information seeking ? This points out
information browsing and retrieval requirements.

The questions help to identify the information dependencies between the users and the
system, and in doing so, help to define output requirements. Further questions then
focus on who should receive the output information and potential errors of output being
lost, directed to the wrong person, arriving too late, in the wrong order etc. A more
complete list of questions in given the method tutorial (Sutcliffe and Minocha 1998).
System output dependencies are checked using the exceptions depicted in Table III.
Exception types are linked to problems that may arise in satisfying non-functional
requirements and to generic requirements to deal with these problems.

Table III Output Exceptions and Generic Requirements

Validation Check -
Exceptions

Problems / Issues Generic Requirements /
Implications

Agents’ ability to
respond

timing, capabilities workload planning
/scheduling, training
requirements

Agents’
willingness to
respond

motivation,
responsibility, authority

assess responsibilities
and power relationships

output arrival timing -
too early /late

accuracy, timeliness of
information

delivery prioritisation,
database update integrity, on
demand access

12

output arrival order -
incorrect

accuracy, task relationship sequential delivery logs,
delivery control checks

output information
quantity and quality

accuracy, utility, usability appropriate presentation
techniques, (ISO 9241 part
12)

• The next step is to establish whether the users are likely to comply with system
commands. Possible impediments are lack of motivation, or commands that clash
with their responsibilities. Pointers to answers may be found by tracing the
responsibility and authority relationships of the agent.

Responsibility and authority relations can be traced to check whether the system output
will fulfil users’ goals, and that authority relationships are clear and do not contradict
each other (e.g. two agents in charge of one activity, conflict in authority). The agent’s
properties are inspected to determine whether they have the appropriate capabilities and
responsibilities to undertake the tasks they are responsible for.

The validation checks, potential problems arising and generic requirements are
illustrated in Table IV. The agent’s properties are inspected to determine whether they
have the appropriate capabilities and responsibilities to undertake the task or take the
decisions they are responsible for. The implications part of the table draws attention to
the need to plan workload according to the arrival timing of output, to ensure agents
have the appropriate training, and to investigate changes that introduction of the system
may have on power and authority relationships among the stakeholders. Generic
requirements are suggested for addressing problems that may arise from output
exception types.

Table IV Impact Analysis for Coupling and Agents Response

 Validation Check Problems / Issues Generic Requirements /
Implications

Agent’s ability to respond timing, capabilities workload planning /
scheduling, training
requirements

Agent’s willingness to
respond

motivation, responsibility,
authority

access responsibilities and
power relationships

Number of system-agent
couples

workload, response time
prioritisation

assess agents’ work schedule
and priorities

Volume of events couple workload plan agent resources to deal
with volume

Quality of system - agent
couples

authority, responsibility,
brittle systems, control
bottlenecks

reduce control couples by
increased autonomy

13

Case study

The same use case is considered and the outbound events are taken from column 3 of
Table II. The system is intended to be loaded on a laptop machine that the engineer will
take with him/her on the job, hence the first two problems of tracing and losing output
are a consequence of forgetting to take the portable or machine failure. The latter three
questions are more pertinent as they focus on the acceptability of the data in terms of
its accuracy and presentation. The results of the outbound event analysis are given in
Table V.

Table V Outbound Event Analysis for the Diagnosis and Perform Repair Use
Case

Output event/display Potential Problems Generic requirements

Display details of Machine
type

accuracy, duplicated
information

Check database updating

Text description of fault,
possible reasons for fault

accuracy, usability, utility-
not being able to find
correct information

Presentation of information
with diagrams, graphics,
clarity of text

Text and diagrams for
repair/maintenance
instructions

usability and utility-
misinterpreting information

Presentation of information
with appropriate media,
highlight key items -(ISO
14915)

Display parts to be used and
inventory

accuracy- database integrity,
usability

Highlight key items,
structure display

Display call details and
date, time.

accuracy, usability Highlight key items,
structure display

Most of the implications for the outbound event analysis are for user interface design
and presentation of information. One possible problem arises from inaccurate
information in the databases, which reinforces the need for a requirements already
stated, to ensure the update integrity of data. Other problems are part of the
presentation design requirements. The user requires appropriate information for the
task, but the system must not provide too much or too little information. In addition
there are further requirements to select appropriate media to display parts of the
machine, repair instructions, etc. In this case the method points the designers towards
guidelines for information presentation and multimedia design (ISO 14915). The last
three outputs are information displays providing feedback for user input, so
requirements are for a clear, structured user interface.

System outputs for the call reporting use case (not shown in Table V) have implications
for the accountability and authority relationships between the engineer and the
controller. Output from the call allocation system must be accurate otherwise it will

14

undermine the controller’s authority, likewise the input supplied by the engineer has to
be up to date to ensure effective scheduling of service calls.

3.3 Coupling Analysis

Further requirements are discovered by assessing coupling between the required system
and its users/stakeholders with the environment model and the use cases. Coupling
analysis commences by a qualitative analysis using the scale illustrated in Table VI.
Events flowing between the system and user agents, represented in the interaction
diagram of the top level use case, are counted and each event is assigned a coupling
factor. Information coupling is low and makes few impositions on users; however,
command coupling places more constraints on actions depending on the type of
command. Commands may constrain an agent’s freedom to act or take decisions. For
instance, the system might set a strategy that dictates how stakeholders must act.
Command couples are rated for the strength of the obligation they impose on the
recipient agent (optional, mandatory commands, commands with constraints) and the
restriction on freedom of action imposed on the recipient. Where high levels of
command coupling are apparent these indicate areas of possible conflict and system
failure that should be investigated.

Table VI Coupling Analysis Levels

Weighting Event Flow- Input (I) or
Output (O)

Implications for users /
stakeholders

1 O- discretionary
information

discretionary use

2 I- discretionary input discretionary input- may lead to
performance problems

3 O- decision-related
information

agents needs information to take
decisions

4 O- essential information necessary for task or user action
5 O- indirect command warning or message that

requires attention, and possibly
action

6 I- mandatory input system needs data to continue
7 I- report command agent must report completion of

a task
8 O- command action agent must carry out an action
9 O- command +

constrained actions
agent’s way of working is
controlled by the system

10 O- command + multiple
constraints

command dictates the type/
sequence of another agent’s
actions

11 O- command +
constraints on many
agent’s actions

one agent’s command controls
several other agents

15

Where high levels of command coupling are apparent these should be investigated
to reduce commands where possible. Table VII summarises some implications of
pathological coupling and possible remedies. When coupling scores are high,
commands imposed by the system on the user should be reduced; for instance, by
reallocating the work so only the user is responsible. Increasing autonomy of agents
and decomposing the system into sub systems and also reduce coupling. This
analysis is carried out with use cases and by tracing relationships on the system
environment model.

Table VII Coupling Analysis Implications

Problem Possible Solutions / Requirements
Agents ability to respond to
commands

check agent’s responsibilities, capabilities,
workload

Agent’s willingness to obey commands investigate agent’s motivation,
responsibility and accountability

High coupling scores Reduce commands, increase local decision
making, sub-divide system

Many constrained commands increase user training, increase local
responsibility, control by objectives

Many report commands monitor by objectives, gather events
automatically, increase local responsibility

Many essential inputs use defaults, reference files, integrate and
share databases

Many commands / agents investigate timing and schedule work, split
responsibility

One agent creates many commands review responsibility and authority,
investigate work schedule

A large number of constrained commands indicates that users are not being trusted
to carry out their work without direction. Increased training and giving users
responsibility should be considered. A large number of reporting commands
indicates excessive system monitoring, the necessity of this should be questioned to
see whether it benefits the users. Analysis of the convergence of many commands
on one agent should trigger a review of responsibilities, workload, and operational
schedule.

Case study

Two scenarios are analysed, each represents a different management policy for
controlling the system. In the first scenario, control is centralised and all customer
calls are sent to a controller who allocates calls to service engineers. The engineers
have to report their location and availability to the controller, as well as their
progress when undertaking repairs, and other activities such as replenishing spares
from the stores. The controller schedules the work of the engineers who have to
obey commands. Coupling analysis for the reporting use case for this scenario is
shown in Table VIII.

Table VIII Coupling analysis for the controller scenario version of the SESS

16

Controller-
engineer
Event

Coupling Controller-system
Event

Coupling

Availability- I 6 Eng availability- I 6

Location -I 6 Eng location -I 6

Call
schedule—O

8 Customer call-I 6

Arrive at
customer- I

6 Engineer-call
allocation-O

9

Start job- I 6 Update progress-I 6

Finish job-I 6 Report complete-I 6

Report Stock -
I -
replenishing

6 Update engineer
status-I

6

Total 44 Total 45

In this scenario the coupling between the engineer and the controller (see Figure B
in the Appendix) and between the controller and the automated call dispatch system
(see Figure C in the Appendix) is high. The system commands for call allocation
constrain the controller’s choice, and in turn the schedule is passed onto the
engineer who has no discretion in his or her work. Coupling between the controller
and the system could be reduced from 45 to 33 if the system's function is changed
to a decision support role (see Figure D in the Appendix) in which the system
displays the engineer’s status, locations and customer calls, leaving the controller
to decide on the allocation. This reduces the Engineer call allocation coupling to 3
(discretionary decision) and makes the ‘Update progress input’ unnecessary, hence
saving 12 points overall. However, the coupling between the engineer and the
controller would remain the same unless some autonomy is granted to the
engineers. The high coupling in this scenario indicates a possible brittleness in the
system, and more autonomy is desirable. Furthermore, the controller has to handle
all the engineers in a branch and this indicates a problem of too many commands
converging on one agent.

In the second scenario, a decentralised system is investigated. Small groups of
engineers co-operate to handle customer calls in their area. Each engineer is
assigned a district and customers call the engineer they have been assigned to
directly (see Figure E in the Appendix). When an engineer receives more calls than
he can deal with he posts them onto a bulletin board which is shared with all
engineers in the branch. An engineer with no calls who is reasonably close by is
expected to take the call, otherwise the customer has to wait. Limited reporting of
completed calls is carried out for management statistics. The coupling analysis for
this scenario is shown in Table IX (see Figures E and F in the Appendix).

17

Table IX Coupling analysis for the workgroups scenario version of SESS

Engineer -
customer events

Coupling Engineer -
bulletin board
events

Coupling

Call-I 6 Request -I 2

Acknowledge-O 4 Job list-O 3

Sign-off- O 4 Report job 2

Total 14 Total 7

In the decentralised scenario, local autonomy, coupling between the customer and the
engineer, and between the engineer and the supporting bulletin board is low. Coupling
between the service engineer and the controller (not illustrated), who now has a
management supervisory role would also be low as this is restricted to discretionary
reporting and mandatory reporting of jobs completed (coupling total 4). This scenario
contains an incentive system for the engineers to complete jobs as quickly as possible
and this increases coupling, but not to the extent of the first centralised control
scenario.

The dramatic differences between the two scenarios demonstrate the work
organisations that are possible for this system. The coupling analysis shows that a
decentralised approach would be more flexible and imposes fewer restrictions on the
service engineer’s job. However, coupling analysis is no panacea for work design on
its own. The advantages of the lower coupling in the second scenario would need to be
assessed in light of engineer performance, resource costs and customer satisfaction.

The two scenarios have different requirements for technical system support. The first,
centralised control scenario implies functional requirements for an automated call
allocation system, a matching algorithm and an accurate database of engineers’
location, work activity and training. This in turn necessitates a call reporting and
progress tracking system. In contrast the second scenario requires a simpler system
composed of an electronic bulletin board to record calls that engineers can not deal
with and a limited reporting system to capture details of completed calls for
management reports and the incentive scheme. In our ongoing work we are
investigating how different patterns of coupling and organisation design can be linked
to appropriate requirements templates of co-ordination and workflow systems.

4. Discussion

The analytic techniques described in this paper provide the basis for systematically
investigating socio-technical system requirements. These build on the i* framework
(Yu 1994) that analyses requirements by reasoning about relationships between agents,
tasks and goals. The metric based approach we have adopted complements the i* style
analyses. One advantage of the metrics is that they can be applied to high level
scenarios of prospective system designs to establish the strengths and weaknesses of

18

different options. Coupling analysis has many applications in organisation design that
we are only beginning to explore, such as span of command, and different command
structures in organisations (Robbins 1990). In our future work we will incorporate this
analysis into design rationale representations so trade-offs can be assessed in
quantitative as well as qualitative terms.

The other contribution of this paper is to suggest how generic requirements could be
linked to metric based analyses. Generic requirements (GRs) by their nature are not
detailed, hence the utility of such advice needs further evaluation; however, we believe
that GRs add value by raising requirements issues, even if they do not always provide
solutions. The method spans a wide range of issues which GRs can not deal with in
depth, so we see the method as a framework that points the requirements engineer
towards other sources for more detailed advice including generic models of
requirements for classes of application which we have partially explored for
information retrieval (Ryan & Sutcliffe 1998).

The coupling analysis draws on theories of autonomy and work organisation from
management science (e.g. Clegg et al. 1997). High level requirements for groupware
and workflow systems can be proposed as a result of this analysis, however, we have to
improve the connection between generic requirements and organisational design.
Furthermore, the recommendations of coupling analysis need to be interpreted in a
domain context. While increasing autonomy might help many business organisations
the converse may be true for military command and control systems.

Acknowledgements

This research has been funded by the European Commission ESPRIT 21903 long term
research project ’CREWS’ - Co-operative Requirements Engineering With Scenarios.
The project partners include RWTH-Aachen (project co-ordinator), City University,
London, University of Paris I, France, FUNDP, University of Namur, Belgium.

References

(Clegg et al.1997) C. Clegg, C. Axtell, L. Damodran, B. Farbey, R. Hull, R. Lloyd, J.
Nicholls, R. Sell and C. Tomlinson, ‘Information Technology: A study of performance
and the role of human and organisational factors’, Ergonomics, vol. 40, no. 9, pp. 851-
871, 1997.

(DeMarco 1978) Tom DeMarco, Structured Analysis and Systems Specification,
Englewood Cliffs, New Jersey, Prentice Hall, 1978.

(Harker et al. 1993) S. D. P. Harker, K. D. Eason and J. E. Dobson, ‘The Change and
Evolution of Requirements as a challenge to the practice of Software Engineering’,
IEEE Int. Symposium on Requirements Engineering (RE’93), pp. 266-272, Jan. 1993.

(Hsi & Potts 1995) I. Hsi and C. Potts ‘Towards Integrating Rationalistic and
Ecological Design Methods for Interactive Systems’, Georgia Institute of Technology,
Graphics, Visualisation and Usability Centre Technical Report, 1-15, 1995.

(ISO 9241) ISO 9241, Ergonomic requirements for office systems visual display
terminals, Parts 10, 11, 16 International Standards, parts 1-9, 12-15, 17, draft standards;

19

International Standards Organisation, Switzerland, available from National Standards
Organisation, 1996.

(ISO 14915) ISO 14915-1 Multimedia User Interface Design - Software Ergonomic
Requirements - Part 1: Introduction and Framework, Part 3: Selection of Media and
Media Combination, Committee Drafts, September 1998.

(Jacobson 1992) I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, ‘Object-
Oriented Software Engineering: A Use-Case Driven Approach’, Addison-Wesley,
1992.

(Lubars et al. 1993) M. Lubars, C. Potts and C. Ritcher, ‘A review of the state of the
practice in Requirements Modelling’, IEEE Int. Symposium on Requirements
Engineering (RE’93), pp. 2-14, 1993.

(Macaulay 1996) L. Macaulay, Requirements Engineering, Springer Verlag, Berlin,
1996.

(Mintzberg 1979), H. Mintzberg, ‘The Structuring of Organisations’, Prentice-Hall
Inc., 1979.

(Potts et al. 1994) C. Potts, K. Takahashi and A. I. Anton, 'Inquiry-Based
Requirements Analysis', IEEE Software, vol. 11, no. 2, pp. 21-32, 1994.

(Robbins 1990) S. P. Robbins, ‘Organisation theory’, Prentice Hall, Englewood Cliffs,
NJ.

(Ryan & Sutcliffe 1998) M. Ryan and A. G. Sutcliffe, ‘Analysing Requirements to
Inform Design’, People and Computers XIII - Proceedings of the BCS-HCI
Conference, Sheffield, H. Johnson, L. Nigay and C. Roast (Eds.), Springer Verlag, pp.
139-158, 1998

(Sommerville & Sawyer 1997) I. Sommerville and P. Sawyer, ‘Requirements
Engineering: A Good Practice Guide’, John Wiley & Sons, 1997.

(Sutcliffe & Maiden 1993) A. G. Sutcliffe and N. Maiden, ‘Bridging the Requirements
Gap: Policies, Goals and Domains’, Proceedings of the 7th International Workshop of
System Specification & Design, pp. 52-55, 1993.

(Sutcliffe 1997) A. G. Sutcliffe, 'A Task-Related Information Analysis’, International
Journal of Human Computer Studies’, vol. 47, pp. 223-257, 1997.

(Sutcliffe & Minocha 1998) A. G. Sutcliffe and S. Minocha, ‘CREWS-Scenarios for
Acquisition and Validation of Requirements - The Method’, Tutorial, 1998.

(UML 1997) UML, ’Unified Modelling Language: Method’, Rational Corporation,
1997. Rational’s web site: http://www.rational.com

(van Lamsweerde et al. 1995) A. van Lamsweerde, R. Darimont and P. Massonet,
‘Goal directed elaboration of requirements for a meeting scheduler: problems and
lessons learnt’, IEEE Int. Symposium on Requirements Engineering (RE’95), pp. 194-
203, 1995.

(Yu & Mylopoulos 1994) E. Yu and J. Mylopoulos, ‘Towards modelling strategic actor
relationships for information systems development - with examples from business

20

process reengineering’, Proceedings 4th workshop on Information Technology and
Systems (WITS’94), Vancouver, B.C. Canada, December 17-18, 1994.

(Yu 1994) E. Yu, ‘Modelling Strategic Relationships for Process Reengineering’,
Technical Report DKBS-TR-94-6, University of Toronto, 1994.

21

Appendix

Use Case 1: Diagnose Fault and Repair

1. The engineer enters the code for the machine type. 2
2. The system displays details of machine type.
3. The engineer enters the code of the fault.
4. The system displays diagnostic information for the fault.
5. The engineer enters code of the sub-assembly.
6. The system displays instructions for repair.
7. The engineer enters code of the part to be used.
8. The system displays the availability details of the spare part.
9. The engineer collects the spare part from the van.
10. The engineer performs the repair.
11. The engineer checks the machine performance.
12. The engineer logs off from the call.
13. The system displays the call ID, call details, date and time.

Figure A Interaction Diagram for the Use Case 1

Engineer Van MachineSESS

1: enter machine type
code

2: machine type
details

3:enter fault code

4: diagnostic details

5:enter assembly code

6: repair details

9:collect part from the van

10: repair machine

11: check performance

12: enter job code

13: job details

7:enter part code

8: availability details

22

Figure B Interaction Diagram for the Use Case: Reporting to the Controller

Figure C Interaction Diagram for the Use Case: Allocation of a call to the engineer
by SESS

Engineer SESS

1: log on to the SESS

2: validating the login

3:enter location

4: scheduled calls

5:enter job details

6:enter repair details

7:enter end of job details

Controller SESS

1: update engineer’s availability

2:update engineer’s location

3:enter customer call information

4: allocates call to an engineer

5:updates scheduled calls for the engineer

6: reports the scheduling of calls

7: updates the engineer’s status

23

Figure D Interaction Diagram for the Use Case: Allocation of a call to the engineer
(SESS as a decision support system)

Figure E Interaction Diagram for the Use Case: Service Engineer attends to
customers’ calls

Figure F Interaction Diagram for the Use Case: Service Engineer accesses Bulletin
Board

Controller SESS

1: update engineer’s availability

2:update engineer’s location

3:enter customer call information

4: proposes the engineers’ who
can be allocated to the call

5:updates scheduled calls for an engineer

6: reports the scheduling of calls

7: updates the engineer’s status

Engineer customer

1: receives the customer’s call

2:provides job details

3:makes a note of the call

Engineer Bulletin
Board

1: requests for details of scheduled calls

2:provides job list

3:report to attend the call

