
Designing Standards for Open Simulation
Environments in the Chemical Industries: A Computer-

Supported Use-Case Approach

M. Jarke, A. Becks, J. Köller, C. Tresp, B. Braunschweig*

RWTH Aachen, Informatik V
Ahornstr. 55, 52074 Aachen, Germany

{jarke, becks,koeller}@informatik.rwth-
aachen.de

*Div. Informatique Math. Appliquees
Institut Francais du Petrole
1 & 4 avenue de Bois Preau

92500 Rueil Malmaison, France
bertrand.braunschweig@ifp.fr

Abstract. Under the double pressures of global
competition and increasing environmental awareness,
the importance of high-performance simulation tools
in the process industries (food, chemicals, oil, ...) is
rapidly growing. However, traditional simulation
environments are closed monolithic systems which
are extensible only by a small group of market-
leading vendors. The resulting bottlenecks in
interoperability, reuse and innovationled to the
CAPE-OPEN project, in which the chemical and oil
industries are defining standards for a component-
based approach to process simulation, in order to
open up the market to smaller vendors and to
facilitate rapid industrial uptake of academic research
prototypes. For general systems engineering, the
CAPE-OPEN standardising process has at least two
interesting features: (a) it has experimented on a large
scale with a distributed use case approach, following
a variant of the UML (Unified Modelling Language)
approach for modelling, but also linking down to
programming standards based on CORBA (Common
Object Request Broker Architecture) and COM
(Common Object Model); (b) the management of this
world-wide distributed effort has been facilitated by
the use of an Internet-based workspace co-operation
environment, augmented by advanced structuring and
analysis methods from software engineering and
computational intelligence.

INTRODUCTION

Process simulators, often termed flowsheet
simulators, are tools designed for creating
mathematical models of manufacturing facilities for
processing and/or transforming materials. Chemical
manufacturing through continuous or batch
processing, polymer processing, and oil refining are
examples of such processes. Process simulators are
central for designing new processes; they are also
used extensively to predict behaviour of existing or
proposed processes. In addition, they are applied
increasingly for process control, process optimisation,

and process operator training. Process simulators
follow different internal architectures, e.g. block
modular systems, equation based systems and
simultaneous modular systems. Surveys of current
and proposed approaches to simulation-based process
modelling can be found in (Marquardt 1994, Jarke&
Marquardt 1996).

Process models may represent either the steady-
state or dynamic behaviour of a process, and both are
used extensively. Dynamic models are used to
describe how a process behaves over time when its
processing conditions are changed, e.g. following a
disturbance to feed flow rates, or altering operating
conditions of one or more unit operations. They may
also be used to study process start-up and shutdown,
or to investigate the effect of operator mistakes or
modifying a process control scheme.

Under the double pressures of global competition
and increasing environmental awareness, the
importance of high-performance simulation tools in
the process industries (food, chemicals, oil, ...) is
rapidly growing. However, new products from small
vendors as well as research results in computer-aided
process engineering (CAPE) only slowly find their
way into industry due to the software structure of the
simulators.

The process simulators that are currently used are
closed monolithic applications. They are quite
inflexible when it comes to integrating new
components. Another drawback of this situation is
that it is almost impossible to combine modules from
different vendors into one single simulator. In
practice such a combination is of high interest due to
the limitations of individual products. Furthermore,
most operating companies have developed their own
simulation components reflecting the company’s
special needs – a resource-consuming effort. An open
simulation environment would enable the integration
of these in-house systems (also called legacy code)
with other commercial tools in a fruitful manner.

The CAPE-OPEN project was initiated by the



companies BASF, Bayer, BP, DuPont, Elf, and ICI,
to solve these problems.  CAPE-OPEN is co-
ordinated by the French process licensing company
IFP and supported by software vendors and research
institutes.

CAPE-OPEN aims to provide the overall
conceptual design and interface specifications for
simulators which consist of an assembly of relatively
large software components

For example, the entire unit operation model
library of a simulator may be replaced by that from
another, or just one unit operation model may be
substituted or added within the existing library. Unit
operation components are individual building blocks
used to create models of the sequences and networks
of individual chemical and physical operations that
determine a manufacturing process.

Similarly, for thermodynamic methods –which
are the most frequently appearing calculations in a
process simulator– either the entire set may be
replaced or one of the constituent methods is
substituted or added. This approach creates a much
more flexible environment than exists with
conventional monolithic simulation systems. CAPE-
OPEN also enables simulator components that
originate from different types of simulators to be
mixed with each other. For example, an equation
based unit operation model may be combined with a
sequential modular host simulator.

One example benefit is the ability to develop and
test a working component which models behaviour of
materials used in some particular process, and then
use this validated and well tested component with
different types of commercial or proprietary simulator
systems. This capability provides a major advance for
internal consistency in the industrial use of various
types of simulation.

A second benefit is the ability to develop highly
specialised, reusable models of unit operations which
are not available as part of some standard set. Multi-
tube reactors are a classic example. These specialised
components will then be reusable in the range of
models for different applications, from simulation for
design to online optimisation.

A General Framework for a Process Simulator.
Simulators differ widely in architecture and
implementation but all have common functionality
imposed by the underlying modelling tasks which
they address. This functionality can be summarised in
terms of four key ‘conceptual’ component types:

• Simulator executive: This component is the
simulator’s core as it controls the set-up and
execution of a simulation. It is responsible for
installing other components, registering them
in a repository, managing interactions with
users, accessing and storing data, and, finally,
for reporting and analysing simulation
calculations.

• Unit operations: These components represent
physical processing unit operations (e.g. a

mixer) and possibly perform specialised roles
such as performing additional calculations to
support process optimisation.

• Physical properties packages: A critical
simulator functionality is the ability to model
properties and behaviour of the materials
which are used or created by the process.
Properties and behaviour includes both
thermodynamic and transport properties.

• Numerical solvers: This includes both the
specialised mathematical methods used to
evaluate the equations that describe a unit
operation (unit solving) and the methods used
to evaluate the overall flowsheet (flowsheet
solving).

The CAPE-OPEN standard is defined in terms of
this conceptual design, but imposes no requirements
on the actual architecture and implementation of a
compliant simulator. Instead it is anticipated that
different simulator vendors and developers of CAPE-
OPEN compliant components will initially to a large
extent ‘wrap’ existing code such that it presents
sound software interface. New implementations will
be able to incorporate the standards directly into their
designs. The wrapping layer and the new designs take
extensively use of a component software approach
like implementations OMG’s CORBA architecture or
Microsoft’s COM reference model. This will ensure
that the existing functionality of a simulator
(including its user interface, unit operation library,
physical property systems etc.) is protected while
offering immediate access to additional functionality
when necessary.

The major problem is the development of sound
interfaces for already existing, sometimes quite old
software components mixed together with new
functionality in an integrated framework as provided
by a powerful simulator executive. Without a clear
and comprehensible method to define
interdependencies between implemented code in
different languages like FORTRAN and new methods
in more modern languages like Java or C++, the task
of software integration becomes futile. This
observation is even amplified when different
companies and vendors are involved.

From the conceptual point of view, the use of
modelling techniques as provided by the use case
approach within the Unified Modelling Language are
necessary. Techniques for component software
development well interact with those modelling
techniques.

COMPONENT-BASED SOFTWARE IN
THE CHEMICAL INDUSTRY

CORBA vs. COM (or Both?). Approximately ten
years ago, the Object Management Group (OMG)
started to create standards for object-based
component software (OMG Web Site). The key
component is the Common Object Request Broker
Architecture (CORBA). In 1994, CORBA 2.0 defined



interoperability between objects in heterogeneous
systems. Since then, different CORBA
implementations – commercial and non-commercial
ones like ORBIX and TAO – have come to market
and found their impact in many areas, including
finance, healthcare and telecommunications.

An alternative but proprietary approach is the
one of Microsoft, called COM (Common Object
Model) or DCOM (Distributed Common Object
Model) for distributed environments (COM Web
Site). Recently, Microsoft Corporation announced
that it would hand control of its ActiveX object
technology over to the a newly-formed public body
called the "Active Group", formed in association with
the Open Group. Active X –now often called
Windows DNA– is based on Microsoft’s model COM
for component software. Microsoft’s stated purpose
in forming the Active Group is to create object based
standards now even for different platforms in
competition to the CORBA approach.

Component Software in Chemical Engineering.
Since different vendors use alternatively CORBA and
COM, the development of a method to combine both
approaches becomes relevant. Experimental
implementations in CAPE-OPEN have shown that a
bridging mechanism between both technologies is
possible to build for our application domain but very
hard to maintain operational, mostly because both
languages are moving targets. Especially COM is
often affected by important changes in its internal
specification. But also CORBA is evolving and will
include features of COM. At the moment, CORBA
allows single and multiple inheritance, whereas COM
is only equipped with single inheritance but supports
multiple interfaces. The latter will be integrated in the
new CORBA 3 standard. Nevertheless, the design of
sound interfaces for both approaches is important.

Because of these difficulties, it became important
to define the CAPE-OPEN standard not just at the
implementation level of COM or CORBA or both,
but to have a fallback to a more stable and abstract
specification. The Unified Modelling Language
(UML) was selected as a candidate, but severe
restrictions were agreed upon to ensure reasonable
uniformity of application. As in many other projects
(Weidenhaupt et al. 1998), it was quickly determined
that starting directly with class definitions would not
enough focus and structure the standard development
process; moreover, the fact that contributors to the
standard were distributed across many countries
created the need to ensure mutual intuitive
understanding without overly frequent face-to-face
meetings. Therefore, based on research in the
European CREWS project (Jarke et al. 1998), an
approach heavily drawing on structured development
and management of use cases via an Internet-based
repository was designed. In the following section,
details of this approach and the experiences gained
with it during the first half of the project are reported.

Component Based Software and Legacy Code.
Most operating companies have developed in-house

process simulation software meeting their special
needs. These legacy systems suffer from similar
drawbacks as the simulators written by external
software companies: They are monolithic, inflexible
and hard to maintain. Hence, an important objective
of CAPE-OPEN is to make these legacy systems
compliant to the CAPE-OPEN standard. This aim is
aggravated due to the use of FORTRAN for the
implementation of these systems. Because
FORTRAN renders only very little support for well
structured software systems it was decided not to
modify the legacy source code. Instead, these
simulators are treated as “black-boxes” and are
provided with an object oriented interface written in
C++. Using these interfaces CAPE-OPEN compliant
CORBA or COM objects can be created. These
objects can be combined arbitrarily with other CAPE-
OPEN compliant components.

This strategy was successfully applied to the IK-
CAPE thermodynamics package. IK-CAPE was
initially developed in FORTRAN by a consortium of
six leading German chemical engineering companies.
Now it is possible to use the “wrapped” IK-CAPE
package as component of a CAPE-OPEN simulation
environment. The interoperability of the IK-CAPE
component was verified in a scenario where the
package was plugged into an unit operation
component using only the CAPE-OPEN standard
interfaces.

COOPERATIVE DESIGN OF
COMPONENT STANDARDS VIA USE CASES

A good method to obtain formal interface
descriptions as an important step in the direction of
developing components for both approaches is the
use cases approach. It is specific enough to capture
the functionality of a simulator object that has to be
mapped into a software component but general
enough to be independent from the concrete
technology behind a Component Model. Furthermore,
it delivers a powerful tool to split up the functionality
of existing monolithic simulation software into
manageable components that can then be wrapped
into or re-implemented as component software
objects.

Use Cases in UML. In order to achieve clear semi-
formal specifications for the different components of
chemical engineering, CAPE-OPEN adopted the
Unified Modelling Language (UML) (Rumbaugh et
al. 1997, UML Web Site) for the set of object models.
UML is seen as the way forward for CAPE-OPEN as
a language for specifying, visualising, constructing,
and documenting large software systems by giving
the means to model complex dependencies in
software modules/objects. UML presents a collection
of well-known engineering practices that have proven
successful in the modelling of large and complex
systems (see for example (Ramackers 1996)).

In CAPE-OPEN, the application of use cases
becomes crucial. A use case is a coherent unit of
functionality provided by a system or class as



manifested by sequences of messages exchanged
among the system and outside interactors (called
‘actors’) together with actions performed by the
system. An actor performs temporarily some
interaction with the system being described. The use
case is attempting to capture the logical interactions
rather than the physical appearance of the system. A
use case model finally consists of a collection of
interrelated use cases.

Use Cases in CAPE-OPEN. Use cases are used in
CAPE-OPEN to present the results of the
requirements analysis of the major susbsystems
Physical properties, Unit Operation, Thermo and
Numerical. The result belongs to the phase one of the
CAPE-OPEN process model. The other phases to
gain running software are component design and
component implementation.

The advantages coming along with this approach
proved to be twofold. First, it presents in an
unambiguous way what has been done in the CAPE-
OPEN project. Currently, simulator vendors and third
parties have begun to implement new interfaces using
COM or CORBA that connect software components
to simulators. Use cases describe processes and
situations of using object-oriented systems. They are
no formal specifications but imply requirements by
presenting usage scenarios (Jacobson 1995, Jarke et
al. 1998, Larman, 1998, Weidenhaupt et al. 1998).
Formally, they are semi-structured narrative texts
which introduce the way an external actor uses the
system to complete a certain process. Within CAPE-
OPEN, use cases are intended to describe the
application of simulator components. In particular,
they point out the usage of each component and
define the order of running physical processing unit
operations which represent units of plants. The main
groups of use cases are concerned with a GRAPH

ANALYSIS TOOL (GAT), the PHYSICAL PROPERTIES

UNIT, the SOLVER USE CASES and the UNIT

OPERATIONS. An example of a CAPE-OPEN use case
is given below:

Use Case: Define Unit Report

Principle Actor: Flowsheet Builder

Description: The model builder config-
ures one or more available reports for
the unit based on Information made
public by the unit. The Builder asks the
Unit Manager to get the list of
available report formats from the unit.
If there are some available report
formats the Units Manager displays it,
so that, the user can select one of them
and ask the unit to set it to be its
output format. The unit sets this format
as its output format.

Close to 30 such use cases were agreed for the UNIT

OPERATION interface and a similar number for
PHYSICAL PROPERTIES. Up to now, 158 use cases in 4
major groups were obtained by intensive research
studies from the different major chemical industry
partners in the CAPE-OPEN project.

It is important to note that all of these use cases

were also agreed-upon within the consortium, so they
are not just informal annotations. Also beyond the
individual use case, the production of use cases is a
collaborative process. With the high number of
partners involved, the danger of inconsistency,
redundancy, and less-than-optimal mapping to
software components grows.

GAT Configuration
GAT Initialisation

GAT Use Cases

Component Installation Package
Flowsheet Setup Package
Neutral File Interface
Petroleum Pseudo Components
Physical Properties System
Runtime Package
Simulator Package

Physical Properties

More Complex Use Cases
Numeric Configuration
Solver Computing
Solver Initialisation

Solver Use Cases

Creating a Flowsheet
Looking at Results
Running a Flowsheet

Unit Use Cases

CAPE-OPEN Use Cases

Figure 1. The main hierarchy of Use-
Cases in CAPE-OPEN

Due to the important function of the use cases in
the analysis of requirements a high quality of this step
is crucial. In (Becks et al. 1998, Becks et al. 1999) a
method of structuring document collections
semantically is introduced which yields a map of
documents stored in an collaborative environment.
This method which allows a combination of
knowledge-based structuring and neural network
clustering techniques, has been applied to show
similarities between use cases which help the people
standardising components at the UML, COM and
CORBA class definition level identify which use
cases are relevant to their component beyond the ones
from which it was explicitly derived. Figure 2 shows
an example of such an automatically created use case
map; it turns out that these maps (being purely
created from analysing the text of the use cases)
rather faithfully reconstruct the a priori structure
shown in figure 1 (a good validation of the approach)
but also provide some additional insights about inter-
use case relationships.



Compute Unit Derivatives
Unit Provides Initial Estimates
Unit Requests Solution of Unit Equations
Unit Defines Linear Equations to be solved
Unit Defines Non
Unit Defines DAE’s to be solved
Unit Interrupts Calculations
Unit Resumes Calculations
Perturb Unit

Save Unit
Restore Unit
Set Unit Specific Data
Retrieve Flowsheet
Create Unit
Delete Unit
Delete Unit from Flowsheet
Delete Existing Port

Figure 2: Example of a use case map
generated by a neural network from

automated text analysis

Storage and Retrieval of Documents in a
Collaborative Workbench. In a large-scale world-
wide effort such as CAPE-OPEN, the application of
advanced groupware technology was considered
imperative to maintain coherence without too many
meetings. We have developed an interoperable toolkit
which supports efficient group co-operation in an
heterogeneous environment via the World Wide Web,
in co-operation with the GMD in the European
CoopWWW project (Appelt & Jarke 1998). This
system, called “Basic Support for Co-operative
Work” (BSCW, Bentley et al. 1997) allows the
storage and retrieval of documents and enables each
user to be aware of the activities of other users. In
CAPE-OPEN, the content of the stored documents
includes textual descriptions of proposed project aims
as well as formal specifications such as use cases and
component software interfaces. In addition,
management information (such as plans, meeting
minutes, deliverables) can be found on this server.
The CAPE-OPEN BSCW server is accessible for its
roughly 60 project participants through standard
password-protected Internet browsers from anywhere
in the world, some parts are also publicly accessible.

During the specification and development
process, the BSCW system supported each phase of
the CAPE-OPEN process model. Since very different
specialists – like process engineers, scientist and
software developers– were concerned, means for the
clarification of the used terminology and an easy-to-
use access to the document collection were

indispensable. Specially developed structures and
features like the support of different repositories –
e.g., an interface repository– and glossaries simplified
the conceptual phase which is often a bottleneck in
the design phase of large-scale software applications.
Another important functionality is the support of
group management and version control of documents
which is crucial since many of the different document
types are changing in time.

In CAPE-OPEN, the BSCW environment was
able to satisfy the demands from developers from
different European countries which were concerned
with the use case specification process and the
following two phases from the process model. The
screenshot in figure 3 offers an overview of the
workspace structure. The small icons along each so-
called folder or document in the workspace provide
the reader with awareness of what changes have been
made to this document since it was last read by him
or her.

The challenging experience of using the BSCW
for project work was worthwhile assessing, given the
various personal background and competencies of
individuals among the project members. Some of
them (i) were proficient in modern software
engineering tools and methods and were daily users
of the web. Others (ii) were experienced users of
simulation packages without any other software
development skills than traditional FORTRAN, and
had no prior access to the web. Others (iii) were
managers of large development teams with little time
available for finding out how to upload or download a
document.

CAPE-OPEN started to use BSCW with a
limited number of individuals chosen among the first
category, collectively identified within the project as
the « Methods and Tools » group. The structure of the
BSCW project database was developed, and the
group worked collectively on authoring a key
technical document for a short period. This implied to
use most of the facilities of the tool, namely, storage
of any type of information, HTML tags, versioning,
alert mechanisms, contact information, messaging.
The result of this test phase was so encouraging that
we decided to open the BSCW workspace to all
project members after one month.

It took a dozen weeks of encouragement and a
number of small focused training sessions before the
second and third group of individuals were able to
use the BSCW workspace on a regular basis. During
this start-up period the question of using the BSCW
as the means of collaboration within the project was
raised many times, as opposed to ftp, exchange of
documents by e-mail, and other less advanced
methods. We collectively discovered, by trial and
error, how to efficiently use the system for ordinary
project work. After almost two years of utilisation in
CAPE-OPEN, we now realize how the availability of
such a tool has been a critical success factor in our
development.



Figure 3: Screenshot of the CAPE-OPEN
BSCW workspace header page

By early 1999, the workspace has almost 60
users, some of them frequent (e.g. every day), some
occasional (e.g. once per quarter), others in between.
Among the various facilities available in the current
version of BSCW, the most useful ones still are those
that were identified in the first place : the repositories
for all project documents and work items, including
conceptual documents, technical documents, UML
models, interface specifications, reports, project
management documents.. One of the two BSCWs is
the back-end of a web server giving public access to a
subset of the technical documents.

But, even with a collaborative tool like this one,
we still need conventional ways of collaborations like
phone discussions, conferences, and physical
meetings, where we can talk about the BSCW among
other matters. A tool is a tool, not a replacement for
mutual interaction which is the only way to build a
team spirit between geographically and mentally
distant human beings.

CONCLUSION AND OUTLOOK

In this paper, we reported experiences with a
computer-supported use case approach to the
development of interoperation standards for process
simulators in the chemical industries. The main
lessons learned can be summarised as follows:

1. Given the brittle state of interoperation standards
at the implementation level and the recurring
inconsistency between the two competitors, a
more abstract representation is needed.

2. Given that formal UML representations are hard
to understand especially during their design if the
team is widely distributed in space and time, use
cases proved to be the central medium of
communication and agreement more than the
formal representations.

3. However, even in a seemingly limited domain
such as process simulation, the number of use
cases quickly grows, with all the resulting risks of
redundancy, inconsistency, and inadequate
mapping to formal specifications and
implementation standards.

4. Using Internet workspaces not just as a publishing
tool but as a collaboration environment, provided
the essential infrastructure for keeping all the use
case and other standard information together, and
make them available to whoever has the need to
know, based on the access control of the BSCW
server. Additional advanced analysis techniques
from Computational Intelligence are proving
surprisingly helpful to detect overlooked
relationships between use cases that may be
important during design.

As of this writing, the described environment has
been in use for about 26 months, with about 4 months
still to go. The project is now heavily into the process
of actual standards development and, in particular,
validation, followed by compliance testing of the first
standard-compatible components being developed by
the software vendors in the process. COM and
CORBA based simulator prototypes will be presented
on the ESCAPE-9 conference in June 1999.

Based on the success of this work so far, the
European Commission has recently approved funding
for the European part of a world-wide IMS
(Intelligent Manufacturing Systems) project which
aims in cooperation with additional Japanese and US
partners to establish CAPE-OPEN as a global
standard. Part of this will be the establishment of
Cape-Open Laboratories (one of them at RWTH
Aachen) which will be responsible for further
developing and applying the methodology sketched
here in a formal certification procedure for CAPE-
OPEN compliant components and methods.

Acknowledgments. This work was supported in part by the
Commission of the European Union under BRITE-EURAM
project CAPE-OPEN and under ESPRIT Long Term
Research Project CREWS. The contributions of the partners
in both projects are gratefully acknowledged, especially
those of Wolfgang Marquardt (RWTH Aachen) and of
methods and tools coordinator Bill Johns from QuantiSci
Ltd. The development of the BSCW toolkit was supported
by the EU in the Telematics Application project
CoopWWW, the use case analysis tool by the Deutsche
Forschungsgemeinschaft in its doctoral programme on
Informatics and Engineering at RWTH Aachen and in
Aachen’s Collaborative Research Centre IMPROVE.



REFERENCES
Appelt, W., Jarke, M. Final Report of Project TE

2003 – CoopWWW. Aachener Informatik
Berichte, March 1998.

Becks, A., Sklorz, S., Tresp, C. Semantic Structuring
and Visual Querying of Document Abstracts in
Digital Libraries. Proceedings of the 2nd

European Conference on Research and
Advanced Technology for Digital Libraries,
Heraklion, Greece, September 1998, pp.443-458.

Becks, Andreas; Sklorz, Stefan, Jarke, Matthias.
Document Maps: Semantic Structuring of
Technical Document Collections. Crews Report
99-05, RWTH Aachen, 1999, 
http://SunSITE.Informatik.RWTH-
Aachen.DE/CREWS/reports.htm

Bentley, R., Appelt, W., Busbach. U., Hinrichs, E.,
Kerr, D., Sikkel, S., Trevor, J. and Woetzel, G.,
Basic Support for Cooperative Work on the
World Wide Web, International Journal of
Human-Computer Studies 46(6): Special issue on
Innovative Applications of the World Wide Web,
1997

COM Web Site:
http://www.microsoft.com/com/default.asp

Jacobsen, I. The use case construct in object-oriented
software engineering. In J.M. Carroll (ed.):
Scenario-Based Design: Envisioning Work and
Technology in Systems Development, Wiley &
Sons 1995, 309-336.

Jarke, M., Marquardt, W. Design and evaluation of
computer-aided process modeling tools. In
Davis/Stephanopoulos/ Venkatsubramanian
(eds.): International Conference on Intelligent
Systems in Process Engineering (Snowmass, Co,
July 1995), AIChE Symposium Series, vol. 92,
1996, 97-109.

Jarke, M., Bui, X.T., Carroll, J.M. Scenario
management: an interdisciplinary approach.
Requirements Engineering Journal 3, 3 (1998).

Larman, C., Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design,Prentice Hall, 1998

Marquardt, W. Trends in Computer-Aided Process
Modeling. Computers and Chemical
Engineering, 1995.

OMG Web Site: http://www.omg.org/
Ramackers, G. and Clegg, D., “Extended Use Cases

and Business Objects for BPR,” ObjectWorld
UK ‘96, 1996.

Jim Rumbaugh, Ivar Jacobsen, and Grady Booch,
Unified Modeling Language Reference Manual,
Addison Wesley, 1997.

UML Web Site: http://www.rational.com/uml
Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.

Scenario usage in software development: current
practice. Special Section on Best Papers from
ICRE 98, IEEE Software, March 1998, 34-45.

BIOGRAPHY

Matthias Jarke is professor of Information Systems
and Chairman of the Computer Science Department
at Aachen University of Technology (RWTH
Aachen), Germany. He is coordinator of ESPRIT
Long Term Research Project CREWS (Cooperative
Requirements Engineering With Scenarios) and
Chief-Editor of the journal, Information Systems. In
1998, he has been guest editor of three special issues
related to the topics of INCOSE, on Requirements
Tracing (Communications of the ACM) and Scenario
Management (IEEE Transactions on Software
Engineering, Requirements Engineering Journal).
Jarke got his degrees at Hamburg University,
Germany, and served on the faculties of New York
University and Passau University prior to joining
Aachen in 1991. His main research interest is
information systems support for complex engineering
processes.

Andreas Becks received his diploma degree in
Computer Science from University of Dortmund in
1997. Currently, he is a PhD-student in the graduate
school 'Informatics and Engineering' at RWTH
Aachen. His research interests include information
retrieval, intelligent human-computer interfaces,
knowledge management, and CASE tools.

Jörg Köller received his diploma degree in Computer
Science from RWTH Aachen in 1997. He is now a
PhD student at the Information Systems Chair in
Aachen’s Department of Computer Science. He
works in the CAPE-OPEN project and his research
focuses on component-based software and formal
semantics specification and analysis.

Christopher Tresp obtained his diploma degree in
Computer Science from University of Dortmund in
1994. After that, he was a PhD-student in the
graduate school 'Informatics and Engineering' at
RWTH Aachen. Recently, he started to work for the
Bayer AG, one of the leading chemical-
pharmaceutical companies. His research interests
encompass fuzzy knowledge representation, pattern
recognition and different middleware approaches.

Bertrand Braunschweig is a principal research
engineer within the Computer Science and Applied
Mathematics Department of Institut Français du
Pétrole, Rueil Malmaison, France. He holds a
"diplôme d'ingénieur" in information technology
from IIE-CNAM, 1977, and a PhD in Computer
Science from Université Paris-Dauphine, 1998.
Before joining IFP, Dr. Braunschweig worked 12
years for Elf Aquitaine where he managed and
developed dynamic simulation and knowledge-based
systems. Within IFP, he has been AI and Statistics
group leader since 1989, and is currently coordinator
for the CAPE-OPEN and Global CAPE-OPEN
projects. B. Braunschweig is also president of the
French AI Society since 1998.


