
Aachen
Department of Computer Science

Technical Report

An Open Framework for
Data–Flow Analysis in Java

Markus Mohnen

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2002-08

RWTH Aachen · Department of Computer Science · April 2002

The publications of the Department of Computer Science of RWTH Aachen (Aachen
University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

An Open Framework for Data–Flow Analysis in Java

Markus Mohnen

Lehrstuhl für Informatik II, RWTH Aachen, Germany
mohnen@informatik.rwth-aachen.de

Abstract. We describe work in progress on a framework for data–flow based program
analysis. By using this framework, researchers and developers can easily implement anal-
yses, test their correctness, and evaluate their performance. In addition, the framework
allows the definition of intraprocedural analyses for Java Virtual Machine (JVM) code on
a high level of abstraction.

The framework is provided as a set of APIs for Java. Through the extensive use of Java in-
terface concept, we established an open framework: For instance, specific implementations
of abstract domains can easily be used in our framework.

1 Introduction

Data–flow analysis (DFA) [17] is the basic technique used for the static analysis of
(imperative) programs. Research project in this field are typically concerned with the
development of specific analyses or the improvement of the basic technique.

In this paper, we describe the current state of a framework for DFA–based program
analysis. By using this framework, researchers and developers can easily implement
specific analyses, test their correctness, and evaluate their performance. In addition, the
framework has special support for Java Virtual Machine (JVM) code [11]. It allows the
definition of intraprocedural analyses for JVM code on a higher level of abstraction.

Our framework is provided as a collection of APIs for Java [8]. Besides the porta-
bility of Java programs, the major reason for this choice was the interface concept
of Java, which makes it possible to base programs on properties of classes instead of
classes. By using this concept, we established an open framework: For instance, specific
implementations of abstract domains can easily be used in our framework.

We have successfully used the framework in several projects: JOpt [9] and JoGa,
Java class file optimisers, and [12], a tool for reverse engineering of communication
protocols of Erlang [2] applications. Currently, we use the framework for an empirical
study of basic–block–graph and flow–graph performance.

Structure of this article. In the next section, we give an overview over the frame-
work. Section 3 describes the API for representing graphs. The next section shows how
we model mathematical structures, e.g. lattices. The basic data–flow API is described
in Section 5, followed by a description of the additional level of abstraction for the im-
plementation of abstract interpretation based intraprocedural analyses for Java Virtual
Machine (JVM) code in Section 6. Finally, Section 7 concludes the paper.

2 Overview

In this section, we give an overview over the structure of the framework and briefly
describe each component. Each component is a separate API implemented by a Java
package. The packages structure the framework in layers.

de.rwth.graph: This package is used for representing graphs and graph colourings.
Besides the obvious use for DFA, we also use this package for the visualisation of
abstract domains through Hasse diagrams. Graphs represented with this package can
be easily visualised using graphviz [7].

de.rwth.domains: To model mathematical structures like sets, partially ordered
sets, domains, and functions, this package provides an interface hierarchy. Finite and
infinite structures can be modelled using this hierarchy. Since the rest of our framework
solely depends on this interface hierarchy, it is possible to use all means for implement-
ing an abstract domain, e.g. bit vectors or BDDs [5, 4].

Of course, each of the mathematical structures has a set of mathematical properties
that must be fulfilled, e.g. the commutativity of the join operation. A class implementing
a structure cannot be forced to conform with the properties by the means of a program-
ming language. Hence, a developer of a mathematical structure must take care of this.
Therefore, the package contains two means for debugging: (a) as already mentioned, a
method for constructing the Hasse diagram of a partially ordered set and (b) a method
which checks if an implementation conforms with the assumed mathematical properties.
It turned out that both (a) and (b) are especially useful for debugging the implementation
of domains.

The interfaces in this package are not orthogonal, i.e. some methods can be simu-
lated by the combination of others. For instance, the interface for partially ordered sets
has methods for “less–than”, “less–or–equal–than”, and “equals”. To reduce the effort
required for implementation, some of the interfaces are equipped with a set of default
implementations of methods. They are especially interesting for implementing meth-
ods of an interface in a canonical way (like above). In these cases, an implementation
may be obtained by implementing the base methods and use default implementations of
the other methods. Inspired by this work, we have proposed an extension of Java for
providing default implementations in interfaces [13, 15].

de.rwth.domains.templates: This package contains a set of classes imple-
menting some of the interfaces from de.rwth.domains, like simple sets, bit vector
lattices, and kill–gen bit vector functions. In addition, the package contains classes for
constructing implementations of structures, like dual partially ordered sets, flat complete
lattices, and composed functions.

de.rwth.dfa: The core of this package is an implementation of the classical itera-
tive algorithm [17, 1, 16] for DFA. Since it uses de.rwth.graph for the graph rep-
resentation, it is not important where the graphs come from: They can be flow–graph,
basic–block graphs (see [10] for comments on the adequateness of this choice), or some-
thing completely different. Since we use the interfaces from de.rwth.domains to
model initial values, transfer functions, and solutions for nodes, any implementation of

4

domains and functions may be used. The package supports computation of greatest and
least fixed point, as well as backward and forward flow direction.

de.rwth.dfa.jvm: This package adds an additional level of abstraction above the
low–level de.rwth.dfa package. It provides an easy way to implement abstract in-
terpretation based intraprocedural analyses for Java Virtual Machine (JVM) code [11].
An implementation can describe an abstraction by implementing the corresponding in-
terface. Therfore, it must provide methods for computing the domain, the initial value
associated with an instruction, and the transfer function associated with an instruction.
It addition, it must determine if the analysis is existential or universal and if it is a back-
ward or a forward analysis.

For solving a data flow problem consisting of an abstraction and a JVM class, the
package provides three choices: Either by using de.rwth.dfa on basic block graphs
or flow graphs, or by using our new graph–free solver [14]. To access JVM class files,
this package uses the excellent Byte Code Engineering Library [3]. The solvers can
handle full JVM code, including exceptions. It is also possible to use factorised graphs
[6], i.e. graphs without edges for possible exceptions. Having more than one solver
at hand is very useful for debugging abstractions, since some errors can be found by
comparing the results of different solvers.

In addition, the package gives access to timing data of the solver and to (an approx-
imation of) the memory usage. This is useful for evaluating the performance of a solver
or an abstraction.

The JVM specification [11] defines that a valid method must allow to determine this
size of the computation stack for each instruction. If abstractions model the computation
stack of the JVM, it is often necessary to know this size. For instance, constant folding
propagation is an analysis of this kind. Therfore, the package contains a class which
provides the stack size.

Finally, the package contains two analyses complete analyses for JVM code: “con-
stant folding propagation” and “live variables”. They can be applied directly to JVM
class files and have been used in JOpt [9].

Fig. 1 Structure of the Framework

de.rwth.graph

de.rwth.domains de.rwth.domains.templates

de.rwth.dfa

de.rwth.dfa.jvm

5

Fig. 1 summarises the layered structure of the framework. By using interfaces to
a large extend, our framework is open for extensions. In the following sections, we
describe each layer in more detail.

3 The Graph Layer

The package de.rwth.graph implements an API for representing directed graphs.
Its very simple top–level class hierarchy consists of the main Graph class, the class
RootedGraph for graphs with distinguished root and leaf nodes, and an auxiliary
class SwappedGraph which transforms a graph to a new graph where the role of
nodes and edges are swapped.

Fig. 2 Inheritance Diagram of de.rwth.graph

de.rwth.graph

Classes

Graph

RootedGraph

SwappedGraph

The main class Graph allows the creation of graphs through the use of inner
classes: After creating an object g of class Graph, new nodes can be added by cre-
ating inner objects of the graph through g.new Node(). In the same way, edges are
created as inner objects of nodes, i.e. for objects n1 and n2 of class Graph.Node, an
edge originating in n1 and ending in n2 may be created by n1.new Edge(n2). Of
course, nodes and edges can also be labelled, where a label can be any Object.

By using this approach, we have avoided top–level classes for nodes and edges, and
we can assure that at any time of program execution, nodes are always associated with
a graph and edges are always associated with two nodes.

In addition to labels, the API is capable of representing colourings of graphs node.
Therefore, we also use an inner class: Given an object g of class Graph, a node colour-
ing may be created by g.new NodeColouring(). Different colourings are inde-
pendent and the number of colourings is not limited. With a colouring represented as
object of class Graph.NodeColouring, we can associate any object as colour for a
node with the method setColour.

Both graphs and node colourings represented with this package can be easily visu-
alised using graphviz [7]: The method toString() creates a text which can be
used directly as input for dot. For instance, the program fragment in Fig. 3(a) creates
a graph and prints in representation (Fig. 3(b)) which can be transformed to the picture
in Fig. 3(c) using the dot program which is part of graphviz.

6

Fig. 3 Example for Graph Visualisation

...
Graph g=new Graph("Demo");
Graph.Node n1=g.new Node("1");
Graph.Node n2=g.new Node("2");
Graph.Node n3=g.new Node("3");
n1.new Edge(n2,"a");
n2.new Edge(n3,"b");
n3.new Edge(n1,"c");
System.out.println(g);
...

(a) Program Fragment

digraph "Demo" {
label="\nDemo"
n0 [shape=box,label="1"];
n0 -> n1 [label="a"];
n1 [shape=box,label="2"];
n1 -> n2 [label="b"];
n2 [shape=box,label="3"];
n2 -> n0 [label="c"];

}

(b) Output

Demo

1

2

a

3

b

c

(c) Visualisation

4 The Domain Layer

For modelling the mathematical structures needed for DFA, our framework provides
two APIs: the package de.rwth.domains, which defines the interface hierarchy
shown in Fig. 4, and the package de.rwth.domains.templates, which contains
implementations for standard domains and domain constructors like bit vectors, Carte-
sian product, or lifted partially ordered sets. A list of the current content of the package
de.rwth.domains.templates can be found in Appendix A.

Fig. 4 Inheritance Diagram of de.rwth.domains

de.rwth.domains

Interfaces Classes

CompleteLattice

LatticeCompletePOSet

POSet

PreLowerSemiLattice PreUpperSemiLattice

Function

LowerSemiLattice UpperSemiLatticePreLattice

Set Domain

FunctionException

By this separation and since the rest of our framework solely depends on the inter-
face hierarchy in the package de.rwth.domains, it is possible to use all means for
implementing an abstract domain, e.g. bit vectors or BDDs [5, 4]. Therfore, an imple-
mentation must only extend the appropriate interface.

4.1 Mathematical Structures

Since interfaces do not contain implementations, the package mainly defines the exis-
tence of certain operations and predicates of a mathematical structure as methods of a

7

corresponding implementing class. The API allows the elements of all structures to be
any object of Java’s root class Object.

Set: This interface defines the membership predicate and equality check for the ele-
ments as the methods boolean isElement(Object)and equals(Object,
Object).

POSet: The interface POSet for representing partially ordered sets has additional
methods le(Object, Object) and lt(Object, Object), both returning
boolean, for representing the “less–than” and “less–or–equal–than” predicates.

LowerSemiLattice,UpperSemiLattice: In addition to POSet, these inter-
faces have the following operations: meet(Object,Object)and join(Object,
Object), both returning Object.

CompletePOSet,CompleteLattice: The interface CompletePOSet adds a
constant Object bottom(), and the interface CompleteLattice adds the
constants Object bottom() and Object top().

In addition to these structures, the package contains the interface Function for
representing functions. Instances of this interface must be associated with a domain
and range, which are both instances of Set. A instance of the interface Function
can be applied to an argument with the method Object apply(Object x). If an
invalid argument is passed as argument, the method may throw an exception of class
de.rwth.domains.FunctionsException.

In addition to these representations of mathematical operations and predicates, the
root interface Set of the package defines methods for accessing the set as a whole:
The method size() returning a long gives the number of elements for finite sets
and -1 for infinite sets. For finite sets, the method iterator() returns an object of
class java.util.Iterator, which can be used to iterate through all elements of
the set. These methods are mainly intended for debugging implementations (see below).
Since they are useless for finite sets, the API introduces the notion of a set skeleton: The
underlying idea is that often infinite structures have some kind of regularity which can
be represented by a finite structure. For instance, the infinite lattice for constant folding
propagation1 in Fig. 5(a) can be represented using the skeleton in Fig. 5(b). Here, we
assume that the element 42 represents the equivalence class of all numbers and that all
operations are compatible with this representation.

Each of the mathematical structures has a set of mathematical properties that must
be fulfilled, e.g. the totality of the operations or the commutativity of the join operation.
All these constraints are defined by the API specification, but a class implementing a

1 This lattice can be constructed using the classes from de.rwth.domains.templates in the
following way:

package DFA;
import de.rwth.domains.templates.*;
public class CFP extends FlatCompleteLattice {
public CFP () { super(new NumberSet()); }

}

8

Fig. 5 Example for Set Skeletons

Hasse diagram for
DFA.CFP

0

bot

1 ... n ...

top

(a) Infinite CFP Lattice

Hasse diagram for
skeleton of DFA.CFP

42

bot

top

(b) Finite CFP Skeleton

structure cannot be forced to conform with the properties by the means of a program-
ming language. Hence, a developer of a mathematical structure must take care of this.
However, the API provides debugging of the compliance with the properties.

The difference between those interfaces with Pre as prefix and those without lies
in these additional constraints: While the methods of classes implementing interfaces
without prefix must be defined for all elements, the methods of classes implementing
interfaces with prefix must not be total. This is useful since some domains constructors
like LiftedCompleteLattice need this.

4.2 Default Implementations

The interfaces in this package are not orthogonal, i.e. some methods can be simulated
by the combination of others. For instance, an invocation s.le(o1,o2) can always
be simulated by s.lt(o1,o2)||s.equals(o1,o2) if the implementing class of
s conforms with the constraints defined by the API.

To reduce the effort required for implementation, some of the interfaces of the pack-
age are equipped with a set of default implementations of methods. They are especially
interesting for implementing methods of an interface in a canonical way (like above). In
these cases, an implementation may be obtained by implementing the base methods and
use default implementations of the other methods. Inspired by this work, we have pro-
posed an extension of Java for providing default implementations in interfaces [13, 15].
Currently, the default implementations in the framework are still provided in the style
of [13].

4.3 Debugging Implementations

Implementing an interface from this package can be subtle, especially in view of the
mathematical constraints. However, the rest of the framework depends on the compli-
ance with the constraints: For instance, the data flow algorithm might not terminate if
the constraints are violated by an implementing class.

9

Therefore, the package contains the class Domains, containing two means for de-
bugging, which can be used for finite structures and infinite structures with a finite skele-
ton:

1. Given an object po of an implementation of (at least) the interface POSet, the
(static) method invocation Domains.hasseDiagram(po) constructs an object
of class de.rwth.graph.Graphwith the Hasse diagram of the partially ordered
set or its underlying skeleton.

2. Given an object s of an implementation of any interface I, the (static) method in-
vocation checkProperties(s) checks if the objects behaviour conforms with
the assumed mathematical properties for I.

Although both means are crude in the sense that they only perform an exhaustive
check of the implementation, we found that they are very helpful for the detection of
errors.

5 The Data–Flow Layer

The core of this package is the class DataFlowSolver, which contains an imple-
mentation of the classical iterative algorithm [17, 1, 16]. For creating an instance of this
class, the following parameters must be passed to the constructor:

de.rwth.graph.RootedGraph g: The graph on which the algorithm should run.
de.rwth.graph.Graph.NodeColouring inits: The initial values at each

node, represented as a colouring of the nodes of the graph g. All colours must be
elements of the same instance of de.rwth.domains.Lattice.

de.rwth.graph.Graph.NodeColouring fns: The transfer functions associ-
ated with each node, also represented as a colouring of the nodes of the graph g.
The colour of each node must be an instance of de.rwth.domains.Function
such that domain and range are the same de.rwth.domains.Lattice as for
the initial values.

boolean isAll: This parameter determines whether the universal (greatest fixed
point) solution or the existential (least fixed point) solution is computed.

boolean forward: This parameter determines the direction of flow to be consid-
ered: Forward flow means that the values computed are associated with entry point
of a node, and that the transfer functions determine the value at the exit point of
a node. For backward flow, this is vice versa. Here, entry and exit points can be
imagined as the points where all incoming/outgoing edges join.

Altogether, these parameters determine a data–flow problem. Given an instance of this
class, the solution of the associated data–flow problem can be computed using the
method solve(), which returns the solution as node colouring of the graph g. Of
course, the colouring of each node is from the same de.rwth.domains.Lattice
as for the initial values.

Since this class only depends on de.rwth.graph for the graph representation,
it is not important where the graphs come from: They can be flow–graph, basic–block

10

graphs, or something completely different. Since we only use the interfaces from the
package de.rwth.domains to model initial values, transfer functions, and solutions
for nodes, any implementation of domains and functions may be used.

6 The JVM Layer

This package (de.rwth.dfa.jvm) adds an additional level of abstraction above the
de.rwth.dfa package. It allows to implement abstract interpretation based intrapro-
cedural analyses for Java Virtual Machine (JVM) code [11]. Therfore, it provides the
interface Abstraction and the class Solver.

Fig. 6 Interface de.rwth.dfa.jvm.Abstraction

package de.rwth.dfa.jvm;

import de.fub.bytecode.generic.*;
import de.rwth.domains.*;

public interface Abstraction {
public Lattice getLattice();

public static final int DIRECTION_FORWARD = 0;
public static final int DIRECTION_BACKWARD = 1;
public int getDirection();

public static final int QUANTIFIER_ALL = 0;
public static final int QUANTIFIER_EXISTS = 1;
public int getQuantifier();

public Object getInitialValue(InstructionHandle ih, boolean isEntry);
public Object getInitialValue(InstructionHandleVector ihs, boolean isEntry);

public Function getAbstract(InstructionHandle ih);
public Function getAbstract(InstructionHandleVector ihv);

}

By implementing the interface Abstraction in Fig. 6, a class describes an ab-
stract interpretation of (a single method of) JVM code:

– The abstract domain is the instance of de.rwth.domains.Lattice returned
by the method getLattice().

– Direction (forward/backward) and quantification (universal ' greatest fixed point /
existential ' least fixed point) are determined by the methods getDirection()
and getQuantifier().

– The initial value at an instruction is computed by an implementing class through the
method getInitialValue(InstructionHandle,boolean). Of course,
it must be an element of the abstract domain. The instruction for which the initial
value is computed is passed to getInitialValue as first argument of the class
de.fub.bytecode.generic.InstructionHandle from the Byte Code

11

Engineering Library [3]. In addition, the second argument determines if the instruc-
tion is an entry point:
• For forward flow, these are the first instruction of the method and the first in-

structions of the exception handlers.
• For backward flow, the entry points are all instructions which leave the method,

i.e. ATHROW or one of the RETURN instructions.
An implementation can ignore the arguments and always return the same value, e.g.
top of bottom element in case of a complete lattice.

– The abstractions of JVM instructions are modelled as instances of the interface
de.rwth.domains.Function. They must all have the abstract domain re-
turned by getLattice() as domain and range and are computed by the method
getAbstract(InstructionHandle).

In addition, the interface contains methods for computing initial values and func-
tions that take as first argument an object of class InstructionHandleVector.
These objects are used for representing basic blocks. The package contains a default
implementation, which computes these values from the corresponding methods for ob-
jects of class InstructionHandle, by using function composition in the case of
getAbstract. However, an implementation might do it differently: For instance, if
the functions are kill–gen functions, a single kill–gen function can be computed instead
of the composition.

Given an implementation of Abstraction and a JVM method, an object of class
Solver can be created. Its method getSolution() can be used to compute the so-
lution of the associated data–flow problem as an array of elements from the abstract do-
main, one for each instruction of the method. Here, the package provides three choices:

Flow graphs: The flow graph (or single instruction graph) for the given method is de-
termined and the solution is computed using de.rwth.dfa.

Basic block graphs: The basic block graph for the given method is determined and the
solution is computed using de.rwth.dfa.

Abstract Execution: The solution is computed without an additional graph represen-
tation and without use of de.rwth.dfa by abstract execution of the program (see
[14] for a more detailed discussion of this approach).

In all cases, the class Solver can handle full JVM code, including exceptions.
For the graph–based solvers, it is also possible to use factorised graphs [6], i.e. graphs
without edges for possible exceptions.

Having more than one solver at hand is very useful for debugging abstractions, since
some errors, especially in the implementation of the underlying abstract domain or the
abstraction, can be found by comparing the results of different solvers.

In addition, the package gives access to timing data of the solver, to the memory
usage2, and the number of iterations needed. This data are available after executing the
method getSolution().

2 Since Java does not give access to precise memory information, an approximation of the memory usage
is provided.

12

The JVM specification [11] defines that a valid method must allow to determine this
size of the computation stack for each instruction. If abstractions model the computation
stack of the JVM, it is often necessary to know this size. For instance, constant folding
propagation is an analysis of this kind. Therfore, the package contains an abstract class
AbstractSSDependingAbstraction which can be used as super class for im-
plementations of analyses of this kind.

Finally, the package contains two analyses complete analyses for JVM code: “con-
stant folding propagation” and “live variables”. They can be applied directly to JVM
class files and have been used in JOpt [9].

7 Conclusions

We have described a framework for data–flow based program analysis. It is provided
as a set of five APIs for Java sharing the domain prefix de.rwth: graph can be
used for representing graphs, domains defines an interface hierarchy for mathemati-
cal structures, domains.templates contains implementations for standard domains
and domains constructors, dfa contains an implementation of the classical iterative
algorithm for DFA, and finally dfa.jvm allows to implement abstract interpretation
based intraprocedural analyses for Java Virtual Machine (JVM) code on a high level of
abstraction.

By using this framework, researchers and developers can easily implement specific
analyses, test their correctness, and evaluate their performance. The APIs provide the
ability to debug implementations of mathematical structures and gives access to timing
and memory usage of the solvers.

Through the extensive use of Java interface concept, we established an open frame-
work: For instance, specific implementations of abstract domains can easily be used in
our framework.

Since this paper describes work in progress, there are many directions for further
research:

– We plan to extend the API de.rwth.domains.templateswith more domain
constructors.

– Currently, the default implementations in the framework are provided in the style of
[13]. We plan to change this to the more efficient style described in [15].

– By using interface in even more places, we could achieve an even more open and
reusable framework: For instance, graphs could be modelled as interfaces (with the
current implementation as one possibility) which would allow to study on–the–fly
techniques where the graph is created on demand.

– Although the de.rwth.domains.templatesAPI simplifies the task of defin-
ing domains, it is still necessary to explicitely write Java classes for implementing
domains. It would be interesting to develop a graphical user interface for this task.

– Very much in the sense of [18] it would be interesting to design additional APIs for
model checking: We could definitely reuse the de.rwth.graph API (modified
as described above) and maybe the de.rwth.domainsAPI.

The framework is available on request from the author.

13

References

[1] A.V. Ahos, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools. Addison
Wesley, 1986.

[2] J. Armstrong, M. Williams, and R. Virding. Concurrent Programming in Erlang. Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[3] B. Bokowski and M. Dahm. Byte Code Engineering. In C. H. Cap, editor, Java-Informations-Tage
(JIT), Informatik Aktuell. Springer–Verlag, 1998. See also at http://bcel.sourceforge.net/.

[4] K. Brace, R. Bryant, and L. Rudell. Efficient Implementation of a BDD Package. In 27th ACM/IEEE
Design Automation Conference, June 1990.

[5] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers, C-35, August 1986.

[6] J.D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and Precise Modeling of Exceptions for the
Analysis of Java Programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, volume 24.5 of Software Engeneering Notes (SEN),
pages 21–31. ACM Press, 1999.

[7] E. R. Gansner and S. C. North. An open graph visualization system and its applications to software
engineering. Software Practice and Experience, 30(11):1203–1233, September 2000.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. The Java Series.
Addison Wesley, 2nd edition, 2000.

[9] M. Jansen. Optimierung von Java Class Dateien. Diploma Thesis, RWTH Aachen, 2000. in German;
URL: http://www-i2.informatik.rwth-aachen.de/∼markusj/jopt/.

[10] J. Knoop, D. Koschützki, and B. Steffen. Basic-Block Graphs: Living Dinosaurs? In K. Koskimies,
editor, Proceedings of the 7th International Conference on Compiler Construction (CC), number
1383 in Lecture Notes in Computer Science, pages 65–79. Springer–Verlag, 1998.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java Series. Addison
Wesley, 2nd edition, 1999.

[12] M. Joußen. Reverse Engineering von Kommunikationsprotokollen aus verteilten Erlang Anwendun-
gen. Diploma Thesis, RWTH Aachen, 2001. in German.

[13] M. Mohnen. Interfaces with Skeletal Implementations in Java. In Object-Oriented Technology –
ECOOP 2000 Workshop Reader, number 1964 in Lecture Notes in Computer Science, pages 295–
296. Springer–Verlag, 2000.

[14] M. Mohnen. A Graph–Free Approach to Data–Flow Analysis. In R. N. Horspool, editor, Proceed-
ings of the 11th International Conference on Compiler Construction (CC), number 12304 in Lecture
Notes in Computer Science, pages 46–61. Springer–Verlag, 2002.

[15] M. Mohnen. Interfaces with Default Implementations in Java. Technical Report AIB-2002-09,
RWTH Aachen, April 2002. http://aib.informatik.rwth-aachen.de/2002/2002-09.ps.gz.

[16] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers,
1997.

[17] S. S. Muchnick and N. D. Jones. Program Flow Analysis: Theory and Applications. Prentice–Hall,
1981.

[18] D. Schmidt and B. Steffen. Program Analysis as Model Checking of Abstract Interpretations. In G.
Levi, editor, Proceedings of the 5th International Symposium on Static Analysis (SAS), number 1503
in Lecture Notes in Computer Science. Springer–Verlag, 1998.

14

A Content of Package de.rwth.domains.templates

This is the current list of public classes in the package:

BitVectorElement de.rwth.domains.CompleteLattice
BitVectorLattice de.rwth.domains.CompleteLattice
ComposedFunction de.rwth.domains.Function
ConstantFunction de.rwth.domains.Function
DualPOSet de.rwth.domains.POSet
FlatCompleteLattice de.rwth.domains.CompleteLattice
FunctionSet de.rwth.domains.Set
FunctionPOSet FunctionSet de.rwth.domains.POSet
FunctionCompletePOSet FunctionPOSet de.rwth.domains.CompletePOSet
IdentityFunction de.rwth.domains.Function
KillGenBitVectorFunction de.rwth.domains.Function
LiftedPOSet de.rwth.domains.POSet
LiftedCompletePOSet LiftedPOSet de.rwth.domains.CompletePOSet
LiftedCompleteLattice LiftedPOSet de.rwth.domains.CompleteLattice
NumberSet de.rwth.domains.Set
SimpleSet de.rwth.domains.Set
IntegerPOSet SimpleSet de.rwth.domains.POSet
StackSet de.rwth.domains.Set
StackPOSet StackSet de.rwth.domains.POSet
StackPreLattice StackPOSet de.rwth.domains.PreLattice
SumSet de.rwth.domains.Set
SumPOSet SumSet de.rwth.domains.POSet
TabledFunction de.rwth.domains.Function
TrivialPOSet de.rwth.domains.POSet
TupleElement
TupleSet de.rwth.domains.Set
TuplePOSet TupleSet de.rwth.domains.POSet
TupleCompletePOSet TuplePOSet de.rwth.domains.CompletePOSet
TupleLattice TuplePOSet de.rwth.domains.Lattice
TupleCompleteLattice TupleLattice de.rwth.domains.CompleteLattice

15

16

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

17

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

18

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-

nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

19

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

20

