RWTH Aachen

Department of Computer Science
Technical Report

Parallel Algorithms for
Verification of Large Systems

Michael Weber

ISSN 0935-3232 . Aachener Informatik Berichte . AlB-2006-02

RWTH Aachen : Department of Computer Science . December 2006

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Parallel Algorithms for
Verification of Large Systems

Von der Fakultit fiir Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfilischen Technischen
Hochschule Aachen zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker
Michael Weber
aus

Diiren

Berichter: Prof. Dr. Klaus Indermark

Assoc. Prof. RNDr. Lubos Brim

Tag der miindlichen Priifung: 24.01.2006

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfiigbar.

Abstract

The model-checking problem is the question whether a given system model satisfies a
property. The property is usually given as formula of a temporal logic, and the system
model as labelled transition system. However, the well-known state-space explosion
effect is responsible for yielding transition systems of exponential size when compared
to their description, and common sequential algorithms often are not capable to solve
the model-checking problem with resources available on a single computer.

In this thesis, we develop parallel and, in particular, distributed algorithms which ex-
ploit the combined resources of a network of commodity workstations to solve problem
instances which are beyond the capabilities of today’s sequential algorithms.

Specifically, our algorithms solve the model-checking problem for two important
fragments of the u-calculus which subsume many well-known temporal logics (CTL,
LTL, CTL*). We describe our algorithms based on a characterization of the problem
at hand in terms of two-player games. The underlying data structure, the game graph,
is colored according to the player who has a winning strategy from the current game
configuration. Finally, the color of the initial configuration tells who is the winner of
the game, and thus whether the transition system satisfies the property or not.

Through experimentation, we found that our algorithms scale well, and are able to
solve the largest problem instances of the VLTS benchmark suite.

In a second part, we investigate ways to efficiently generate (low-level) transition
systems suitable for many verification tools from compact high-level descriptions of the
input model. We propose a virtual-machine based approach, which uses an intermediate
format to break the translation from high-level to low-level representations of a model
into two steps. This well-known compiler technique simplifies the translation and still
is very fast in practice.

We show the practicality of our approach through the example of a compiler for the
PROMELA modelling language which targets our intermediate language—the virtual-
machine’s byte-code. With a comparison of benchmarks, we show that our approach
is competitive to state-of-the-art tools like SPIN in speed, with additional advantages,
like easier reusability, and application as component in distributed model-checking al-
gorithms like the ones we proposed earlier.

Acknowledgements

First and foremost, I sincerely thank my advisor Prof. Dr. Klaus Indermark.
From the beginning, he provided me with large degrees of freedom to pur-
sue my research interests. He was a steady source of advice and encour-
agements, and I enjoyed the many stimulating discussions about scientific,
technological and other topics.

I am grateful to Prof. Dr. LuboS§ Brim for being a member of my thesis
committee, and for inviting me to Brno in November 2004, which initiated
an interesting and hopefully long-lasting cooperation.

I also thank the graduate college 643 "Software fiir Kommunikationssys-
teme” for their financial support during the first two years of my research.

Thanks are given to everybody at I2 for a pleasant and friendly research
environment, which contributed a lot to this thesis.

I thank my friend and fellow office mate Volker Stolz, for many lively dis-
cussions and for suffering through my rants about various research-related
and -unrelated topics. Also, Dr. Benedikt Bollig and Dr. Thomas Noll have
been great discussion partners through the years.

My special thanks go to my friend and colleague Dr. Martin Leucker, who
crossed my way already back during my graduate studies. He sparked my
initial interest in Formal Methods, and he has always been a great source
of inspiration and advice through the years. I very much enjoyed the many
scientific as well as personal discussions.

Last, but certainly not least, my sincerest gratitude goes to Irina for all her
love, care, and unfailing support throughout my thesis. I apologize for the
long working hours and uneventful weekends during the last year.

Michael Weber
Aachen, November 2005

Contents

1. Thesis
1.1. Objective e
1.2. Contributions e
1.3, OVerview o o i e e e

I. Parallel Model Checking

2. A Classification of Model-checking Algorithms
2.1. Global versus Local Algorithms
2.2. Explicit-state versus Symbolic Algorithms
2.3. Parallel versus Distributed Algorithms
24. Related Work L

3. Parallel Model Checking Games
3.1. Preliminaries
32. Thep-Calculus
3.2.1. Syntax and Semantics
3.2.2. Graphsof Formulas.
3.2.3. Complexity of Model Checking for L}L
3.2.4. Model-checking Games for the p-calculus
3.3. Winning L)-games
3.3.1. Sequential Coloring Algorithms
3.4. Winning Games for Li—Formulas inParallel
3.4.1. Distributing the Game Graph
3.4.2. Labelling the Game Graph
3.4.3. A Family of Parallel Coloring Algorithms
3.4.4. Algorithmic Variations and Optimization Issues
3.4.5. Calculating Winning strategies
3.5. ExtensionstowardsL?
3.5.1. Reducing AlternationDepth
3.5.2. Alternation and Game Graphs
3.5.3. Coloring Algorithmfor L2

13
13
15
15
20
25
27
32
36
46
46
47
48
52
55
56
56
57
58

i

Implementation and Empirical Results
4.1. The UppDMC Implementation
4.2. Practical Experiences e

State Space Generation

State Space Generation

5.1. Introduction e
52. Status Quo e
5.3. Contributions e
54, OVEIVIEW o v v o i i e e e e e e

Intermediate Formats

6.1. Direct Translation
6.2. Using an Intermediate Format
6.3. Parallel State Space Generation

A Virtual Machine-based Approach
7.1. Virtual Machine Specification
7.1.1. Machine State
7.1.2. Invariantso
7.1.3. Byte-code Semantics
7.1.4. Scheduling
7.2. State Space Generation
7.3. UseCase: PROMELA,
7.4. Benchmarks
7.5. Evaluation as Intermediate Language
7.6. Related Work
7.6.1. PROMELA Semanticso
7.6.2. Virtual Machines oL,
7.77. Conclusions e e e

Conclusions and Future Research

63
63
65

73

75
75
75
76
77

79
80
81
83

85
85
86
89
90
94
96
96
97
102
104
104
104
106

107

1. Thesis

Model checking [25], originally proposed independently by Emerson and Clarke [40]
and Quielle and Sifakis [85], is becoming more and more popular for the verification
of complex hardware and software systems. These systems are usually given by means
of a formal description that can be transformed into a (labelled) transition system (LTS)
which captures the system’s essential behavior. In addition, a desired property of the
system is usually specified as a formula of a temporal logic. Model-checking algorithms
can then answer the question whether the transition system satisfies this property. Nu-
merous case studies have shown that this approach improves the early detection of errors
during the design process. An overview is given by Clarke and Wing [26].

However, the well-known state-space explosion problem still limits a broader ap-
plication of model checking. The term refers to the problem that even small system
descriptions, when converted to notions digestible by model-checking algorithms, can
expand into enormously huge transition systems. This conversion process alone can be
very time and space consuming, if done without consideration. In addition, it can lead
to unexpected or misleading results if not formalized rigorously.

During the past 20 years, considerable progress in tackling state-space explosion have
been achieved. The most prominent examples are partial-order reduction [82], symbolic
model checking [74], and bounded model checking [12]. However, typical verification
tasks can still last days on a single workstation or are even (practically) undecidable due
to memory restrictions (as reported, for example, by Gnesi et al. [46]). Note that even a
tenfold reduction in run-time can make the difference between practical feasibility and
infeasibility: waiting a single day for a result might be tolerable, while waiting 10 days
is very likely too costly.

In contrast, cheap yet powerful parallel computers can be constructed out of Networks
Of Workstations (NOWSs). From the outside, a NOW appears as a single parallel com-
puter with high computing power and, even more important, large amounts of memory.
A NOW enables parallel programs to utilize its accumulated resources to solve large
problem instances, which otherwise would be infeasible.

Various message-passing-interfaces such as MPI [42] or PVM [44] and their cor-
responding implementations (MPICH!, LAM?) provide application programmers with
high-level parallel abstractions and thus allow them to develop portable and efficient par-
allel programs. In particular, they permit the design of efficient parallel model-checking

'ttp://www-unix.mcs.anl.gov/mpi/mpich/
http://www.mpi.nd.edu/lam/

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.mpi.nd.edu/lam/

1. Thesis

algorithms which can capitalize on the resources of NOWs. Ideally, these algorithms can
then be combined with already well-known techniques for avoiding state-space explo-
sion, thence gaining even higher speedups and further reducing memory requirements.

Another data point which underlines the need for well-performing parallel algorithms
can be found in recent developments from the CPU manufacturing industries. Compa-
nies like AMD, Intel and Motorola are no longer advertising new products based on raw
processor speed, as they are approaching the limits of Moore’s Law. Instead, they are
gradually shifting towards multi-core processors which combine more than one process-
ing unit onto a single chip, and inexpensive desktop multi-processor systems, combining
several processors into one computer. As a natural extension, several such computers
can be bound together into a NOW, building powerful distributed computers from com-
modity parts.

Sequential model-checking algorithms will only be able to use a fraction of the avail-
able computing resources of such machines, and their efficient utilization is demanding
the development of new parallel and distributed verification algorithms.

1.1. Objective

With our work, we aim to improve the state-of-the-art in parallel and distributed model-
checking algorithms, and to provide algorithms which are able to handle large models by
taking full advantage of the upcoming paradigm shift towards parallelism in computer
architectures.

To achieve our goals, we investigate along two, mostly orthogonal, axes. First, we
address the question how to effectively use parallel resources to solve instances of
the model-checking problem in which properties are given as formulas of Kozen’s p-
calculus [60], interpreted over labelled transition systems.

In a second step, we propose an approach that bridges the gap between high-level
model descriptions suitable for human consumption, and the generation of low-level
models (said transition systems) suitable as input to our algorithms. In particular, our
approach is fully compatible with the distributed nature of our algorithms.

1.2. Contributions

We support our argument about feasibility and necessity of parallel and distributed al-
gorithms for solving the model-checking problem with the following contributions:

e For model-checking an important sub-logic of the p-calculus, the alternation-
free fragment L}, we first develop a sequential algorithm which admits a scalable
distributed version. It is explained in terms of Stirling’s model-checking games
[91].

1.2. Contributions

e Based on this sequential version, we develop building blocks for a family of dis-
tributed model-checking algorithms for the alternation-free fragment L}L, which
subsumes the well-known Computation-Tree Logic (CTL) [40]. Hence, we get a
distributed model-checking algorithm for CTL for free.

Our algorithms can be tailored to different situations, for example, by trading
space efficiency achieved through on-the-fly techniques for better worst-case time
complexity.

Our main results on the topic of these algorithms were published in [15]. To
the best of our knowledge, this is the first on-the-fly parallel algorithm for the
alternation-free p-calculus.

e In a second step, we extend our algorithms to the bigger fragment Li of the p-
calculus, thus subsuming Linear-Time Logic (LTL) [83] and CTL* [37]. We show
that the extension of algorithm is seamless, by reusing our previous algorithms as
subroutines.

Our main result here has been published in [68].

e Finally, to complement our algorithms with a fully formalized, scalable building
block for state-space generation, we present a virtual-machine based approach,
which is compatible with the on-the-fly characteristics of our algorithms.

We propose to use a byte-code language as intermediate layer between high-level
model descriptions produced by designers, and the low-level transition-system
representation of a model suitable for model-checking algorithms. In doing so,
we achieve a time and space-efficient solution, which simplifies and opens up
possibilities for a number of optimizations.

To verify our claims, our virtual-machine based approach was employed for the
assignment executable operational semantics to the well-known specification lan-
guage PROMELA [54] through a translation to our byte-code language [89]. We
were able to plug the virtual machine as component into the DIVINE model-
checking library [35], thus deriving a distributed implementation of a PROMELA
model-checking tool, called DIVSPIN, on which we reported in [69].

All our building blocks were implemented and experimentally evaluated for feasibil-
ity with measurements regarding their behavior in practical situations. Specifically, an
implementation of our parallel model-checking algorithms was able to provide all as
of yet missing results from the biggest problem instances of the Very Large Transition
Systems (VLTS) benchmark suite [52].

1. Thesis

1.3. Overview

The rest of this paper is divided in two parts. First, we classify model-checking al-
gorithms in Chapter 2 and discuss related work. Then follows the presentation of our
parallel algorithms in Chapter 3. We start by introducing the p-calculus and the game
framework. In the main sections 3.4 and 3.5 of this chapter we present our algorithms
which solve the model-checking problem for the fragments L; and Li in parallel. We
conclude the model-checking part in Chapter 4 with measurements and experimental
results results.

In the second part, we investigate a virtual machine-based approach to state-space
generation. In Chapter 5 we highlight common problems of the translation from models
suitable for designers and verification engineers, to low-level representations needed for
most model-checking algorithms, ours included. In Chapter 6 we review the benefits
of introducing an intermediate step into the translation, and recollect design criterions
for intermediate formats. We propose our own intermediate format in form of a virtual-
machine based approach in Chapter 7. We formalize a specific virtual-machine instance,
and evaluate the practicality of this approach with the help of experiments.

Finally, a brief summary is given in Chapter 8, along with conclusions and an outlook
on future work.

Part I.

Parallel Model Checking

2. A Classification of Model-checking
Algorithms

The input for the class of algorithms discussed in this thesis is a specification given in
a temporal logic (in our case, the p-calculus), and a system model given in form of a
labelled transition system.

Before we develop and present our model-checking algorithms, we briefly review the
choices we can take within the design space.

2.1. Global versus Local Algorithms

Model-checking algorithms, regardless whether sequential or parallel, can be broadly
classified into global and local algorithms. Global algorithms require that the transition
system is constructed completely, while local algorithms compute on-the-fly only those
parts of a transition system which directly affect the result.

As an immediate consequence, local (or on-the-fly) algorithms are advantageous if
merely a small fraction of the input transition system is actually processed: storage
space can be reduced, and also the run-time of algorithms, as the upfront construction
of the whole transition system is wasteful if most of it turns out to be irrelevant for
the problem at hand. Still, in the worst case even local algorithms might be forced to
construct the whole transition system in order to give a result. A prominent example is
the check for absence of deadlocks in a model, which requires to check that no reachable
state of the underlying transition system is without outgoing edges. Unless the transition
system indeed contains such a state (in which case a negative answer can be given as
soon as it is found), the whole transition system must be checked.

Worse yet, even the potential savings of a local algorithm usually come at price,
namely that their worst-case theoretical bounds are less good when compared to their
global counterparts. Global algorithms are less constrained by the structure of the tran-
sition system. They have access to all of it from the beginning, and as such can compute
solutions inductively in a bottom-up manner, for example. In contrast, local algorithms
must operate with a top-down view only which can cause work to be redone.

It is a generally accepted view that global algorithms are to be preferred if it is clear
from the beginning that the properties to be checked require large parts of the transition
system to be constructed. Another situation in favor of global approaches are later
stages of the design process when models mostly remain unmodified. It might then

2. A Classification of Model-checking Algorithms

make sense to store its transition system, and reuse it for checking several properties.
Full storage also opens up options for intermediate optimization or compression of a
transition system to reduce the amount of work done by a subsequent run of a model-
checking algorithm.

On-the-fly algorithms have been proven superior in early design phases when models
still contain many errors and hence are prone to change often.

In our work, we first develop a global algorithm and then adapt it towards an on-
the-fly behavior. However, our interest is clearly biased towards this latter class, as
these algorithms often find errors faster and with less storage resources, and are able to
provide solutions on cases where global algorithms exhaust all available resources and
fail.

2.2. Explicit-state versus Symbolic Algorithms

The second decision to be taken in the model-checking design space is due to the di-
chotomy between explicit-state algorithms and symbolic algorithms.

In explicit-state approaches, states of a transition system are handled discretely, and
each state is stored “as-is”, which is why these algorithms are sometimes called enu-
merative.

Symbolic algorithms, in contrast, operate on sets of states rather than single states,
usually in form of a global fixpoint iteration. The set of already visited states and
the edge relation of a transition system are often encoded as binary decision diagrams
(BDDs) or variants thereof. Depending on the structure of the transition system, these
encodings can be very compact, thus allowing excessively large models to be stored and
processed.

For example, BDDs have been used successfully in hardware verification. For mod-
els of software they have not fared so well. Hu et al. state that “BDD-based algo-
rithms [...] appear generally unable to handle designs much more complex than dining
philosophers or rings of mutual exclusion elements” [56]. Furthermore, they report that
approaches with explicit state representation as well as with BDDs both have application
domains in which they outperform their counterpart.

Here, we concentrate on explicit-state algorithms because we are in particular inter-
ested in models stemming from communication protocols and concurrent systems.

2.3. Parallel versus Distributed Algorithms

A parallel algorithm can take advantage of more than one processor by dividing the
work to be done into pieces, which can then be handled independently. Eventually,
partial results are collected and incorporated into the final solution.

2.4. Related Work

distributed algorithms are a subclass of parallel algorithms which have the additional
constraint that their processors do not share main memory, but are loosely connected
via a network. The advantage of such setups is that they are are inexpensive and can
be composed from standard components, whereas large shared-memory computers tra-
ditionally consisted of proprietary special-purpose hardware. However, because a net-
work connection is orders of magnitude slower than a direct memory access, algorithms
specially tailored to this situation need to be devised in order to be competitive.

Our algorithms are expressed as message-passing algorithms, thus targeting mainly
distributed environments. In addition, the use of standardized libraries allows us to run
our algorithms even on shared-memory architectures, with little overhead.

2.4. Related Work

Despite more than twenty years of research in the area of model checking algorithms,
until recently not much effort has been spent on their parallelization. However, this
topic becomes increasingly attractive, as the architecture of computers changes towards
a more parallel (or even distributed) design.

Stornetta [92] and Basonov [8] present parallelized data structures which exploit ad-
ditional computers within a network as a substitute for external storage.

The algorithms described by Narayan et al. [77] and Cabodi et al. [22] divide the
underlying problem into several tasks. However, they are designed in a way that only a
single computer can be employed to sequentially handle one task at a time. Stern and
Dill [90] show how to carry out a parallel reachability analysis. The distribution of the
underlying structure is similar to the one presented here. Their algorithm is limited as it
only allows reachability checking, but is not appropriate for general model checking of
temporal logic formulas.

Heyman et al. developed a parallel reachability analysis algorithm for BDDs [50].
They argue that many safety properties can be formulated as a reachability problem. In
this way, their algorithm allows checking safety formulas. However, liveness properties
which can be expressed within Li are not supported.

Grumberg et al. [49] introduced a symbolic parallel algorithm for the full p-calculus.
However, it is global and thus requires full construction of the transition system.

The algorithms we present are based on a characterization of the model checking
problem for fragments of the j-calculus in terms of two-person games due to Stirling
[91]. Strictly speaking, we present a parallel algorithm for coloring game graphs corre-
sponding to the underlying model checking problem. This coloring answers the model
checking problem. Furthermore, we explain that our algorithm can be extended to com-
pute winning strategies without further costs. A strategy may be employed by the user
of a verification tool for debugging the underlying system interactively [91].

2. A Classification of Model-checking Algorithms

LH
L3
L;
CTL*
1
7
LT CTL

Figure 2.1.: Expressiveness hierarchy of temporal logics

A different characterization of the model checking problem can be given in terms of
one-letter-simple-weak-alternating-Biichi automata (1ISWABA) [61]. However, these
are related to games in a straightforward manner [65]. Hence, our algorithm can also be
understood as a parallel procedure for checking the emptiness of this kind of automata.

On the same line, we can view the model-checking problem as solving a boolean
equation system (BES) [72]. Very recently, Joubert and Mateescu [59] described a dis-
tributed local resolution algorithm in terms of alternation-free BESs. They credit us in
their section about related work for the only other distributed resolution algorithm they
are aware of. Their algorithm is very similar to ours, and provides just a different way
to express the same solution (from private communication with the authors).

The first variation of our parallel algorithm is similar to a solution of the model check-
ing problem described by Kupferman et al. [61]. However, their proposed algorithm
employs the detection of cycles which is unlikely to be parallelized in a simple way.
Our key observation is that we can omit this step by exploiting structural information of
the underlying graph. Furthermore, we present a second version of our algorithm which
provides extended on-the-fly behavior for a cheap price.

We then turn our focus towards the richer fragment of the p-calculus allowing one
alternation. It is of practical importance since it subsumes Linear Temporal Logic, LTL
[83], as well as CTL* [37], which follows by (unpublished) results from Wolper, as well
as Emerson and Lei [38], and was shown in a direct manner by Dam [31]. We develop
a parallel model checking algorithm for p-calculus formulas up to alternation depth 2
(Figure 2.1).

Our reduction allows a promising approach to check formulas from LTL, CTL*, and

10

2.4. Related Work

Li within the same framework. However, it has to compete with specialized algorithms
for the logics mentioned. For instance, Brim, Barnat, et al. proposed several algorithms
tailored to distributed LTL model-checking [5, 20, 6, 7].

11

2. A Classification of Model-checking Algorithms

12

3. Parallel Model Checking Games

All our algorithms have in common that they operate on graphs in various flavors as fun-
damental structures. Before we formally define the the p-calculus and present our algo-
rithms, we first fix some graph theoretic notions and notations which are used through-
out the following sections.

3.1. Preliminaries

Definition 3.1.1 (Graph)
A directed graph (digraph) G is a structure G = (@), —) where () is an arbitrary set and

—C @ x). We call the elements of () nodes of G and the elements of — we call edges
of G.

Definition 3.1.2 (Path, Cycle)

For ¢q,¢q € @, a path from ¢ to ¢ is a sequence of nodes ¢, ...,q, € @ such that
q=¢qo — ... — ¢, = ¢. A cycle in G is a sequence of nodes ¢, ..., g, such that
qo — ... — @, — qo. We say anode g € () is contained or reached in a cycle iff there
isacycle qo,...,q,in G and ¢ = ¢; for some i € {0,...,n}.

Definition 3.1.3 (Connected Graph, DAG, Tree)
A graph G = (Q, —) is connected, iff there exists a node ¢ € () such that there exist
paths from ¢ to any other node, vizdg € Q : V¢ € Q: ¢=q¢ Vqg=q — ¢ —
T 4n = q/'
A digraph G that does not contain any cycles is classified as directed acyclic graph,
or DAG for short.
A tree T = (Q,—) is a connected DAG such that Vq,¢'.¢" € Q : ¢ — ¢ A
¢ —q"=q=4.

Definition 3.1.4 (Component)
A component of a graph G is a subgraph G’ C G induced by a set of nodes (', that is
g =(Q,—),Q CQ,and -'=— N(Q" x Q). If the context is unambiguous, we
also call the inducing set () a component.

A (strongly) connected component (SCC) is a component G’ = (@', —') of G such
that for all ¢, ¢’ € ()’ there is a path from ¢ to ¢’ in G’. A (connected) component and a
cycle are called non-trivial if they contain a least two nodes.

13

3. Parallel Model Checking Games

We consider a connected component G’ maximal with regard to G, iff there exists no
other connected component G” C G such that G’ C G".

Definition 3.1.5 (Bridge)

Let ¢’ = (@', —') and G" = (Q",—") be two disjoint components of G, that is G’ and
G" are components of G such that Q' N ()" = &. Furthermore, assume that there is no
edge from a node in Q" to a node in @)’, thus — N (Q” x Q') = &. Then we call every
edge from anode ¢’ €)’ to anode ¢" € Q" (¢ — ¢") a bridge.

In the following sections, we consider node-labelled graphs G = (@, —, \), where
(Q, —) is a graph and \ is a labelling function from states to some domain. In particular,
we deal with graphs where nodes are labelled by formulas.

Definition 3.1.6 (Partially Ordered Set)
Let S be a finite set. The binary relation < is a partial order on S, iff < is reflexive,
antisymmetric, and transitive, that is:

o 1 < g, forall x € S (reflexivity)
e v <yandy < ximplies z = y, for all x,y € S (antisymmetry)

e r <yandy < zimplies z < z, forall x,y, z € S (transitivity)
The pair S = (5, <) is called a partially ordered set, or short poset.
Definition 3.1.7 (Cover Relation)
We define the interval [z, y] in poset S = (5, <) as the set of all z € S, such that x < z
and z < y.
If [x,y] = {z,y}, then we call y a cover of z, and = < y the corresponding cover
relation.

A well-known graphical representation of a cover relation is its Hasse diagram:

Definition 3.1.8 (Hasse Diagram)
A Hasse diagram of poset S = (5, <) is a directed graph G = (S5, —). We draw an
edgex — yiff z < y.

Usually, Hasse diagrams are drawn with an implied upward orientation and hence
edges are drawn without arrows.

Definition 3.1.9 (Tree Order)
A tree order is a structure (@), <) such that < is a partial order on () and its Hasse
diagram is a tree. More precisely, we call < a tree order iff

e there is a unique ¢ €) such that ¢ < ¢ for all ¢’ € @), and
e forallq,¢,q" € Q, q<q¢” and ¢’ < ¢” implies ¢ = ¢'.

Notions of parents and children for elements of () with respect to < correspond to the
usual ones for elements of () with respect to <.

14

3.2. The p-Calculus

3.2. The p-Calculus

A famous logic for expressing specifications is Kozen’s p-calculus [60], a temporal logic
offering boolean combination of formulas and, especially, labelled next-state, minimal,
and maximal fixpoint quantifiers. It is the most expressive logic adequate for transition
systems representing concurrent systems: It is expressively complete with respect to the
fragment of second order logic consisting of the formulas not distinguishing bisimilar
transition systems [57]. One of the most important unanswered questions about the -
calculus is whether there is a polynomial time model checking algorithm improving the
known bounds, viz NP and Co-NP [39].

For practical applications, however, it suffices to restrict the p-calculus in order to
gain tractable model checking procedures. The alternation-free fragment, denoted by
L}L, prohibits the nesting of minimal and maximal fixpoint operators. It allows the for-
mulation of many safety as well as liveness properties. While this fragment is already
important on its own, it subsumes Computation-Tree Logic, CTL [40], which is em-
ployed in many practical verification tools. It can be shown that the model checking
problem for this fragment is linear in the length of the formula as well as the size of
the underlying transition system, and several sequential model checking procedures are
given in the literature [29, 1, 61, 11].

In this section, we recall the syntax and semantics of the modal p-calculus.

3.2.1. Syntax and Semantics

Let Var be a set of fixpoint variables, Prop be a set of propositional variables, and
. be a finite set of actions. We require the fixpoint variables to be distinct from the
propositional variables (Var N Prop =).

Definition 3.2.1 (u-Calculus Syntax)
Formulas of the propositional modal p-calculus over Var and X in positive form as
introduced by Kozen [60] are defined through the following BNF grammar:

pu=false|true | X [p|ploAeleVel|[Kle| (Kp|vXe|pXe

where X € Var, p € Prop, and K ranges over subsets of actions . We denote as
L, the language generated by .

Besides boolean constants false and true, fixpoint variables and (possibly negated)
propositional variables, we allow the usual boolean connectives, as well as modalities
((-) and [-]), and maximal and minimal fixpoint operators (v and p). Whenever the
specific type of a fixpoint operator does not matter, we use o for either y or v, and 7 for
its dual, that is, if o = p then @ = v, and vice versa. ~Similarly, we write [K7} for (K)
or [K], * for VV or A, and #¢ for 0 X. ¢ or [K).

15

3. Parallel Model Checking Games

We follow Stirling’s lead [91] and allow sets of actions instead of single actions ap-
pearing in modalities. For convenience, we allow some abbreviations:

fa)e instead of [{a})e
[—aje instead of [X\{a}]p
[(—K)p insteadof [X\K)y
[(—)e instead of [X}p

For p-calculus formulas, we introduce the notion of subformulas, free, and bound
variables as usual.

Definition 3.2.2 (Subformula)
The subformulas Sub(y) C L, of a formula ¢ are inductively defined as:

Sub(p) = {¢} for p € {false,true, X,p, p}
Sub(p * ¥) = {p* ¢} USub(p) U Sub(¢)
Sub([KYe) = {17} U Sub(y
Sub(cX.) = {oX. ¢} USub(y)

~—_— —

Definition 3.2.3 (Free and Bound Variables)
We define the set of free variables FV(p) C Var of a formula ¢ € L, inductively:

FV(false) = @ = FV(true)
FV(-p) =2 =FV(p)
FV(X) ={X}

FV(p*1) =FV(p) UFV(¥)

FV([K]e) = FV(e)

FV(cX.p) =FV(p)\{X}

The set of bound variables BV () C Var is inductively defined by:

Consequently, we call 0 X a binder of variable X. We call X a v-variable or to be of
type v, if it is bound by a v-binder, and p-variable or of type u, otherwise.

16

3.2. The p-Calculus

A formula ¢ is a sentence iff ¢ contains no free fixpoint variables (FV(p) = ©).
Furthermore, we say that ¢ is a y-formula iff ¢ = p.X .4 for appropriate X and . v-
formulas are introduced correspondingly. From now on, we require all formulas to be
sentences.

To simplify the cases to consider further on, we restrict formulas with a syntactic
argument. We consider a formula ¢ normal if all occurrences of binders o X in ¢ bind
a distinct variable X. Through renaming, every formula can easily be converted into
an equivalent normal formula. For example, (©X.X) V (uX.X) is not normal whereas
(uX.X) V (YY) is normal.

Remark 3.2.4

If a formula ¢ is normal, every bound variable X € BV(p) of ¢ identifies a unique
subformula 0 X. ®x € Sub(y) where X € FV(®dy) is a free variable of ®x. In the
following, we assume all formulas to be normal.

So far, we have been considering purely syntactic features of L,. The semantics of
formulas is usually defined by interpreting them on finite labelled transition systems,
which we will now introduce.

Definition 3.2.5 (Labelled Transition System)

We define 7 = (S, —, %, 5o, P) as labelled transition system where S is a finite set of
states, 2 a finite set of actions, and —C S x ¥ x S denotes the transitions. As usual,
we write s — t instead of (s, a,t) €—. Furthermore, let s, € S be the initial state of
the transition system and let P : Prop — 2° denote a function yielding the set of states
in which a given proposition holds.

A valuation V' maps a fixpoint variable X to a set of states V' (X) C S. Let V[X/E],
E C S, be the valuation which is the same as V' except for X where V(X) = E.

Definition 3.2.6 (;.-Calculus Semantics)
Given a labelled transition system 7 = (5,7, %, so, P), a formula ¢ over Var, Prop,
and Y, and a valuation V/, the semantics of ¢ is a set of states [¢]% C S in which

17

3. Parallel Model Checking Games

holds, inductively defined as follows:

[true]y, =S
[false]; = o
[XT]y == V(X)
[Py == P(p)
[=ol7 = S\ [p]¥
[=[]V U el

=[]y N [l

::{SES|VSi>t: aeK:>t€[[90]]€}
={s€S|IsSt: ae KAte[g]]}
::ﬂ{E§S|E:[[SD]]5[X/E}}
= J{ECS|E=[lVixm}

%
> <
S
[\") [\

[[K]p
[(K)¢

e e e e e e e e e e =

S I R R e N N N s T

Y =
= =
€ €

If the transition system is clear from the context we leave it out and write []y . Also,
if ¢ is a sentence then the set [¢]y does not depend on V" and in this case we may write
[] to denote the semantics of . We write 7, s |= ¢ and say that sentence ¢ is satisfied
in state s of a transition system 7 if s € []7.

Throughout the rest of our work we use identifiers like ¢, 1), . . . for formulas, @ x for
formulas containing a free fixpoint variable X, s, ¢, . .. for states, and a, b, . . . for actions
of the transition system under consideration. /K denotes a set of actions.

Fixpoint Iteration. Fixpoints can be computed by standard iteration. The domain of
the function is the finite complete partial order' (cpo) 2° in which each chain has length
at most |S|. Hence, to find the fixpoint we need at most | S| iterations.

For some formula 0 X. & x we can characterize its iteration semantics as follows:

Fo._ g ifo=p
S ifo=v
Fril= [[‘I)X]]V[X/P‘]

We start with the empty set or the set of all states, depending on the fixpoint type. In each
iteration, we update the valuation V' for X with the results from the previous iteration.

! As usual, we use notation 2 := {S’ | S’ C S} to denote the powerset of a set S.

18

3.2. The p-Calculus

The iteration stops when F* = F**1. Hence, in iteration i the result F* coincides with
the one from the semantics defined above: F* = [0 X. ®x].

We say variable Y is subsumed by variable X (notation Y C X)if oY. @y is a subfor-
mulaof ®x: Y. &y € Sub(Px). Note thatif X subsumes Y then each computation of
F' = [®x]v can potentially lead to a nested fixpoint computation of [oY. ®y [y x/7i.
However, if X does not occur free in @y (X ¢ FV(®y)) then the nested fixpoint needs
to be computed only once since its value does not depend on the current value F* of X.
Otherwise the nested fixpoint must be recalculated each time the value of X is updated.
We write variable Y depends on X (notation Y < X)if Y C X and X € FV(®dy).

The alternation depth ad(p) of a formula ¢ is the length of the longest chain X; <
Xy < --+ < X, of variables occurring in ¢ such that X; and X, are of different type
for each 1.

Alternation depth can be also defined for a single variable. In that case we look
at chains of alternating variables which end up in the given one. Formally, the al-
ternation depth ad(X) of a variable X € BV(y) is the length of the longest chain
X; < X9 < -+ < X; = X of variables of alternating types. Straightforwardly,
ad(¢) = max{ad(X) | X € BV(¢)}.

Note that alternation depth is a syntactic criterion, and thus can also be defined in-
ductively on the formula structure [95].

Definition 3.2.7 (Alternation Depth)
The alternation depth ad(y) of a formula ¢ € L, is defined as

ad(false

1 if 3 € Sub(p) : ¥ =Y. ¥y and X € FV(Uy)

0 otherwise

Note that a formula ¢ is called alternation-free if ad(y) = 1.

Definition 3.2.8 (Fragments of L)
We denote by Lj; the set of all y-formulas up to alternation depth n and by L, the set of
all p-calculus formulas.

The fragment L}L is called the alternation-free fragment of L,. It is well-known
that the alternation-depth hierarchy of p-calculus formulas is strict [19]. In particular,
alternation depth 2 is needed to capture expressive power of LTL and CTL* [31, 38]
(Figure 2.1).

19

3. Parallel Model Checking Games

3.2.2. Graphs of Formulas

Essential for our further development is a formula’s graph representation. To simplify
the definition, we first introduce the tree representation of a formula, also called parse
tree. Let ¢ be a formula. The occurrence set of ¢ denoted by Occ(yp) is inductively
defined as

e € Occ(yp)
im € Occ(yp) ifi e {1,2},p=p1xprand w € Occ(yp;)
I € Oce(p) if o = #¢ and ™ € Oce(y')

Let ¢, denote the subformula of ¢ at position 7, that is

Ple:=¢
Olin = Qilx where i € {1,2} and ¢ = 1 * 9
Olin = @'« where o = #¢’

We assign to every o a Sub(y)-labelled tree with nodes Occ(y) and edge relation —.

Definition 3.2.9 (Tree Representation of L,-Formulas)
The tree representation of a formula ¢ € L, is defined as 7 (¢) = (Occ(p), —, N),
with edge relation

—:={(m,im) | m,im € Occ(yp),i € N,m € IN*}
and labels A\(7) = ¢|,.

We are now ready to define the graph representation of a formula . Intuitively, the
graph of a formula is its canonical tree representation enriched with edges from fixpoint
variables back to the fixpoint formula it identifies.

Definition 3.2.10 (Graph Representation of L,-Formulas)
Let ¢ € L, be a formula and 7 () = (Occ(p), —, A) be its tree representation. The
graph of ¢ denoted by G(¢) is the tuple (Occ(p), —', A) where

—'=— U{(m,7") | Mx) = X and \(7') = 0 X. Dy for X € BV (p)}

Because we require ¢ to be a sentence in normal form, there is for all positions 7 with
A(m) = X exactly one matching position 7’ with A(7") = 0 X. & . However, in general
there can be several such positions 7.

The graph of the formula pX.((vY.(b)Y) V (a)X) V uX".(vY'.(0)Y") A (a)X') is
shown in Figure 3.1.

20

3.2. The p-Calculus

(a) one alternation (b) alternation-free

Figure 3.2.: Alternation (v.X.(1Y.Y V X)) vs. alternation-free (v .X.(uY.Y) vV X)

Recall that the alternation-free fragment of the p-calculus is the sub-logic of the j-
calculus where no subformula) of a formula ¢ contains both a free variable X bound
by some ;X as well as a free variable Y bound by a Y. In terms of the graph represen-
tation, a formula ¢ is alternation-free iff G(¢) contains no cycle with both a v-variable
and a p-variable. Figure 3.2(a) shows the graph of an alternating formula which has
a cycle containing X as well as Y. Conversely, Figure 3.2(b) shows the graph of an
alternation-free formula which has two maximal strongly connected components, one
on which X occurs, a second containing Y.

For the next sections, we will restrict ourselves to the alternation-free fragment of the
p-calculus LL. An extension for the case of one alternation is presented in Section 3.5.

A straight-forward, but essential observation is that the graph of a formula can natu-
rally be decomposed into maximal strongly connected components and trees (see Fig-
ure 3.3). We will now formalize this decomposition.

21

3. Parallel Model Checking Games

Figure 3.3.: Partition of the formula graph for uX.(vY.(0)Y) VvV (a)X) V
uX'((vY'.(b)Y") A (a) X'). Bridge edges are highlighted.

Lemma 3.2.11
Let ¢ € L, be an alternation-free y-calculus formula and G(¢) = (Q, —, A) be its
graph representation. Then there exists a set of components Q = {Q1,...,Q,,} such

that the following holds:

1. The set Q is a partition of (), thatis Q = |J Q and for all 7,5 € {1,...,m} with
i # 7, Qi and @); are disjoint ; N Q; = .

2. Every subgraph induced by); € Q is either

a. a non-trivial maximal strongly connected component in which only either -
formulas or v-formulas occur, or

b. a maximal tree with regard to Q, that is for all components ' € Q if Q' U Q;
induces a tree then ' = Q);.

3. There exists a tree order < on Q such that for every edge ¢ — ¢’ with ¢ € Q; and
¢ € Qj, we have (); < ;. More specifically, edges from a node in (); lead to
configurations in either the same (); or a child ();. Without loss of generality, we
may assume that ¢); < @), implies ¢ < j, so that smaller components with regard
to < have lower indexes.

Proof. First, we consider nodes of maximal non-trivial strongly connected components.
Due to the construction of G(¢) from 7 (), a cycle can occur only through edges from
a fixpoint variable to its associated binder. Further, alternation-freeness guarantees that
not both a v-variable and a p-variable is reached on a cycle.

22

3.2. The p-Calculus

Figure 3.4.: A coarser partition of the graph for the formula uX.((vY.(b)Y) V (a) X) V
uX' ((vY'.(b)Y") A (a) X'). The top-most component was collated with its
left child component.

Again, due to the construction of G(¢) those nodes not belonging to a cycle are indeed
part of trees. As a formula graph is connected, its components can be canonically or-
dered by bridges (Definition 3.1.5). Maximality of the strongly connected components
and trees then guarantees the order defined to be a tree order. L

To simplify the forthcoming algorithm, all tree components (which will not play a
significant role) are collated with other components. Thus, we define a coarser partition,
based on Lemma 3.2.11. A graphical example is shown in Figure 3.4.

Theorem 3.2.12

Let ¢ € L, be an alternation-free y-calculus formula and G(¢) = (Q,—, \) be its
graph representation. Then there exists a set of components Q = {Q1, ..., @} such
that the following holds:

1. The set Q is a pairwise disjoint partition of @), that is) = |JQ and for all
i,j € {1,...,m}, different indexes ¢ # j imply disjoint sets); N Q); = .

2. Every subgraph induced by @); € Q either

i. contains only p-cycles (we call the corresponding subgraph a p-component),
or

ii. contains only v-cycles (we call the corresponding subgraph a v-component).

3. There exists a tree order < on Q such that for every edge ¢ — ¢’ with ¢ € Q); and
¢ € Q;, we have (); < ;. More specifically, edges from a node in @); lead to

23

3. Parallel Model Checking Games

configurations in either the same (); or a child @);. Without loss of generality, we
may assume that (); < (), implies 7 < j, so that smaller components with regard
to < have lower indexes.

For the graphical representation in Figure 3.4, our components are enclosed by a (red)
dashed line and the latter by a (green) dotted line. Note that in contrast to Lemma 3.2.11
components are no longer necessarily strongly connected. For formulas without any
fixpoint formula, we will get a single component which we may arbitrarily name -
component, for simplification of matters.

Proof. We consider again the formula graph G(¢) = (Q,—,) of ¢. With Theo-
rem 3.2.12, there exist components @)}, ..., Q' which can be partially ordered by <.
They are either maximal strongly connected components or trees. Furthermore, let <
denote the cover relation of <.

The idea is that strongly connected components can be collated with their child com-
ponents that are trees. Formally, let iy,...,4,, € {1,...,m} such that Q; ,...,Q;
comprise exactly those components () that are maximal strongly connected compo-
nents. For j € {1,..., m} we define collated components (); as:

Q; =@, U J{Q | @, < @} and Q} is a tree}

Furthermore, if the smallest (with regard to <) component ()} is a tree, then it has not
yet been selected for inclusion in some ();, thus we arbitrarily add it to the top-most
collated component:

Q1:=Q1UQ;

As we collated strongly connected components only with tree components, but never
with other strongly connected components, Cases (21) and (2ii) trivially hold due to
alternation-freeness of . U

Note that for the presented partition it is essential that Lemma 3.2.11 provides a tree
order on the components. In Section 3.4.4 we will discuss an alternative definition of a
formula graph which yields partially ordered components and, as we will see, a slightly
different parallel algorithm.

Remark 3.2.13

The time complexity of computing the decomposition of the formula graph is linear
with respect to the formula length |p|. Thus, we can establish a labelling for every
subformula v € Sub(y) with its component number i if 1) €); within linear time. The
component index can be made unique by enlarging the partial order of the components
to a total order in some deterministic way.

24

3.2. The p-Calculus

3.2.3. Complexity of Model Checking for LL

Before starting to think about a concrete algorithm, we should consider theoretical lim-
itations of its applicability, i.e. its complexity.

In this section, we recall the notion of model checking and show that this problem for
the studied fragment is P-hard, strengthening a similar result by Zhang et al. [99] where
the propositional p-calculus is employed.

In complexity theory, it is a well-accepted view that problems within Nick’s Class
(NVC) admit promising parallel computing algorithms [81]. AV/C is based on the Boolean
Circuit model for computation and describes the problems computable in polylogarith-
mic time with polynomially many processors. It can be shown that N'C is contained
in P. Problems outside of N'C are consequently considered to be inherently sequential.
However, it is not known whether N'C=P. If not, then especially P-complete problems
cannot be in N'C. Hence, P-complete problems are called inherently sequential [81]. In
other words, we show that model checking for L}L—formulas is inherently sequential.

Given a transition system 7 and a formula ¢, the model checking problem is the
question whether 7 satisfies ¢, that is whether 7 |= . The combined complexity of the
model checking problem is its complexity with respect to the product of the size of the
transition system and the size of the formula. The program complexity of the p-calculus
is the complexity of the model checking problem only with respect to the size of the
transition system 7.

Zhang et al. [99] showed that the combined complexity for the alternation free -
calculus is P-complete and, for a version of the alternation free p-calculus employing
two actions, that its program complexity is P-complete. Kupfermann et al. [61] show
the latter result by using a formula with two propositions. We strengthen both results by
employing neither propositions nor any action labelling.

Lemma 3.2.14
The program complexity of the alternation free p-calculus is P-hard.

Proof (Leucker [14]). We reduce the P-complete Game Problem [47] to checking a for-
mula of the alternation free p-calculus with respect to a corresponding labelled transi-
tion system. A two-player game is a tuple G = (P, P», M, Wy, s). Here, P, and P,
with P, N P, = @, are positions, in which it is the turn of Player 1 or Player 2, re-
spectively. M C (P, x Py) U (P x Py) is the set of moves the respective player can
make. Wy C P; U P, denotes the succeeding positions and s € Pj the starting position.
The players move alternately beginning with Player 1. We call x € P, U P, winning iff
either z is succeeding (z € Wy), or, x € P; and there is a winning y € P; such that
(x,y) € M, orz € P, and for all (x,y) € M, y is winning. The Game Problem is the
question whether s is winning.

Corresponding to this, we define a transition system 7 = (P, U P, T) by T =
(M —A{(p,q) e M | pe Wy})U{(p,p) € P, x P, | p& W, and there is no transition

25

3. Parallel Model Checking Games

from p in M }.

T' is defined such that every deadlock state (state with no outgoing edges), is either
a state of IV, or a state of P, in which Player 2 is not able to move. Hence, deadlocks
are winning. They can be characterized in the u-calculus by oy, = [—]false where
a formula [—]¢ indicates that ¢ is satisfied in all successor states. Further winning
positions for Player 1 are states of P; such that there is a successor state (in /) whose
direct successors (in P;) are all winning. Hence, the formula ¢ = pX.((—)[—]X Veow,)
is satisfied in exactly those positions of P; which are winning where (—)y guarantees
the existence of a successor state in which ¢ holds. Note that (o may be satisfied in
further positions of P, which does not bother us. We conclude that s is winning in the
game G = (P, Py, M, Wy, s) iff T, s = .

The construction of the transition system can be done within logarithmic amount of
space, viz LOGSPACE. Note that we do not make use of propositions. Furthermore, we
manage without actions at all by slightly adapting the modal fragment of our logic. [

Together with a linear-time algorithm from Section 3.3.1 or from Cleaveland and
Steffen’s work [29], we can state:

Theorem 3.2.15 ([14])
Model checking for the alternation-free p-calculus is inherently sequential with respect
to the combined complexity as well as the program complexity.

As consequence of the previous theorem, our enthusiasm is limited when it comes to
finding a (theoretically) good parallel model checking algorithm. All we can possibly
hope for is to find a linear-time algorithm (unless N'C equals P).

During the next sections, we will present such a parallel model-checking algorithm
and several of its variations which have linear or quadratic time complexity. As we will
see in Section 4.1, an implementation of our algorithms is applicable to many practical
problems.

26

3.2. The p-Calculus

3.2.4. Model-checking Games for the ;~-calculus

In this section, we recall a characterization of the model checking problem in terms
of games. Games are an easy-to-understand formalism to deal with model checking
the p-calculus. A reduction to parity games was first noted by Emerson et al. [41].
We use, however, Stirling’s presentation [91], as it is more pictorial and thus easier to
understand.

As we will see, determining the satisfaction of a formula is reduced to coloring a
structure called game graph. We will explain that the decomposition of a formula’s
graph induces a decomposition of the game graph. The latter will simplify our sequen-
tial as well a parallel coloring algorithm. Notice that our definition deviates slightly
from Stirling’s original approach. We do so to obtain a tree-like decomposition of the
game graph instead of a DAG-like decomposition. We refer to Section 3.4.4 for a dis-
cussion of the advantages and disadvantages of this approach.

Let in the following 7 = (.S, —, ¥, s¢, P) be a transition system and let ¢ € L, be a
formula over Var, Prop, and ¥ with formula graph G(¢) = (Q, —,, A). We can then
define the model checking game I'(T , ¢) for a given transition system 7 and a formula

®.

Definition 3.2.16 (Game Configuration)
A configuration C' = (s,) of a model checking game I'(7, v) is a pair consisting of
a state s € S from the transition system and a position 7 € () in the formula graph

G(p) = (Q, =, A).

Definition 3.2.17 (Game Board)
The game board is defined as the set of all possible configurations S x Q).

The game I'(7,) is played by two players, namely Vbelard (the pessimist), who
wants to show that 7 = ¢ does not hold, whereas Jloise (the optimist) wants to show
the opposite.

Definition 3.2.18 (Move)

A game move from some configuration C' to configuration C’ is denoted as C' =p (",
where P specifies which player has determined this move. Vbelard makes universal =y-
moves, Jloise makes existential =-3-moves. We write = instead of = p if we abstract
from the player.

Unlike traditional Ehrenfeucht-Fraissé games, players do not have to move alter-
nately. The next turn is not determined by the player but by the second part of a confi-
guration, that is in effect a subformula of .

Definition 3.2.19 (Play)
A single play G7 (s,) of a game I'(7,) is a (possibly infinite) sequence Cy = p,

27

3. Parallel Model Checking Games

Cy =p, Cy =p, ... of configurations, with initial configuration Cy = (s, €), and for
all configurations C; € S x (). We will elide the transition system 7" and write G(s, ©)
instead if the context is unambiguous.

The model checking game I'(7, ¢) is then given by all its plays, that is, all possible
sequences Cy =p, ... which are played in accordance to the rules presented in the
forthcoming definition.

Definition 3.2.20 (Rules)
For the ith configuration C; = (s,), we state the game rules, telling when player P,
can move to a successor configuration C; 1, thus C; =p, C;11:

1. If A\(w) = false, then the play ends.
2. If A(m) = 1)1 A 1o, then Vbelard chooses j = 1 or j = 2, and C; 11 = (s,7)).

3. If \(r) = [K]1, then Vbelard chooses a transition s — ¢ with an action a € K
and Ci—i-l = (t, 7T].)

4. If \(7) = vX. Uy, then Ciq = (s, 71).

5. If AM(n)

true, then the play ends.

11 V 1, then Jloise chooses j = 1 or j = 2, and Cyy1 = (s, 7).

7. If A7) = (K)1, then Jloise chooses a transition s - ¢ with an action a € K and

(

(
6. If \(m)

(=

+1 = (7T1>

8. If \(m) = puX. Uy, then C; 41 = (s,71).

9. If \(m) = X, then there exists a single edge m —, 7’ in the formula graph, such
that 77" denotes the position of the fixpoint formula A(7') = 0 X. U x identified by
X. Hence Cj1 = (s, 7).

10. If A\(7) = p, then the play ends.
11. If A(w) = —p, then the play ends.

As moves 1,4,5, and 8—11 are deterministic, no player needs to be charged with them.
With regard to the forthcoming winning strategies and our algorithm, we will speak of
Vbelard-moves in cases 1-4, 9 and 10 if ¢ = pu, and Jloise-moves in all other cases. A
configuration C} is then called V-configuration or 3-configuration, respectively.

So far, we only laid out the rules according to which a game must be played. What
remains is to specify which player wins a play.

28

3.2. The p-Calculus

G——()
Figure 3.5.: A transition system to demonstrate different plays in a model checking
game: on all paths, only a-actions can be observed.

Before we state winning conditions formally, it is instructive to consider which kinds
of situations can arise. For example, we present three possible plays for the game given
by the transition system in Figure 3.5 and the formula

o =pX. (—)X V (a)true

which expresses the possibility to perform an a-action eventually. For presentational
reasons, we will substitute a position 7 in the formula graph with the actual subformula
A() it represents.

o Gi(s0,p) = (S0,%) =3 (S0, (—)X V (a)true)
=3 (S0, (a)true)
=3 (81, true)

L4 G2(307 @) = (807 gp) =3

L4 G3(307 SD) - (SOa 90) =3

The first play (G; clearly is won by Jloise because she forced it to end in a true-
configuration. It is also clear that Vbelard wins G5, because Jloise became stuck as
there is no a-action possible in state s;.

We must now ask the question: Who wins the game (3 that has an infinite loop?
As the game contains infinitely many X -configurations it is equivalent to an infinite

29

3. Parallel Model Checking Games

unfolding of a minimal fixpoint formula. That means the fixpoint could not be com-
puted (otherwise the game should be of finite length). Minimal fixpoints are special
(second-order) 3-quantifiers. So dloise—who should do correct existential moves—
failed. Therefore Vbelard wins (5.

A configuration is called terminal if no (further) move is possible. A play Cy = - - -
is called maximal iff it is infinite or it ends in a terminal configuration. The winner of a
maximal play is then defined in the following way.

Definition 3.2.21 (Winning Condition)
We distinguish between finite and infinite maximal plays. If the play is finite, thus
ending in a configuration (s, 7), then Vbelard wins a play G, iff

7) = false,

m) = (K),* or

) =pands & P(p)
)

—pand s € P(p)

T

Y
Y
Y
Y

™

Dually, Jloise wins a play G, iff
m) = true,
7) = [K],? or

o \(m)
o \(m)
o A\(m)
o A\(m)

pand s € P(p)
m) =-pand s & P(p)

An infinite play is won by Vbelard if the outermost fixpoint which is unwinded in-
finitely often is a p-fixpoint. Otherwise, the outermost fixpoint which is unwinded in-
finitely often is a v-fixpoint and Jloise wins the game.

As we have seen, given a transition system and a formula, there are several possible
plays and these not necessarily have the same winner. Thus, we must ensure that our
players play as good as they can, according to some strategy.

Formally, a strategy is a set of rules for a player P telling her or him how to move
in the current configuration. It is called history-free, if the strategy only depends on
the current configuration without considering previous moves. A winning strategy now
guarantees that the play which P plays according to the rules will be won by P.

Stirling showed that the model checking problem for the j-calculus is equivalent to
finding a history-free winning strategy for one of the players [91]: Let 7 be a transition

2Note that due to maximality of G’ we have s’ : s % s’ forany a € K.

30

3.2. The p-Calculus

system with starting state s, and let ¢ be a u-calculus formula. 7 = ¢ implies that
Jloise has a history-free winning strategy starting at (so,), and 7 [~ ¢ implies that
Vbelard has a history-free winning strategy for all plays starting at (so,¢). As a for-
mula either holds or is falsified, this result also implies that model checking games are
determined, that is for every game either VYbelard or Jloise has a winning strategy.

We will devote the coming sections to formalize how to compute winning strategies
in various ways.

Remark 3.2.22
In the coming chapters we will usually not deal with a game I'(7,) directly. Instead
we focus on its game graph @G = (Q, E), with) being the set of all configurations
C; in all plays of I'(7,), and E being the edge relation induced by all possible rule-
conforming moves = p,.

As the naming already suggests, there is strong similarity of a game graph to the
corresponding formula graph G(¢). We will exploit this similarity for our algorithms.

The rules from Definition 3.2.20 admit observations about the structure of a game
graph.

Remark 3.2.23

In a move (s,7) =p (', 7’) changes of the state part s to s” are driven by the formula
part 7, that is only through application of rules 3.2.20(3) and (7) it might happen at all
that s # s’. Furthermore, for all possible moves it holds that 7 # 7/, meaning there is
always progress in the second part of a configuration, and thus the formula graph does
not contain any trivial cycles. In consequence, the game graph does not contain trivial
cycles either.

31

3. Parallel Model Checking Games

3.3. Winning L -games

In the following, we concentrate on the alternation-free fragment L}L of the p-calculus.
This fragment admits a characterization of a game graph (& for a transition system 7°
and a formula ¢ in terms of the formula graph G(¢) which will lead us to intuitive
sequential and parallel algorithms to compute the winning strategy of a player, thus
solving the model checking problem whether 7 |= .

In order to get there, we first exploit the resemblance of the game graph ¢ and its
underlying formula graph G(p) by lifting the notions we have established previously
from one structure to the other.

Theorem 3.3.1

Let 7 be a labelled transition system and let ¢ € L; be a formula of the alternation-
free p-calculus. Furthermore, let & = (Q, E) be their resulting game graph. Then
there exists a set of components Q@ = {Q1,...,Q,} for @ such that properties from
components of the formula graph G(y) carry over, namely:

1. The set Q is a partition of), thatis Q = (JQ and VQ;,Q; € {1,...,m} : i #
J=QiNQ;=2.

2. In every subgraph induced by (); € Q either y-formulas and no v-formulas are
unwinded or v-formulas and no p-formulas. Just like components in the under-
lying formula graph, we call a component (Q; € Q respectively p-component or
v-component.

3. There exists a tree order < on Q such that for every game-graph edge (C,C") € E
with C' € @; and " € Q;, we have Q); < ();. More specifically, edges from a
node in (); lead to configurations in either the same (); or a child @);. Without
loss of generality, we may assume that (); < @; implies ¢ < j, so that smaller
components with regard to < have lower indexes.

Proof. By Theorem 3.2.12, the formula graph of ¢ admits a decomposition into either
- or v-components Q" = {Q, ..., Q' }. We can then show the desired properties:

1. Let each component (); be the set of configurations {(s,7) | 7 € Q}} with for-
mulas of component number ¢ in the formula graph’s partition Q’. Thus, we lifted
the formula graph’s partition onto the game graph, resulting in partition Q.

2. As the classification of a component as o-component is solely based on the for-
mula part of a configuration, it can be carried over directly from the formula
graph.

32

3.3. Winning L,,-games

a

e)——()

Figure 3.6.: A transition system

Figure 3.7.: A game graph and its partition.

3. The tree order < on Q, which is due to alternation-freeness, can be lifted from
the formula-graph partition @', such that for all 4, j € {1,...,m}, Q; <o Q)
implies @); < Q);.

O

Figure 3.7 shows the game graph for the transition system in Figure 3.6 and a formula
@ = pX ((vY.(0)Y)V(a)X)VuX'.((vY'(b)Y')A(a)X') € L}, which we already used
in Figure 3.4, along with its decomposition into components according to the formula
graph of .

Note that Vbelard-configurations are marked by rectangular boxes while Jloise-con-
figurations are drawn as ovals. The dashed and dotted lines identify ;--components and
respectively v-components. In all forthcoming examples, we write the formula instead
of its position in the second component of a configuration, to simplify our presentation.

Let us fix the decomposition of the game graph shown in the previous proof in the
following definition:

33

3. Parallel Model Checking Games

Definition 3.3.2 (Canonical Decomposition, Escape and Initial Configuration)
Let 7 be a labelled transition system and let ¢ be a formula of the alternation-free
p-calculus. Furthermore, let & = (@, E') be their game graph.

e The canonical decomposition of & is the decomposition according to Theo-
rem 3.3.1into Q = {Q1, ..., Q,,} which are tree-ordered by <.

o LetQj,,...,Qj, be the components that are children of ();. The escape config-
urations of a component); (denoted by | (Q);|) are the configurations which are in
a child component and are successor configurations of a configuration in ¢);. That
is:

1Qi] ={C € Q, | Q;is achild of Q; and
3C" € Q; such that (C',C) € £}

e The initial configurations [();] of a component (); are those configurations which
are escape configurations for a parent component, and for (), additionally the
initial configuration Cy of the game graph.

e In compliance with the terminology of formula graphs, we define the component
number of a configuration C' of the game graph as the (unique) index ¢ of a com-
ponent (); that contains the configuration: C' € Q);.

Remark 3.3.3

The formula part of an escape configuration is labelled by a fixpoint formula. Further-
more, a component has no escape configurations, that is |Q;| = &, iff it is a leaf with
respect to the tree order <.

As components are tree-ordered by <, we can guarantee that every infinite play even-
tually gets trapped within some component ();, thatis foraplay Cy = ... = Cy = ...
there exists a configuration C); such that later in the play all configurations C}, 7 > k
belong to component ();.

As example, we pick the case that this trapping component (); is a v-component.
Hence, it contains a configuration with a v-fixpoint which appears infinitely often in
the play, and according to the winning conditions in Definition 3.2.21, Jloise wins this
play. Thus, Jloise is interested keeping the play inside a v-component. Consequently, to
avoid losing the play, Vbelard would be well-advised to make it his strategy to leave v-
components if at all possible. Thus, he must try moving to an escape configuration. With
a dual argument, Jloise must try to leave p-components via their escape configurations.

Remark 3.3.4
The number of components of a game graph’s canonical decomposition is identical to

34

3.3. Winning L,,-games

the number of the components of the graph of the formula according to Theorem 3.2.12.
Also, the component number of a configuration is identical to the number of the com-
ponent of its formula label (which is defined in the obvious manner). Thus, once we
computed the component number of a (sub)formula as described in Remark 3.2.13, it is
a constant operation to check the component number of a configuration.

35

3. Parallel Model Checking Games

3.3.1. Sequential Coloring Algorithms

In this subsection, we present two sequential approaches for determining winning strate-
gies, thereby solving the model checking problem. Note that we develop these algo-
rithms foremostly as an intermediate step towards efficiently parallelizable algorithms,
which we will detail in the next section. For an actual sequential implementation,
though, a different algorithm would be preferable, for example the one presented by
Lange [62], as it performs slightly faster in practice and is easier to implement.

The basic idea of both algorithms is labelling a configuration C' with colors green or
red, depending on whether Jloise or Vbelard has a winning strategy for the game starting
in this configuration C'. Furthermore, they both employ the canonical decomposition of
the game graph according to Definition 3.3.2. They differ however in the order the
components are processed. The first algorithm proceeds bottom-up, the second top-
down.

Figure 3.7 shows a game graph and its canonical decomposition into disjoint sets ();
that are p- or v-components as per Definition 3.3.2. Furthermore, for every C' € Q);
and ¢’ € @; for which there is a possible move from C to C’, we have that i < j.
Thus, every infinite play gets trapped within a single ();, and the winner depends on the
fact whether a p-formula or a v-formula is unwinded in ();. For the example shown in
Figure 3.7, we obtain four components, @)1, . .., Q4.

Coloring Bottom-up

First, we discuss how to color a single component. Let (); be a component of the canon-
ical decomposition. To simplify the presentation, assume that (); is a y-component. The
forthcoming explanation can be dualized for v-components.

Let |Q;] denote the set of escape configurations and assume that every escape con-
figuration C' € [();] is either labelled green or red, expressing that either Jloise or
Vbelard has a winning strategy from this configuration, respectively. All other configu-
rations have no color initially, to which we may refer to as white.

Every play starting in some configuration C' € (); will either

1. eventually reach an escape configuration and never touch a configuration of Q);
again,

2. will end in a terminal configuration within ();, or
3. will go on infinitely within ();.

In the first case, the winner is determined by the color of the escape configuration. In
the second case, the terminal configuration signals whether Jloise or Vbelard has won.
The last case makes Vbelard a winner, as a p-formula is unwinded infinitely often.

36

3.3. Winning L,,-games

Algorithm 3.1 initializeConfiguration(conf)
Initialize counts for configuration conf.

1: if conf is Vbelard-configuration then

2: count(conf,RED) :=1

3: count(conf, GREEN) := |post(conf)|
4: else /+ conf is Jloise-configuration * /
5: count(conf,RED) := |post(conf)|

6: count(conf, GREEN) := 1

7: end if

Algorithm 3.2 color(conf)
Compute color for configuration conf.
1: if Jeolor € {RED, GREEN} : count(conf, color) = 0 then
2 return color
3: else
4: return \(conf)
5: end if

The second case justifies coloring every terminal configuration within (); according
to the winning conditions from Definition 3.2.21 in the following way. If the formula
part of the configuration is true, a universal modality formula [K¢, a proposition p that
is valid in the current state, or a negated proposition —p not valid in the current state,
then the configuration is colored with green. Otherwise, the formula part is false, an
existential modality (K)¢, a non-satisfied proposition, or a satisfied negated proposition
and the configuration is colored with red.

Once a configuration Cy, € Q; U |Q;] is labelled red or green, its predecessors are
labelled if possible. Thus, an Vbelard-configuration C' is labelled red if CY is red, and
labelled green if all successors {C; | C' = C}}, are green. In Algorithm 3.1, we use
two counters for this book-keeping—one for each color—to determine the number of
successors of (', which need to be colored before C), itself can be colored. A color can
be determined, if one of the counters reaches zero (Algorithm 3.2).

If C' is an dloise-configuration, it is treated dually, that is the roles of the colors
are swapped. If a predecessor configuration C' has obtained a new color through this
process, the labelling is propagated further in the same way. The backwards color prop-
agation within a single component is detailed in Algorithm 3.3.

The coloring process allows the following insight:

Lemma 3.3.5 (Color Stability)
Once a configuration obtained a color, it remains stable, that is, the color never changes.

37

3. Parallel Model Checking Games

Algorithm 3.3 colorizeComponent(();), sequential version
Colorize configurations of component ();.
Require: Work := {COLOR(pred, A\(conf)) | pred € pre(conf),

conf € Q; U [Q;], A(conf) # WHITE}
while Work # @ do

COLOR (conf, color) := get(Work)

1:

2

3: decrement count(conf, color) /=« update color information x /
4. color’ := color(conf)

5. if color’ # \(conf) then

6 A(conf) := color’

7 for each pred € pre(conf) N @Q; do

8 /= only work on current component x /
9 put COLOR (pred, A(conf)), Work

10: end for

11: endif

12: end while

As color labels are stable, and a component contain only finitely many configurations,
the following is immediately obvious:

Corollary 3.3.6
The coloring process is terminating.

However, this labelling process can leave some configurations of the component Q);
uncolored. Let us now understand that all remaining uncolored configurations of a j-
component can be labelled red.

Theorem 3.3.7

For any game starting in a configuration C, € @); without a color, where Q); is a p-
component, Vbelard has a winning strategy for a game starting in C}. Dually, Jloise has
a winning strategy for any game starting in a configuration C';, €); without a color,
where (); is a i-component.

Proof. We will direct our focus to Vbelard’s case only, as it can be dualized for Jloise
easily. Firstly, check that every uncolored configuration has at least one uncolored suc-
cessor configuration. Vbelard’s strategy will be choosing any one uncolored successor
in this situation. Then he will win every play. Every uncolored Jloise-configuration has
red or uncolored successors, so Jloise has the choice to move to configurations which
are winning for Vbelard or to move to an uncolored configuration. Vbelard will choose
in an uncolored configuration an uncolored successor, or, if Jloise has moved to a red
configuration then he will choose a red successor.

38

3.3. Winning L,,-games

Summing up, every play will either end in a red terminal configuration, lead to a red
escape configuration from which Vbelard has a winning strategy, or will go on infinitely
often within ();, and thus Vbelard wins in either case. L

The previous theorem is the crucial observation allowing a powerful parallel version
of this algorithm. Observe that we do not need to employ any cycle detection algorithm?
in the labelling process. We know that the described backward color propagation pro-
cess is leaving only those configurations uncolored that are on or lead to a cycle which
furthermore can be controlled by Vbelard.

Our first sequential algorithm now processes the components in a bottom-up fashion.
First, leaf components which have no escape configurations are considered and colored.
Now, for any parent component the escape configurations are labelled and, again, our
procedure will color the component.

Let us turn back to our example shown in Figure 3.7. It is partitioned into four com-
ponents, ()1, ...Q4. One leaf component is (). The single terminal configuration
(s2, (b)Y") requires Jloise to present a b-successor of s,. However, in the underlying
transition system, there is no successor. Thus, the configuration will be labelled red.
Now, propagating the colors to the predecessor configurations will color every configu-
ration of ()5 with red.

The other leaf component ()4 in our graph will be treated in the same manner as ()s.

The next component to handle with respect to our tree order is (3. It has the single
escape configuration (s, vY”’.(b)Y"), which is already colored red. This color is prop-
agated to (s1,vY".(b)Y’ A (a)X’), which now is colored red. Further propagation will
color the whole component ()3 with red.

Next, we proceed with Q1. (s1,vY.(b)Y") propagates red to (s1,vY.(D)Y V (a)X).
Since the latter is an Jloise-configuration, it remains uncolored. A similar situation
occurs for the propagation due to (s1, uX'.((¥Y'.(b)Y’) A (a)X")). Thus, all color
information is propagated within ();. The current situation is depicted in Figure 3.8
in which red configurations are filled with m. Now, the second phase of coloring a
component comes into play. All remaining configurations will be labelled red since (),
is a u-component. Thus, Vbelard has a winning strategy for the presented game and we
know that the underlying formula is not valid in the initial state of the transition system.

Complexity It is a simple matter to see that the previous labelling algorithm has a
linear running time (in the worst case) with respect to the size of the game graph. The
size of the game graph is bounded by the product of size of the underlying transition
system |7 | and the length of the formula ||, that is, it is bounded by |7| X |¢|. How-
ever, only the part of the transition system related to the underlying formula has to be

3cycle dectection is costly in a parallel or distributed setting

39

3. Parallel Model Checking Games

Figure 3.8.: The situation before the second phase

considered. For example, checking (K')y in a state s requires only to look for a succes-
sor reachable by actions a € K that satisfies ¢. All successors reachable by different
actions @’ ¢ K need not be considered. While in the worst case, the whole transition
system has to be considered checking a formula, only a part of the system has to be
generated in typical examples. Thus, we can call our algorithm to be local or on-the-fly.

Coloring Top-down

For the second algorithm, let us assume that the game graph is again partitioned into
components (); which form a tree. In order to get a result while considering as few
components as possible, the algorithm will process the components in a top-down man-
ner.

Again, we first discuss how to color a single component. Let (); be a component of
the canonical decomposition. We assume that (); is a y-component recalling that the
forthcoming explanation can be dualized for v-components. Let |); | denote its escape
configurations. However, we will not assume that all escape configurations |[Q);| are
colored already. Still, every play will either

1. eventually reach an escape configuration and never touch a configuration of @);
again,

2. will end in a terminal configuration within ();, or

40

3.3. Winning L,,-games

Algorithm 3.4 color(conf), top-down version
Compute color for configuration conf

—_—

color’ := color(conf)

2: if color’ # WHITE then

3: return color’

4: elseif Y rep Ligurreny cOunt(conf,c) = 0 then
5. return LIGHTRED

6: elseif > Grepn Ligirareeny cOUNt(conf,c) = 0 then
7 return LIGHTGREEN

8: elseif conf € |Q;] then

9: if (), is a y-component then

10: return LIGHTGREEN

11: else /x Q;isav-component */

12: return LIGHTRED

13: end if

14: else

15: return A(conf)

16: end if

3. will go on infinitely within ();.

Again, the winner of a play is clear in Case (2). Furthermore, if Jloise has neither
a way to reach a winning terminal configuration nor to leave the component, she will
loose. So, if she has no chance to reach a winning terminal configuration, the best we
can hope for her, is that she indeed has a chance to leave the component successfully.
The crucial point of our algorithm is that we initially color all escape configurations of
the component under consideration with lightgreen, denoting that this configuration is
probably a winning configuration for Jloise.

As before, the color information (full as well as light colors) is propagated to prede-
cessor configurations and used for coloring this configuration. That means, an Vbelard-
configuration is labelled red if one successor is red, labelled lightred, if no successor
is red but at least one is lightred, labelled lightgreen, if all successors are [ightgreen or
green and one is indeed lightgreen, and labelled green, if all successors are green. In
all other cases, the configuration remains unlabelled. An Jloise-configuration is treated
dually. Note that in cases without light colors involved, these are the same rules as for
the bottom-up approach described previously.

In order to keep track of successors colored with any one of the light colors, we intro-
duce two additional counters per configuration, which must be initialized with zero for
every configuration in the game graph. To simplify color calculations in Algorithm 3.4,
they count negative. Their absolute counter value reflects the number of light-colored

41

3. Parallel Model Checking Games

successors of a configuration.

Note that lightred comes only into play for v-components. If a predecessor obtained
a new color, this labelling is propagated further. A case analysis shows the following
result.

Lemma 3.3.8 (Color Stability)
Once a configuration obtained a full color, it is stable. A light color is only changed to
the corresponding full color.

Corollary 3.3.9
The coloring process is terminating.

Again, the labelling process may leave some configurations of (); uncolored. Let us
now understand, that, just like in the bottom-up coloring process, all remaining uncol-
ored configurations can be labelled red.

Theorem 3.3.10
For any game starting in a configuration without a color, Vbelard has a winning strategy
for a game starting in this configuration.

Proof. First, check that every uncolored configuration has at least one uncolored suc-
cessor configuration. Vbelard’s strategy will be any choosing one uncolored successor.
Then he will win every play. Every uncolored Jloise-configuration has red, or uncol-
ored successors, so Jloise has the choice to move to a configuration which is winning
for Vbelard or to move to an uncolored configuration. Vbelard will choose in an uncol-
ored configuration an uncolored successor, or, if Jloise has moved to a non-terminal red
configuration, he will choose a red successor. Summing up, every play will either end
in a red terminal configuration, move to a red escape configuration in which Vbelard
has a winning strategy, or will stay infinitely often within (); and Vbelard wins. U

Again, the previous theorem is crucial and admits a parallel version of this algorithm
which will work top-down.

Unlike in the bottom-up case, our component now may contain configurations which
are colored with lightgreen. However, we cannot guarantee that Jloise has indeed a
winning strategy for games starting in such a configuration. Thus, we remove the color
of such a configuration. If the initial configurations of the component are colored, we
are done. If not, we have to consider a child component to get further evidence.

Let us turn back to our example shown in Figure 3.7. We introduce the color white
to identify uncolored configurations, assuming that initially every configuration has a
white color. We start with the root component (J);. Both escape configurations are
initially labelled lightgreen (cf. Figure 3.9%).

42

3.3. Winning L,,-games

Figure 3.9.: Starting with ().

sl,l/Y.(b}Y‘ \: G],(d)X)

—_—_—— - - —

Figure 3.10.: Propagating assumptions.

43

3. Parallel Model Checking Games

Figure 3.11.: Propagating assumptions for (J; and drawing conclusions.

Propagating color information will color every configuration of)y with lightgreen,
which is shown in Figure 3.10.

The subsequent phase of coloring white-configurations with red and lightgreen-con-
figurations with white will turn the whole component to a complete white one, so that
it looks similar to the one in the beginning. Thus, the assumptions did not help to find
a winner. Therefore, we have to check a child component of ();. Let us proceed with
(2>. Since there are no escape configurations, the whole component is colored as be-
fore. We learn that the lightgreen assumption for the initial configuration of () was too
optimistic. Redoing the coloring of (), now with more but still not full information,
will color some configurations of (); red but will still leave the initial configuration
uncolored. Figure 3.12 shows the colored game graph right before recoloring the spec-
ulatively lightgreen colored configurations back to white.

We turn our attention to ()3. We assume that Jloise has a chance to leave the com-
ponent via (s1,vY’.(b)Y"). Thus, we color this configuration lightgreen. However, the
propagation does not influence the preceding Vbelard-configuration. So all remaining
configurations are colored red. Now, all escape configurations of (), are colored and a
further coloring process will color the complete component (), red. Note that we saved
the time and especially space for considering ()4. Figure 3.12 shows the colored game
graph, again right before recoloring lightgreen back to white.

*lightgreen configurations are identified by writing their label in lightgreen.

44

3.3. Winning L,,-games

Figure 3.12.: Propagating assumptions for (3 and drawing conclusions.

Complexity It is a simple matter to see that the previous labelling algorithm has a
run-time bounded by n x m where n is the number of configurations of the game graph
and m is the size of the maximum length of a path from the root component to a leaf
component. The latter number is bounded by the nesting of fixpoint formulas which is at
most the length of the formula. Thus, we get as an upper bound s x [?> where s is the size
of the underlying transition system and [is the length of the formula. While in the worst
case, this complexity is worse than in the bottom-up approach, we found out that the
algorithm often detects the truth-value of a formula in a given state much faster. Note,
that this algorithm exhibits an even bigger degree of locality than the previous one, that
is, even less parts of a game graph need to be considered to determine a solution of the
model checking problem.

45

3. Parallel Model Checking Games

3.4. Winning Games for L}L-Formulas in Parallel

Given a transition system and an Li—formula, our approach is both to construct the
game graph as well as to determine the color of its configurations in parallel. The main
question is how to color a single component in parallel. The tree of components can then
be handled either sequentially in a top-down or bottom-up manner, or, if permitted by
computing and storage resources, as well in parallel manner. For the moment, however,
we concentrate on how to construct and color a single component in parallel.

3.4.1. Distributing the Game Graph

We will first discuss how to construct (a component of) the game graph in parallel. It is
obvious that this can be carried out by a typical breadth-first strategy. Given a node g,
determine its successors ¢, . . ., ¢,. Now, the successors can be processed in the same
manner in parallel. However, to obtain a terminating procedure, only exactly the g;
not processed before must be expanded. All states generated must be stored within the
NOW, and load sharing must be guaranteed. On a shared memory architecture, this does
not involve big conceptual problems. For distributed memory machines, however, this
is a little bit more difficult.

A first idea might be to distribute the first ¢y, . . ., ¢, to the first n processors, and these
process the ¢; as described before and distribute the successors to the next processors.
However, deciding whether a ¢; was processed before becomes an expensive operation.
Every processor could have processed ¢; and should therefore be consulted. In the worst
case, for every node, such a broadcast is required. This yields no reasonable algorithm.

A different, often-employed way to store graphs on a distributed memory machine is
to divide the graph’s adjacency matrix M € {0, 1}/9/xI®l into equally sized blocks and
to store each block on a single processor [87]. This has several advantages. Firstly, the
blocks of the matrix can be generated in parallel. Second, given nodes p,q € V, itis
easy to check whether there is an edge from p to ¢, i.e. whether M, , = 1. Since there
is a unique location for the block of the matrix containing the value for the pair (p, ¢), a
single communication is needed. Third, every processor gets the same amount of data.
This promises a similar load for every processor. Furthermore, we want to mention that
several typical graph algorithms can be formulated in terms of matrix operations and
admit a good parallelization [87].

However, for our problem this approach cannot be applied. Our resulting adjacency
matrix would be sparse and storing it completely would yield too much overhead. Stor-
ing only the non-zero entries, on the other hand, does not guarantee an equal load for
the processors. But more importantly, the number of nodes of our graph is not known
a priori but computed while constructing the graph.> Hence, the partition of the whole

>In the context of model checking, the transition system is often not given explicitly but expanded at

46

3.4. Winning Games for Li -Formulas in Parallel

game graph into blocks cannot be determined in advance.

We follow Ciardo et al. [23], Stern and Dill[90]. First, we employ adjacency lists
instead of matrices. Note that we need also links to the predecessors as well as to the
successors of a node for the labelling algorithm. Let f be a function mapping the states
of the game graph to a processor of our network. Usually, a function in the spirit of
a hash-function is used to assign to every state an integer and subsequently its value
modulo the number of processors. Then, f determines the location of every state within
the network uniquely and without global knowledge. In a breadth-first manner, starting
with the initial state ¢ of the game graph, the state space can be constructed in parallel
with the help of f in the following way. Given a state ¢ (and possibly some of its direct
predecessors), send it to its processor f(q). If ¢ is already in the local store of f(g), then
q is reached a second time, hence the procedure stops. If predecessors of ¢ were sent
together with ¢, the list of predecessors is augmented accordingly. If ¢ is not in the local
memory of f(q), it is stored there together with the given predecessors as well as all its
new computed successors qi, . . ., q,. These are sent in the same manner to their (with
respect to f) processors, together with the information that ¢ is a direct predecessor.
The corresponding processes update their local memory similarly.

In terms of the matrix implementation, for every ¢; a unique processor f(g;) is de-
termined on which the non-zero entries of the row ¢; and column ¢; of M are stored.
Checking whether a ¢; was processed before can be checked locally on f(g;). Accessing
the successors and predecessors of a node is as simple as in the matrix implementation.
The load for the processors depends on the function f. Hence, we have similar ad-
vantages as in the case of the matrix implementation while avoiding that the maximal
number of nodes has to be known in advance.

Actually, since first proposed [78, 23], this approach is widely used in the domain of
parallel model checking [21]. Especially, Bell [9] studied the effect of function f with
respect to equal distribution and number of processor crossing edges in greater detail.

3.4.2. Labelling the Game Graph

In the sequential setting, one would typically apply a depth-first search for labelling the
nodes red and green, for example the one described by Lange [62]. However, it is not
clear how to do this in parallel efficiently. Instead, we propose to extend the sequential
algorithms described in Section 3.3.1 towards a parallel implementation. As explained
in the previous subsection, it is easy to construct (a component of) the game graph in
parallel employing a breadth-first search. When a terminal configuration is reached, a
backwards coloring process can be initiated as described in Section 3.3.1. This can be
carried out in parallel in the obvious manner. If all color information is propagated,
the sequential algorithm performs a coloring of uncolored nodes and an erasing of light

run-time from a formal system description.

47

3. Parallel Model Checking Games

colors (cf. Section 3.3.1). It is no problem to do this recoloring on the distributed game
graph in parallel. Through Theorem 3.3.7 or Theorem 3.3.10, no cycle detection is
necessary but every workstation can do this recoloring step on its local part of the game
graph.

However, to check that all color information has been propagated, a distributed termi-
nation algorithm is employed. Several algorithms for detecting termination have been
proposed [73, 33]. As there is no dependency to the size of the game graph, their influ-
ence on our algorithms can be neglected, and thus they will not be discussed here.

Components may be labelled in a bottom-up or top-down manner as described in
Section 3.3.1. Hence, we can characterize a family of algorithms parameterized on the
order in which components are processed.

Theorem 3.4.1
The algorithms outlined in this subsection label a node (s,) of the game graph green
if 7, s = 1. Otherwise, the node is labelled red.

3.4.3. A Family of Parallel Coloring Algorithms

To describe our approach in more detail, we proceed by developing several fragments of
our algorithm in pseudo code. In particular, we show that the two steps of constructing
the game graph and labelling the nodes can be carried out in an integrated way. More
details about an actual implementation of the algorithms are given in Section 4.1.

Like in the sequential case, at the heart of our algorithm is the processing of a single
game-graph component (), as depicted in Algorithm 3.5. Given a component (number),
it expands all configurations of the component. It can be applied either for a parallel
bottom-up or top-down labelling algorithm. As the color information of a terminal
node is always correct (non-light) color, a coloring process is initiated, if a terminal
configuration is reached. Colors are then propagated backwards.

Our algorithm is designed for a distributed setting. Each processor runs an unmod-
ified copy, and we can only assume a local view of all data structures as explained in
Section 3.4.1. Thus, we index the local part of a data structure with the number of its
“owning” processor (index 7 for processor F;).

For processors to communicate among each other, each P; uses a queue Work; where
processors can deposit requests, for example via some message passing mechanism. The
algorithm then continually processes requests from its queue until the handling of the
current component is completed. The locally known configurations of a game graph are
stored in set Coonf,.

In lines 1-4, the component’s initial configurations [();| are expanded, each via Al-
gorithm 3.6. If a configuration conf is not yet known, its successors post(conf) are
calculated and put on respective work queues. Then the algorithm enters a loop (lines 5—
28), where it retrieves the next request msg, and processes it.

48

3.4. Winning Games for Li -Formulas in Parallel

Algorithm 3.5 colorizeComponent;(Q;), parallel version

Colorize those configurations of component); U |Q; | owned by processor i.

1: /=« configuration conf from initial configurations of @); * /
2: for each conf € [(Q);] do
3: processSuccessors(conf, (Q);)
4: end for

5: repeat

6: msg = get(Work;)
7: if msg = EXPAND(pred, conf) then
8 if conf ¢ Conf, then

9 processSuccessors(conf, Q;)

10: initializeConfiguration(conf)

11: A(conf) := color(conf)

12: end if

13: if \;(conf) # WHITE then

14: put COLOR (pred, Ai(conf)), Workn(preq)

15: end if

16: —; = —; U {(pred, conf)}

17 else if msg = COLOR(conf, color) then

18: decrement count(conf, color) /= update color information * /
19: color’ := color(conf)

20: if color’ # X\i(conf) then

21: Xi(conf) := color’

22: for each pred € pre,(conf) N Q; do

23: /% only work on current component * /
24: put COLOR (pred, Ai(conf)), Workypreq)
25: end for

26: end if

27: end if

28: until msg = COMPONENTCOMPLETED

Algorithm 3.6 processSuccessors(conf, ();), parallel version
Process successors of configuration conf in component ();.
: Conf, := Conf, U {conf}
if conf € Q; then

for each s € post(conf) do

put EXPAND (conf, s), Workys)

end for

end if

—_—

A A i

49

3. Parallel Model Checking Games

Algorithm 3.7 color(conf), parallel bottom-up version

Compute color for configuration conf.

. if Jeolor € {RED, GREEN} : count(conf, color) = 0 then
2: return color

3: else

4: return \;(conf)

5: end if

—_

Algorithm 3.8 recolorComponent;(();), parallel bottom-up version

. if (), is a p-component then
2: color :== RED

3: else /* (Q;is a v-component x/
4: color := GREEN

5: end if
6

7

8

—_

: for each conf € Q);, \;(conf) = WHITE do
Ai(conf) := color
: end for

Algorithm 3.9 Main procedure, parallel bottom-up version

for each component (); € Q in bottom-up order do
for each processor P; in parallel do
colorizeComponent,(Q),)
recolorComponent,((),)
Propagate colors from initial configurations [Q);] to {Q | @) < Q;}.
end for
end for

50

3.4. Winning Games for Li -Formulas in Parallel

In case of a request EXPAND (pred, conf) (lines 7-16) to expand more of the game
graph, we check whether the to-be-expanded configuration C' has not yet been seen
(line 8). It is then expanded (line 9) and initialized (line 10). A color label \(conf)
is determined (line 11). It is then possibly propagated to predecessor pred (lines 13—
15). This request is put on the queue of the processor F,(,req) Who is responsible for
configuration pred. A new game graph edge (pred, conf) is then added (line 16). It is
later needed to propagate color changes to predecessor configurations.

We process a coloring request COLOR (conf, color) (lines 17-27) by recording that
some successor of configuration conf has just obtained color color (line 18). Then,
it is determined whether that color change has impact on conf and its color is updated
accordingly (lines 19-21). Also, on color update, the new color is propagated backwards
to each predecessor pre;(conf) N Q; of conf in the current component (lines 22-25).

The processing continues until none of the processors has any requests left to handle,
in which the algorithm finishes. This situation is detected by an termination check
algorithm (not depicted here) which then inserts a message COMPONENTCOMPLETED
into every processor’s work queue.

Note how the coloring part (lines 17-27) of Algorithm 3.5 largely resembles its se-
quential counterpart Algorithm 3.3, as does the subroutine to determine a configura-
tion’s color (Algorithm 3.7). They mainly differ in using and updating only the locally
known part of data structures.

Within the algorithm, some issues pointed out earlier are handled implicitly, and are
worth mentioning.

Remark 3.4.2

The coloring of terminal configurations happens without special-casing, right after they
are initialized (line 10). They are without successors, hence one of the counters (which
one depends on the type of configuration) will be set to zero (Algorithm 3.1) causing
them to be colored (Algorithm 3.7) immediately (line 11).

Note that never both RED and GREEN counters can equal zero, because of their initial
values. Decrementing counters of a configuration conf happens at most as many times
as there are successors post(conf) to that configuration, and the sum of both counters
equals 1 + |post(conf)].

Only on two occasions do counters change in the algorithm (lines 10 and 18) and col-
oring requests are sent only if a color change occurs as a result of a change in counters.
For the expansion case, it is sufficient to propagate the color to the predecessor pred
which caused the expansion (line 14). We can distinguish two cases:

e A configuration conf is new conf ¢ Conf, that is, only the single predecessor

pred is known. If conf is a terminal configuration, its color is determined as lined
out previously, and it is propagated to its pred.

51

3. Parallel Model Checking Games

e Configuration conf has been visited before (conf € Conf), thus we can assume
that previous predecessors know its color already. Then, the color only needs to
be propagated to the new predecessor pred.

On the other hand, in the coloring case a change of the color label must be propagated
back to all predecessor configurations already known.

An important measure for distributed algorithms is their message complexity, that is
the number of messages exchanged by all processors.

Lemma 3.4.3 (Component Message Complexity)

The number of requests for expansion and coloring a component is bounded by the size
of the component. Thus, the message complexity of coloring a single component (); is
linear with regard to its size |Q);|.

Proof. For the case of expansion of the game graph, processSuccessors(conf, ();) is
called exactly once per configuration (line 8-9). Then, for each edge pred — conf of
the game graph, exactly one message EXPAND (pred, conf) is sent.

The backwards color propagation process sends a single coloring request per edge on
each color change. As a component’s color changes at most once, one coloring request
per edge is generated indeed. O

When coloring components in bottom-up order, each component is considered only
once, the message complexity for Algorithm 3.9 is immediately clear from Lemma 3.4.3.

Theorem 3.4.4
The bottom-up coloring algorithm of game graph (7 has linear message complexity with
regard to its size |&|.

For the top-down coloring version (Algorithm 3.12) the same algorithm for coloring
a component can be reused (Algorithm 3.5), provided the coloring of escape configura-
tions (Algorithm 3.10) and the recoloring of uncolored configurations (Algorithm 3.11)
are adjusted to deal with light colors.

3.4.4. Algorithmic Variations and Optimization Issues

We discussed several possibilities to process the components. In the examples shown
in Section 3.3.1, we suggested a depth-first strategy. However, one could also use a
breadth-first, bounded depth-first, or parallel breadth-first strategy. Depending on the
employed strategy, the run-time of our algorithm is linear or quadratic with respect to
the size of the game graph. Although the top-down case has a less appealing worst-case
run-time, its improved on-the-fly behavior through the employment of light colors can

52

3.4. Winning Games for Li -Formulas in Parallel

Algorithm 3.10 color(conf), parallel top-down version

Compute color for configuration conf

1:

e e e e
AN O

D A U

color’ := color(conf)
if color’ # WHITE then
return color’

else if ZCG{RED,LIGHTRED
return LIGHTRED

else if ZCE{GREEN,LIGHTGREEN}
return LIGHTGREEN
else if conf € |Q;] then
if); is a y-component then
return LIGHTGREEN
else /x ();isav-component */
return LIGHTRED
end if

, count(conf,c) = 0 then

count(conf,c) = 0 then

. else

return \;(conf)

. end if

Algorithm 3.11 recolorComponent,(Q);), parallel top-down version

—_—

10:

12:
13:
14:

D A U

. if); is a u-component then

color :== RED
else /=« ();isav-component %/
color := GREEN
end if
for each conf € Q; U |Q;] do
if \;(conf) = WHITE then
Ai(conf) := color
else if \;(conf) € {LIGHTRED, LIGHTGREEN } then
Ai(conf) := WHITE
count(conf, LIGHTRED) := 0
count(conf, LIGHTGREEN) := 0
end if
end for

53

3. Parallel Model Checking Games

Algorithm 3.12 Main procedure, parallel top-down version
for each component (); € Q in top-down order do
for each processor P; in parallel do
colorizeComponent,(Q);)
recolorComponent; (Q);)
for each components Q; € {Q} | Q; < Q;} do
Propagate colors from initial configurations [Q);] to Q;
end for
end for
end for

be beneficial still, considering that a significant part of the game graph might not even
be considered to obtain a result.

More optimizations are possible: Only the colors of escape configurations are needed
when coloring a component. Thus, all other configurations of a child component can be
deleted for coloring the current component. Furthermore, a configuration is of no use if
all its predecessors are colored (with a full color). Especially in the top-down algorithm,
this may be used to reduce the size of a component before the child components are
considered.

In general, it is possible to design one variant of the algorithm in a way that only a
single component is completely stored in the memory of workstation cluster while from
the other components only the initial and escape configurations are needed. The price
to pay for this implementation is that some components have to be reconstructed.

Another variant of our algorithm can be obtained by taking subformulas instead of
the occurrence set of the subformulas for defining the graph of the formula (Defini-
tion 3.2.10). The resulting effect will be that the components of the game graph no
longer constitute a tree order but form a directed acyclic graph. It can be expected that
the resulting game graph is smaller since nodes may be shared. However, the tree order
simplifies the decision when a component can be removed, as described in the previous
paragraph.

Another optimization axis lies in the distribution function which decides where a con-
figuration is stored. For example, the number of edges “crossing” different processors
((s,m) —(s', ") with h((s, 7)) # h((s’,7"))) should be reduced, as they trigger poten-
tially expensive communication. Reconsidering that the state part s of a configuration
can only change through unwinding a modality operator [K)y, this can be achieved to
some extent by making the distribution function independent of the formula part 7, thus
coercing those configurations only differing in this part to the same processor.

54

3.4. Winning Games for Li -Formulas in Parallel

3.4.5. Calculating Winning strategies

As pointed out already when motivating the games framework, a winning strategy does
not only provide an answer to the model checking question but can also be applied for
interactively debugging the underlying system. It is possible to extend our algorithm for
not only asserting the existence of a winning strategy, but also providing one.

Note that the color of a terminal configuration in the game graph is a winning position
for one of the players. If the color information is propagated to a predecessor without
a color (white) and this leads to a color of the predecessor, it is clear how the corre-
sponding winner has to chose. In other words, when a configuration becomes colored
with color due to some request COLOR (pred, color) originating from the coloring of
a configuration conf, the player’s strategy is to choose conf in configuration pred. If
a configuration is colored during the recoloring phase (Algorithm 3.8 or 3.11, respec-
tively), we pointed out in the proofs of Theorem 3.3.7 and Theorem 3.3.10 that the right
strategy would be to choose a previously white successor.

55

3. Parallel Model Checking Games

Figure 3.13.: A transition system.

3.5. Extensions towards L/?L

In this section we explain how model checking for Li—formulas can be carried out by
iteratively using a procedure for checking L}L—formulas. Firstly, we describe how to
reduce alternation depth in the usual fixpoint computation. In the next subsection we
show how this observation has to be read when dealing with game graphs. As result,
we obtain a game-based sequential model checking algorithm for Li—formulas, which
employs the game-based algorithm for Lz—formulas as detailed in the previous sections.
Finally, we describe in which way this algorithm can be parallelized.

3.5.1. Reducing Alternation Depth

The basic idea for reducing alternation depth is to resolve fixpoint variables of the max-
imal alternation depth using the iteration method. In the remaining computations only
formulas with lower alternation depth are involved.

As a running example, we study the fixpoint computation for the transition system
shown in Figure 3.13 and the formula uX.[c]X A (vY.(a)Y V (b)X). The formula
contains two variables X and Y of alternation depth 2 and 1, respectively. We compute
the value of X in an iteration starting from X = &. The next approximation is given by

[@xTvixee = {s| s 4 } N PYAQ)Y V (B)X]vixog

The inner fixpoint formula (with value of X fixed to &) is alternation free. Hence,
using our favorite L, model-checking algorithm, we can find out that [vY.(a)Y" V
(0)X]vix—e) = {s1}. This gives the next approximation of X = {s;}. In the fol-
lowing iteration we compute

[Px]vix—iay = {50,851} N [PYAa)Y V (B) X]vx (o1}

and again use an L, model checker to find ['Y.(a)Y V (b) X]vx—(s}] = {50, 51}. This
ends the computation since a further iteration cannot add any new states to the value of
X.

In general, the situation can be more complex than in our example. For instance,
several variables of maximal alternation depth can occur in a formula, possibly with

56

3.5. Extensions towards Li

Ve

@X.I/Y.(ga(X, Y)A VY’./LX'.\IJery/D
¥

VY. (Dyy A yY’.uX’.\I/X,,y,D
¥

@(X, Y) A uY’.uX’.\IJX,,YD

(a) Partition into components (b) one alternation (c) alternation-free

Figure 3.14.: Graphs of formulae

different types. Variables of the same type can depend on each other. Also, if Y C X
then we must know the value of Y before we start to compute X. Hence evaluation
of these variables must be performed in bottom-up manner, using simultaneous fixpoint
computations.

More precisely, let X C Var(yp) be the set of variables with maximal alternation
depth. Systematically we evaluate them using the iteration method. We start with these
variables in X which do not subsume any other variables from X. After finding their
values we proceed to the variables X € X for which valuesof all Y C X, Y € X are
already known. Eventually all variables in X’ will be evaluated.

In each stage of this process we find the values of all p-variables and, separately,

the values of all v-variables by simultaneous iteration. Specifically, if X;,..., X, are
all p-variables which we want to evaluate, then we start by setting V(X;) = & for
t = 1,...,p, where V is the current valuation (keeping the already computed values).

Then in each iteration values of X, ..., X, are updated using formula V'(X;) = [®;]v.
Here @; is the formula @y, with all subformulas oY.®y, Y € X replaced by Y. Note
thatif Y C X, for Y € X then we have already computed the value of Y and it is
stored in V. Observe that the alternation depth ad(®;) of each ®; is strictly lower than
the alternation depth of the original formula ad(¢).

3.5.2. Alternation and Game Graphs

The previous idea of reducing alternation depth can be applied similarly for game
graphs. To see this, we study the structure of game graphs for Li—formulas.

As explained in Section 3.2.2, an arbitrary graph can be partitioned into maximal
strongly connected components and directed acyclic graphs. Furthermore, these com-
ponents can be partially ordered by bridges (Figure 3.14(a)). For the graph of an

57

3. Parallel Model Checking Games

Li—formula, we can easily see that within its strongly connected components either a
p-fixpoint or v-fixpoint is unwinded (Figure 3.14(c)), or one alternation of y- and v-
formulae (Figure 3.14(b)).® We conclude:

Theorem 3.5.1

Let ¢ € Li. Then there exists a partition of G(¢) such that every subgraph either is a
directed acyclic graph, contains only variables of alternation depth one, or contains vari-
ables of alternation depth one and two which are dependent. Furthermore, the subgraphs
are partially ordered by bridges.

In Figure 3.14(a), we indicate the partition of the graph of formula uX.vY.(®xy A
vY' .uX' Uy ys). Here, ®xy and Uy y are arbitrary fixpoint-free formulas with free
variables among X, Y and X', Y”, respectively. Note that X subsumes Y’ but Y is not
dependent on X.

Since the game graph can be seen as unfolding of the formula graph using the tran-
sition system, the partition of the formula graph induces a partition of the game graph.
Together with Theorem 3.5.1 we get:

Theorem 3.5.2

Let &7 be the game graph for a transition system and an Li—formula. Then there exists a
partition of (7 such that every subgraph is either a directed acyclic graph, contains only
variables of alternation depth one, or variables of alternation depth two and one that are
dependent. Furthermore, the subgraphs are partially ordered by bridges.

3.5.3. Coloring Algorithm for ?

We now develop the algorithm for showing the existence of a winning strategy for one
player in LZ games, and hence solving the model checking problem for Li. The algo-
rithm preprocesses the given game graph component-wise (using a partition according
to Theorem 3.5.2). It employs the sequential algorithm for the alternation-free frag-
ment Li of the p-calculus presented in Section 3.3.1 to color each component, possibly
repeatedly with further intermediate processing steps.

The basic idea of the algorithm is to explicitly perform any fixed point calculation
with alternation depth 2 directly, then reusing the algorithm for Li to perform the re-
maining inner (ad(X) = 1) fixpoint calculations.

Preprocessing the Game Graph. First, we decompose the given game graph ac-
cording to Theorem 3.5.2 into partially ordered components ();, which are subsequently
colored, starting with the least ones.

%Note that the latter case does not occur when formulas from L}L are considered.

58

3.5. Extensions towards Li

(50, X[X A (Y (@)Y V (0)X)) (50, BX [X A (Y)Y V (B)X)
1 '
(50, [X A (Y-(@)Y v (5)X)) (50, [X A (Y-(@)Y v (5)X))

s0, VY (a)Y V (b)X

S0, (@)Y V (D)X

\ s0, ()Y \ @,, X) @, wX[X A (VY (a)Y v <b)XD
!

@, [dX A (WY (@)Y V (b)XD

~
(51, [C]X{ 51, VY (@)Y V (5)X)

so. (@)Y | (50, (B)X)

(a) preprocessing (b) one iteration

Figure 3.15.: Coloring a game-graph component with alternation.

Let G; = (Q;, E;) be the graph of a single component. If G; is a directed acyclic
graph or contains only variables of alternation depth one, Algorithm 3.3 can be used
immediately on ();. Assume now that (G; contains a variable X of alternation depth
ad(X) = 2. To simplify the presentation, we assume X to be a p-variable. The forth-
coming explanation can as usual be dualized for v-variables.

We determine the set PE; C F; of edges (s, X) — (s, uX.®x) € E; (for ad(X) =
2). The modified graph G? = (Q;, E; \ PE;) does not admit paths containing infinitely
many configurations of both types of fixpoint formulas any more. Figure 3.15(a) shows
the game graph for our example. The dotted edge is the one removed to obtain a game
graph in which no variable of alternation depth 2 is unwinded.

Coloring the Game Graph. Next, we apply a pre-coloring of configurations ¢
(which are now leaves in the modified graph) of edges ¢ — ¢’ € PFE; according to
the type of their corresponding fixpoint formula—red for p fixpoints, green for v. Then
we execute Algorithm 3.3 on the pre-colored and modified G{ (initially j = 0), which
is afterwards completely colored.

A new uncolored graph G{ 1 is created from G{ , and for each edge ¢ — ¢’ € PE;, we
copy the color of ¢ in Gg to configuration ¢ in Gg 1 They form the refined assumptions
of the pre-coloring. Algorithm 3.3 is executed again on Gz 1 afterwards.

The above step is repeated until G{ = G{ and hence the fixpoint is reached. The
number of iterations is bounded by j < |proj,(PE;)|.

In our example, the configuration (s;, X) is initialized with red. Algorithm 3.3 will
color the game graph as depicted in Figure 3.15(b), in which red configurations are filled

59

3. Parallel Model Checking Games

Algorithm 3.13 L?-colorizeComponent(Q);)

1: Remove edges PE; from component graph of);
2: while exists pred — conf € PE; with color mismatch A(pred) # A(conf) do

3: for each conf €), do

4: if pred — conf € PE; then
5: A(pred) := A(conf)

6: else

7: A(conf) := WHITE

8: end if

9: end for

10: colorizeComponent(Q;) /* invoke L,-algorithm « /
11: end while
12: Add edges PE; back to component graph of (),

with m and green ones with . As the color of configuration (s, uX|[c]X A (vY.(a)Y V
(b)X))) is different from (s, X), we set the color of configuration (s1, X) to green
and start a new iteration. Now, Algorithm 3.3 colors all configurations green (except
(s0, (a)Y")). The color of (s1, uX[c]X A (rY.(a)Y V (b)X)) has not been changed in
this iteration, indicating that we reached a fixpoint, and we can stop the coloring at this
point.

Proceeding with the remaining components is done in the same way, the propagation
of colors between components is the same as described before. The result of the ex-
tended algorithm for Li is a completely and correctly (conforming to the rules lined out
in Section 3.2.4) colored game graph.

The pre-coloring preserves the property of Algorithm 3.3 that the coloring is mono-
tonic, that is no configuration changes its color more than once. As Algorithm 3.3
terminates, the extended version is terminating as well. We sum up:

Theorem 3.5.3

Given a transition system and an Li—formula, the extended algorithm for Li constructs
the corresponding game graph and labels the configurations either red or green, depend-
ing on whether Vbelard or respectively Jloise has a winning strategy.

Complexity The run-time of our coloring algorithm for Li is quadratic in both the
number of states s of the underlying transition system, and in the length [of the given
Li—formula, thus s? x (2. This is straight-forward to see, recalling that the complexity
of Algorithm 3.3 is bounded by s x [as stated in Section 3.3.1, and Algorithm 3.3 is
executed at most | |J; proj, (PE;)| < s x [times.

60

3.5. Extensions towards Li

The costs for generating the PFE; are negligible here, since it needs to be done only
once (for example, while producing the game graph), and is linear with respect to the
number of edges in &.

61

3. Parallel Model Checking Games

62

4. Implementation and Empirical Results

The algorithms we have proposed so far have been implemented in a system called
UppDMC by Holmén et al. [52]. In this section, we will summarize their efforts.
First, we give an overview over the structure of the implementation, and then proceed
by conducting independent measurements with the same setup, confirming their results
and drawing further conclusions.

4.1. The UppDMC Implementation

The UppDMC system is developed in C++ using the message passing standard MPI [42]
for communication among the different computers. The new implementation does not
depend on our previous implementations in Haskell and C++ [13] and is more focused
on performance.

While the algorithms outlined in the previous sections are designed to be carried out
on-the-fly, the current version of UppDMC only makes partial use of it. In particular,
for the measurements shown in the next section, the algorithms work on previously
generated transition systems. This is only due to practical reasons: To be able to com-
pare UppDMC with existing model checkers, they used precomputed transition systems
made available as the Very Large Transition System (VLTS) benchmark suite.! It would
however be possible to lift this restriction and adapt UppDMC to compute transition
systems on-the-fly as proposed in our algorithms.

Figure 4.1 gives an overview of the general structure of UppDMC. The implementa-
tion is divided into several modules.

p~Calculus Module. The p-calculus module is responsible for parsing formulas,
building formula graphs, and partitioning them into components as proposed in Sec-
tion 3.2.2. These graphs are then used to construct the game graph. Also, the alternation
depths ad(+) for fixpoint variables contained in a formula are determined.

Transition-system Module. In the transition system module, states and transitions
are read from pre-generated files into memory. For each processor P;, only those states s
are stored which are assigned to it by the distribution function h((s, 7)) (Section 3.4.1).

'nttp://www.inrialpes.fr/vasy/cadp/resources/benchmarkbcg.html

63

http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

4. Implementation and Empirical Results

Processor: Gamegraph Comm World
msg-queues of
P Processors

[p-calculus

Separate

Comm
Thread -

Model
Transition Checker

ystem

Figure 4.1.: Simplified structure of UppDMC.

;

D' ‘ State Color
Predecessors

: Colors

#Suces| o Suces

Left Right

J/ subtree subtreex

Tree-roots for each subformula

]
%

Figure 4.2.: Game-graph data structure.

The module provides search functions to access all successors if provided a state and
action label. The authors report memory requirements for storing transitions of pairs
consisting of a predecessor and label as 12 4+ 4 x ¢ bytes, where ¢ is the number of
transitions.

Game-graph Module. The model checker’s main data structure is defined in the
game-graph module. To conserve memory, game-graph configurations (s, 7) are grouped
by their formula part 7, which also allows for efficiently retrieval of initial configura-
tions [();] of a component ();. This operation is part of the whole family of algorithms
we proposed previously, as they work component-wise.

Another memory conserving means described by Holmén et al. is the compression of
predecessor configurations. In most cases, their formula part can be deduced from the
statically calculated formula graph, and thus need not be saved explicitly. Furthermore,
configurations with only one successor are not stored, as their color is immediately clear
from this single successor. Initial nodes and alternating variables however are never
removed.

The data structure for storing a game-graph and their configurations is outlined in
Figure 4.2. Each game-graph configuration is reported to occupy about 36 bytes of
memory plus the data needed to store the predecessor of the node. The authors report

64

4.2. Practical Experiences

that a cluster with total memory of 1 TeraByte could check a transition system of size
2x10? states for livelock (for example, from Figure 4.3). This is based on the assumption
that the transition system has an average branching factor of 10, which was empirically
derived from real-world data points from on the VLTS suite.

Communication Module. The communication module provides a high level in-
terface for processors to communicate via sending and receiving messages. It is used
in both the algorithm and the termination-detection module. Choices for the transport
layer are either TCP/IP sockets or MPI [42]. Communication queues are decoupled
from the actual algorithm via a threaded implementation, and buffering and timeouts
are supported for efficient utilization of the network.

Termination-detection Module. The termination detection module is used to de-
termine when a phase of the algorithm (for example, expansion of a component) ends
globally, and the next one (for example, recoloring) can start.

Implementation of Algorithms. The model-checker module implements a tem-
plate with a formula object, a transition system object and communication object as
parameters. The implementation closely resembles the algorithms we developed in the
previous sections.

4.2. Practical Experiences

The experiments of Holmén at al., our replications of them and our additional mea-
surements have been conducted on the Aachen University Parsecs Cluster. This Linux
cluster consists of 26 machines, each equipped with two 500 MHz Intel Pentium III and
512 MB main memory (of which around 400 MB are accessible for us). The machines
are interconnected with a private 100 MBit switched Ethernet network. We were able to
reserve the cluster for exclusive benchmarking. No other significant computation tasks
were running during that time.

Each machine runs two threads, one to handle network communication and the other
for the actual algorithm. As both parts can run independently from each other, we get a
slight performance advantage through overlapping I/O and calculations.

For measurements, we used transition systems from the VLTS benchmark suite, and
thus we were constrained to check properties which are compatible with them. Fig-
ure 4.3 shows two of the formulas we tested with, NoDeadlock and Livelock.

In Figure 4.4, we present the run-times of of our tests. We recorded the wall-clock
time for the best of three runs for each test. The measurement methodology with which

65

4. Implementation and Empirical Results

Property Formula
NoDeadlock vX.([-]X A (—=)true)
Livelock puX.((5)X VY (n)Y)

Figure 4.3.: Two p-calculus formulas used during testing.

VLTS Name # of States # of Transitions Checked Formula
NoDeadlock Livelock
vasy_2581_11442 2,581,374 11,442,382 44 sec 47 sec
vasy_4220_.13944 4,220,790 13,944,372 56 sec 67 sec
vasy_4338_15666 4,338,672 15,666,588 64 sec 64 sec
vasy_6020-19353 6,020,550 19,353,474 59 sec 125 sec
vasy_6120_11031 6,120,718 11,031,292 95 sec 108 sec
cwi_7838_59101 7,838,608 59,101,007 149 sec 314 sec
vasy_8082_42933 8,082,905 42,933,110 162 sec 134 sec
vasy_11026_24660 11,026,932 24,660,513 150 sec 160 sec
vasy_12323_27667 12,323,703 27,667,803 160 sec 177 sec
cwi_33949_165318 33,949,609 165,318,222 560 sec 8715 sec

Figure 4.4.: Elapsed time in seconds for checking ten of the largest transition systems
of the VLTS benchmark suite with 25 machines. Formulas checked were
NoDeadlock and Livelock.

we conducted our experiments and will present results is based on guidelines proposed
by Crowl [30], in order to ensure accuracy and effectiveness of our presentation.

To our satisfaction, we were able to almost exactly reproduce the run-times reported
by Holmen et al., as we used an identical setup. For all except one of the tested systems,
we obtained results within 6 minutes, often in less. The exception is a transition sys-
tem named “cwi_33949_165318”, which with roughly 33.9 Million states is the biggest
system we tested. Handling of this system exceeds the total memory of the cluster, re-
sulting in a ten-fold increase in run-time due to heavy swapping to disk, as the memory
fills up. However, despite the run-time penalty we were able to obtain a result.

In Figure 4.5 we can see the dramatic effect of increasing the number of machines on
the run-time. Doubling the number of processors roughly reduces the amount of time
needed to obtain a result by a factor of two, showing the predicted linear speedup of our
algorithm. A better view on the scalability of our algorithm can be given by consider-

66

4.2. Practical Experiences

1000 . — T T T T
P ' vasy_2581_1142 A
‘ : vasy_6020_19353
900 L vasy_12323_27667 ¢ .

800
700 |
600 |-

500

time [sec]

400

300

200

100

0 I I I I I
5 10 15 20 25

of Processors

Figure 4.5.: Absolute run-times (in seconds) for checking the NoDeadlock formula on
three VLTS transition systems on up to 26 processors. We measured three
runs for every system, colored lines are interpolation of these values. Dotted
black curves denote asymptotic run-time based on the value for 25 proces-
SOrs.

67

4. Implementation and Empirical Results

vasy_2581_1142 A
vasy_6020_19353
vasy_12323_27667 .

1000 F
o
2
Q
£

100 |

1

Figure 4.6.:

68

10
of Processors

Absolute run-times (in seconds) for checking the NoDeadlock formula on
several VLTS transition systems on up to 26 processors. Both scales are
logarithmic, revealing linear speedups. Dotted black curves denote asymp-
totic run-times based on the value for 25 processors.

4.2. Practical Experiences

ing measured data points in log-log-scale (Figure 4.6), which abstracts from absolute
performance and is independent from processor technology used in our experiments.

For each transition system, the dotted black lines denote estimated asymptotic run-
times based on the value for N = 25 processors in our case. If our algorithm takes
ty seconds to compute a result for transition system 7 on /N processors, we estimate
the asymptotic run-time curve for this setting as function

N
fr(p) =ty x — [sec]
p
with p representing the actual number of processors. We can observe that especially
with less processors the measured times are larger than predicted by fr(p).

Limiting Factors. Our investigation revealed two responsible factors:

e Memory consumption on individual machines exceeds the physical amount of
memory. Also, as memory pressure lowers, run-times become less scattered.

e Data per machine increases, penalizing data structure insertions and lookups with
higher costs. If data can be distributed to more machines, both operations become
cheaper.

Another factor with similar effects could be improper distribution of game-graph
configurations. However, we were able to rule this out. Measurements of the
quality of the implemented distribution function showed its adequacy (Figure 4.7).
Configurations are evenly distributed, with little deviation from average on all our
tests.

Another limiting factor of our algorithms is the structure of transition systems. A
system with low branching factor does not permit a lot of parallel computations within
our algorithms, hence degrading effectiveness of a distributed setup.

On Relative Speedups. Note that in our discussion of results, we consciously
avoided relative speedup diagrams as they are often misleading. We are usually unable
to obtain a result for the canonical normalization point—a single processor (p = 1), or
better yet, a sequential version of the program—because a computation exceeds time
limits or available memory. A suitable base case can perhaps be interpolated, however
this must be done with a great deal of care, as choosing a conservative value would
present results in a too optimistic light.

In contrast, we based asymptotic approximations (dotted black curves) on the best
values that we obtained in our tests, thus only pessimizing our results. Also, we chose
to base our interpretations on absolute values of our measurements, which speak for
themselves, and can easily be compared to.

69

4. Implementation and Empirical Results

1 : : : 800000 : : :
[vasy 2581 11442 (average 404500) mmmr I Vasy 2581 11442 (average 404500) mm
700000 - 4
05 - 1 600000 - 1
“
£
£ 500000 - 1
2 =
2 el .]
R — T . . g 400000 - 4
4 g
z
= 300000 | 1
E
05 b 4 200000 | 4
100000 - 1
n o
0 5 10 15 20 25 0 5 10 I 20 25
processor # processor #
1 . . . : : : : — . .
I Vasy 4220 13944 (average 650400) mmmr I Vasy 4220_13944 (average 650400) m—m
126406 |- 1
os b] 1e+06 4
<
£
E
£ 800000 - 1
g <
H s
ER PP T T— e — Lo 3
z 2 600000 - 1
E3
5
3
) 400000 |- 1
05 b J
200000 | 1
r o
0 s 10 15 20 25 0 s 10 15 20 25
processor # processor #
1 ; ; : 1.8¢+06 . .
i vasy 6020 19353 (average 963300) mmmr I Vasy 6020 10353 (average 963300) mmmmr
166406 | 1
140406 1
05 - 1
g
2 126406 | 1
g
3 - le406 |- 1
H b
£ o0]
E g
@ % 800000 [1
z
Z
5
" 600000 - 1
05 b 4
400000 | 4
200000 | 1
n o
0 5 10 15 20 25 0 5 10 Is 20 25
processor # processor #
1 , 40406 : ; — . .
I Vasy 12323 27667 (average 1951500) mmmr I Vasy 12323 27667 (average 1951500) mmmr
350406 |- 1
05 - 1 36406 | 1
<
£
2 2.5¢+06 - 1
g <
2 g 2
£ o g 406 - 4
@ g
5
= 1.5e406 1
3
ES
05 b 1 1e+06 - 1
500000 |- 1
r o
0 s 10 15 20 25 0 s 10 15 20 25
processor # processor #

Figure 4.7.: Relative and absolute distribution of states among processors. All experi-
70 ments exhibit even distribution, with little deviation.

4.2. Practical Experiences

Transition system

Property

Livelock

vasy_8082_42933

vasy_11026_24660
vasy_12323 27667
cwi_33949_165318

Not satisfied

Not satisfied

Not satisfied
Satisfied

Figure 4.8.: Previously unknown results from the VLTS suite.

Practical Relevance. Our experiments show that the algorithms we developed be-
have well on real-world data and display the scalability we expected. Additionally, it is
worth stressing that for most of the larger examples in the VLTS benchmark suite it was
previously not possible to check for live-locks. With the UppDMC implementation of
our algorithms, we were able to fill in all missing results (Figure 4.8 gives an overview),
and even within reasonable time, on a cluster that would be considered small by today’s

standards.

71

4. Implementation and Empirical Results

72

Part Il.

State Space Generation

73

5. State Space Generation

5.1. Introduction

In the previous part we developed distributed algorithms to solve the model checking
problem for fragments of the p-calculus. We were able to show their effectiveness by
benchmarking them on the Very Large Transition System (VLTS) benchmark suite, a set
of pre-generated state spaces from real-world models.

However, generating state spaces from a concise description takes up considerable
amounts of time. Our model checking algorithms were designed with this in mind
already. Both, generation and actual checking of properties can be carried out simulta-
neously and even profitably. As our algorithms work on-the-fly, only in the worst case
we need to generate the whole state space. Depending on the property to check, our al-
gorithms are able to prune large parts of the state space which are not significant for the
outcome of the verification run. While this already reduces run-time simply by doing
less work, it can even help in cases where it is impossible to store the full state space
because it is prohibitively large.

Our goal is now to develop an efficient and reuseable method to generate state spaces
from high-level descriptions, which is suitable for integration with our algorithms.

5.2. Status Quo

Common approaches in state-based model checking employ modeling languages like
CSP [51], LOTOS [16], Mury [34], DVE [4], or PROMELA [55] to describe actual state
spaces. These languages are usually non-trivial: in addition to concepts found in pro-
gramming languages (scopes, variables, expressions, etc.) they often provide features
like a process abstraction, non-determinism, guarded commands, synchronization and
communication primitives, timers, etc. Implementing an operational model of such lan-
guages for use in verification tools is consequently not straightforward, even more so if
the language is described informally only, and their static and operational semantics are
incomplete at best, outdated, or entirely unavailable.

That being said, when developing verification tools it is highly desirable to reuse an
already existing popular modeling language like e.g. PROMELA, which has been used in
a sizeable number of real-world case studies. These models can be used to benchmark
new tools against old ones in a fair way. PROMELA has wide industry acceptance, al-

75

5. State Space Generation

lowing modelers to try out compatible tools without having to re-specify models in yet
another formalism. Lastly, since these tools are developed for the application of formal
methods, it is worthwhile and only fair to treat them with the same rigor: a shared un-
derlying virtual machine would make it possible to compare different algorithms fairly
and easier to test a new algorithm for conformance against existing algorithms.

This begs however the question, why existing tools are not simply extended and thus
the whole static and dynamic semantics machinery is reused? The most trivial answer
is that new approaches might be implemented in a different programming language,
for a variety of reasons [67]. Also, many verification tools can be considered research
prototypes which are not developed with extensibility first in mind: modifications be-
come more time-consuming. Furthermore, different approaches often admit different
tool architectures: parallel and distributed model checkers often need small mobile data
structures, so that computations can be relocated to other processors. In particular, the
algorithms we have developed previously fall into this category.

Nevertheless, as our first proposition we stress that despite different designs all these
tools have in common the need for a state space generator component.

Another commonly found reuse pattern is the translation of other formalisms to mod-
eling languages like PROMELA [79, 36], using SPIN [48] as verification back-end, and
hence restricting the choice of analyses to offerings of a single tool again, or getting
trapped in abstraction inversion, that is, non-trivial encodings of constructs [2].

It comes as no surprise that researchers often find it easier to invent their own model-
ing language with informally specified semantics incompatible to existing tools which,
as argued above, puts additional burden on end-users to switch tools, benchmark them,
or consider them at all.

In order to remedy current shortcomings we propose a virtual machine-based ap-
proach to state space generation, in which high-level modeling languages are first trans-
lated to an intermediate format consisting of byte-code instructions. Subsequent execu-
tion of such byte-code programs with a virtual machine can be very efficient and yields
state spaces for further use in model checking tools.

5.3. Contributions

In order to base our work on a solid foundation we present a formal model for our
virtual machine. The operational semantics of our virtual machine are straight-forward,
and hence easy to derive an implementation from. Moreover, our machine model can
be augmented to handle timers, probabilities etc., in a compositional way by adding
instructions, and keeping the rest of the model unchanged.

Most byte-codes are simple operations, and benchmarks show that our machine is
competitive in state space generation to SPIN. For distributed state space generation our

76

5.4. Overview

machine offers additional benefits: it can be restarted from machine state snapshots,
which have a self-contained, contiguous and platform-independent representation, and
thus can be send across networks to without further serialization efforts.

As further contribution, by translating PROMELA to our byte-code language, we get
up-to-date executable operational semantics for PROMELA essentially for free. Previ-
ous attempts of PROMELA semantics have been found to be inadequate for our purposes
(Section 7.6.1). The translation also allows us to apply conventional compiler tech-
niques such as code optimization, control and data-flow analyses. We stress however
that our machine is generic and not exclusively tied to PROMELA.

5.4. Overview

In the next chapter, we review desirable requirements for an intermediate language. In
section 7.1 we describe the virtual machine model and byte-code semantics. Section 7.2
gives an example how the virtual machine can be used for state space generation. In sec-
tion 7.3 we report on a use case for our virtual machine: the translation of PROMELA to
our byte-code language. Section 7.4 presents benchmark results for our implementation.
We conclude with a brief summary of related work in sections 7.6 and 7.7.

77

5. State Space Generation

78

6. Intermediate Formats

In formal verification, the goal is to analyze a model with respect to given properties.
We described algorithms in Section 3.4 which require as input a model given in terms
of a (possibly labelled) transition system. We can see the transition system as the lan-
guage describing all possible behaviors of a model. The basic concepts in this language
are states and labelled transitions, that is, relations between states. However, it is quite
tedious for a model designer to directly use this formalism for the specification of any-
thing but small models, as transition systems merely allow a verbose and flat view on the
model. Within the transition system, there is no mechanism to manage the complexity
of a model through hierarchical decomposition.

Thus, for convenience of the designer, usually a high-level language is offered to
compose models in a concise and hierarchical way. Such a language provides some
level of abstraction above the type of model understood by verification algorithms, but
also opens a semantic gap. This gap can be bridged by a translation procedure which
expresses the semantics of the high-level language in terms of the low-level language
used by algorithms—states and transitions.

Experience shows that this translation is an involved process, as high-level modelling
languages offer advanced constructs to easily specify systems on a very abstract level.
Besides notions found in typical programming languages, we can identify some features
common in many modelling languages:

Non-determinism From the current point in time, more than one alternative future
of a computation is possible. Verification tools commonly take all of them into
account.

Concurrency Process abstractions allow separate modeling of related subtasks and
thus act as structuring device. Additionally, they concisely describe independent
behavior.

Synchronization For models of dependant behavior, processes can influence each
other through means of semaphores, (a)synchronous communication channels,
and global state changes.

Priorities A notion of preference of one action over another allows to specify richer
models which closer resemble reality. This includes prioritized actions as well as
simple notions of time.

79

6. Intermediate Formats

Note that some of these features may be expressed in terms of others, but this may lead
to less intuitive ways to model the underlying system. Therefore, we consider all of
these features to be present in a typical language.

The translation process which expresses these features in terms of a low-level descrip-
tion amenable for verification has to fulfill several desirable requirements. We highlight
the one’s we consider most important:

T1 The translation should be automatic.

T2 It should be time as well as space efficient. The translation procedure should be
finished quickly, as the important task is the verification of the model, not its trans-
lation into another format. Also the output of the translation must still be reasonable
to store it.

T3 A low-level model must capture the meaning of the high-level model, thus a trans-
lation should be semantics-preserving.

T4 It must be traceable. Principally, model designers deal with high-level descriptions.
If we now consider a translation from some language high-level language L to a
lower-level language L/, the results of a verification run are too expressed in terms
of L. This makes presentation of counter examples non-intuitive!. Thus, any trans-
lation must be reversible or traceable at least to some extent so that results can still
be presented relative to the user’s input language L.

In general, we could either translate a high-level directly into a low-level representa-
tion, or use an intermediate step which simplifies the translation process and can also be
reused as common ground from other high-level languages. Optimizations and further
transformations can then operate on this intermediate format.

6.1. Direct Translation

One possible translation approach is to interpret the high-level description directly to
obtain possible successor states, when the system is in a given state. Interpreters of this
kind usually facilitate a rewriting strategy which assigns small-step semantics to the
control structures and data manipulation of a language.

As interpreters work directly on the high-level specification, it is easy to obtain direct
matches between steps in the abstract and steps in the concrete system (T4). However,
this approach is usually neither time nor space efficient (T2). Furthermore, the effort

"For analogy, consider a compiler for a regular programming language which presents compile-time
errors of a program on the level of its internal tree representation instead of source code locations.

80

6.2. Using an Intermediate Format

needed to develop and change a state-space generator is tedious when done manually,
since there is not much opportunity to share building blocks.

Development efforts can be simplified by either using configurable rewrite engines
(such as ELAN [17] or Maude [27]) or dedicated specification language compilers.
The idea of the latter is that the syntax and semantics of the underlying specification
formalism is formalized. Then, a tool can generate a corresponding parser and small-
step semantics functions automatically. Two such systems have been developed as proof
of concept, PAC [28] and SLC [66].

The Process Algebra Compiler (PAC) takes a process algebra description and gen-
erates a front-end for the NCSU Concurrency workbench. The description consists of
a specification for the syntax and semantics, given in form of structural operational
semantics (SOS) rules. The specification language compiler (SLC) follows the same
idea, but employs Rewriting Logic [75] as a framework rather that SOS rules, which has
some advantages when formalizing semantics.

These prototypes show that the approach works well, especially when engineering
new specification language formalisms. The corresponding syntax and semantics can
be adapted easily, always yielding a complete verification environment for each version
of the formalism studied.

However, the drawback of the approach is the lack of efficiency. Either the automat-
ically generated interpreter lacks performance, as in the case of SLC, or non-obvious
manual optimizations are needed as in the case of PAC.

Turning to rewrite engines, we face similar problems. Although tools like ELAN use
powerful compilation techniques of rewrite rules, the overall efficiency of the resulting
system is poor, as reported by Leucker and Noll [66]. The most important reason is
an interfacing problem. Marshalling of data structures used in the verification tool to
those used in the rewriting engine slows down the overall performance and yields an
uncompetitive approach [14]. However, if a rewrite engine is provided in form of li-
braries which can be linked to the final system and compatible data structures are used,
they might be an option. Only recently, such a library version of ELAN has become
available.

6.2. Using an Intermediate Format

Inserting intermediate steps into a translation from high to low-level descriptions is a
well-established technique in compiler construction (compilation by transformation).
For modeling languages this approach was proposed before (most recently by Bozga et
al.[18] and Garavel et al.[43]), and found to be helpful. We briefly enumerate important
properties of a well-designed intermediate language as put forward by Garavel et al.
[43] for the example of (E-)LOTOS. For a detailed discussion we refer the reader to that

81

6. Intermediate Formats

paper.
The authors argue that a suitable intermediate language should aim at providing a
simpler semantic model, and in particular it should support

I1 Conditions on input variables, e. g. reception of value v from channel ch only if
additional constraints on v are met: ch?v where v < 3.

I2 Mixing conditions and actions: a guard can invalidate actions already taken, e. g. for
tmp = f(x); guard(tmp); (despite their interdependency) the assignment to ¢mp
only happens, if guard is actually satisfied.

I3 A rich language of actions. The granularity of semantics is adjustable, allowing
internal transitions and conditions on them, as well as collating effects of action

sequences: for ¢ in 0..1 do v[i] := 0; can be a single step, and semantically
equivalent to v[0] := 0; w[l] := 0 without introducing observable intermediate
steps.

I4 Avoidance of duplication of conditions: every conditional expression F; is evaluated

only once for if F; then () elsif E, then (5 else C5 end, as opposed to a

’ nOt(El)/\Ez/Cz ” not(El)/\not(Eg)/Cg

.. o E1/Ch "
translation into transitions s —— s’, s —————= 5", s S

We agree that these items are worthwhile requirements for an intermediate language,
yet we would like to add the following points of practical importance:

IS Tiny formal model for implementation, which is useful to assure correct implemen-
tation of state space generators.

I6 Extensionality, that helps to cope with additions to the formalism, like probabilistic
aspects, timers, etc.

In addition to the above requirements, Garavel et al.[43] propose the intermediate
language New Technology Intermediate Format (NTIF), which adheres to items 11-14,
and 16. However, NTIF has a natural rewriting based semantics. Similar as discussed
in the previous subsection for rewrite engines, its implementation is likely to lack effi-
ciency or requires sophisticated optimizations. Thus, NTIF does either not adhere to T2
(efficiency) or to IS5.

Before we present and evaluate our proposed approach in light of these points in
Sections 7.6.2 and 7.5, we review typical state space generation schemes in parallel
verification tools like UppDMC (Section 4.1) or DIVSPIN [69].

82

6.3. Parallel State Space Generation

6.3. Parallel State Space Generation

In the realms of parallelized verification, state space generators are constrained by addi-
tional requirements. To avoid bottlenecks, state space generation usually is carried out
in parallel on multiple processors, often alongside the actual verification work, like in
the on-the-fly algorithms we developed in Section 3.4.3. Processors circumvent work
duplication by informing each other which parts have already been generated.

In commonly used approaches, processors save states assigned to them and distribute
the remaining ones to their neighbors, which in turn proceed in the same way. This
approach was proposed for parallel reachability analysis first by Nicol and Ciardo [78],
and independently by Stern and Dill [90].

It has been reported often that this scheme scales reasonably well, and it is very
natural and effortless to implement. However, state distribution implies that it must
be possible to move states from one processor to another and resume generation of
its successors at the new location. Thus, state representations should have low space
profile, and must be self-sufficient in the sense that they contain all information needed
for further processing. A conversion of location-independant binary representation is
needed for storage and distribution, and this so-called serialisation should have low
overhead.

Ideally, states should also support fast equality checking because this is a common
operation in state space generation. If states can be treated as opaque objects, a good
separation (from a software-engineering point of view) between state space generators
and verification algorithms can be obtained, facilitating component reuse among tools.

In the remainder of this section, we briefly highlight how some existing tools for
parallel state space generation work. The reader may note that none of them uses an
intermediate format. Although we do not claim to be exhaustive here, we believe that
most of currently existing tools fall in one of these classes.

PSPIN and PV. PSPIN [63] is a parallelized version of SPIN [48] which supports
reachability analysis of state spaces described by the PROMELA modeling language.
The authors reuse SPIN’s PROMELA interpreter (or rather interpreter compiler) for
state space generation. Through code inspection we found that for state serialisation
they employ packing functions which capture the interpreters’ current state in a mem-
ory buffer. Its contents are sent over a network to other processors and then unpacked
again. Besides the disadvantagous serialisation overhead, we conjecture that this ap-
proach would carry over poorly into a multi-threaded environment, as it relies on global
data structures, which need to be protected from concurrent mutations. A similar ap-
proach is used in the PV parallel verifier [80]. PV interprets an “extended subset of the
PROMELA language” and is only able to check safety properties for this model.

83

6. Intermediate Formats

Parallel Truth. As an experimentation platform for new concepts in parallel model
checking research, we developed PARALLELTRUTH, a distributed prototype of the mo-
del checking tool TRUTH [15]. With PARALLELTRUTH, we are able to check properties
given as alternation-free p-calculus formulas on-the-fly. States are represented in an
ad-hoc manner as CCS terms, and we reported that (de)serialisation efforts were mostly
responsible for the immense overhead compared to a sequential variant. Besides that,
the term rewriting used to generate successor states suffered the same run-time penalties
that we discussed in Section 6.1.

UppDMC. An efficient implementation of our algorithms was presented by Holmén
et al. [52] and is summarized in Section 4.1. State spaces are computed off-line by the
1CRL toolkit. This allows for a very efficient encoding of states (basically enumerating
them), but comes at a price: precalculation and storage often takes more time than
actually carrying out the verification task. This approach also did not take advantage of
the on-the-fly properties of our algorithms.

Next, we will present our virtual machine-based approach which not only overcomes
most sources of overhead reported so far, but at the same time satisfies all the require-
ments detailed so far.

84

7. A Virtual Machine-based Approach

In this chapter, we carry out the design of a concrete virtual machine. We show that
it adheres to the proposed design principles for intermediate representations. Further-
more, we show with experiments that it fulfils our expectations regarding its speed and
usability in practice.

7.1. Virtual Machine Specification

Our virtual machine (VM) has a couple of features not all of which are commonly found
at byte-code level in conventional VM architectures like the Java Virtual Machine (JVM)
[84]. They are a superset of the features we observed as common in modeling languages
in Section 6, in particular, we have:

Non-determinism If non-deterministic choice is encountered during executing, the
machine offers all possible continuations to the scheduler who then decides which
path to take.

Concurrency A built-in run byte-code allows to spawn processes at run-time.

Communication Both, rendezvous and asynchronous channel objects are provided
for inter-process communication.

First-class channels Like in PROMELA and 7-calculus [76], our machine allows
channels to be sent over channels.

Priority scheme Our byte-code allows to specify which actions have to be given pref-
erence. Together with explicit control over externally visible actions, this allows
to encode high-level constructs like PROMELA’s atomic and d_step.

Speculative execution Certain code sequences are executed speculatively, and chan-
ges to the global state are rolled back if the sequence does not run to completion.

External Scheduling Scheduling decisions are delegated to host applications. This
allows for implementation of different scheduling policies which is needed to
cater for simulation (interactive scheduling) vs. state space exploration with some
search strategy (breadth-first, depth-first, random, or combinations thereof).

85

7. A Virtual Machine-based Approach

The design of our VM was mainly driven by pragmatic decisions: it was our inten-
tion to create a model that is simple, efficient and embeddable as component into host
applications, with implementation effort split between the VM and compilers targeting
it. For example, many instructions make use of the VM’s stack because it is trivial for
compilers to generate stack-based code for expression evaluation. On the other hand,
a stack-based architecture alone is inconvenient for translation of counting loops, thus
registers were added. The RISC-like instruction set is motivated by the need for fast
decoding inside the instruction dispatcher, the VM’s most often executed routine.

Although our machine is a mixture of register-based and stack-based architecture, we
are nevertheless dealing with finite state models in this paper, with concurrency modeled
by interleaving semantics.

A complete specification of a virtual machine suitable as target for PROMELA is avail-
able [89]. Readers familiar with PROMELA will recognize its influence on some design
decisions, making it easier to translate it into our byte-code language. However, in the
interest of reusability we tried to keep these parts as generic as possible.

In the following we will present the virtual machine in detail. We start by specifying
global and local state, and invariants which translations must preserve. Afterwards we
present the byte-code semantics and how scheduling between alternatives is done.

7.1.1. Machine State

The machine’s global state as depicted in Figure 7.1 consists of a few global objects and
the local state of its processes.

Definition 7.1.1 (Global State)
The global state T' = (11, e, G, @) of our virtual machine is a tuple

I' € Processes x Pid; x Mem x Channels

with II denoting a finite set of processes, e the process identifier of a process with
exclusive execution privileges (L if none), G the global variable store, and ¢ the—
again finite—set of existing channels (channels are global objects).

We will refer to the set of all global states as [' as well, if the context makes clear
what is meant.

Definition 7.1.2 (Process)
A process m = (p, M, \) is a tuple

7 € Processes = (Pid x ExecMode x ProcessState’) U {stop}

with p denoting a globally unique identifier, M € {N, A, I, T} its execution mode (nor-
mal, atomic, invisible, terminated), and A’ the local state of a process (Definition 7.1.4).

86

7.1. Virtual Machine Specification

7 7

Registers Process %
Process . Scheduler
j Process (Active) - selects snapshots for
4 . further execution
(| 1D :
.| Program Count : :
N rogram Lounter : (not part of the VM) :
1 . N
; ‘| | Local Store
\
Data Stack

/ 5
AY

3
Channel "« Exclusive Process

Channel ~~-__ __/-’

Channel Global Store

ID

Type
Capacity
Contents

%
)

Figure 7.1.: Overview over the state of the virtual machine. Note that there is only one

set of registers and one stack, as only a single process can be active at any
given point. The scheduler is provided by external sources (for example,
a model checker). It restores a snapshot of the VM’s state and resumes

execution from there.

87

7. A Virtual Machine-based Approach

Furthermore, we allow the special symbol stop to denote a deadlocked process which
cannot make any further step.

Note that while a single process can be deadlocked, there might be others which can
still continue, so that there is no global deadlock yet.

Remark 7.1.3

Often, we do not want a global state I' = (II, e, G, @) to contain the deadlocked process
stop. To simplify notation, we write I' # stop iff no process in II is deadlocked:
Vr e ll: 7w # stop.

A process is either inactive or active. In the latter case A’ is augmented as shown
below.

Definition 7.1.4 (Local Process State)
A local process state N' = (L, m) is a pair

A € ProcessState’ = Mem x IN

and denotes the process-local variable store L and its program counter m.
When a process becomes active, its state A’ is augmented with registers Ry and a
stack D, = € to its active local state A = (L, m, Ry, D.):

A € ProcessState = Mem x IN x Registers x Stack

When it becomes inactive again, its last two components are projected away.

Definition 7.1.5 (Store)
We identify three stores in our virtual machine model: for global () and local variables
(L), and for registers (R). As usual, we model stores as mappings ¢ € IN — Value,
that is for a store o, o[i] denotes the store’s value at position i. Replacing a value v at
position 7 in the store is written as o[i/v] and yields a new store o’
o' = oli/v] and o'[j] = {” o=
olj] otherwise

Initial stores are denoted as og (Vi : oy[i] := 0). For convenience, we write r; to
reference the ith register R[i].

We added registers to our virtual machine for situations when byte-code effects on the
machine’s state are not fitting well to a stack model, for instance if values are operated
on more than once.

Definition 7.1.6 (Data Stack)

Expression evaluation takes place on the data stack component D € Stack = Value®
of a process state. A stack is represented as finite (possibly empty) word D = v,, : - - - :
vy, v; € Value,n € IN.

We denote the empty stack as D, = e.

88

7.1. Virtual Machine Specification

Communication

Processes can use several ways to communicate values among each other. First, they
can use the global store G which can be modified by any process at any time. A more
structured way of communication is provided by means of channels. They also offer a
model for message-passing synchronization. In our machine, communication channels
are typed and bounded, and we distinguish between rendezvous channels and asyn-
chronous channels.

Definition 7.1.7
A channel p = (c,1,t,C) is a tuple

p € Channels = Chanld x IN x IN x Message™

with ¢ denoting a globally unique channel identifier, [the channel capacity, and C' =
co : -+ - : ¢ its current contents (¢; being the last message in the channel). Each message
¢; € Message = Value™ consists of a sequence of values of length ¢.

Rendezvous channels have zero capacity. A message can temporarily be stored in a
channel during rendezvous communication, hence exceeding the capacity of the chan-
nel. Such states are internal to the virtual machine and unobservable to its outside.
Similarly, asynchronous channels which exceed their capacity automatically fall back
to the same behavior as rendezvous channels: send operations on those block until they
are within their allowed capacity again.

Definition 7.1.8 (Rendezvous Communication)

We define a predicate synch(I") on a global state I' = (I1, e, G, @) to determine whether
rendezvous communication is taking place: at least one channel ¢ = (¢, [, ¢, C') contains
more messages than its capacity [allows.

false ifVo = (c,[,t,C) e ®: |C] <1

true otherwise

sync(I') := {

7.1.2. Invariants

Translation to our byte-code language must guarantee the following invariants: as al-
ready pointed out in Definition 7.1.4, a process becoming active again always resumes
execution with register set 7y and the empty stack D.. Conversely, at those points in
the program when a process may become inactive, the contents of registers and stack
are discarded and need not matter for the rest of its execution.

Because the number of local variables is fixed, a local state A’ hence occupies constant
space only.

89

7. A Virtual Machine-based Approach

7.1.3. Byte-code Semantics

Having defined the state of our virtual machine, we now proceed by defining the seman-
tics of operations on it. These operations are carried out at process level, with only a
single process being active at once.

In the spirit of an earlier attempt to define the semantics of PROMELA by Holzmann
and Natarajan [55], we compose our semantics from several smaller parts by defining
five relations to model process activation, internal and prioritized transitions, interme-
diate and finally scheduler transitions.

A transition from state I'; to I'y is a relation —r€ I' X X x I', with a finite set of
labels > and set of states I'. If not important, we will elide labels from our presentation.
For brevity, we generally write A;, G1, &1 — Ay, Go, P, instead of

({(p7 M7A1>77T17"'77Tn}767 Gluq)l)
- ({(p7 Ma AQ)aﬂ-l) <. '77Tn}7€a G2aq)2)
T, = (pz, MZ‘, (Lz,m,)) for all 1 S 1 S n

State components remaining unchanged in a transition are left out.

As mentioned before, only one process can be active at any point in time. Thus we
define process activation as transition

({(p7 M7 (L7m))7ﬂ-17"'77rn}767 G7 (I)>
ﬁ)act ({(pa M7 (Lama ROaDe))aﬂ-la- . aﬂ-n}aea Ga (I))
Vie{l,...,n}: m = (ps, Mi, (Ls, my;))
and e € {p, L}, M # T

A process needing exclusive execution privileges must be activated, otherwise any pro-
cess can be activated (e = L). Processes already run to completion (M = T) are not
activated again.

Next, we define those transitions an active process can possibly take: the internal-step
relation —,,, € I' x I'is the least relation satisfying the rules given in the following.
For reasons of presentation, we divided internal steps into several categories. Note that
the byte-code operation to be executed next is determined by indexing program counter

m of the currently active process into a global instruction list Instr.

Load and Store

Our machine supports usual operations to load constants (LDC), and manipulate values
of local and global variables (LDV, STV), as defined in Table 7.1. To avoid stack juggling

90

7.1. Virtual Machine Specification

LDC ¢ load constant c onto top of data stack
(Lym,R,D) —,, (L,m+1,R,D:c)
LDV g load variable onto top of data stack
(Lym,R,D :a) —,, (L,m+1,R,D: Lla])ifg=L
(Lym,R,D :a),G —,, (L,m+1,R,D:G[d]),Gifg=G
STV g store stack top in variable
(Lym,R,D:v:a)—,, (Lla/v,m+1, R D)ifg=L
(Lym,R,D:v:a),G—,, (Lm+1,R, D), Gla/v]ifg =G
POP r; pop top-most value from stack into register
(L,m,R,D :v)—,, (L,m~+1, R[i/v],D)
PUSH r; push value from register onto stack
(Lym,R,D) —,,, (L,m+1,R, D :r;)

nt

int

Table 7.1.: Load and Store byte-codes

operations like DUP, SWAP, etc., values can be stored into and retrieved from registers
with PUSH and POP.

Arithmetic and Boolean Operations

Expression byte-codes like ADD, LT, AND, NEG etc. operate on one or more of the stack’s
top-most entries. Their semantics are obvious and thus only defined exemplarily:

OPy: (Lym,R,D:u:v)—,, (Lim+1,R,D:u®uv)

Control-flow Operations

For control flow changes, we define conditional and unconditional jumps in Table 7.2.
In order to allow explicit modeling of non-determinism, we define NDET a as having
two possible successor states: one continuing with the next instruction and the other
continuing at instruction a. In some situations, it is helpful to allow conditional non-
determinism, where the existence of one alternative is dependent on the presence or
absence of another. For this, we add byte-codes ELSE a and its dual UNLESS a.

Operations on Channels

In Table 7.3 we introduce several operations on communication channels. These include
operations to dynamically create channels, query their properties, and manipulate their
contents. All of them require a channel identifier on the stack. They operate on both
types of channels, with rendezvous channels special-cased in the definition of CHADD

91

7. A Virtual Machine-based Approach

JMP a unconditional jump
(Lym,R,D) —,, (L,a,R, D)

JMPNZ ¢ jump if non-zero
(L,m,R,D :0) —
(L,m,R,D :v) —

(L,m+1,R, D)
(L,a,R,D),ifv#0

nt

nt

NDET a non-deterministic jump
(L,m,R,D) —,, (L,m+1,R,D)
(L,m,R,D) —,,, (L,a,R, D)

ELSE a else jump
(L,m,R,D) —,, (Lym+1,R,D)

(L,m,R,D) —,,, (Lya,R,D)if (L,m+1,R, D) =%, N —,4 stop
UNLESS @ unless jump

(L7 m, R7 D) int (L’ a, R’ D)

(L,m,R,D) —,, (Lym+1,R,D)if (L,a,R, D) =%, N — .4 stop

nt

int

Table 7.2.: Control-flow byte-codes

(k < max(l,1)). In consequence, synchronous communication is done with an inter-
mediate (but invisible) step. We will return to this topic in section 7.1.4.

Sending in First-In First-Out (FIFO) order is done by allocating a new message with
CHADD and settings its contents with CHSET. Message reception is carried out in two
steps as well: reading the contents of a message and then deleting it. The rationale here
is that we are able to handle channel queries (full/emptiness) with the same byte-codes,
and with the addition of four more byte-codes any of PROMELA’s rather uncommon
channel operations.

Spawning New Processes

To start a new process, its current parameters are placed onto the data stack. Speci-
fying the size of these parameters and the start address of its code, a new process is
instantiated:

RUN k£, a run a new process starting at address a
{m,m,...,m},e,G,®) =, {7/, m,...,mn, 7"} e, G, D)
withm = (p, M, (L,m, R, D : vy : -+ :vg_1))
and ' = (p, M, (L,m+1,R,D :p"))
and 7" = (p", N, (Lo[0/vo, ..., k — 1/vk_1],a))
and p” € Pid a unique process identifier

92

7.1. Virtual Machine Specification

s[ouueyd uo suoneradQ "¢’/ 9qeL,

O (o:MD:- 1Y) = (D1 DY) =]
rn{dp\ @) (@ a1 +w) ™e=o'(C:qy wr)
[ouueyd Ul saZessow)e10l LOYHD
{arn{® < Sy > (S 1] Hum =L <y pue
O (ViDL i) = A D0) =T
rn{dp\ @) (@ a1 +w) ™=o'(C:qywr)
[ouueyd Ojur 9FBSSAUW)SB[1I0S LYOSHD
(O%19) =292 (O 2 19)=dp{dn{#\e) (@ T+wT) ™=0'(:qywT)
[QUURYD WOIJ 9FBSSIW ISIY I[P TAAHD
smpo () =a9>o0u% =a‘(T"‘ - 0n) =1 < ypue
(- yq9)=dpe(a:- gy TH+wT) ™ —p(0o:0:q Y wy)
93essow [ouUBYD ISIY WOIJ dN[eA 193 LADHD
o#110)'fa=9>o05a="
Aﬂlwx@“ .. .Q\uav — VWU AHIQDR. e “oav _ &UUEN d D A A&U : b“wﬁwnbv — \Qw A&U : annwﬁov — Qw,ﬁ
{Pn{oI\e) @y T+wT) ™= (a:0o:0: gy wy)
o3essow [ouuByD ISB[UI SAN[eA 198 LASHD
0 =TFo(pr)xewt > ypue p > (T -1 10999)= (...)9)=dn
{Ptn{oi\e) @y T+wT)™=0'(C:q'y wr)
[oUUBYD U 9FBSSIUW MU)BIO[[B davH)
(WYY@ THw) M=o 0 q Y W)
([ouueyd ur sagessowl Jo Jaquinu) YISUI [ouuRyd Jo3 NATHD
®3 (O e ((Qxew: gy T+w'T) ™M= q Yy W)
YISUQ[[SUUBRYD WNWIXEW JoT XVIWHD
Joynuopl [ouueyd anbruneo m {(3299) N ‘O @Y T+ w) M d(q Y ‘wT)
7 9Z1S 93eSSAW Pue | YISU[WNWIXBW PIM [duueyd A1dwd mMau B 9)eard 7°] MANHD

93

7. A Virtual Machine-based Approach

STEP M’ step complete with mode M’

{(p,M,(L,m,R,D))}Ull e, G, P)

2 nd (o, M (L,m + 1)} UTL €, G, @)
;. Jp M e{Al}
. 1 otherwise

and Vm; € 11 . m = (pi, My, (Li, my))
NEX step not executable

(L,m, R, D) = ,q stop

Table 7.4.: Operations for Process Deactivation

Deactivation of Processes

Following a cooperative multitasking approach, eventually a process allows resumption
of other processes by deactivating itself with one of the operations in Table 7.4.

We introduce STEP M’ as flexible means to control which states become visible to
an external scheduler. If further execution of a process is not anticipated (e.g. because
of unsatisfied guard conditions or reception attempts on empty channels), process ex-
ecution may be aborted explicitly by NEX. This byte-code instruction can be used to
translate guards—boolean conditions which can enable or disable a transition.

7.1.4. Scheduling

With all the machinery in place, we now proceed with the relation of scheduler transi-
tions, — scheq. We define it in terms of intermediate transitions — g.,, Which is the least
relation satisfying

p,M M

/ . P * /
r ? step r if F_>actF0 —int F1 —end r

This means, that in a machine state I' some process identified as p is activated, then a
number of internal transitions happen, until at some point the process deactivates itself
in state I, giving the whole sequence mode M.

In case the machine gets “stuck™ without successor states because some process with
exclusive execution privileges becomes deadlocked, this process loses them, thus en-
abling execution possibilities for other processes:

(e, G, @) 25, TV if (ILe, G, ®) <5y, stop
and (I, L,G,®) 2%, T

94

7.1. Virtual Machine Specification

We can then define the transitions visible to an external scheduler. The approach we
took is due to our decision to model rendezvous communication within the interleav-
ing model and thus using an intermediate state which is not revealed to the scheduler.
We can distinguish three cases: a process ends a sequence of invisible steps with ei-
ther a visible transition or a transition leading to deadlock, and no interim rendezvous
communication can take place, or, rendezvous communication can take place, with the
restriction that the sending and receiving halves of the communication must be consec-
utive.

Definition 7.1.9 (Scheduler Transition)
We define the scheduler transition relation isched as least relation satisfying the follow-
ing rules.

e A scheduler transition consists of a (possibly empty) sequence of invisible steps,
followed by a visible step, that is, a step with mode N (normal), A (atomic) or T
(terminated). None of the steps is a rendezvous communication.

P ;s p,L p,l p,M /
r —sched I"if I' = 1_‘1 Tstep T C ? step Fn—l ? step Fn =T

and Vi : —sync(T;) and M # I and I # stop

e Alternatively, if a sequence of invisible steps leads to a deadlocked process, the
last step right before the deadlock becomes visible irrespectively of its mode 1.

P ’ - p,L p,1 ;-
r —sched I"if I' = I_\1 Tstep Tt ? step anl step stop

and Vi : —sync(l';) and TV =T,,_4

e Lastly, we allow a rendezvous channel to actually contain one message more than
its capacity allows, if the immediately following transition resolves this again by
having a rendezvous partner (different from the sender) receiving this message,
so that said rendezvous channel becomes empty again and the resulting state be-
comes visible to the scheduler again. In this case the sender loses its execution
privilege. It can then be picked up by the receiver. Note that we do not allow a
process to have rendezvous communication with itself (p # p’).

With this mechanism, rendezvous communication can be used to pass around

95

7. A Virtual Machine-based Approach

execution privileges between processes.

p,M

r i)sched F” if I —step F/ = (H/a 6/a G/a (I),)

p' M’

and (IT', L, G', @) —— ., [
and sync(I") and —sync(I'™)
and p # p' and I"” # stop and M # T

In all cases, we do not allow a scheduler transition to lead to a global state containing a
deadlock process stop.

Our handling of deadlock processes allows us to define a global deadlock state I'

where no process can complete a scheduler transition naturally: there is no I such that
I ﬁ)sched I

Definition 7.1.10 (Initial State)
The scheduler starts program execution with the initial state of our machine

1ﬂim’t = ({(L Ma (L07 init))}’ J—v G07 Q)

7.2. State Space Generation

State space generation can be carried out straight-forwardly with our virtual machine.
Given a byte-code program and an initial state, a minimal interface of our virtual ma-
chine for building a model’s state space is some function

next-state : State — 251

which is naturally induced by the scheduler relation — g 4.

7.3. Use Case: PROMELA

We validated our virtual machine-based approach to state space generation, by defin-
ing a translation from PROMELA to byte-code, thus defining its operational behaviour
through the backdoor. A complete translation procedure is given by Schiirmans [89]).
Although other modeling languages could have been used just as well, PROMELA was
chosen because it is a truly non-trivial example and it has wide acceptance inside and
outside academia.

96

7.4. Benchmarks

To give an impression of the translation into byte-code, a very short example that
shows a few interesting aspects is presented in Figure 7.2. The corresponding byte-code
is shown in Figure 7.3.

The PROMELA program specifies a sender process send, which sends values 3 and
5 through a channel c of capacity 1 integer. The respective byte-code for both sending
operations starts at send and se,, they are separated by STEP A due to the atomic
keyword in the PROMELA program which denotes that no concurrent action may take
place between the two send operations.

The corresponding receiver process recv receives messages from channel c in a
loop until the received integer value i is bigger than 5. When translated to byte-code,
instruction ELSE re; denotes that if the following code executes an NEX before some
STEP M’ (in this case, the one at label rey), execution is resumed at re,. The byte-code
generated for guard 1 < 5 is between labels re) and rez, the body follows up to label
re,. The remaining code is the landing pad for the jump resulting from the e1se guard,
and for closing the loop. Both processes are started from label init.

Note, that in our byte-code, all potentially blocking actions, as well as all steps which
result in scheduler transitions are explicit through NEX and STEP M’, respectively.

When executed, the receiver blocks until a message is in the channel. The sender
writes value 3 into the channel, and blocks while trying to write 5 into the channel,
as it is full. The sender’s blocking causes it to lose its atomic execution priviledges,
and hence the receiver can continue. It is unblocked because there is a message in the
channel available. The receiver then receives 3, resumes the loop and blocks again, as
the channel is now empty again. This allows the sender to send 5 and terminate. The
receiver unblocks, receives 5 and stores it into local variable i. In the next loop iteration,
guard 1 < 5 blocks, thus allowing the else guard to trigger, which subsequently
break out of the loop, and the receiver terminates as well.

7.4. Benchmarks

We implemented the virtual machine! sketched in the previous section to confirm the
practicality of our approach. Our efforts resulted in around 5,000 lines of commented
C code, including usage examples, which is rather small for a virtual machine. It turns
out that this prototype performs competitively even when compared to state-of-the-art
tools like SPIN.

Contrary to SPIN, the sole task of our VM is state space generation. Additional
functionality like model checking, possibly together with, for example, partial order
reduction [24] is duty of other components not covered here.

!called NIPS VM, New Implementation of PROMELA semantics, due to its beginnings

97

7. A Virtual Machine-based Approach

chan ¢ = [1] of {int};
active proctype send() {
atomic {
c!3;
c!5

active proctype recv ()

int 1 =

do

i < 5;
else;

2;

c?i
break

Figure 7.2.: PROMELA code for a sender process send, which sends values 3 and 5
through a channel c of capacity 1 (integer). The corresponding receiver
process recv receives messages from channel c in a loop until the received
integer value 1 is bigger than 5.

send : LDC O sep :
LDV G
POP 7o
PUSH r¢
CHLEN
init : CHNEW 1,1 PUSH rg
LDC O CHMAX
STV G LT
RUN 0, send JMPNZ sey
POP 7o NEX
RUN 0, recv se; : PUSH g seg :
POP 7o CHADD
STEPT PUSH rg
LDCO
LDC 3
CHSET
STEPA

LDC 0
LDV G
POP rg
PUSH rg
CHLEN
PUSH ¢
CHMAX
LT
JMPNZ seg
NEX
PUSH rq
CHADD
PUSH ¢
LDC 0
LDC 5
CHSET
STEPT

TeCV :

reg :

reg :

LDC 2
LDCO
STV L
ELSE rey
LDCO
LDVL
LDC 5
LT
JMPNZ resp
NEX
STEP N
LDCO
LDV G
POP rg
PUSH rg
CHLEN

reg :

rey :

Tes

re;y :

JMPNZ reg
NEX
PUSH rg
PUSH ¢
LDCO
CHGET
LDC O
STVL
CHDEL
JMP res
STEPN
JMP re;
STEPN
JMP reg
STEPT

Figure 7.3.: Byte-code translation for the PROMELA program in Figure 7.2. Entry points
are label init for the program, label send and recv for the respective pro-
cesses, which are both started from the init process.

98

7.4. Benchmarks

For our comparison to SPIN we employ standard breadth-first search with full state
space storage. We used the same hash function as SPIN does (due to Jenkins [58]).

While correctness, ease of reasoning and implementability are already worthwhile
traits of our virtual machine, it is also important that a state space generator is fast in
practice. In order to get a meaningful idea on the speed of our VM, we conducted
extensive experiments and measured the rate with which successor states are generated
(Table 7.5).

Unfortunately, we cannot compare state space size (and thus run-time) directly, be-
cause in general we generate slightly more states than SPIN due to our finer-grained
program counter. We expect this to be cleaned up by subsequent optimizations passes
in our compiler by reducing the number of visible STEP M instructions (M € {N, A}).
One such optimization, called path compression [98], has been extended to deal with
additional features provided by our virtual machine model: dynamic process creation,
asynchronous communication channels, control-flow non-determinism and speculative
execution. A preliminary implementation shows promising results (Table 7.5). Besides
this, we would like to highlight our NIPS implementation itself is not optimized at all,
in contrast to SPIN which has been under steady development for more than 15 years,
by the time of writing.

Our test setup consisted of an AMD Athlon 64 3500+ running Linux. We used
SPIN 4.2.5 for comparison. SPIN translates PROMELA models into C source code
which subsequently is compiled, and then run for the analysis.

By default, SPIN uses data-flow optimizations and statement merging [53] to reduce
size of the explored state space, thus requiring less time and memory for the task. The
optimizations can be disabled optionally (spin -0l -o03).

We benchmarked SPIN without said optimizations against our virtual machine im-
plementation (columns “Unoptimized” in Table 7.5), and another time with both opti-
mizations enabled, against our unmodified virtual machine, but with path compression
enabled in our PROMELA compiler.

We compiled the pan. c files generated by SPIN from the PROMELA models, and
used gcc (version 3.3.5) with option —02 (C optimisations), —-DNOREDUCE (disabling
partial-order reduction) and —-DBF'S (enabling breadth-first search). The resulting ex-
ecutable was used for benchmarking. Note, that our VM interprets instructions while
pan. c is compiled into a native executable.

In our tests we used models that come with the SPIN distribution. Our experiments
show that NIPS (version 1.2.2) is competitive to SPIN both in state size (rightmost
columns of Table 7.5) and state space generation speed.

The size of states, which contain all information needed to restart the virtual machine
from (global and local variables, channels, processes), is typically within a few bytes of
what SPIN reports as state size.

Comparisons of state space size and run-times require further explanations. For very

99

7. A Virtual Machine-based Approach

NIPS Virtual Machine SPIN NIPS SPIN
Unoptimized with Path Compression Unoptimized Data-Flow Opt., Statement Merging State size
Parameter States Time States/sec. States Time States/sec. States Time States/sec. States Time States/sec. in bytes
MAX eratosthenes

6 170 0.002 76853.53 34 0.001 51593.32 195 0.016 12187.50 128 0.016 8000.00 130 124
10 764 0.020 38055.39 74 0.003 26047.17 1006 0.018 55888.89 548 0.018 30444.44 163 156
14 2744 0.051 53339.55 190 0.006 33009.03 3864 0.026 148615.38 2263 0.026 87038.46 229 220
18 7766 0.166 46893.02 342 0.012 28023.60 12035 0.058 207500.00 6477 0.058 111672.41 262 252
22 24092 0.569 42364.48 626 0.025 24584.69 41610 0.344 120959.30 21539 0.344 62613.37 295 284
26 69920 1.717 40730.78 1162 0.054 21361.08 129823 2.430 53425.10 69618 0.430 161902.33 328 316
30 146222 3.824 38237.95 1710 0.088 19514.09 282914 11.855 23864.53 | 130062 3.855 33738.52 361 348
34 347012 10.418 33307.78 2914 0.177 16451.75 713817 171.441 4163.63 | 342028 26.441 12935.52 394 380

N L leader
3 6 754 0.009 79410.22 105 0.002 59965.73 743 0.018 41277.78 407 0.018 22611.11 131 116
4 8 5678 0.082 69216.89 379 0.008 47889.82 5626 0.037 152054.05 2410 0.037 65135.14 186 180
5 10 46091 0.649 70986.55 1509 0.035 43504.58 45937 0.268 171406.72 15791 0.268 58921.64 249 220
6 12 382465 6.180 61891.22 6241 0.176 35533.72 382151 3.120 122484.29 | 106449 0.120 887075.00 320 308

N L leader2
3 6 4571 0.054 85268.71 667 0.010 63907.25 4476 0.027 165777.78 2430 0.027 90000.00 138 124
4 8 143373 1.321 108507.81 10012 0.161 62102.25 142260 0.650 218861.54 60052 0.650 92387.69 193 188

N peterson_N
2 327 0.003 109879.03 30 0.000 72289.16 303 0.017 17823.53 185 0.017 10882.35 38 40
3 51118 0.268 190879.12 853 0.012 71112.96 45927 0.085 540317.65 25371 0.085 298482.35 50 48
pftp

1378184 10.033 137368.71 _ 301603 4.996 60372.40 _._ 1275180 3.770 338244.03 _ 219167 0.770 284632.47 189 152

snoopy
124434 2.385 52180.87 _ 68658 1.442 47603.20 _._ 91925 0.436 210837.16 _ 61624 0.436 141339.45 205 188

N sort

5 21245 0.276 76930.88 572 0.010 54533.32 14349 0.077 186350.65 4652 0.077 60415.58 181 184
6 152628 1.789 85331.92 2019 0.040 49967.83 95677 0.576 166105.90 22350 0.576 38802.08 215 216

Table 7.5.: State Space Generation: A comparison between NIPS and SPIN. PROMELA models are taken from the SPIN
distribution. Times are measured as wall-clock time in seconds on an AMD Athlon 64 3500+ running Linux.

100

7.4. Benchmarks

$ nips_vm -Rg eratosthenes.pr.b

NIPS VM - New Implementation of Promela Semantics Virtual Machine

version 1.2.2 date 2005-09-30

Copyright (C) 2005: Stefan Schuermans <stefan@schuermans.info>
Michael Weber <michaelw@i2.informatik.rwth-aachen.de>
Lehrstuhl fuer Informatik II, RWTH Aachen

Copyleft: GNU public license - http://www.gnu.org/copyleft/gpl.html

MSC: 2 is prime
MSC: 3 is prime
MSC: 4 = 2x2
MSC: 6 = 2x3
MSC: 5 is prime
MSC: 8 = 2x4
MSC: 7 is prime

MSC: 9 = 3%3
MSC: 10 = 2%5
MSC: 11 is prime
MSC: 12 = 2%6
MSC: 14 = 2x7
MSC: 13 is prime
MSC: 15 = 3%5
MSC: 16 = 2x8
MSC: 18 = 2%9
MSC: 17 is prime
MSC: 20 = 210
MSC: 19 is prime
MSC: 21 = 3x7
MSC: 22 = 2%11
MSC: 24 = 2%12
MSC: 26 = 2%13
MSC: 25 = 5%5
MSC: 23 is prime

Figure 7.4.: Example output for a random walk through the state space of
eratosthenes (26) with NIPS. The order of lines can differ in sev-
eral runs due to concurrency of the sieve processes.

small state spaces (below a few thousand states), differences in run-times are negligible,
as results are almost instantaneous, and dominated by load times, among other things.
On larger models SPIN seems to be around a factor of 2-3 times as fast as our VM
with optimizations disable. Notable exceptions are instances of the eratosthenes
model for big values of parameter MAX, for which NIPS outperforms SPIN in terms of
run-time by more than factor 16. The difference in state space size seems to be due to
the peculiar way how SPIN counts states. We have not been able to gain further insight
on the reasoning behind it.

Note that despite the differences in state count we do have a convincing argument
that the erat osthenes model is still doing what it is supposed to—calculating prime
numbers up to a given limit. As they are printed out, we can assure ourselves that indeed

101

7. A Virtual Machine-based Approach

no vital functionality is thrown away and the explored state space differs from the actual
state space only in indistinguishable elisions of interleavings [98].

When comparing both tools with optimizations turned on, NIPS wins in terms of
state space size on many of the tested models, sometimes generating only fractions of
the state space when compared to the results of SPIN with optimizations turned on (0.9%
for eratosthenes (34),5.9% for leader (6,12), 3.4% for peterson_N (3)),
resulting in reduced run-times as well.

Exceptions in which SPIN still wins over NIPS with respect to state space size and
run-time are the snoopy and pftp models. Although the path compression optimiza-
tion manages to reduce the explored state space to less than 75%, there is still room left
for improvements by additional optimizations which we did not pursue yet.

Overall, speed of state space generation seems already good enough for our purposes
for now, especially if taken into account that we are benchmarking interpreted execution
of our byte-code language against compiled code of SPIN’s pan.c generator. For
example, state space generation costs with our VM is already insignificant compared to
the communication costs in our distributed model checker.

7.5. Evaluation as Intermediate Language

We will now review our virtual machine design with regard to the requirements proposed
in Chapter 6.

One of the design goals for our byte-code language was that it must be easy and fast
for a machine to execute. We have experimentally shown in Section 7.4 that we are able
to reach this goal indeed.

Translation from our use case example PROMELA is automatic (requirement T1), as
one would expect.

As our compiler does not generate the state space of an input program itself, but
instead creates a byte-code program which when executed creates the state space, we
can claim time and space efficiency (T2). Each PROMELA construct can be expressed in
a short sequence of byte-code operations, and due to its binary format, the byte-code’s
size is larger than the input program’s source code by only a small constant factor,
usually less than 2. As far as we can tell, our approach is expressive enough to deal with
features commonly found in specification languages, certainly it is for PROMELA (T3).

Finally, the last requirement on the translation process is the possibility to present
results in terms of the input formalism, as this is what users would expect (T4). We
achieve this with standard compiler construction and debugging techniques, and pre-
serve enough information throughout the compilation process to relate each byte-code
operation back to the high-level construct that caused the compiler to emit it.

102

7.5. Evaluation as Intermediate Language

We can then turn our attention to requirements on the intermediate language itself.
Our byte-code language allows for arbitrary guards to be executed, thus we are able to
retroactively invalidate statements. The example ch?v where v < 3 from requirement
I1 could for example be translated by using a suitable statement translation function C[-]
and an expression translation function £[-]:

Clch?v where v < 3] := C[ch?]
Elv <3|
JMPNZ L4
NEX
Ly : STEP M

If the received value v turns out not to fulfil the condition, the NEX instruction will abort
this execution path and backtrack to some previously executed STEP M’ instruction. In
the same way, we can also undo assignments to variables (I12).

One of our key decisions during the design was to add an explicit notion of a step to
our byte-code language, in form of the STEP M instruction. This allows us fine-granular
control on the visibility of run-time effects from inside the virtual machine (I3), as no
intermediate steps become visible unless said instruction is executed. This mechanism
was also used to translate PROMELA’s atomic and d_ step blocks.

Requirement 14 postulates the avoidance of duplication when translating conditionals
with multiple cases. An example translation would look as expected:

C[if E; then C elsif F; then Cs else C3 end] := Ly : E[E]

JMPZ L,
Clci]
JMP L,
Ly :
Ls: C[C5]
JMP L,
Ly :

We assume here expressions £; have no side effects and cannot block. A relaxation of
these assumptions is also possible, with only a slightly more involved translation using
the ELSE byte-code [89, pp.78ff].

The last two requirements, size of the formal framework (I5) and compositionality
(I6), are harder to support based on conclusive arguments. We believe that we found a

103

7. A Virtual Machine-based Approach

good compromise for the complexity of our framework, and we base this assertion on
the size of our implementation (Section 7.4) and the rapidness in which it was conceived.
The compositionality of our approach remains to be evaluated.

7.6. Related Work

7.6.1. PROMELA Semantics

Several formal semantics for PROMELA have been proposed in the past, but it turns out
that none of them covers all aspects of the language. The original publication [55] is
incomplete in this sense and now partly outdated, as SPIN evolved. It was improved
on by a more modular and less implementation-specific approach by Weise [96], but
there the handling of nested do loops in combination with got o statements is unsound.
Another incomplete attempt is from Bevier [10]. The specification is a Lisp program
and as such peppered with implementation artefacts.

In contrast, our semantics is faithful to SPIN’s PROMELA semantics. It mainly de-
viates in allowing nested scopes, in order to straighten out the rather confusing static
semantics of declarations (variables can be used before being declared). Following our
semantics, we developed a compiler for PROMELA, targeting the virtual instruction set
defined in Section 7.1.3.

7.6.2. Virtual Machines

Virtual machines have been used extensively in Computer Science. A well-known ex-
ample is for instance the work of Wirth on the Pascal programming language [97].

Independent to our work, two (unpublished, to the best of our knowledge) attempts
of virtual machine models for restricted PROMELA-like languages have been brought
to our attention [45, 88]. Geldenhuys [45] describes a virtual machine as part of the
general design of a model checker, while our work is focused on providing a reusable
component for state space generation.

ESML [32], the high-level language translated into byte-code is restricted in several
ways when compared to PROMELA, and its underlying virtual machine inherits some
of these restrictions. For example, it lacks support for asynchronous channels, shared
variables and dynamic process creation.

Rosien [88, Section 8] describes some shortcomings of his attempt, for example the
lack of arrays, no support for data types beyond integers, unclear semantics for do loops
or handshake communication inside atomic blocks (“[...] causes undesired results,
unexpected atomic deadlocks or otherwise erratic behavior.”).

104

7.6. Related Work

Besides that, we are in doubt that the architecture of Rosien’s design can be adapted
easily to e.g., distributed settings where successive states may be generated on different
computers. This use case was specifically taken into account in the design of our VM.

Both papers do not provide a complete formal model of their VM or of the translation
into their byte-code language, making it non-trivial to derive implementations from their
work, neither are implementations readily available.

BACI

The Ben-Ari Concurrent Interpreter (BACI) suite in its latest version compiles a version
of Wirth’s Pascal enriched with concurrency constructs into the byte-code language
PCODE, which is then executed on a virtual machine. BACI is widely used as teaching
device for concurrency, not for verification purposes, hence the byte-code language is
still relatively high-level and not stream-lined for simplicity and efficient execution.
Also, the virtual machine does not allow to specify the granularity of visible actions, as
is the case with ours.

To the best of our knowledge, formal semantics of the byte-code language or virtual
machine are not available.

TyCO VM

Lopes at al. [70, 71], present a virtual machine for the process algebra of Typed Con-
current Objects (TyCO), a close relative to asynchronous m-calculus. Features include
a process concept, communication channels, and a notion of atomic execution (coined
thread). Since its virtual machine is meant for program execution rather than verifica-
tion, it lacks nondeterminism, an external scheduler and invisible states, when compared
to our work. Also, TyCO’s more complex machine state is not designed for snapshot-
ting and restarting. We stress the authors’ report that their virtual machine executes
efficiently, also due to optimizations carried out at byte-code level.

PROBMELA

A probabilistic extension of PROMELA is presented in [3]. Through private communi-
cation with one of the authors (Ciesinski) we recently learned about their endeavor to
implement a virtual machine. No published work of these efforts is available so far, but
the cited PROBMELA paper reveals a number of simplifying deviations from PROMELA
semantics, e.g. atomic regions always running to completion, making them equal to
PROMELA’s d_step and thus obviating the need for priorities on byte-code level.

However, we see the existence of their project as evidence that we are on the right
track, and we are confident that probabilistic extensions can be fitted into our virtual
machine model. This is left as future work for a possible collaboration.

105

7. A Virtual Machine-based Approach

Java Path Finder and Bandera

Java Path Finder 2 [94] translates Java byte-code into Bandera intermediate repre-
sentation (BIR), which then can be model-checked using Bogor [86], or translated to
PROMELA, using SPIN as back-end model checker. The intermediate representation is
a high-level guarded command language, not unlike PROMELA. While it can be trans-
lated further down to a certain extent, constructs like arrays, locks, exceptions, and
high-level control constructs remain, complicating an implementation of its operational
semantics. On the other hand, we are confident that BIR can be translated further down
to an extended version of our byte-code language.

The Bogor framework consists of a large Java code base, which we conjecture is not
easy to replicate in another language if needed. Again, from the tool point of view, our
aim is not to beat the Bogor framework in terms of features, but rather to provide a small
but versatile component which can easily be reused, or written from scratch based on a
formal specification.

7.7. Conclusions

We presented a virtual machine-based approach to state-space generation, in which the
virtual machine’s instruction set doubles as intermediate language. The machine’s se-
mantics are straightforwardly implementable, thus encouraging reuse of our specifica-
tion. Among the byte-code instructions are all operations commonly needed for the
specification of concurrent systems: non-determinism, process creation, communica-
tion primitives, and a way to express scheduler constraints (atomic regions). As such,
our byte-code language doubles as a general framework for the assignment of executable
operational semantics to high-level modeling languages for concurrent systems.

Benchmarks showed that it is a usable alternative to SPIN in terms of speed, and su-
perior for embedding into third-party model checkers. Although a Just-in-time compiler
for our byte-code is conceivable to further increase the speed of our virtual machine, we
believe the extra complexity is not worth the effort for now.

106

8. Conclusions and Future Research

In this thesis, we introduced a novel family of distributed algorithms for solving the
model-checking problem for two fragments of Kozen’s p-calculus [60]: the alternation-
free fragment L, which subsumes the well-known Computation-Tree Logic CTL [40],
and the fragment Lz allowing formulas with one alternation, which subsumes other
practically relevant logics, like Linear-Time Logic LTL [83] and CTL* [37].

Both our algorithms work within the same framework, namely Stirling’s model-
checking games [91], and we showed that the algorithm for the alternation-free frag-
ment L; can be reused as subroutine for the case of one alternation. Depending on
different needs, they can be tailored to exhibit on-the-fly properties.

We express the model-checking problem in terms of game graph which are subse-
quently colored by our algorithms. The coloring can then be translated back to provide
an answer to the original question. Our key insight was to exploit the structure of -
calculus formulas in order to find a partitioning of the game graph. This saves us from
having to perform a cycle detection algorithm, which is considered prohibitively expen-
sive in a distributed setting like ours.

Through experiments, we have shown that our algorithms are able to provide answers
for very large models. In particular, we tested them on the largest transition systems of
the Very Large Transition Systems (VLTS) benchmark suite which contains problems
instances up to an order of 3 x 107 states and 1.5 x 108 transitions, inclusively.

The UppDMC implementation [52] of our algorithms was able to provide all of the
missing results by utilizing the combined resources of a network of workstations, thus
demonstrating that our algorithms can deal easily with real-world problems where se-
quential approaches fail. Furthermore, our experiments have shown that our algorithms
scale well with increasing problem size.

In the second part, we turned our attention to the generation of state spaces suitable
for consumption by model-checking algorithms, from a high-level description of mo-
del. We highlighted efficiency problems and issues of semantic complexity, and then
proposed the translation to an intermediate representation in form of virtual-machine
byte-code, which can be efficiently translated further into a low-level transition system
representation, and optionally subjected to further optimizations. The usage of an in-
termediate representation is a widely employed trick within compilers to break down
the complexity of a translation, and works just as well in the domain of state-space
generation.

Additional benefits of our virtual-machine based approach also include its value as

107

8. Conclusions and Future Research

encapsulated reusable component with a well-defined and concise interface, and the
provision of executable operational semantics for modelling languages.

We also put our virtual-machine based approach to state-space generation under real-
world scrutiny. We formalized and implemented a virtual machine expressive enough to
suit as target for the translation of the modelling language PROMELA [48]. Benchmarks
have shown that it is competitive in terms of speed with state-of-the-art tools, in some
cases even outperforming SPIN [48].

Moreover, its additional advantage of allowing straightforward integration in dis-
tributed model-checkers has been confirmed by the integration with the DIVINE [35]
framework for distributed model checking, yielding a distributed SPIN-compatible tool
called DIVSPIN [69].

Future Work

Different Logics Probably an expectable future task is the extension of our dis-
tributed algorithms to handle higher alternation depths of the p-calculus, thus providing
more expressive power. Yet, we currently do not see a real need to go in this direction, as
we already capture many temporal logics of practical interest, and it very fast becomes
cumbersome to reason about the meaning of formulas with deeper nesting of alternating
fixpoints.

Instead, we believe it is worthwhile to investigate into the opposite direction: iden-
tifying less expressive sub-logics, which lead us to specialized and even more efficient
algorithms.

Distributed Fail-over While we now have at our disposal scalable distributed al-
gorithms for verification of large systems, several research directions in this area have
not been addressed much in the literature so far. In order to provide an industrial-grade
solution, our algorithms would have to cope with exceptional situations, for example,
in which one of the workstations of a NOW fails. Instead of terminating the whole
computation, we would expect some kind of graceful degradation of service, possibly
with some kind of fail-over mechanism. Such features become especially important if
the number of processing units increases from tens to hundreds or thousands, as the
probability of failure increases as well.

Grid Computing Although our algorithms are targeted at distributed computing en-
vironments, they still assume a high-speed private network to interconnect processors
to offset the already high communication costs.

Grids, on the other hand, are geographically distributed computing resources con-
nected via the Internet, for which such assumptions do not hold any longer. Conse-

108

quently, issues like load-balancing and more efficient ways to utilize the communica-
tion infrastructure become much more important for algorithms designed to run in a
Grid context.

Virtual Machine Extensions For our virtual machine, we are looking into a lan-
guage-independent byte-code optimization phase along the lines of Yorav and Grum-
berg’s static analysis for state-space reductions [98]. This requires an extension of
the language they considered. However we believe the careful choice of our virtual
machine’s primitive byte-code operations simplifies the formalization of their analysis
considerably, and opens up possibilities for further optimizations.

Our virtual machine already provides a set of features suitable for the translation of
high-level modelling languages (with SPIN as prominent example). However, we are
also looking into extensions of our virtual machine with notions of time [93], probabil-
ities [3], or dynamic memory allocation [64], and their effect on its complexity.

109

8. Conclusions and Future Research

110

List of Algorithms

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.

initializeConfiguration(conf) o L. 37
color(conf) . . . o 37
colorizeComponent(();), sequential version 38
color(conf), top-down version 41
colorizeComponent,((Q);), parallel version 49
processSuccessors(conf, @;), parallel version 49
color(conf), parallel bottom-up version 50
recolorComponent,(();), parallel bottom-up version 50
Main procedure, parallel bottom-up version 50
color(conf), parallel top-down version 53
recolorComponent,(();), parallel top-down version 53
Main procedure, parallel top-down version 54
L2-colorizeComponent(Q;) 60

111

List of Algorithms

112

Bibliography

[1] H. R. Andersen. Model checking and Boolean graphs. Theoretical Computer
Science, 126(1):3-30, 11 Apr. 1994.

[2] J. Augusto, M. Butler, C. Ferreira, and S. Craig. Using SPIN and STeP to verify
StAC specifications. In PSI’03, number 2890 in LNCS, pages 207-213. Springer
Verlag, July 2003.

[3] C. Baier, F. Ciesinski, and M. GroBer. Probmela: a modeling language for com-
municating probabilistic systems. In Proc. MEMOCODE, 2004.

[4] J. Barnat, L. Brim, 1. éerné, and P. Sime¢ek. DiVinE — Distributed Verification
Environment. Submitted to PDMC’05’s short presentations., 2005.

[5] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-
Checking. In 18th IEEE International Conference on Automated Software Engi-
neering (ASE’03), pages 106—-115. IEEE Computer Society, Oct. 2003.

[6] J. Barnat, L. Brim, and J. Chaloupka. Distributed Memory LTL Model Checking
Based on Breadth First Search. Technical Report FIMU-RS-2004-07, Faculty of
Informatics, Masaryk University Brno, 2004.

[7] J. Barnat, L. Brim, and J. Chaloupka. From Distributed Memory Cycle Detec-
tion to Parallel LTL Model Checking. Electronic Notes in Theoretical Computer
Science, 133(1):21-39, May 2005.

[8] S. Basonov. Parallel implementation of BDD on DSM systems. Master’s thesis,
Computer Science Department, Technion, 1998.

[9] A. Bell. Distributed Evaluation of Stochastic Petri nets. PhD thesis, RWTH
Aachen, 2004.

[10] W. Bevier. Towards an operational semantics of PROMELA in ACL2. In Pro-
ceedings of the 3rd International SPIN Workshop, April 1997.

[11] G.BhatandR. Cleaveland. Efficient model checking via the equational y-calculus.
In Proceedings, 11" Annual IEEE Symposium on Logic in Computer Science,
pages 304-312, New Brunswick, New Jersey, 27-30 July 1996. IEEE Computer
Society Press.

113

Bibliography

[12]

[13]

[14]

[15]

[16]

[19]

114

A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model check-
ing. volume 58 of Advances in Computers. Academic press, 2003.

B. Bollig, M. Leucker, and M. Weber. Local parallel model checking for the
alternation free pi—calculus. Technical Report AIB-04-2001, RWTH Aachen, Mar.
2001.

B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the alternation
free p-calculus. In T. Margaria and W. Yi, editors, Proceedings of the 7th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’01), volume 2031 of Lecture Notes in Computer Science, pages
543-558. Springer, Apr. 2001.

B. Bollig, M. Leucker, and M. Weber. Local parallel model checking for the
alternation-free mu-calculus. In Proceedings of the 9th International SPIN Work-
shop on Model checking of Software (SPIN °02), volume 2318 of Lecture Notes in
Computer Science. Springer-Verlag Inc., 2002.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors, The Formal
Description Technique LOTOS, pages 23-73. Elsevier Science Publishers North-
Holland, 1989.

P. Borovansky, C. Kirchner, H. Kirchner, P. Moreau, and M. Vittek. Elan: A logical
framework based on computational systems. In Proc. of the First Int. Workshop on

Rewriting Logic, volume 4 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1996.

M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation environment for
component-based real-time systems. In K. L. Ed Brinksma, editor, Proceed-
ings of CAV’02 (Copenhagen, Denmark), volume 2404 of LNCS, pages 343-348.
Springer-Verlag, July 2002.

J. C. Bradfield. The modal mu-calculus alternation hierarchy is strict. In U. Monta-
nari and V. Sassone, editors, CONCUR’96: Concurrency Theory, 7th International
Conference, volume 1119 of Lecture Notes in Computer Science, pages 233-246,
Pisa, Italy, 2629 Aug. 1996. Springer.

L. Brim and J. Barnat. Distribution of Explicit-State LTL Model-Checking. In
T. Arts and W. Fokkink, editors, Electronic Notes in Theoretical Computer Sci-
ence, volume 80, pages 1-6. Elsevier, 2003.

Bibliography

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

L. Brim, I. Cerné, P. Kr¢dl, and R. Pelanek. Distributed LTL model-checking based
on negative cycle detection. In Proceedings of 21st Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’01), Lecture
Notes in Computer Science. Springer, Dec. 2001.

G. Cabodi, P. Camurati, and S. Que. Improved reachability analysis of large FSM.
In Proceedings of the IEEE International Conference on Computer-Aided Design,
pages 354-360. IEEE Computer Society Press, June 1996.

G. Ciardo, J. Gluckman, and D. Nicol. Distributed state-space generation of
discrete-state stochastic models. INFORMS Journal on Computing, 10(1):82-93,
1998.

E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using
partial order techniques. 2(3):279-287, Nov. 1999.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

E. M. Clarke and J. M. Wing. Formal methods: State of the art and future direc-
tions. ACM Computing Surveys, 28(4):626—643, Dec. 1996.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on Rewrit-

ing Logic, volume 4 of Electronic Notes in Theoretical Computer Science, pages
65-89. Elsevier, 1996.

R. Cleaveland, E. Madelaine, and S. Sims. A front-end generator for verification
tools. In Proc. of the Int. Workshop on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’95), volume 1019 of Lecture Notes in Computer
Science, pages 153-173, 1995.

R. Cleaveland and B. Steffen. A linear—time model-checking algorithm for the
alternation—free modal mu—calculus. In K. G. Larsen and A. Skou, editors, Pro-
ceedings of Computer-Aided Verification (CAV’91), volume 575 of Lecture Notes
in Computer Science, pages 48-58, Berlin, Germany, July 1992. Springer.

L. A. Crowl. How to measure, present, and compare parallel performance. IEEE
Parallel & Distributed Technology, 2(1):9-25, Spring 1994.

M. Dam. CTL* and ECTL* as fragments of the modal p-calculus. Theoretical
Computer Science, 126(1):77-96, Apr. 1994.

115

Bibliography

[32] P.de Villiers and W. Visser. ESML—a validation language for concurrent systems.
pages 59-64. 7-th Southern African Computer Symposium, July 1992.

[33] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of a termi-
nation detection algorithm for distributed computations. Information Processing
Letters, 16(5):217-219, June 1983.

[34] D.Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design
aid, 1992.

[35] DiVinE. http://anna.fi.muni.cz/divine.

[36] D. D’Souza and M. Mukund. Checking consistency of SDL+MSC specifications.
In T. Ball and S. K. Rajamani, editors, SPIN, volume 2648 of Lecture Notes in
Computer Science, pages 151-165. Springer, 2003.

[37] E. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘Not Never’ revisited: On branch-
ing versus linear time temporal logic. Journal of the ACM, 33(1):151-178, 1985.

[38] E. Emerson and C. Lei. Efficient model checking in fragments of the proposi-
tional p—calculus. In Symposion on Logic in Computer Science, pages 267-278,
Washington, D.C., USA, June 1986. IEEE Computer Society Press.

[39] E. A. Emerson. Model checking and the mu-calculus, volume 31 of DIMACS: Se-
ries in Discrete Mathematics and Theoretical Computer Science, chapter 6. Amer-
ican Mathematical Society, 1997.

[40] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthe-
size synchronization skeletons. Science of Computer Programming, 2(3):241-266,
Dec. 1982.

[41] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
mu-calculus. In C. Courcoubetis, editor, Proc. 5th International Computer-Aided

Verification Conference, volume 697 of Lecture Notes in Computer Science, pages
385-396. Springer, 1993.

[42] T. M. P. I. Forum. Document for a Standard Message-Passing Interface. CS-93-
214, University of Tennessee, 11 1993.

[43] H. Garavel and F. Lang. NTIF: A general symbolic model for communicating
sequential processes with data. In D. Peled and M. Y. Vardi, editors, FORTE,
volume 2529 of Lecture Notes in Computer Science, pages 276-291. Springer,
2002.

116

Bibliography

[44]

[45]

[46]

[50]

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM_: Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Par-
allel Computing. Scientific and Engineering Computation. MIT Pres, 94.

J. Geldenhuys. Efficiency issues in the design of a model checker. Msc. thesis,
University of Stellenbosch, South Africa, November 1999.

S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. Amendola, and P. Marmo. A
formal specification and validation of a critical system in presence of byzantine
errors. In S. Graf and M. Schwartzbach, editors, Proceedings of the 6th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2000), number 1785 in Lecture Notes in Computer Science.
Springer, 2000.

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, 1995.

J.-C. Grégoire, G. J. Holzmann, and D. A. Peled, editors. The Spin Verification Sys-
tem, volume 32 of DIMACS series. American Mathematical Society, 1997. ISBN
0-8218-0680-7, 203p.

O. Grumberg, T. Heyman, and A. Schuster. Distributed symbolic model checking
for p-calculus. In G. Berry, H. Comon, and A. Finkel, editors, Proceedings of
the 13th Conference on Computer-Aided Verification (CAV’01), volume 2102 of
Lecture Notes in Computer Science, pages 350-362. Springer, July 2001.

T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in par-
allel reachability analysis of very large circuits. In O. Grumberg, editor, Computer-
Aided Verification, 12th International Conference, volume 1855 of Lecture Notes
in Computer Science, pages 20-35. Springer, June 2000.

C. A. R. Hoare. Communcating Sequential Processes. Prentice Hall, 1985.

F. Holmén, M. Leucker, and M. Lindstrom. UppDMC - a distributed model
checker for fragments of the p-calculus. In L. Brim and M. Leucker, editors,
Proceedings of the 3rd Workshop on Parallel and Distributed Methods for Verifi-

cation, volume 128/3 of Electronic Notes in Computer Science. Elsevier Science
Publishers, 2004.

G. J. Holzmann. The engineering of a model checker: the gnu i-protocol case
study revisited. volume LNCS 1680, Toulouse, France, 1999. Springer Verlag.

G.J. Holzmann. The SPIN model checker: primer and reference manual. Addison-
Wesley, Boston, MA 02116, September 2003.

117

Bibliography

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

118

G. J. Holzmann and V. Natarajan. Outline for an operational-semantics definition
of PROMELA. Technical report, Bell Laboratories, July 1996.

A. J. Hu, G. York, and D. L. Dill. New techniques for efficient verification with
implicitly conjoined BDDs. In 31st Design Automation Conference, pages 276—
282, 1994.

D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In U. Montanari and
V. Sassone, editors, CONCUR’96: Concurrency Theory, 7th International Confer-
ence, volume 1119 of Lecture Notes in Computer Science, pages 263-277, Pisa,
Italy, 26-29 Aug. 1996. Springer.

B. Jenkins. A hash function for hash table lookup. Dr. Dobb’s Journal, September
1997.

C. Joubert and R. Mateescu. Distributed local resolution of boolean equation sys-
tems. In Proceedings of the 13th Euromicro Conference on Parallel, Distributed
and Network based Processing, PDP’05 (Lugano, Switzerland). IEEE Computer
Society Press, February 2005.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333-354, Dec. 1983.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312-360, Mar. 2000.

M. Lange. Spielbasiertes Model-Checking fiir den alternierungsfreien mu-Kalkiil.
Master’s thesis, Aachen, University of Technology, 1999. (German).

F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Pro-
ceedings of the 5th and 6th International SPIN Workshops on Theoretical and
Practical Aspects of SPIN Model Checking, pages 22-39, London, UK, 1999.
Springer-Verlag.

F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Pro-
ceedings of the 5th International SPIN Workshop, volume 1680 of Lecture Notes
in Computer Science, pages 22-39. Springer, 1999.

M. Leucker. Model checking games for the alternation free mu-calculus and al-
ternating automata. In H. Ganzinger, D. McAllester, and A. Voronkov, editors,
Proceedings of the 6th International Conference on Logic for Programming and
Automated Reasoning ”"(LPAR’99)”, volume 1705 of Lecture Notes in Artificial
Intelligence, pages 77-91. Springer, 1999.

Bibliography

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

M. Leucker and T. Noll. Rewriting logic as a framework for generic verification
tools. In Proceedings of the Third International Workshop on Rewriting Logic
and its Applications (WRLA’00), volume 36 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2000.

M. Leucker, T. Noll, P. Stevens, and M. Weber. Functional programming lan-
guages for verification tools: A comparison of ML and Haskell. Software Tools
for Technology Transfer, 7(2):184-194, 2005.

M. Leucker, R. Somla, and M. Weber. Parallel model checking for LTL, CTL*
and Li. In L. Brim and O. Grumberg, editors, Electronic Notes in Theoretical
Computer Science, volume 89. Elsevier Science Publishers, 2003.

M. Leucker, M. Weber, V. Forejt, and J. Barnat. DivSPIN — a SPIN compatible
distributed model checker. Accepted for PDMC’05’s short presentations, 2005.

L. Lopes, F. Silva, and V. T. Vasconcelos. A virtual machine for the TyCO process
calculus. In PPDP’99, volume 1702 of Lecture Notes in Computer Science, pages
244-260. Springer-Verlag, September 1999.

L. Lopes and V. T. Vasconcelos. TyCO abstract machine — the definition. DCC
97-1, DCC-FC & LIACC, Universidade do Porto, May 1997.

A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD
thesis, Technische Universitit Miinchen, 1996.

F. Mattern. Algorithms for distributed termination detection. Distributed Comput-
ing, 2(3):161-175, 1987.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well Massachusetts, 1993.

J. Meseguer. Rewriting as a unified model of concurrency. In Proceedings Con-
cur’90 Conference, Lecture Notes in Computer Science, Volume 458, pages 384—
400, Amsterdam, Aug. 1990. Springer. Also, Report SRI-CSL-90-02R, Computer
Science Lab, SRI International.

R. Milner. The polyadic 7-calculus: a tutorial. Technical Report ECS-LFCS-91-
180, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, UK, Oct. 1991. Proceedings of the International
Summer School on Logic and Algebra of Specification, Marktoberdorf, August
1991. Reprinted in Logic and Algebra of Specification, ed. F. L. Bauer, W. Brauer,
and H. Schwichtenberg, Springer, 1993.

119

Bibliography

[77]

[78]

[79]

[80]

[81]

[82]

[87]

[88]

120

A. A. Narayan, J. J. J. Isles, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Reachability analysis using partitioned—roBBDs. In Proceedings of the IEEE In-
ternational Conference on Computer-Aided Design, pages 388-393. IEEE Com-
puter Society Press, June 1997.

D. Nicol, G. Ciardo, and J. Gluckman. Distributed state-space generation of
discrete-state stochastic models. Technical report, Nov. 13 1995.

P. P. P. Inverardi, H. Muccini. Automated check of architectural models consis-
tency using spin. San Diego, California, 2001.

R. Palmer and G. Gopalakrishnan. The parallel PV model checker. Technical
Report FIMU-RS-2002-05, Masaryk University, Brno, Czech Republic, 2002.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, New York,
1994.

D. Peled. Ten years of partial order reduction. In Proceedings of 10th International
Conference on Computer-Aided Verification (CAV’98), volume 1427 of Lecture
Notes in Computer Science, pages 17-28, Vancouver, BC, Canada, 1998. Springer.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77), pages 4657,
Providence, Rhode Island, Oct. 31-Nov. 2 1977. IEEE Computer Society Press.

Z. Qian. A formal specification of java virtual machine instructions for objects,
methods and subrountines. In Formal Syntax and Semantics of Java, pages 271—
312, 1999.

J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the Fifth International Symposium in Programming,
volume 137 of Lecture Notes in Computer Science, pages 337-351, New York,
1982. Springer.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular
software model checking framework. SIGSOFT Softw. Eng. Notes, 28(5):267-276,
2003.

S. H. Roosta. Parallel Processing and Parallel Algorithms. Springer, New York,
Berlin, Heidelberg, 1999.

M. Rosien. Design and implementation of a systematic state explorer. Msc. thesis,
University of Twente, The Netherlands, March 2001.

Bibliography

[89] S. Schiirmans. Ein Compiler und eine Virtuelle Maschine zur Zustandsraumgener-
ierung. Diplomarbeit, RWTH Aachen University, Oktober 2005.

[90] U. Stern and D. L. Dill. Parallelizing the Mury verifier. In O. Grumberg, edi-
tor, Computer-Aided Verification, 9th International Conference, volume 1254 of
Lecture Notes in Computer Science, pages 256-267. Springer, June 1997. Haifa,
Israel, June 22-25.

[91] C. Stirling. Games for bisimulation and model checking, July 1996. Notes for
Mathfit Workshop on finite model theory, University of Wales, Swansea,.

[92] A. L. Stornetta. Implementation of an efficient parallel BDD package. Master’s
thesis, University of California, Santa Barbara, 1995.

[93] S. Tripakis and C. Courcoubetis. Extending promela and spin for real time. In
Proceedings of TACAS 96, volume 1055 of LNCS, 1996.

[94] W. Visser, K. Havelund, G. Brat, and S. Park. Java pathfinder - second generation
of a java model checker, 2000.

[95] M. Weber. Paralleles Model Checking. Master’s thesis, Aachen, University of
Technology, 2001. (German).

[96] C. Weise. An incremental formal semantics for PROMELA. In Proceedings of the
3rd International SPIN Workshop, April 1997.

[97] N. Wirth. Pascal-s: A subset and its implementation. In D. W. Barron, editor,
Pascal - The Language and its Implementation, pages 199-259. John Wiley, 1981.

[98] K. Yorav and O. Grumberg. Static analysis for state-space reductions preserving
temporal logics. Form. Methods Syst. Des., 25(1):67-96, 2004.

[99] S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model
checking in the modal mu-calculus. In Proceedings of the 9th Annual IEEE Sym-
posium on Logic in Computer Science, pages 154—163, Paris, France, 4-7 July
1994. IEEE Computer Society Press.

121

Bibliography

122

Symbols and Notations

PR

| =Eogg0s

~+

n
Hsiﬁep

p
—sched

partial-order relation 14
coverrelation L 14
set of fixpoint variables, 15
set of propositional variables 15
set of p-calculus formulaso 15
(K)or[K|modality 15
oX.porf[KJpo 15
setof subformulas o 0oL 16
setof free variables oo oL 16
setof bound variables 0oL 16
labelled transition system 17
valuation 17
alternationdepth Lo oL 19
fragmentsof L,, 19
occurrencesetof o Lo 20
formulaedgerelation 20
tree representationof ¢ L. L. 20
graph representationof ¢o L. 21
model-checking game 27
CAME MOVE . . .« v v v v e v e et e e e e e e 27
single play of a model-checking game 27
gamegraph 32
set of graph components 32
set of escape configurationsof Q; 34
set of initial configurationsof ; 34
global machinestate 86
finite set of processes 86
local processstate 88
internal step transition L 90
intermediate transitions L. 94
scheduler transition 95

123

Bibliography

124

Index

p-component, 23
v-component, 23
v-variable, 16

(strongly) connected component, 13

active, 88
algorithm
distributed, 9
enumerative, 8
explicit-state, 8
global, 7
local, 7
message-passing, 9
parallel, 8
symbolic, 8
alternation depth, 19
alternation-free, 2, 19
alternation-free fragment, 21
asymptotic run-times, 69

binary decision diagrams, 8
binder, 16

blocks, 46

boolean equation system, 10
bound, 16

bound variables, 16

bridge, 14

canonical decomposition, 34
channels, 89

combined complexity, 25
component, 13

component number, 24, 34
Computation-Tree Logic, 3, 15

configuration, 27
connected, 13

cooperative multitasking, 94

cover, 14
cover relation, 14
cycle, 13

data stack, 88
deadlock, 88
global, 88
depends on, 19
determined, 31
digraph, 13
directed acyclic graph, 13
directed graph, 13

edges, 13
escape configurations, 34

fixpoint operators, 15
free, 16
free variables, 16

game
parity-, 27
game board, 27
game graph, 9, 27, 31
game move
Abelard, 28
Eloise, 28
existential, 27
universal, 27
global state, 86
graph of ¢, 20

125

Index

graph representation, 20 partial order, 14

guard, 94 partially ordered set, 14
path, 13

Hasse diagram, 14 path compression, 99

high-level language, 79 play, 27

history-free, 30 player

inactive, 88 gllf) f;lsaerd2,72 7

inherently sequential, 25 ’

initial configurations, 34 poset, 14

initial state, 17 process, 86

Initial stores, 88 Process abstractions, 79
processor

interval, 14

is contained, 13 multi-core, 2

program complexity, 25

labelled transition system, 17
Linear-Time Logic, 3
local process state, 88
logic
computation-tree, 3
linear-time, 3

reached in, 13
reduction

partial order, 97
rewrite engines, 81

scheduler transition, 95
sentence, 17
serialisation, 83
specification language compiler, 81
stable, 37, 42
state space
explored, 99

maximal, 14, 30

message complexity, 52
modalities, 15

model checking game, 27
model checking problem, 25

move, 27
state spaces, 75
Network Of Workstations, 1 statement merging, 99
Nick’s Class, 25 stores, 88
nodes, 13 strategy, 30
non-determinism structural operational semantics, 81
conditional, 91 subformulas, 16
non-trivial, 13 subsumed, 19
normal, 17 succeeding positions, 25
NTIF, 82
terminal, 30
occurrence set, 20 traceable, 80
on-the-fly, 3 transition
operational semantics intermediate-, 94
executable, 3 scheduler-, 94

126

Index

tree, 13

tree order, 14

tree representation, 20
type, 16

winner, 30
winning, 25
winning strategy, 30

127

128

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to: Informatik-

Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2001-01 *
2001-02

2001-03
2001-04

2001-05
2001-06

2001-07

2001-08

2001-09

2001-10
2001-11

2002-01 *
2002-02

2002-03

2002-04

2002-05

2002-06

Jahresbericht 2000

Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz
Traces

Thierry Cachat: The power of one-letter rational languages

Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model
Checking for the Alternation Free mu-Calculus

Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
Order Logic

Martin Grohe, Stefan Wohrle: An Existential Locality Theorem
Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Thomas Arts, Jirgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

Achim Blumensath: Axiomatising Tree-interpretable Structures

Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-
sprachen und Grundlagen der Programmierung

Jahresbericht 2001

Jirgen Giesl, Aart Middeldorp: Transformation Techniques for Context-
Sensitive Rewrite Systems

Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular
MSC Languages

Jirgen Giesl, Aart Middeldorp: Innermost Termination of Context-
Sensitive Rewriting

Horst Lichter, Thomas von der Maflen, Thomas Weiler: Modelling Re-
quirements and Architectures for Software Product Lines

Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party
Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

129

http://aib.informatik.rwth-aachen.de/
biblio@informatik.rwth-aachen.de

130

2002-07
2002-08
2002-09
2002-10
2002-11
2003-01
2003-02

2003-03
2003-04

2003-05

2003-06

2003-07

2003-08

2004-01
2004-02

2004-03

2004-04

2004-05

2004-06

2004-07

2004-08

2004-09

Jorg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
Markus Mohnen: Interfaces with Default Implementations in Java
Martin Leucker: Logics for Mazurkiewicz traces

Jirgen Giesl, Hans Zantema: Liveness in Rewriting

Jahresbericht 2002

Jirgen Giesl, René Thiemann: Size-Change Termination for Term
Rewriting

Jirgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Improving Dependency Pairs

Christof Loding, Philipp Rohde: Solving the Sabotage Game is
PSPACE-hard

Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

Horst Lichter, Thomas von der Maflen, Alexander Nyflen, Thomas
Weiler: Vergleich von Ansétzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

Fachgruppe Informatik: Jahresbericht 2003

Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-
sively equivalent to EMSO logic

Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 — 2nd
International Workshop on Higher-Order Rewriting

Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 — Fifth In-
ternational Workshop on Rule-Based Programming

Herbert Kuchen (ed.): WFLP 04 — 13th International Workshop on
Functional and (Constraint) Logic Programming

Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 — 4th International
Workshop on Reduction Strategies in Rewriting and Programming
Michael Codish, Aart Middeldorp (eds.): WST 04 — 7th International
Workshop on Termination

Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-
piling Recursive Function Definitions with Strictness Information
Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10

2005-01

2005-02

2005-03

2005-04

2005-05

2005-06

2005-07

2005-08

2005-09

2005-10
2005-11

2005-12

2005-13

2005-14

2005-15

2005-16

2005-17

2005-18

Zinaida Benenson, Felix C. Gértner, Dogan Kesdogan: Secure Multi-
Party Computation with Security Modules

Fachgruppe Informatik: Jahresbericht 2004

Maximillian Dornseif, Felix C. Gartner, Thorsten Holz, Martin Mink: An
Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

Daniel Mélle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

Simon Fischer, Berthold Vécking: Adaptive Routing with Stale Infor-
mation

Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:
Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

Benedikt Bollig: Automata and Logics for Message Sequence Charts
Simon Fischer, Berthold Vécking: A Counterexample to the Fully Mixed
Nash Equilibrium Conjecture

Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-
ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments
Felix C. Freiling, Sukumar Ghosh: Code Stabilization

Uwe Naumann: The Complexity of Derivative Computation

Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-
Linear Code)

Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-
dural Adjoint Code)

Thomas von der Maflen, Klaus Miiller, John MacGregor, Eva Geis-
berger, Jorg Dorr, Frank Houdek, Harbhajan Singh, Holger Wuflmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschluibericht des GI-Arbeitskreises “Features”

131

2005-19

2005-20

2005-21

2005-22

2005-23

2005-24

2006-01 *

Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

Felix C. Freiling, Martin Mink: Bericht iiber den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Koln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.
Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

Heiner Ackermann, Alantha Newman, Heiko Roglin, Berthold Vocking:
Decision Making Based on Approximate and Smoothed Pareto Curves
Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks
Fachgruppe Informatik: Jahresbericht 2005

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth—-aachen. de to obtain copies.

132

biblio@informatik.rwth-aachen.de

Curriculum Vitae

Name
Geburtsdatum
Geburtsort
Bildungsgang
1987-1995
1995-2001

2001-2005

seit Nov. 2005

Michael Weber
10.08.1976

Diiren

Franken-Gymnasium Ziilpich

Abschluss: Allgemeine Hochschulreife

Studium der Informatik an der RWTH Aachen

Abschluss: Diplom

Wissenschaftlicher Angestellter am Lehrstuhl fiir Informatik 11
(Prof. Dr. Klaus Indermark), RWTH Aachen

Postdoc am Centrum voor Wiskunde en Informatica

Amsterdam, Niederlande

133

	1 Thesis
	1.1 Objective
	1.2 Contributions
	1.3 Overview

	I Parallel Model Checking
	2 A Classification of Model-checking Algorithms
	2.1 Global versus Local Algorithms
	2.2 Explicit-state versus Symbolic Algorithms
	2.3 Parallel versus Distributed Algorithms
	2.4 Related Work

	3 Parallel Model Checking Games
	3.1 Preliminaries
	3.2 The -Calculus
	3.2.1 Syntax and Semantics
	3.2.2 Graphs of Formulas
	3.2.3 Complexity of Model Checking for L1
	3.2.4 Model-checking Games for the -calculus

	3.3 Winning L1-games
	3.3.1 Sequential Coloring Algorithms

	3.4 Winning Games for L1-Formulas in Parallel
	3.4.1 Distributing the Game Graph
	3.4.2 Labelling the Game Graph
	3.4.3 A Family of Parallel Coloring Algorithms
	3.4.4 Algorithmic Variations and Optimization Issues
	3.4.5 Calculating Winning strategies

	3.5 Extensions towards L2
	3.5.1 Reducing Alternation Depth
	3.5.2 Alternation and Game Graphs
	3.5.3 Coloring Algorithm for L2

	4 Implementation and Empirical Results
	4.1 The UppDMC Implementation
	4.2 Practical Experiences

	II State Space Generation
	5 State Space Generation
	5.1 Introduction
	5.2 Status Quo
	5.3 Contributions
	5.4 Overview

	6 Intermediate Formats
	6.1 Direct Translation
	6.2 Using an Intermediate Format
	6.3 Parallel State Space Generation

	7 A Virtual Machine-based Approach
	7.1 Virtual Machine Specification
	7.1.1 Machine State
	7.1.2 Invariants
	7.1.3 Byte-code Semantics
	7.1.4 Scheduling

	7.2 State Space Generation
	7.3 Use Case: Promela
	7.4 Benchmarks
	7.5 Evaluation as Intermediate Language
	7.6 Related Work
	7.6.1 Promela Semantics
	7.6.2 Virtual Machines

	7.7 Conclusions

	8 Conclusions and Future Research
	List of Algorithms
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

