
Aachen
Department of Computer Science

Technical Report

6. Fachgespräch Sensornetzwerke

Klaus Wehrle

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-11

RWTH Aachen · Department of Computer Science · July 2007

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

6. Fachgespräch Sensornetzwerke

Klaus Wehrle

LuFG Informatik IV, Verteilte Systeme

RWTH Aachen, Germany

Email: klaus.wehrle@cs.rwth-aachen.de

Sensornetzwerke

der GI/ITG Fachgruppe

"
Kommunikation und Verteilte Systeme"

6. Fachgespräch

Herausgeber: Distributed Systems Group
RWTH Aachen University
http://ds.rwth-aachen.de

Technischer Bericht der RWTH Aachen
2007
16.7/17.7

ISSN 0935-3232 AIB 2007-11

Inhaltsverzeichnis

I Betriebssysteme / Hardware

Introduction to a Small Modular Adept Real-Time Operating System . 1
M. Baunach, R. Kolla, und C. Mühlberger (Universität Würzburg)

WIP: Energy Container for Database-Oriented Sensor Networks . 5
S. Kellner (Universität Karlsruhe)

Kostenaspekte beim Entwurf von Funksensorknoten . 8
M. Niedermayer, J. Hefer, S. Guttowski (Fraunhofer Institut für Zuverlässigkeit und
Mikrointegration), R. Thomasius, und H. Reichl (Technische Universität Berlin)

On Pursuit of Real-time and Reliability Guarantees in Wireless Sensor Networks 12
T. Sivanthi und U. Killat (TU Hamburg-Harburg)

iSense: A Modular Hardware and Software Platform for Wireless Sensor Networks 15
C. Buschmann und D. Pfisterer (coalesenses GmbH)

II Simulation / Evaluation

Accurate Timing in Sensor Network Simulation . 19
M. H. Alizai, O. Landsiedel, und K. Wehrle (RWTH Aachen)

A Quantitative Evaluation of the Simulation Accuracy of Wireless Sensor Networks 23
G. Wittenburg und J. Schiller (Freie Universität Berlin)

Model Checking for Energy Efficient Scheduling in Wireless Sensor Networks 27
P. H. Schmitt und F. Werner (Universität Karlsruhe, TH))

Simulation von plattformunabhänigen TinyOS-Applikationen mit ns-2 . 31
J. Saragazki, O. Landsiedel, und K. Wehrle (RWTH Aachen)

A Simulation Model of IEEE 802.15.4 in OMNeT++ . 35
F. Chen und F. Dressler (Universität Erlangen)

III Abstraktion

ServiceCast: Eine Architektur zur dienstorientierten Kommunikation in selbstorganisierenden
Sensor-Aktor-Netzen . 39

A. L. Kuntz und M. Zitterbart (Universität Karlsruhe, TH)

Coordinated group adaption in sensor networks . 43
D. Minder, P. J. Marrón, A. Lachenmann, und K. Rothermel (Universität Stuttgart)

Towards a Distributed JavaVM in Sensor Networks using Scalable Source Routing 47
B. Saballus, J. Eickhold (Universität Karlsruhe), und T. Fuhrmann (TU München)

IV Sicherheit

Misbehaviour Detection for Wireless Sensor Networks - Necessary or Not? . 51
S. Schaust und H. Szczerbicka (Universität Hannover)

Performance of Additive Homomorphic EC-ElGamal Encryption for TinyPEDs 55
O. Ugus, A. Hessler, und D. Westhoff (NEC Europe Ltd.)

V Einsatz

SNIF: A Comprehensive Tool for Passive Inspection of Sensor Networks . 59
M. Ringwald und K. Römer (ETH Zürich)

Management of Heterogenous Wireless Sensor Networks . 63
M. Anwander, G. Wagenknecht, T. Staub, und T. Braun (Universität Bern)

Verteiltes Sniffen von IEEE 802.15.4 Netzen unter Zuhilfenahme eines WLAN Ad-hoc Netzes 67
L. Thiem und K. Scholl (Fraunhofer Institut für Offene Kommunikationssysteme)

Smart Composition of Sensor Network Applications . 71
S. Schmitz, O. Landsiedel, und K. Wehrle (RWTH Aachen)

VI Routing

Geographic Routing in 3D . 75
M. Witt und V. Turau (TU Hamburg-Harburg)

A Prototype Study on Hybrid Sensor-Vehicular Networks . 79
E. Weingärtner (RWTH Aachen) und F. Kargl (Universität Ulm)

Handover in Sensor Networks using Statistic-based Routing . 83
A. Klein (Innovation Works EADS GmbH) und P. Tran-Gia (Universität Würzburg)

VII Drahtloses

Optimizing TDMA Design for Real-Time Applications in Wireless Sensor Networks 87
N. Gollan und J. Schmitt (TU Kaiserslautern)

Enabling the Sleep Mode in Non-Beaconed 802.15.4 Multhop Networks - A simulative Investigation 91
B. Staehle, T. Hossfeld, M. Kuhnert (Universität Würzburg), und N. Vicari (Siemens AG)

VIII Anwendungen

Ratpack: Using Sensor Networks for Animal Observation . 95
J. A. Bitsch Link, K. Wehrle (RWTH Aachen), O. Osechas, J. Thiele, und H. Mallot
(Universität Tübingen)

Wireless Sensor Networks for Environmental Noise Monitoring . 98
S. Santini und A. Vitaletti (ETH Zürich)

Security in Pervasive Healthcare . 102
O. G. Morchon, H. Baldus (Philips Research), T. Heer, und K. Wehrle (RWTH Aachen)

IX Protokolle

Reliable Data Transport in Wireless Sensor Networks . 106
M. Günes, C. Bürger, M. Wenig, und U. Meis (RWTH Aachen)

A 6lowpan Implementation for TinyOS 2.0 . 109
M. Harvan und J. Schönwälder (Jacobs University Bremen)

Introduction to a Small Modular Adept Real-Time Operating System

Baunach, Marcel Kolla, Reiner Mühlberger, Clemens

Department of Computer Engineering, Am Hubland, University of Würzburg, Bavaria, Germany

{baunach, kolla, muehlberger}@informatik.uni-wuerzburg.de

Abstract

In this paper we present SmartOS, a preemptive real-time

operating system for embedded systems like sensor/actor

nodes. After a short introduction and motivation, we present

the basic concepts along with a simple example and con-

clude with current work and further outlook.

Keywords operating system, real-time, multitasking, wire-

less sensor network, sensor node

1. Introduction

Distributed systems are made of several interacting compo-

nents. Wireless sensor networks in particular may consist of

a huge number of cooperating nodes handling even complex

tasks. However, such embedded systems are subject to tight

power, little memory and hard energy constraints. For some

applications it is even necessary to offer real-time operation

within control and feedback control systems on sensor/actor

nodes.

Up to a certain complexity, a single-loop software system

might accomplish these demands, but this would not be

very comfortable at all as it is inflexible and consumes lots

of energy and space. Moreover, the response time of such

single-task systems is high, the processor load is poor and

the program code is hardly maintainable or reusable.

An operating system (OS) might grant efficient and suit-

able solutions for these problems. Obviously, it has signifi-

cant influence on the performance of embedded devices as

it coordinates hardware access as well as execution and co-

operation of all software parts. Since subtle optimizations

require deep analysis of the overall system software, it is

common practice in embedded software development to link

operating system, drivers and the application itself to one

monolithic block.

Further challenges arise from the distribution of appli-

cations over a large number of nodes. This way, communi-

cation becomes another main focus during the development

process to which a good operating system should contribute.

Special problems here are (wireless) networking, node syn-

chronization, information propagation, security and in some

cases the interaction of different node architectures within

heterogeneous networks.

This paper introduces SmartOS, a small modular adept

real-time operating system for sensor nodes. It starts with

the motivation for its development despite of the availabil-

ity of other similar systems. Next, basic concepts, some im-

plementation details and a short software example follow.

We conclude with an overview of current SmartOS based

projects and an outlook to further development goals and on-

going research.

2. Motivation

For embedded systems and wireless sensor networks in par-

ticular, some operating systems are yet available.

The component based tinyOS [1] applies an execu-

tion model driven by events and commands. The run-to-

completion tasks are non preemptive and share a single

stack. Applications are implemented using the programming

idiom nesC. The operating system freeRTOS [2] is capable

of real-time operation and manages a message queue for its

alternatively preemptive or cooperative tasks. Applications

are written in plain C and a trace visualization tool exists.

Preemptivity is also found within the small operating system

SOS [3]. It offers an event-based design and support for crit-

ical sections without priority ceiling. Up to 7 independent

timers can be handled. The main focus of BTnut [4] lies on

network application. It deals with prioritized and coopera-

tive but non preemptive tasks. Dynamic heap allocation is

implemented and a system tracer is offered.

However, our vision of an OS for sensor/actor nodes de-

manded fully preemptive tasks despite of a modular design,

real-time operation and energy awareness. Hence, we de-

sired a priority based scheduler, a high resolution time man-

agement with a local timeline and an unified interrupt and

resource concept with priority ceiling. This allows periodic

tasks as well as precise timestamping of internal and external

events. Applications should be developed in plain C for effi-

cient low level hardware access. The next section addresses

the basic techniques in detail.

3. SmartOS concepts

SmartOS is a minimalistic operating system for small de-

vices like sensor nodes. The main goals are preemptive mul-

titasking, real-time operation and modularity despite of little

RAM and ROM requirements on slow microcontrollers or

1

processors. Due to hardware constraints on most microcon-

trollers, memory protection is not supported. A reference im-

plementation for TI’s MSP430 MCU family [5] is available

and includes

• an economic and fast core, responsible for scheduling

and context switching, time and resource management,

energy savings and error recovery,

• support for various hard- and software resources like

device drivers and communication protocols,

• low interrupt latency with automatic timestamping and

demultiplexing of shared hardware interrupt vectors, and

• modular task and resource composition for assembling

applications from code repositories.

The four foundation pillars are tasks, events, resources

and time management (see Fig. 1). They allow efficient and

easily maintainable software development even for complex

embedded applications.

Figure 1. SmartOS architecture

SmartOS’ time management uses a 64 bit timeline, driven

by a hardware timer of the underlying MCU. This way, time-

outs as well as all other time-dependent services gain a high

precision. In case of the MSP430 MCU, this means a res-

olution of 1 μs for timestamping and task scheduling. An

additional watchdog timer can be activated to recover from

software failures within non-responding tasks (deadlocks,

endless loops, etc.).

SmartOS tasks describe the behaviour of the overall sys-

tem, i.e. they control software and hardware activities. Up to

254 user defined and preemptive tasks are supported, each

possessing a never returning entry function, an initial prior-

ity (1 – 255) and an individual stack area. A source code

profiler is available to compute an upper bound for the stack

size of each task at compile time – if possible. As such anal-

ysis is a hard problem, adequate annotations within the C

comments can be added to refine the estimation. The set of

tasks is static after linking but their priority can be modified

dynamically at runtime. The scheduler selects the execution

order depending on the task priorities and allows context

switching within e.g. 20 μs on an MSP430 MCU running

at 8 MHz. Per default, the predefined idle task is scheduled

with lowest priority (0) if no other task requires CPU time.

This is essential for energy management as it controls ar-

chitecture specific low power modes and performs dynamic

frequency control.

SmartOS supports up to 255 user definable events to

synchronize tasks and to interact with hardware compo-

nents. Therefore, hardware interrupts are directly mapped to

events. Each task may wait for the occurrence of an event

with a relative or an absolute timeout. This allows further ac-

tions even if the expected event does not occur. Otherwise, if

no timeout is given, the task might wait forever. The major

advantage of absolute deadlines is the higher precision when

implementing periodic tasks. If an event is set by a task or

an interrupt handler, this causes the highest prioritized task

waiting for this event to become ready (see Fig. 2). In con-

sequence, this might even produce a context switch.

Figure 2. SmartOS scheduling and IRQ handling

SmartOS resources coordinate the (exclusive) access of

tasks on hardware devices, like timers and buses, or on ab-

stract entities, like data structures. Thus, semaphores can

also be simulated easily. Furthermore, an individual initial-

ization function per resource may be specified for automatic

configuration of the underlying object at system startup. In-

ternally, the assignment of a resource is managed via events.

Again, tasks can wait for resource allocation by specifying

an absolute, relative or no deadline. To avoid thwarting of

resource owning tasks, priority ceiling within the resource

concept temporarily increases the priority of the currently

owning task up to the highest priority of all other tasks wait-

ing for this particular resource. Only the owner task of a re-

source is liable and capable for releasing it.

SmartOS’ interrupt concept supports hardware and soft-

ware interrupt handling in kernel mode. Per default, inter-

rupt cascading is disabled but can be reactivated if desired.

As soon as a hardware interrupt occurs, a general IRQ dis-

patcher is executed. It stores the current system time with a

latency between 9 and 10 cycles on a MSP430 MCU. When

running at 8 MHz, this allows the calculation of a timestamp

with precision of ≈ 0.8 μs regarding a time discretion of

2

1 μs for the timeline. Next, the dispatcher switches to the

kernel stack for context saving and handler execution. Af-

ter processing the specific handler function, the scheduler is

executed again. For most architectures it is common prac-

tice to share hardware IRQs among several sources. This

is a problem when developing modular software compo-

nents independently from each other as a common IRQ han-

dler must be adopted to meet the requirements of all mod-

ules. SmartOS addresses this issue by supporting indepen-

dent software IRQ handlers for arbitrary sources. These are

subordinate to hardware IRQ handlers and allow automatic

demultiplexing of shared hardware interrupts (see Fig. 2).

For most hard real-time applications, performance can

not be sacrificed to provide safety or convenience. To opti-

mize speed and reactivity, SmartOS executes as little code

as possible in kernel mode and disables hardware interrupts

only within a very short section of a few assembler instruc-

tions. Apart from some architecture specific parts which use

assembler, SmartOS is implemented in the C programming

language. The reference implementation for TI’s MSP430

MCU [5] consumes 1.4 kB program ROM and 90 byte
RAM. Any additional task requires 46 byte RAM. Energy

analysis on the sensor node SNOW5 [6, 7] running at 8 MHz
showed a current consumption of 6.5 mW in sleep mode

(idle task) and 19 mW in active mode.

4. Example

For better understanding the following example will illus-

trate some SmartOS concepts from section 3. First, we will

declare two tasks, each controlling the periodic flashing of a

LED. The one with relative, the other with absolute delay.

1 Time_t delay = 3000000; / / d e l a y i n μs

2

3 / / t a s k w i t h s t a c k−s i z e 10×16 b i t , p r i o r i t y 200

4 OS_DECLARE_TASK(tLED_Red , 10, 200);
5 OS_TASKENTRY(tLED_Red) { / / e n t r y f u n c t i o n

6 while (1) {
7 sleep(delay); / / r e l a t i v e d e l a y

8 LED_toggle(LED_RED);
9 }

10 }
11

12 / / t a s k w i t h s t a c k−s i z e 10×16 b i t , p r i o r i t y 200

13 OS_DECLARE_TASK(tLED_Blue , 10, 200);
14 OS_TASKENTRY(tLED_Blue) { / / e n t r y f u n c t i o n

15 Time_t deadline;
16 getCurrentTime (& deadline);
17

18 while (1) {
19 deadline += delay;
20 sleepUntil (& deadline); / / a b s o l u t e d e l a y

21 LED_toggle(LED_BLUE);
22 }
23 }

Next, we will do some work concurrently to the LED

tasks. Therefore, we declare one single interrupt handler to

manage two channels of a DMA controller. It fills a buffer

for subsequent digital signal processing. As soon as the

buffer is full, an event will be triggered and a task waiting

for this event will resume. Notice the automatic stack size

estimation for the DSP task and its exclusive access on the

data buffer.

1 / / e v e n t and r e s o u r c e d e c l a r a t i o n

2 OS_DECLARE_EVENT(evDSP);
3 OS_DECLARE_RESOURCE(DataBuf);
4

5 / / IRQ h a n d l e r f o r DMA p r o c e s s i n g

6 void BufferHandler(int channel) {
7 / / . . . some (c h a n n e l d e p e n d e n t) code

8 if (buffer_is_full)
9 __syscall_setEvent (& evDSP); / / t r i g g e r e v e n t

10 }
11

12 / / d e c l a r e IRQ h a n d l e r f o r c h a n n e l 0

13 OS_DECLARE_IRQ_HANDLER(OS_IRQ_DMA0 ,
14 &BufferHandler , 0);
15

16 / / d e c l a r e IRQ h a n d l e r f o r c h a n n e l 1

17 OS_DECLARE_IRQ_HANDLER(OS_IRQ_DMA1 ,
18 &BufferHandler , 1);
19

20 / / DSP t a s k w i t h a u t o m a t i c s t a c k−s i z e e s t i m a t i o n

21 / / and p r i o r i t y 50

22 OS_DECLARE_TASK(tDSP , __STACK__AUTO__ , 50);
23 OS_TASKENTRY(tDSP) { / / e n t r y f u n c t i o n

24 while (1) {
25 waitEvent (& evDSP); / / w a i t w i t h o u t t i m e o u t

26 / / g e t e x c l u s i v e a c c e s s on DataBuf ,

27 / / p r o c e s s t h e b u f f e r , and r e l e a s e i t .

28 getResource (& DataBuf);
29 DSP(); / / some DSP f u n c t i o n a l i t y

30 releaseResource (& DataBuf);
31 }
32 }

The final step is to properly launch the system at power-

up. This is done by a never returning main-function as entry

point for the whole application:

1 OS_MAIN {
2 init_osc (); / / i n i t MCU c l o c k

3 os_init_environment (); / / i n i t t a s k s , e v e n t s , r e s .

4 run_os (); / / s t a r t SmartOS s c h e d u l e r

5 }

5. Conclusion and outlook

In this paper we gave some benefits of operating systems

for embedded systems and sensor/actor nodes in particular.

Next, we introduced some of our reasons for implementing

an operating system from scratch despite of other existing

ones. The underlying techniques of SmartOS were explained

and a meaningful example provided a deeper insight to com-

plete this paper.

SmartOS was yet tested successfully within various

projects like the ultrasonic localization system SNOW BAT

[8]. Further applications based on SmartOS and extensions

for the SNOW5 sensor node include stepper motor control,

digital compass implementation, GPS readout, CAN bus in-

terfacing and a TCP/IP stack for ethernet connection. The

actual main project is the real-world installation of a WSN

based vehicle-to-infrastructure communication system com-

prising 70 SNOW5 nodes. Right now, SmartOS is available

for TI’s MSP430 MCU family [5] and thus runs also on

3

some other nodes like TelosB [9]. However, we are working

on further ports for other 16-bit and 32-bit microcontrollers,

e.g. Hitachi’s SuperH family.

Our short term research objectives are the support for

multi-CPU nodes, energy harvesting techniques and analysis

of various wireless communication protocols (B-MAC [10],

PEDAMACS [11], SCP-MAC [12], TRAMA [13]). Addi-

tionally, we are studying the possibilities for secure and re-

mote software updates via radio, IrDA and ethernet. One

long-term goal is the integration of well-known concepts

from agent technologies like negotiation or auction into ex-

isting processes for data propagation or task scheduling.

References

[1] UC BERKELEY: TinyOS. http://www.tinyos.net/,

2004.

[2] BARRY, RICHARD: FreeRTOSTM homepage. http://www.

freertos.org/, 12. December 2005.

[3] SKYDAN, OLEG: SOS - small operating system. http:

//skydan.in.ua/SOS/, 25. February 2006.

[4] ETH ZURICH: BTnut. http://www.btnode.ethz.ch/,

2007.

[5] TEXAS INSTRUMENTS INC., Dallas (USA): MSP430x1xx

Family User’s Guide, 2006.

[6] KOLLA, REINER, MARCEL BAUNACH, and CLEMENS

MÜHLBERGER: Snow5: a modular platform for sophisticated

real-time wireless sensor networking. Technical Report 399,

Institut für Informatik, Universität Würzburg, January 2007.

[7] KOLLA, REINER, MARCEL BAUNACH, and CLEMENS

MÜHLBERGER: Snow5: A versatile ultra low power modular

node for wireless ad hoc sensor networking. In MARRÓN,

PEDRO JOSÉ (editor): 5. GI/ITG KuVS Fachgespräch

”Drahtlose Sensornetze”, pages 55–59, Stuttgart, July 2006.

Institut für Parallele und Verteilte Systeme.

[8] KOLLA, REINER, MARCEL BAUNACH, and CLEMENS

MÜHLBERGER: SNoW Bat: A high precise WSN based lo-

cation system. Technical Report 424, Institut für Informatik,

Universität Würzburg, May 2007.

[9] POLASTRE, JOSEPH, ROBERT SZEWCZYK, and DAVID

CULLER: Telos: Enabling ultra-low power wireless research.

In Proceedings of the Fourth International Conference on

Information Processing in Sensor Networks: Special track on

Platform Tools and Design Methods for Network Embedded

Sensors (IPSN/SPOTS), 25.-27. April 2005.

[10] POLASTRE, J., J. HILL, and D. CULLER: Versatile low

power media access for wireless sensor networks. In

SenSys04, pages 95–107, Baltimore, MD, November 2004.

B-MAC.

[11] COLERI-ERGEN, S. and P. VARAIYA: Pedamacs: Power

efficient and delay aware medium access protocol for sensor

networks. IEEE Trans. on Mobile Computing, 5(7):920–930,

July 2006. PEDAMACS.
[12] YE, W., F. SILVA, and J. HEIDEMANN: Ultra-low duty cycle

mac with scheduled channel polling. In SenSys06, pages

321–334, Boulder, CO, November 2006. SCPMAC.

[13] RAJENDRAN, V., K. OBRACZKA, and J. GARCIA-LUNA-

ACEVES: Energy-efficient, collision-free medium access

control for wireless sensor networks. Wireless Networks,

12(1):63–78, February 2006. TRAMA.

4

WIP: Energy Container for Database-Oriented
Sensor Networks

[Extended Abstract]

Simon Kellner
System Architecture Group

Universität Karlsruhe
simon.kellner@kit.edu

ABSTRACT
Energy remains the most critical resource in sensor net-
works. In static sensor-net applications where most events
can be calculated a priori, energy management is often done
implicitly and manually by application developers.

With the advent of database interfaces to sensor nets, this
is no longer possible due to dynamically created queries.
There are several scenarios in which it is desirable to get an
accurate account of the resources a sensor net consumed on
behalf of a certain query.

In this work, we propose to adapt the Resource Container
concept from the desktop computing world to sensor net-
works in order to facilitate dynamic energy accounting.

1. INTRODUCTION
Energy still is the most critical resource in sensor networks.
Current energy supplies already take up most of a sensor
node’s space, but can provide the desired node lifetimes of
years only when sensor-net application designers give a high
priority to a long sensor-net lifetime. Sensor-net Operating
Systems (OSes) like TinyOS [2] encourage energy saving by
not providing a convenient CPU-abstraction such as threads,
which could, for example, tempt application developers into
creating CPU-intensive waiting loops and thus into wasting
energy.

Database interfaces to sensor nets like TinyDB [3] make it
easier for users to retrieve sensor data: A sensor-net applica-
tion is formulated as a request in an SQL-like language and
interpreted by the sensor net until the request expires. The
program on the sensor nodes only needs the ability to in-
terpret and execute such requests. This eliminates the need
to reprogram sensor nodes and allows multiple queries to be
processed simultaneously.

Such dynamic systems can support multiple users in a sensor
net, each with his own set of queries. In this scenario it is
desirable to account the energy consumption of each query,
e.g. to bill users based on their sensor net “usage”, or to find
the query with the highest energy consumption and cancel
it before it wears down the energy supplies.

On traditional computers on the desktop or in the server
room, Resource Containers (RCs) are used for this purpose.
In this work, we investigate how this concept can be adapted

to TinyOS, an OS widely used on sensor nodes. We consider
RCs for energy accounting only, although the concept can
be used for all resources an OS manages.

2. BACKGROUND
In this section, traditional Resource Containers as they are
used in PCs are introduced as well as the properties of
TinyOS that are relevant to this work.

2.1 Resource Containers
Resource Containers are an OS-abstraction introduced by
Banga, Druschel and Mogul [1] in 1999 and consist basically
of OS-provided storage for accounting data. The idea is to
separate OS abstractions for CPU and resource accounting,
because resource usage is independent of CPU abstractions.

Instead, it is dependent on tasks: A task is loosely defined
as something a user wants the system to do (e.g., serving a
web page or drawing a picture). In modern systems, such
a task is no longer identical to a process: A web-server can
use threads to serve different web pages simultaneously (one
process working on several tasks), or several processes co-
operate to accomplish one task (e.g., graphical application
and X-server).

In an RC-enabled system, every process can create RCs,
change its active RC and share an RC with another process.
Continuing both examples above, a web-server can bind each
of its threads to a separate RC, and a graphical application
can share an RC with the X-server.

One such implementation of RCs for Linux is described in
[4]. Here, when a process creates a new RC, the RC is bound
to a file descriptor. This has the advantage that existing
code used for user-land handles to kernel objects can be
reused. The RCs are organized in a hierarchy in which each
parent RC holds the accounting data aggregated over all its
children. So a process cannot cheat the system by creating
new RCs, since they will all have the same parent.

In summary, RCs give administrators and users the ability
of accounting tasks, which usually has a higher significance
than process-based accounting.

2.2 TinyOS
TinyOS, one of the most prevalent OSes for sensor nodes,
is event-driven. It does not provide “convenient” CPU ab-

5

stractions known from other OSes like processes or threads.
All activities in TinyOS can be seen as responses to inter-
rupts. These responses typically consist of few instructions
and some commands to peripheral hardware that will trig-
ger the next interrupt, allowing the processor to sleep in the
meantime. This design does not tempt inexperienced pro-
grammers into creating energy-expensive polling routines.

Instead of high-level processor abstractions like threads or
processes, TinyOS opts for a low-level abstraction in order
to save stack memory, the TinyOS tasks (not to be mistaken
for the RC-related tasks). TinyOS tasks run until comple-
tion and cannot be interrupted by other TinyOS tasks. This
is a strong incentive to keep them short, as other operations
would suffer serious delays. Instead, a long-running TinyOS
task should enqueue (post) itself in the run queue and quit,
postponing its work in effect. In summary, a typical work-
flow of packet reception, sensor queries, a bit of computa-
tion and packet transmission on a sensor node is distributed
across several of its devices and held together by TinyOS
tasks and interrupts, interspersed with sleep intervals.

The original RC concept associates processes or threads with
one or more RCs on which the OS can account resource
usage. In the absence of these processor abstractions the
association of resource use with RCs is more difficult.

3. RESOURCE CONTAINERS IN TinyOS
The focus of this work is on how to attach RCs to queries ex-
ecuted by a TinyOS application, since dynamically created
queries are the most interesting targets for on-line account-
ing. However, RCs can be used to account other tasks as
well.

In the following we assume that the application can identify
queries through an ID which is present in all packets related
to that query.

3.1 Normal Resource Containers
A normal RC is associated with a query. As soon as an
application learns the ID of the query currently being pro-
cessed, it informs TinyOS that it wishes to switch to the RC
associated with this query. The selected RC is then bound
to the current TinyOS task.

The energy consumption of all further activities coming from
this TinyOS task is accounted to the selected RC. If the
TinyOS task posts a new TinyOS task or sets up a new
timer, this binding can be stored by the scheduler or timer
system, and can be used to switch back to the stored RC
automatically on the corresponding wake-up call.

The OS here clearly depends on the application for cor-
rect accounting, but this is both feasible and necessary in
a sensor-net application. It is necessary to prevent produc-
ing hard-to-maintain code, and it is feasible because there
should be only few places where this RC-switching occurs,
namely when a sensor-net application starts processing a
query.

3.2 Anonymous Resource Containers
Since TinyOS applications spend most of their time sleeping
and perform only minimal amounts of processing, energy

consumed during interrupt handling is not negligible.

For example, a timer interrupt may cause the activation
of a communication device, which is subsequently used to
send stored sensor data to other nodes. The sensor node
is not aware of the query ID until it accesses the packet it
is about to send. In the meantime, the activation of the
communication device can consume a substantial amount of
energy that cannot be assigned to the correct RC at that
moment.

As a solution, the interrupt handler can allocate a tempo-
rary, anonymous RC and use it to account both its own
energy consumption and the device activation. Later, when
the application becomes aware of the query ID, it can switch
to the RC associated with the query, causing the temporary
RC to be merged and released.

3.3 Special Resource Containers
It may be necessary to employ special RCs to provide addi-
tional information or to handle cases where the correct RC
is not known.

3.3.1 Root Resource Container
One RC worth mentioning is the RC for the whole node. It is
used to collect the amount of energy consumed by the whole
node, regardless of queries. This information is of interest
to the nodes themselves in order to estimate the amount of
remaining energy. It can also be regarded as another data
source and can itself be the target of a query.

3.3.2 Idle Resource Container
Some energy consumption simply can not be clearly ac-
counted to a query, e.g., the energy spent during sleep (idle
energy). We call the problem of accounting this energy con-
sumption in a fair manner accounting fairness.

One way to address the issue of idle energy accounting is
to distribute the accounted idle energy among all queries
known to the sensor node. To achieve this, a special RC for
this energy class is present in the system. At certain times,
this RC is cleared and its content distributed among all ex-
isting normal RCs. This has to be done both periodically
and on creation/expiration of a query:

• Periodically so that the accounting information remains
recent,

• At query instantiation to avoid penalizing this query
by accounting sleeping energy spent before its instan-
tiation, and

• At query expiration to avoid losing accounted energy.

The fairness of this distribution is subject to discussion and
thus should be handled by a project-dependent policy. Pol-
icy examples include equal distribution and partitioning ac-
cording to duty-cycle or used energy.

So, one can picture the RCs in a 3-level hierarchy: the root
RC for the node, named RCs for the queries and anonymous

6

RCs to account energy consumed for a (yet) unknown pur-
pose. In this hierarchy the root RC contains the aggregated
accounting data of the named RCs, while the anonymous
RCs will eventually be merged with one of the named RCs.

3.4 Shared Data
Caching the acquired sensor data introduces another in-
stance of the accounting-fairness problem. Without addi-
tional measures, the first query to sample data bears the
cost of acquiring it, subsequent queries can use it at almost
zero cost. If the accuracy of timing or accounting can be re-
laxed, some trade-offs between one of them and accounting
fairness can be considered.

A trade-off between timing accuracy and accounting fairness
can be implemented as a subscriber model for sensor data:
The sensor data is sampled either on time-out after the first
subscription or when enough parties subscribed to this sen-
sor data. The energy is split among all of the subscribed
parties.

Another trade-off between accounting accuracy and fairness
can be implemented by assigning a value to the sampled
sensor data that decays with every access. For example, the
initial query bears 3/4 of the costs, the next query 3/4 of the
remaining costs, and after a time-out, the rest is distributed
across all queries that acquired this data.

3.5 Resource Container Aggregation
RCs lend themselves quite naturally to sensor nets with dy-
namically created queries. When receiving a new query, a
sensor node allocates an RC for this query, accounts the
query’s energy costs to that RC and sends the accounted
data back together with the responses to this query.

RC contents can easily be aggregated by summation over
all RCs with the same query ID. The design of RCs to store
all of the energy accounted to it since its creation makes it
resilient to occasional packet loss. When accounting infor-
mation is lost in the network due to temporary packet loss,
the aggregated accounting information at the data sink may
be incorrect, but it will be correct again once the temporary
packet loss is over.

To allow the data sink to compare the collected aggregated
RC values and to detect packet loss, a node should addi-
tionally send the number of sensor nodes involved in an ag-
gregate, if this information is not already present in the
aggregated sensor data.

4. CONCLUSION
Resource Containers are an elegant concept for resource ac-
counting in traditional operating systems. This concept can
be adapted to the field of sensor networks, where pure event-
driven operating systems prevail.

The benefit of this concept is accurate accounting of sensor
network tasks, which is useful information to developers,
administrators and users.

5. ACKNOWLEDGMENTS
This work is done as part of the BW-FIT project ZeuS.

6. REFERENCES
[1] G. Banga, P. Druschel, and J. Mogul. Resource

containers: A new facility for resource management in
server systems. In Proceedings of the Third Symposium
on Operating System Design and Implementation
(OSDI’99), Feb. 1999.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In ASPLOS-IX: Proceedings of the ninth
international conference on Architectural support for
programming languages and operating systems, pages
93–104, New York, NY, USA, 2000. ACM Press.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 491–502,
New York, NY, USA, 2003. ACM Press.

[4] M. Waitz. Accounting and control of power
consumption in energy-aware operating systems.
Master’s thesis, Department of Computer Science 4,
University of Erlangen, Jan. 2003. SA-I4-2002-14.

7

Kostenaspekte beim Entwurf von Funksensorknoten
M. Niedermayer, J. Hefer, S. Guttowski

System Design & Integration
Fraunhofer Institut für Zuverlässigkeit und Mikrointegration,

Berlin

{niederm|hefer|guttowski}@izm.fraunhofer.de

R. Thomasius, H. Reichl
Design and Simulation Methods for System Integration

Technische Universität Berlin, FSP Mikroperipherik,
Berlin

{thomasius|reichl}@izm.fhg.de

Zusammenfassung
Drahtlose Sensornetze stellen einen wachsenden Markt dar. Viele
Anwendungen erfordern dabei eine Vielzahl kostengünstiger
Funksensorknoten, die in verschiedenste Objekte eingebettet wer-
den können. In der Vergangenheit wurden Protokolle, Architektu-
ren und Fertigungstechnologien zumeist getrennt optimiert. Beim
kostenoptimierten Entwurf muss der Systementwurf jedoch zu-
sammen mit den fertigungstechnischen Randbedingungen be-
trachtet werden. Dabei liegt der Schwerpunkt auf der Identifika-
tion der Kostentreiber und deren Optimierung. Nach Einführung
der wesentlichen Kostenaspekte drahtloser Sensorknoten wird
eine Plattform zur Kostenoptimierung vorgestellt. Diese besteht
aus einem Entwurfswerkzeug und einer Infrastruktur zur Verifika-
tion von Funksensorsystemen, um Prototypen unterschiedlicher
Architekturen mit verschiedenen Aufbautechniken zu testen und
die Kostensenkungsmöglichkeiten praxisnah zu analysieren.

Schlüsselwörter
Drahtlose Sensorsysteme, Kostenmodelle, Entwurfsmethodik,
Hetero-Systemintegration, 3D-Aufbau- und Verbindungstechnik

1. Einleitung
Ob per Telefon, Fernsehen oder Internet – ein wesentlicher Teil
des Informationsaustausches geschieht in der virtuellen Welt. In
der Vergangenheit waren Menschen die Brücke zu Netzwerken,
um in der virtuellen Welt zu kommunizieren. Mit der technischen
Machbarkeit von kleinen kostengünstigen Systemen zur Datener-
fassung in der physikalischen Welt, die ebenfalls im Netzwerk per
Funk kommunizieren können, ändert sich dieser Status Quo.
Drahtlose Sensornetzwerke schließen somit die Lücke zwischen
der physikalischen und der virtuellen Welt. Entsprechende Sen-
sornetzwerke mit einer größeren Anzahl an Funksensorknoten
können jedoch nur dann ein großes Marktpotential erreichen,
sofern der einzelne Funksensorknoten sehr kostengünstig gefertigt
werden kann. Anwendungen wie Zutrittskontrollen, Fernwartung
und Zustandsüberwachung werden davon profitieren, wenn draht-
lose Funksensorknoten die Preisspanne von 1 bis 10€ erreichen.
Funksensorknoten weisen besonders viele Entwurfsfreiheitsgrade
auf. Der Grad der Entwurfsautomatisierung ist dabei recht gering,
insbesondere bei den vielen fertigungsnahen Entscheidungen,
welche kostenoptimale Lösungen mit sich bringen. Beim Proto-
koll- und Schaltungsentwurf können die Konsequenzen im Hin-
blick auf die Systemkosten oftmals erst am Ende des Entwurfsab-
laufs beurteilt werden.
Abschnitt 2 diskutiert zunächst die Marktentwicklung und die
technologischen Trends. Anschließend werden in Abschnitt 3 ge-
nerelle Kostenabhängigkeiten von kompakten Funksensorknoten
erörtert. Die Vorstellung der implementierten Plattform zur ange-
wandten Kostenanalyse erfolgt in Abschnitt 4. Schließlich gibt
Abschnitt 5 einen Ausblick auf zukünftige Aktivitäten.

2. Kostenentwicklung und Trends
Bei der Beobachtung der Marktentwicklung von innovativen Pro-
dukten unterscheidet man den Labormarkt und den Massenmarkt.
Mit der technologischen Machbarkeit erlaubt der Labormarkt
zuerst Produkte mit sehr spezifischen Anforderungen. Die Kos-
tenrestriktionen sind eher unkritisch. Dies ändert sich mit dem
Eintritt in den Massenmarkt. Während beim Investitionsgüter-
markt ein preislicher Unterschied von einigen 10€ über die Markt-
fähigkeit entscheidet, können im Konsumgütermarkt sogar weni-
ge Cent von Bedeutung sein. So ergibt sich eine entsprechende
Markterschließung schrittweise. Funksensorknoten befinden sich
gerade an der Schwelle der Öffnung des Konsumgütermarktes
(Abb. 1). Zu den ersten Massenprodukten zählen derzeit drahtlose
Heizkostenzähler und Reifendrucksensoren.

Abb. 1: Marktentwicklung von Funksensorknoten
Seit 1948 hat die Mikroelektronik ein enormes Wachstum erfah-
ren. Die technische Entwicklung im Bereich der Mikrosystem-
technik ist ebenfalls beachtlich. Sie hinkt jedoch der Dynamik bei
den integrierten Schaltkreisen deutlich hinterher. So fiel bei-
spielsweise in den 25 Jahren von 1970 bis 1995 das Preis-
Leistungsverhältnis bei Mikroprozessoren auf 0,01 Prozent, wäh-
rend die entsprechenden Kostenreduktionen bei Sensoren ledig-
lich 33 und bei Aktoren 10 Prozent betrugen [1]. Auf Basis der
Technologien der Mikroelektronik und Mikrosystemtechnik wer-
den zukünftig besonders kleine und robuste Komponenten mach-
bar. Die Kombination aus Miniaturisierung und geringeren Ferti-
gungskosten eröffnet auch Märkte für neue Anwendungen.
Die dynamische Entwicklung bei den Komponententechnologien
führte auch zu einer erheblichen Steigerung der Integrationsdichte
im Bereich der Aufbau- und Verbindungstechnik. Verschiedene
Trends begünstigen diese Entwicklung. So werden die Kompo-
nentengehäuse immer kleiner. Die Einführung von so genannten
3D-Gehäusen durch Stapelung mehrerer Komponenten ermöglicht
deutlich steigende Packungsdichten. Auch die Entwicklung bei
den Substrattechnologien erlaubt eine wirtschaftliche Komponen-
tenintegration auf immer kleineren Raum. Besonders anschaulich

8

ist die technologische Entwicklung im Bereich der Mobiltelefone,
in dem bei einer Reduktion der belegten Leiterplattenfläche um
15 Prozent die Kosten jährlich um 25 Prozent sinken [2].

3. Kostenaspekte der Teilkomponenten
Energieautarke Funksensorknoten bestehen neben einer eigenen
Energieversorgung aus den Analogkomponenten für die Messda-
tenerfassung und die Funkkommunikation sowie aus den digitalen
Schaltungselementen für die Ablaufsteuerung und Datenverarbei-
tung [3]. Auch wenn es die Vision eines universellen Funksensor-
knotens gibt, werden zukünftig kostenoptimierte Varianten domi-
nieren, deren Architektur hinsichtlich der wesentlichen Systempa-
rameter (wie Rechengeschwindigkeit, Funkdatenrate, Reichweite,
Messgenauigkeit, Betriebsdauer) auf die konkrete Anwendung
angepasst ist. Daher sind am Fraunhofer Institut für Zuverlässig-
keit und Mikrointegration Funksensorsysteme mit alternativen
Architekturen und unterschiedlichen Fertigungstechnologien ent-
wickelt worden [4]. Tabelle 1 listet drei exemplarische Funksen-
sorknoten gleicher Größe (1cm³) auf, die hinsichtlich Reichweite,
Datenrate, Leistungsaufnahme sowie Aufbau- und Verbindungs-
technologie variieren. Basierend auf diesen Vorarbeiten sollten
praxisnah die Stärken und Schwächen der einzelnen Architektur-
elemente untersucht und kostengünstige Technologiekombinatio-
nen je nach erforderlichem Formfaktor ermittelt werden.

Tab. 1: Prototypvergleich verschiedener Architekturen

Chip-
satz

TI MSP430F149
Nordic nRF2401

Atmel ATMega128L
Chipcon CC1100

Atmel ATMega128L
Chipcon CC1000

Funk 0,5 – 3m (1Mbits)
Substratantenne

4 – 75m (500kbits)
Ext. Drahtantenne

2 – 30m (38kbits)
Miniloop-Antenne

AVT
Modulstapel mit
Kontaktrahmen

ICs als COB / MLF

Modulstapel mit
Seitenwandkontak-

ten
ICs als MLF

Gefaltetes Flex
ICs als FlipChip

Abmaße 10x10x10 mm³ 10x10x10 mm³ 10x10x10 mm³

Auch wenn die Siliziumintegration vielfach Kostenvorteile bringt,
führt einen reine Einchiplösung als System-on-Chip selbst bei
großen Stückzahlen nicht zum kostengünstigsten System. Die
Anpassung der Prozesstechnologien für die Fertigung der einzel-
nen Komponenten bedeutet oft einen Kompromiss hinsichtlich
der funktionellen Komponentenparameter. Beim komplementären
Ansatz, dem System-in-Package, werden daher optimierte Kom-
ponenten mit sehr verschiedenen Herstellungsprozessen gefertigt
und anschließend mit Hilfe der Aufbau- und Verbindungstechnik
integriert.
Hinsichtlich der Fertigungskosten stellen planare Leiterplatten-
baugruppen sowie Multichipmodule auf laminiertem FR4-
Substrat die günstigste Modulintegrationstechnologie dar. Wäh-
rend eine Verdrahtung mit Standardleiterplatten zu recht großflä-
chigen Baugruppen führt, sind derzeit Feinstleiterplatten mit
Halbleiterchips im MLF-Gehäuse sowie Passive in der 0402-
Bauform in der Regel die preiswerteste Variante. Zwar sind die
Substratkosten pro Fläche etwas höher, aber die Modulfläche
halbiert sich oftmals, so dass sich die Ausbeute pro Fertigungs-
nutzen mit entsprechenden Kostenvorteilen verdoppelt. Aufgrund
der schwierigeren Testbarkeit von ungehäusten Mikrochips sowie
teuerer Ausrüstung zur Bestückung kleinerer Bauformen, wie

0201 und 01005 für die passiven Bauelemente, ist eine weitere
Miniaturisierung mit Mehrkosten verbunden. Jedoch aufgrund der
höheren Schockfestigkeit und kompakteren Bauform kann sich
dieser Zusatzaufwand in der Anwendung insgesamt rechtfertigen.

Abb. 2: Aufwand verschiedener Aufbauvarianten
Besonders kompakte Funksensorknoten werden ebenfalls durch
die Technologien der 3D-Systemintegration auf Basis gestapelter
bzw. gefalteter Module möglich. Die gefalteten Module weisen
nahezu die gleichen Fertigungsprozesse auf wie die planaren Mul-
tichipmodule. Faltbare Substrate kosten jedoch gegenüber ver-
gleichbaren FR4-Leiterplatten ungefähr das Doppelte. Fertigungs-
technisch etwas aufwendiger sind Modulstapel mit flächigen In-
nenkontakten oder alternativ mit Seitenwandkontakten (Abb. 2).
Durch Verwendung bereits getesteter Teilmodule stehen diesen
Ansätzen dafür Kostenersparnisse gegenüber, so dass diese Mo-
dulstapel insbesondere bei moderaten Stückzahlen für spezifische
Anwendungen vorteilhaft sind. Während bei den Modulstapeln
mit flächigen Innenkontakten die Teilmodule enger aufeinander
abgestimmt sein müssen, erlauben Funksensorknoten mit vertika-
len Seitenwandkontakten den geringsten Abstimmungsaufwand.
Die Teilmodule können dabei recht heterogene Abmaße aufwei-
sen. Lediglich die Verdrahtung der Seitenwände muss beim
Tausch von Teilmodulen neu festgelegt werden.
Zur Energieversorgung nutzen besonders kostengünstige Funk-
sensorknoten meist Batterien, da sie eine vergleichsweise hohe
Energiedichte besitzen. Für eine Lithium-Batterie (Bauform) mit
einer Energiekapazität von 3Wh (Größe ca. 4cm³) bezahlt man 1
bis 3€. Die Verwendung von wieder aufladbaren Zellen in Kom-
bination mit Energiewandlern (wie Solarzellen, Thermogenerator,
Vibrationswandler) bietet für einige Anwendungen eine interes-
sante Option, jedoch liegen die Kosten meist deutlich über denen
einer Variante mit einer ausreichend großer Primärbatterie.
Die digitalen Funktionskomponenten werden in der Regel durch
CMOS-Schaltungen als Mikrochip realisiert. Je nach Leistungsfä-
higkeit und erforderlichem Speicher wird eine Chipfläche von 10
mm² bis zu einigen cm² benötigt. Für einen Mikrocontroller mit
integriertem Speicher und einer Chipfläche von 12mm² ergeben
sich Kosten von ca. 72k€ für einen 12-Zoll-Wafer mit 10 000 ICs.
Die anteiligen Maskenkosten betragen bei Standardkomponenten,
die in Millionenstückzahlen gefertigt werden, weniger als 10 Pro-
zent. Werden im Rahmen einer ASIC-Entwicklung jedoch nur
geringere Stückzahlen benötigt, dann steigt dieser Anteil massiv,
so dass der gleiche Mikrocontroller statt 0,72€ dann 1,08€ (Stück-
zahl 100k) bzw. 5,76€ (Stückzahl 10k) kostet. Die Entwicklungs-
kosten wurden dabei noch nicht einmal berücksichtigt. Einen
weiteren Kostenhebel bietet die Speichertechnologie insbesondere

9

für den Programmspeicher der Prozessoren. In der Prototypent-
wicklung wird dazu gern vielfach beschreibbarer Flash-Speicher
genutzt. Bei einer größeren Anzahl von Speicherzellen kann eine
massive Reduktion der Chipfläche und damit die Stückkosten
erreicht werden, wenn die Software als maskenprogrammierter
ROM abgelegt wird. Dies erlaubt allerdings nachträglich keine
Softwareänderungen mehr, was eine Herausforderung für die
Planung der Entwicklungszeit ist.
Kostengünstige Funkarchitekturen werden ebenfalls größtenteils
auf einem Mikrochip integriert. Je nach Schaltungskonzept und
Prozesstechnologie variiert jedoch die Anzahl der Komponenten
für die Außenbeschaltung. Superheterodyne Empfänger mit meh-
reren Zwischenfrequenzen stellen in der Relation zu ihren Kenn-
daten meist die energieeffizienteste Lösung dar. Dafür sind jedoch
recht teure HF-Komponenten zur Filterung erforderlich, die sich
besonders für Low-Cost-Sensorknoten ausschließen. Deutlich
weniger externe Komponenten benötigen kostengünstigere Archi-
tekturen wie Low-IF- und Zero-IF-Empfänger, die das Funksignal
auf sehr tiefe Frequenzen heruntermischen, so dass die Filterkom-
ponenten auf einem IC integriert werden können. Solche Mikro-
chips erreichen Kosten in der Größenordnung von 1€. Die Anzahl
der benötigten passiven Komponenten zur Störentkopplung, Im-
pedanzanpassung und Filterung liegt zwischen 10 und 20, was
zusätzliche Kosten von 15 bis 80 Cent erfordert. Die Realisie-
rungsmöglichkeiten von Antennen sind recht vielfältig. Während
im Substrat eingebettete Varianten wie Loop-Antennen nur weni-
ge Cent kosten, können einige diskrete Aufbauten, wie beispiels-
weise kompakte Helixantennen, auch 0,25€ und mehr kosten.
Zur Erzeugung der Frequenzen ist in der Regel ein hermetisch
gehäuster Quarz erforderlich, der eine Frequenzstabilität von
mindestens 50ppm aufweisen muss. Aufgrund der aufwendigen
Gehäusung kosten bei größeren Stückzahlen solche Komponenten
ca. 0,50€, sofern der Automobil-Temperaturbereich von -40 bis
125°C erreicht werden muss. Ein weiterer Quarz kann für die
Takterzeugung der Datenverarbeitung notwendig sein, wenn man
den Synchronisationsaufwand, beispielsweise zur Koordination
der Funkkommunikation im Adhoc-Netzwerk, verringern muss.

Fertigung

Kalibrierung Pa
ss

ive

Senso
r

Funk-IC

Q
ua

rz

Ante
nn

e

10 ... 20 %

Sensorik & Passive

30
...

40
%

AVT
&

Fe
rtig

un
g

30
...

40
%

IC
s

20
... 40

%

Volum
enkom

ponenten

Abb. 3: Typische Kostenstruktur bei einer Massenproduktion
Eine typische Kostenverteilung für energieautarke Funksensoren,
wie man sie derzeit bei den ersten Massenprodukten in Millionen-
stückzahl vorfindet, wurde in Abb. 3 dargestellt. Die Kosten für
die Sensorik und den Kalibrierungsaufwand schwanken je nach
Messgröße und -genauigkeit sehr stark. So können auf dem Chip
integrierte Temperatursensoren mit einer Auflösung von 2°C den
Bruchteil eines Cents kosten, während ein MEMS-Beschleuni-
gungssensor in der Massenproduktion die 1€-Region erreicht. Für
spezifische Anwendungen sind Sensorkosten im dreistelligen
Euro-Bereich nicht ungewöhnlich, wie dies z.B. bei Beschleuni-
gungssensoren mit einem Messbereich von 2000g gilt. Dabei sind

die Entwicklungs- und Maskenkosten von einer deutlich kleineren
Stückzahl zu tragen. Der Kalibrieraufwand ist auch vom Materi-
alaufbau abhängig. So erfordern piezoresistive MEMS-Druck-
sensoren für die Reifendrucküberwachung eine aufwendige Kalib-
rierung bei einer höheren Temperatur, während dies bei kapaziti-
ven MEMS-Drucksensoren nicht nötig ist [5]. Bei letzteren fallen
jedoch höhere AVT-Kosten an, um der höheren thermomechani-
schen Stressempfindlichkeit zu begegnen.

4. Plattform zur Kostenanalyse
Zur Erarbeitung geeigneter Entwurfsmethoden wurde eine Proto-
typplattform entwickelt (Abb. 4), um die verschiedenen Techno-
logien für Sensornetzwerke auf Netzwerk-, Architekur- und Pro-
zessebene schnell und praxisnah verifizieren zu können. Ur-
sprünglich diente die realisierte Infrastruktur zur parallelen Imp-
lementierung der Test- und Anwendungssoftware. Eine Auflis-
tung der verschiedenen Teilmodule ist [6] zu entnehmen. Im Er-
gebnis können nun Funksensorknoten beschleunigt aufgebaut und
für das konkrete Anwendungsszenario angepasst werden, um für
eine gegebene Stückzahl das Kostenoptimum zu ermitteln. Das
Spektrum reicht vom leistungsfähigen Prototypen, wie einer mo-
bilen Funkkamera, bis zum minimalistischen Funktemperatursen-
sor für Adhoc-Netzwerke, welcher derzeit hinsichtlich seiner
Größe (Kantenlänge 6mm) einen Weltrekord darstellt [7].

Abb. 4: Erarbeitete, modulare Prototypplattform
Für die physikalischen Entwurfsentscheidungen wurde ein Werk-
zeug implementiert, das die Partitionierung von Funktionsschich-
ten und die räumliche Anordnung von Komponenten unterstützt.
Die Kosten der Fertigungstechnologien werden dabei über partiel-
le Verdrahtungsdichten eingebunden. Das Entwurfswerkzeug
dient zur Erstellung von Kostenbilanzen. In der Phase der Ent-
wurfskonzeption werden Komponentenkosten aus den Datensät-
zen bereits realisierter Funksensorknoten abgeschätzt. Im weite-
ren physikalischen Entwurf wird zunächst auf eine Festlegung der
Verdrahtung verzichtet. Es wird lediglich eine Feinplatzierung
aller Komponenten vorbereitet, um mit Hilfe von partiellen Ver-
drahtungsdichten eine Technologievorauswahl zu treffen. Diese
basiert auf der Analyse der Netzliste für die betrachtete Kompo-
nentenanordnung. Zur Abschätzung von partiellen Verdrahtungs-
dichten wird ein 2,5D-Ansatz verwendet, wodurch zunächst die
Anzahl der benötigten horizontalen und vertikalen Verdrahtungs-
elemente ermittelt wird. Im Ergebnis werden die horizontalen
Verdrahtungsdichten zur Auswahl der Substrattechnologien ge-
nutzt, um je nach konkretem Flächenbedarf die Substratkosten

10

abzuschätzen (Tab. 2). Die Kostenmodelle für die Kontaktie-
rungstechnologien – von der Oberflächenmontage diskreter Kom-
ponenten bis zur Einbettung von Mikrochips und Passiven in das
Substrat – werden derzeit erarbeitet.
Tab. 2: Typische Substratkosten & Verdrahtungskapazitäten

 Verbindungstechnologie Flächenkosten [€/cm²] Verdrahtungskapazität [1/mm²]
 Dünnfilmsubstrate
 Dickfilmsubstrate
 Laminierte Substrate

1 ... 10
0,1 ... 2

0,01 ... 1

100 … 100 000
10 … 100
5 … 500

Daraus lassen sich die Strategien für die Grobverdrahtung ablei-
ten. Durch eine geeignete Leiterbahnführung können partiell sehr
hohe Verdrahtungsdichten ausgeglichen werden, um eine recht
homogene Aufbau- und Verbindungstechnik einsetzen zu können.
Alternativ kann man bei der Analyse der Verdrahtungskanäle aus
Kosten- und Zuverlässigkeitsgründen versuchen, die Verdrah-
tungsdichte an den meisten Stellen deutlich abzusenken, um nur
an wenigen kritischen Stellen die Technologien mit hoher Ver-
drahtungskapazität anzuwenden. Aus den entsprechenden Ent-
wurfsentscheidungen hinsichtlich der Auswahl der Materialien
und Prozessfolgen werden je nach Detailtiefe die Verdrahtungs-
elemente geometrisch beschrieben und platziert. Im Ergebnis
werden Kostenbilanzen erstellt, die auch die anteiligen Kompo-
nentenkosten ausweisen (Abb. 5).

Abb. 5: Entwurfswerkzeug für die Kostenanalyse
Zur Implementierung des Entwurfswerkzeuges wurde aufgrund
der offenen und plattformunabhängigen Architektur die Interpre-
tersprache MatlabTM verwendet. Die Laufzeitumgebung von Mat-
labTM stellt bereits viele Zusatzmodule mit Funktionen beispiels-
weise für die Kommunikation, die Datenerfassung und die Statis-
tik zur Verfügung. Mittelfristig soll über eine Kostenmodellierung
stark vereinfachter Prozesssequenzen eine teilweise automatisierte
Erzeugung von Kostenbilanzen für verschiedene Zielparameter
wie beispielsweise die Stückzahl erfolgen. Die entsprechende,
regelmäßige Aktualisierung der Kostenanteile (Abb. 6) erlaubt
eine geeignete Festlegung der Schwerpunkte für die weitere Kos-
tenoptimierung, was das wesentliche Element einer ganzheitli-
chen, kostengetriebenen Entwurfsmethodik ist.

0

2

4

6

8

10

12

14

16

1000 10000 100000 1000000
Stückzahl

Ko
st

en
 [€

]

Kalibrierung

Fertigung
Gehäuse

Substrat
Batterie

Antenne
Quarz
ICs

Passive
Sensor

Abb. 6: Kostenanteile abhängig von der Stückzahl

5. Ausblick
Der Entwurf kostengünstiger Funksensorknoten erfordert die
Analyse unterschiedlicher Zielkonflikte hinsichtlich der System-
funktionalität, der Bauteilauswahl und der Fertigungstechnolo-
gien. Die vorgestellte Plattform zur Kostenanalyse, bestehend aus
einer Testplattform für Funksensorknoten und einem Entwurfs-
werkzeug zur Technologieanalyse, soll zur Erarbeitung von Kos-
tenmodellen für konkrete Anwendungsszenarien ausgebaut wer-
den. Dazu wird eine Methodik zum kostenoptimierten Entwurf
von Sensornetzwerken erarbeitet, die Kostenaspekte bereits im
Vorfeld berücksichtigt und den Systementwurf zusammen mit den
fertigungstechnischen Randbedingungen betrachtet.
Während der Schwerpunkt der bisherigen Arbeit weitestgehend
auf den Modulintegrationstechnologien lag, soll die zukünftige
Entwicklung von Funksensorknoten stärker das Potential der Wa-
ferintegrationstechnologien berücksichtigen. Zum Einen werden
dadurch extrem kleine und robuste Funksensorknoten mit einer
Kantenlänge von wenigen Millimetern möglich. Zum Anderen
sind unter Beachtung der Ausbeute- und Testbarkeitsproblematik
auch Kostenvorteile für größere Stückzahlen realistisch, um so die
Preisregion von 2€ pro Funksensorknoten mittelfristig zu errei-
chen. Die erfordert jedoch noch Forschungsarbeiten zur Realisie-
rung von Waferlevel-Spezialkomponenten insbesondere für Batte-
rien, Quarze und Antennen.

6. Referenzen
[1] T. Scheiter: "Integration mikromechanischer Sensoren in

einer CMOS/BICMOS - Prozeßumgebung", Dissertation, TU
München, 1996

[2] K. Gilleo: "Area Array Package Design - Techniques in
High-Density Electronics", McGraw-Hill, 2002, S.64 ff.

[3] C. Kallmayer et al.: "Packaging Challenges in Miniaturiza-
tion" in Ambient Intelligence, Springer-Verlag, 2005

[4] L. Heinze et al.: „AVM Special Issue“ Zeitschrift für Tele-
kommunikation Frequenz Band 58, Berlin, 2004

[5] R. Thomasius et al.: "Miniaturized Wireless Sensors for
Automotive Applications”, 10th Int. Forum on Advanced Mi-
crosystems for Automotive Applications, Berlin, 2006

[6] M. Niedermayer et al.: "Miniaturization Platform of Wireless
Sensor Nodes Based on 3D Packaging Technologies”, Proc.
5th Int. Conf. ISPN / SPOTS, Nashville, USA, 2006

[7] M. Niedermayer et al.: "Design for Miniaturization of Wire-
less Sensor Nodes Based on 3D-Packaging Technologies",
1st Int. Conf. on Smart Systems Integration, Paris, 2007

11

On Pursuit of Real-time and Reliability Guarantees in
Wireless Sensor Networks

Thanikesavan Sivanthi
Institute for Communication Networks

Schwarzenbergstrasse 95, BA 4D
Hamburg, D-21073, Germany

thanikesavan.sivanthi@tuhh.de

Ulrich Killat
Institute for Communication Networks

Schwarzenbergstrasse 95, BA 4D
Hamburg, D-21073, Germany

killat@tuhh.de

ABSTRACT

Wireless sensor networks offer a distributed computing plat-
form for many future applications, which have both timeli-
ness and reliability requirements. Guaranteeing timeliness
and reliability in a wireless sensor network is very challeng-
ing due to the unreliable and unpredictable characteristics of
the network. This problem is addressed by very few research
works, which focus on either of the requirements. This
article presents a distributed problem solving perspective,
which exploits the synergy between wireless sensor nodes,
for achieving timeliness and reliability guarantees in wire-
less sensor networks.

1. INTRODUCTION
Wireless sensor networks offer a distributed computing

platform for many emerging applications [23, 25], which
require both timeliness and reliability requirements. Ex-
amples of such applications are traffic coordination, seismic
monitoring, structural health monitoring etc. The timeli-
ness guarantee signifies the timing constraint on a set of
operations performed by the nodes of a wireless sensor net-
work. The reliability guarantee implies the requirement on
the probability of successful completion of operations, tol-
erating the failures in a wireless sensor network. Many re-
cent works related to timeliness [3], [19], [12], [24], [17], [18]
and reliability [2], [6] [10] [20], [11] requirements in wireless
sensor networks consider either one of the requirements. A
recent study for providing service differentiation and proba-
bilistic guarantees for both timeliness and reliability is pre-
sented in [9]. The approach provides a multi-layer mecha-
nism to differentiate flows based on their timeliness and re-
liability requirements. However, this approach requires the
global knowledge of the probabilistic distribution of event
locations and the required deadlines for finding the optimal
configuration of the network parameter (SetSpeed [9]) dur-
ing the off-line design phase. Unfortunately, in this approach
the network parameter is static, whereas adaptable network
parameters are desirable in order to opportunistically ex-
ploit the favorable network conditions and get a better ser-
vice, as and when the opportunity presents itself. Further,
the multi-layer mechanism is expensive due to the complex
changes which should be implemented both at the routing
and MAC layers. Most of the approaches listed above con-
sider a bottom-up approach to provide timeliness and/or
reliability guarantees, i.e. they first define the sub problems
to be solved by the nodes, thereby expecting the nodes to
educe a global solution. The appropriate way to approach

the problem is to follow a top-down approach. In the top-
down approach, the requirements are stated as a global prob-
lem, which can then be decomposed into sub problems that
are solved by the nodes. The solution for the global problem
is attained by solving the sub problems.

Due to shared wireless medium and the network failures [22],
achieving timeliness and reliability guarantees in wireless
sensor networks requires resolving the channel contention
between the nodes and finding a route for the message from
the source node to the sink node considering the failures
and other messages which traverse along the vicinity of the
route. This can be achieved by means of a joint scheduling
and routing mechanism. The scheduling aspect deals with
sharing of the available capacity between the nodes that are
within the communication range. The routing aspect finds
a route for the communication from a source node to a sink
node, while taking care of the contending flows and failures
along the route. The joint scheduling and routing in wireless
sensor network to guarantee timeliness and reliability is a
challenging problem. This is because the wireless channel is
a shared medium and nodes can hear each other even though
they might not be able to communicate. Consequently, in-
terference might happen at a receiver which receives a mes-
sage from a sender and if the receiver is within the carrier
sense range of other active senders. However, there will be
no interference if the receiver is outside the carrier sense
range of the other active senders. This implies that at any
time instant, some links can transmit messages in parallel
without any interference. If the locations of the sensor nodes
are known, it is possible to identify a set of cliques, where
each clique consists of links that cannot transmit simulta-
neously, based on the signal to interference and noise ratio
(SINR) [13] of the sensor nodes. If the SINR is above a cer-
tain threshold, then the message transmitted by an active
link is not interfered by the other active link transmissions.
In this case, the links belong to different cliques and can
transmit messages simultaneously. Since, the links within
the same clique share the capacity of the clique. The link
flows in a clique should be scheduled, such that the sum of
traffic demands of all link flows in a clique is less than or
equal to the capacity of the clique. The traffic demand of a
flow can be estimated as the ratio of its transmission time to
its transmission deadline. A flow from a source to a destina-
tion node may traverse several hops or links. Subsequently,
the flow should be routed along several cliques considering
the current available capacity of the cliques. The scheduling
and routing decisions should be made such that the timing

12

and reliability requirements of all flows can be guaranteed.
The following section presents the joint scheduling and rout-
ing in wireless sensor networks from a distributed problem
solving perspective.

2. A DISTRIBUTED PROBLEM SOLVING

PERSPECTIVE
Distributed problem solving is referred as the collective

effort of semi-autonomous nodes to solve a problem in a
distributed fashion [7]. In distributed problem solving, the
global problem is decomposed into simple sub problems which
are solved by a set of nodes. The solution for the global
problem is obtained by solving the sub problems. The com-
puting, communicating and storage abilities of the nodes of
wireless sensor networks per se provide a platform for dis-
tributed problem solving. Consequently, the scheduling and
routing problem can be solved in a distributed fashion by the
nodes of a wireless sensor network. Each node solves a sub
problem which collectively results in the required global be-
havior i.e. timeliness and reliability. The means to achieve
sub problems from a global resource allocation problem is
extensively studied in literature [21, 27], and finds its appli-
cation in wired networks [15, 16, 8] and wireless networks
[4, 26]. Unfortunately, none of these approaches have con-
sidered timeliness and reliability aspects in their distributed
resource allocation. The basic idea of these approaches is
to decompose the global problem into distributed sub prob-
lems, which are coordinated by means of some signaling [1].
The main challenge to solve the joint scheduling and rout-
ing problem in a decentralized fashion is the formalization
of sub problems that can be solved by the individual nodes.
The sub problem formalization should consider the different
application and the network resource characteristics, some
of which are described in the sequel.

2.1 Application Characteristics
A wireless sensor network application consists of a set of

operations which are performed by the nodes of the net-
work. The following are some of the application character-
istics which should be considered when formulating the sub
problem:

• Release time and deadline: These are the timing
constraints of an application. The release time of the
application is the earliest start time of the initial oper-
ation of the application and the deadline of the applica-
tion is the latest completion time of the final operation
of the application.

• Application reliability: An application reliability is
defined as the minimum requirement on the probabil-
ity of successful completion of the application, tolerat-
ing the different failures in the network.

• Ordering:: Some applications have strict precedence
relationships between operations. The precedence con-
straints should be respected while making the schedul-
ing and routing decision.

2.2 Resource Characteristics
The following are some of the network resource character-

istics which should be considered when formulating the sub
problem.

• Node limitations: The routing and scheduling deci-
sion should consider the limitations in the processing
power, memory and energy of the sensor nodes.

• Capacity limitation: The channel contentions and
interferences caused by simultaneous transmissions en-
forces limit on the bandwidth available to the sensor
nodes.

• Physical layer limitation: At any time instant, a
node can either be a sender or a receiver. Further,
interference can happen at a receiver if it is within
the carrier sense range of other active senders, which
transmit messages simultaneously. The nodes which
cannot transmit simultaneously form a clique.

• Buffer size: The buffer size has a significant impact
on the end-to-end delay of an application. A proper
dimensioning of buffer size is important to guarantee
the timeliness and reliability of the application.

• Number of MAC layer retransmissions: The MAC
layer provides a local reliability mechanism by retrans-
mitting the failed packets until a maximum number of
retransmissions is reached. The number of MAC layer
retransmissions should be chosen such that it does not
affect the end-to-end delay of the application, while
not compromising the application reliability.

• Failure rate of the nodes and channel: The wire-
less channel is subject to errors due to different channel
effects. Further, the nodes can fail due to random fail-
ures, power depletion and extreme environmental con-
ditions. The failure rates of the node and the channel
errors should be considered in order to find a reliable
route from the source to the sink node.

The global problem can be formulated, considering the
above application and resource characteristics, with an ap-
propriate objective function, that reflect the timeliness and
reliability requirements of the application, and a set of ap-
plication and resource constraints. By means of a system-
atic decomposition of the global problem into sub problems,
which are solved by the individual nodes, the joint schedul-
ing and routing in wireless sensor network can be performed
in a decentralized fashion. To that end techniques based on
network utility maximization [14] or distributed constraint
satisfaction [27] can be applied. In the former case, the
convexity of the global objective and constraints should be
ensured for the convergence of the solution to the global op-
timal solution. An appropriate decomposition principle, ver-
tical or horizontal decomposition [5], should be chosen such
that the solution derived by the sub problems converges to
the optimal solution of global problem in limited time and
with minimum signaling overhead. The objective, variable
and constraints for a sub problem should be defined such
that the collective behavior of all nodes should elicit the re-
quired global behavior. Each node solves the sub problem,
assigns values for the variables based on the constraints,
and communicates the values for the variables which appear
in inter node constraints to the respective nodes. The col-
lective behavior of all nodes ensure meeting the timeliness
and reliability requirements of the application. Such a joint
scheduling and routing mechanism based on the distributed
problem solving paradigm, offers the promise for a scalable

13

and adaptable distributed resource management, by means
of which timeliness and reliability guarantees can be pro-
vided in wireless sensor networks.

3. CONCLUSIONS
This article presented a perspective to provide real-time

and reliability guarantees in wireless sensor network. The
underlying idea for solving the scheduling and routing prob-
lem in a distributed fashion by the nodes of the wireless
sensor network is proposed.

4. REFERENCES
[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and

Distributed Computation: Numerical Methods.
Prentice Hall, 1989.

[2] S. Bhatnagar, B. Deb, and B. Nath. Service
differentiation in sensor networks. In Proceedings of
the 4th International Symposium on Wireless Personal
Multimedia Communications, September 2001.

[3] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo.
An Implicit Prioritized Access Protocol for Wireless
Sensor Networks. In Proceedings of the 23rd IEEE
Real-Time Systems Symposium, December 2002.

[4] L. Chen, S. Low, and J. Doyle. Joint Congestion
Control and Media Access control design for Ad Hoc
Wireless Networks. In Proceedings of the 24th Annual
Conference of the IEEE INFOCOM, March 2005.

[5] M. Chiang, S. Low, A. Calderbank, and J. Doyle.
Layering as Optimization Decomposition: A
Mathematical Theory of Network Architecture. In
Proceedings of the IEEE, January 2007.

[6] B. Deb, S. Bhatnagar, and B. Nath. Reinform:
Reliable information forwarding using multiple paths
in sensor networks. In Proceedings of the 28th IEEE
International Conference on Local Computer
Networks, October 2003.

[7] E. H. Durfee. Distributed Problem Solving and
Planning. In Multi-Agent Systems and Applications,
July 2001.

[8] K. Eger and U. Killat. Resource Pricing in
Peer-to-Peer Networks. IEEE Communications
Letters, 11(1):82–84, 2007.

[9] E. Felemban, C.-G. Lee, and E. Ekici. MMSPEED:
Multipath Multi-SPEED Protocol for QoS Guarantee
of Reliability and Timeliness in Wireless Sensor
Networks. IEEE Transactions on Mobile Computing,
5(6):738–754, 2006.

[10] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin.
Highly-resilient, energy-efficient multipath routing in
wireless sensor networks. SIGMOBILE Mob. Comput.
Commun. Rev., 5(4):11–25, 2001.

[11] Q. Han, I. Lazaridis, S. Mehrotra, and
N. Venkatasubramanian. Sensor Data Collection with
Expected Reliability Guarantees. In Proceedings of the
3rd IEEE International Conference on Pervasive
Computing and Communications Workshops, March
2005.

[12] T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher.
SPEED: A Stateless Protocol for Real-Time
Communication in Sensor Networks. In Proceedings of
the 23rd International Conference on Distributed
Computing Systems, May 2003.

[13] H. Karl and A. Willig. Protocols and Architecture for
Wireless Sensor Networks. Wiley, 2005.

[14] E. P. Kelly. Charging and Rate Control for Elastic
Traffic. European Transactions on Telecommunication,
8(1):33–37, 1997.

[15] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational
Research Society, 49(3):237–252, 1998.

[16] R. J. La and V. Anatharaman. Utility-based rate
control in the Internet for elastic traffic. IEEE/ACM
Transactions on Networking, 10(2):272–286, 2002.

[17] H. Li, P. J. Shenoy, and K. Ramamritham. Scheduling
Messages with Deadlines in Multi-Hop Real-Time
Sensor Networks. In Proceedings of the 11th IEEE
Real-Time and Embedded Technology and Applications
Symposium, March 2005.

[18] K. Liu, N. Abu-Ghazaleh, and K.-D. Kang. JiTS:
Just-in-time scheduling for real-time sensor data
dissemination. In Proceedings of the Fourth Annual
IEEE International Conference on Pervasive
Computing and Communications, March 2006.

[19] C. Lu, B. Blum, T. Abdelzaher, J. Stankovic, and
T. He. RAP: A Real-Time Communication
Architecture for Large-Scale Wireless Sensor
Networks. In Proceedings of the 8th IEEE Real-Time
and Embedded Technology and Applications
Symposium, September 2002.

[20] M. Marina and S.Das. On Demand Multipath
Distance Vector Routing in Ad Hoc Networks. In
Proceedings of the 9th IEEE International Conference
on Network Protocols, November 2001.

[21] D. P. Palomar and M. Chiang. A Tutorial on
Decomposition Methods for Network Utility
Maximization. IEEE Journal Selected Areas in
Communication, 24(8):1439–1451, 2006.

[22] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and
J. Hou. Real-Time Communication and Coordination
in Embedded Sensor Networks. In Proceedings of the
IEEE, July 2003.

[23] T. Arampatzis and J. Lygeros and S. Manesis. A
Survey of Applications of Wireless Sensors and
Wireless Sensor Networks. In Proceedings of the 2005
IEEE International Symposium on Mediterrean
Conference on Control and Automation, June 2005.

[24] S. Wang, R. Nathuji, R. Bettati, and W. Zhao.
Providing Statistical Delay Guarantees in Wireless
Networks. In Proceedings of the 24th International
Conference on Distributed Computing Systems, March
2004.

[25] A. Wheeler. Commercial Applications of Wireless
Sensor Networks Using ZigBee. IEEE Communication
Magazine, 45(4):70–77, 2007.

[26] Y. Xue, B. Li, and K. Nahrstedt. Optimal Resource
Allocation in Wireless Ad Hoc Networks: A
Price-Based Approach. IEEE Transactions on Mobile
Computing, 5(4):347–364, 2006.

[27] K. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The Distributed Constraint Satisfaction Problem:
Formalization and Algorithms. IEEE Transactions on
Knowledge and DATA Engineering, 10(5):673–685,
1998.

14

iSense: A Modular Hardware and Software Platform for
Wireless Sensor Networks

Carsten Buschmann
coalesenses GmbH
Röntgenstraße 28

23562 Lübeck, Germany
buschmann@coalesenses.com

Dennis Pfisterer
coalesenses GmbH
Röntgenstraße 28

23562 Lübeck, Germany
pfisterer@coalesenses.com

ABSTRACT
We present iSense, a modular hardware and software plat-
form for wireless networks that is intended for both industry
and research applications. The hardware is arranged around
a core module with an IEEE 802.15.4 compliant radio, a 32-
bit RISC controller running at 16MHz, 96kbytes of memory,
a highly accurate clock and a switchable power regulator. It
can be combined with a number of sensor modules, different
power sources, a gateway and I/O module and various oth-
ers. The hardware is supplemented with a modular operat-
ing and networking firmware that is based on object oriented
programming. A comprehensive development environment
is available free of charge.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design; H.4 [Information Systems Ap-
plications]: Miscellaneous; C.3 [Special Purpose And
Application-Based Systems]: Real-Time and embedded
systems; C.4 [Performance of Systems]: Design Studies

General Terms
Design, Experimentation, Performance

Keywords
WSN, sensor network, modular software and hardware plat-
form

1. INTRODUCTION
During the last years, wireless sensor networks have at-
tracted ongoing research attention. Recently, efforts increas-
ingly move from fundamentals to research in how applica-
tions could be constructed.

This shift can be interpreted as a sign of maturity: wireless
sensor networks seem to become ready for real life appli-
cations. However, these demand for commercial platforms.
Most of the hardware developed for research purposes is not
appropriate for commercial applications for a number of rea-
sons. They lack robustness and reliability and are not really
extensible. They come without declarations of conformity
or guaranteed properties and are provided just “as is”. All
in all, still only few commercial platforms [2, 11, 10, 9] are
available.

The operation domain of wireless sensor networks is ex-
tremely broad. Applications range from ubiquitous com-

puting with its demand for compact systems or fixed instal-
lations profiting from wireless communication driven by wall
mount adapters to long-time ad-hoc installations that need
high-capacity batteries.

Hence a wireless sensor networking platform should

• first of all be flexible and extensible in software and
hardware to meet as many of the diverse application
requirements,

• be robust and compact,

• offer a due proportion of performance and storage ca-
pacity on the one hand and current consumption on
the other, combined with ultra-low power sleep modes,

• provide a reliable and standard compliant radio and

• offer exact timing and an accurate clock.

We introduce iSense, a modular hardware and software plat-
form that meets all these requirements.

2. MODULAR HARDWARE...
In order to fit a wide variety of application demands the
iSense hardware platform is made up of a number of a num-
ber of modules that can be combined in various ways. Like
this, functionality can be easily rearranged, and new features
can be added by appending new modules.

Currently, a core module comprising computation and wire-
less communication, different energy modules, a gateway
module for interfacing with computers and an IO-module
are available. A number of sensor modules are under devel-
opment. This module structure is visualized in Figure 1.

The heart of the hardware platform is the core module. It
accommodates the wireless micro controller Jennic JN5139,
a chip that combines the controller and the wireless commu-
nication transceiver in a single housing.

The controller provides 32 bit RISC computation and is run-
ning at 16 MHz. It comprises 96kbytes of memory that are
shared by program code and data. The advantage of this
choice is that memory consumption of program code and
data can be traded. Opposite to other controllers where the

15

+

+

+
energy modules

…

…

sensor modules

+custom
modules

gateway module

Figure 1: Hardware modules of the iSense platform.

user is limited to a certain amount of data and code mem-
ory, free choices that are only bounded by the sum of both
become possible here.

The radio part complies with the IEEE 802.15.4 standard
[7]. It achieves a data rate of 250kBits/s and provides hard-
ware AES encryption. With a receive sensitivity of -97dBm
and a transmit power tunable between -60dBm and +3dBm
it reaches ranges of up to 500m. Apart from this stan-
dard version that is equipped with an SMA antenna con-
nector, derivatives with an integrated antenna for especially
compact systems or with an additional power amplifier for
ranges of up to 2km are available. All three systems are
ZigBee-ready.

A common quandary in design is whether or not to use a
voltage regulator. It has the advantage that operation with
voltages lower than the required one is possible, but the
regulator inherently wastes energy. This is especially bad as
it also wastes current if the voltage would be high enough
and the regulator would not be required. To resolve this
problem, we decided to combine the measurement of the
supply voltage with the possibility to bypass the regulator
by a software switch. Like this, the regulator usage can be
omitted when not required but is available when the supply
voltage drops.

To enable long, but still synchronous sleep and wakeup cy-
cles, the module is equipped with a high precision clock
(error < 20ppm). It features a software switchable LED for
debugging purposes.

There is a 34 pin connector on both sides of the module
where other modules can be attached to the core module. It
can supply up to 500mA to other modules.

The controller can be programmed in various ways. While
over-the-air programming (OTAP) is possible and consid-
ered to be the standard procedure, the program can also be

transfered via the gateway module (discussed later) or using
a special programming adapter that mates with correspond-
ing pads on the module.

The core modules’ sleep current goes as low as 10μA. In full
operation the micro controller uses about 9mA, the radio
part 29mA. The module can be powered by a wall mount
adapter or a standard battery holder, by one of the power
modules or via the USB interface of the gateway module.

Two different power modules are available. The lithium-ion
module combines a high capacity rechargeable battery with
a charge controller and a battery monitor that tracks the
voltage as well as the current flows from and to the battery.
The integrated charge controller enables in-system-charging
using the core module’s wall mount adapter or the gateway
module’s USB power. The coin cell module is intended for
particularly compact systems. It holds one CR2477 battery
and features a battery monitor for exact battery level infor-
mation, too.

The gateway module is intended for debugging and inter-
facing data to other networks. Apart from LEDs, buttons
and a user adjustable potentiometer, it features a USB and
a RS232 interface. An additional I/O module offers con-
venient access to the compact bus connector via 2.54mm
spaced pins and hence enables fast mock up of adapter
boards.

Apart from the aforementioned central modules, a number
of sensor boards are under development. The security sensor
module comprises a passive infrared (PIR) sensor and 3-axis
accelerometer. The former features a range of approx. 10m
at an angle of 130 degrees while the latter is adjustable to
ranges of ±2g and ±6g. The possibility to attach a camera
is planned. The vehicle detection sensor module accommo-
dates 2-axis anisotropic magneto-resistive (AMR) sensors.
They perceive changes in the earth’s magnetic field induced
by large ferro-electric masses and can hence detect vehicles
at distances of up to approximately 5m. Other modules
such as a board with a temperature and light sensor are in
preparation.

3. ... AND MODULAR SOFTWARE
The extremely flexible and modular hardware design of the
iSense platform requires the same flexibility of the software
that drives the individual sensor nodes. The iSense software
has been designed with maximal flexibility in mind while
allowing for a professional, industry-grade development ex-
perience.

One of the fundamental design guidelines is to use state of
the art programming methods that are well understood by a
large user community. Advanced techniques such as object
oriented C++ programming and dynamic memory alloca-
tion, that are usually not available in sensor network envi-
ronments, allow for a rapid and error-avoiding development
process. In addition, run-time memory allocaton allows for
appropriately sized buffers etc. and hence increases memory
efficiency. iSense ships with a tiny and lean STL-like imple-
mentation that relieves application developers from dealing
with recurring and error-prone tasks. It provides implemen-
tations for standard containers such as lists, sets and maps.

16

Interrupt Handling Packet Handling

Time
Sync

Quality
Tree

Routing
Flooding OTAP

Timing
Service

RTC
Watchdog

Power-
manage-

ment
Tasking

User
protocols

Sensor
control

Application

Hardware Drivers/Simulator abstractions Wireless Radio/Simulator radio

Figure 2: Modular software structure of iSense.

As a result, the development of applications for the iSense
platform is completely based on well-known technologies and
does not require any proprietary extensions. Hence, the ex-
tremely flat learning curve enables a rapid application de-
velopment that benefits from existing domain expertise of
the developers and a plethora of available tools.

Just like its hardware counterpart, the software platform is
organized in a set of modules where each of these functional
entities provides a highly specialized service to the applica-
tion. When developing an application, users assemble a sub-
set of the available modules to a lean operating system that
contains exactly the required functionalities. A web-based
configuration dialog operated by the coalesenses GmbH al-
lows for an easy, user-friendly selection of these functionali-
ties and subsequently delivers the custom-tailored operating
system instance to the user. Figure 2 depicts the overall ar-
chitecture of the iSense software platform. It is comprised of
four distinct building blocks: a hardware abstraction layer
on the bottom, operating system functionality and network-
ing support in the middle and the actual user-defined appli-
cation at the top of the figure.

The hardware abstraction layer (HAL) encapsulates hard-
ware functionality and hides intricate details of the under-
lying hardware by providing a focused and straightforward
application programmer’s interface to the upper layers. Ab-
stractions for interacting with A/D & D/A converters and
I/O interfaces (e.g., serial UARTs, I2C and SPI) are avail-
able as well as for timers, permanent storage and the wireless
interface. A typical usage scenario of the HAL is the inte-
gration of the sensor modules described above. These are
usually connected to one of the I/O-pins or bus systems and
are easily integrated into the iSense software using the HAL
functionality. Using this architecture, all modules above the
HAL are independent of a particular hardware platform.
Application code developed inside this framework is ready-
to-run on any platform that provides an implementation of
the iSense-API. Currently, it is available in two flavors: one
for the iSense hardware platform and one for the simula-
tion framework Shawn [8, 4]. This allows developers to test
their implemented functionality inside a simulation frame-
work before the application is actually deployed on an iSense
node thus significantly increasing the development speed.

On top of the hardware abstractions, the iSense framework
provides operating system functionalities that ease applica-
tion development through an event-driven model. Applica-
tions receive call-backs whenever events occur for which the
application has registered itself. These events occur either
application-driven (e.g., when timers elapse) or hardware-

driven (e.g., when input signal of A/D converters change
or data is received on one of the I/O-systems). For the
application-driven events, the iSense operating system of-
fers two distinct choices. Whenever high timing precision
is required, a timing service allows callbacks to be handled
uninterruptible and with minimal delay in the interrupt con-
text. Functionality that is not time-critical can register with
the tasking service that can be interrupted by the timing
service. Finally, the operating system is responsible for con-
serving the scarce energy resources of a sensor node when-
ever possible. If desired by the user, the power management
infrastructure can put the device into one of the different
low power modes.

Besides the functionality that operates strictly local on each
single sensor node, one key ingredient of WSNs is wireless
communication and consequently a subset of the iSense-
modules tackles especially this issue. The HAL already con-
tains convenient abstractions from the details of the wireless
interface on top of which the networking support of iSense
provides a number of powerful, sophisticated services. It is
comprised of routing, time synchronization and over-the-air
programming modules. Typical WSN applications require
that data is communicated well beyond the communication
range of a single sensor node and iSense offers two routing
modules that cover a large portion of the design space for
sensor network applications. First, a controlled flooding im-
plementation that provides an error-resilient, robust method
for conveying data to a set of nodes that is within an n-hop
neighborhood of the sending node. Second, a tree-routing
module that enables data transfer from the network to one
or more sinks. The metric for the link choices is based on
packet losses in order to maintain routes with high delivery
rates and hence increase network robustness.

It is often vital for WSN applications that the clocks of all
nodes in a sensor networks run synchronized, e.g. for data
aggregation or sleep/wake-scheduling. This integral feature
is integrated as a module in iSense and developers use this
functionality and can rely on accurate clocks with a devi-
ation of less than 1ms over 10 hops. Another particularly
important module provides the ability to re-program an al-
ready deployed sensor network wirelessly. This over-the-air
programming (OTAP) provides for a flexible development
and operation of sensor networks as wired connections are
superfluous and no manual mass-programming is necessary.

Apart from the features of the iSense hardware and software,
a comprehensive and accepted development environment is a
vital property for successful application development. The
iSense software and the development tool-chain are avail-
able free of charge and use widely accepted and popular
tools such as the Gnu Compiler Collection [5] (GCC) and
the Eclipse [3] development framework. Furthermore, iSense
provides iShell, a convenient means to interact with the sen-
sor network. It combines the functionality of a serial termi-
nal, serial and over-the-air programming of sensor nodes as
well as a flexible plug-in system for integrating user-defined
functionality such as data analysis or wireless monitoring.
iSense and iShell provide an optional (de)-multiplexing ser-
vice on the serial link. This enables applications to use a
number of different, independent data streams, e.g. sep-
arating debugging output from different application data

17

streams.

4. CONCLUSION
In this paper we present our modular hardware and soft-
ware platform called iSense. It features a number of unique,
industry-grade properties. Its modular approach allows cre-
ating custom-tailored instances of the hardware as well as
the software that comprise exactly the required function-
ality for a particular application. The small form factor
and the available outdoor-capable housings allows for ro-
bust and reliable deployments. A low-power design enables
a long autonomous operation that – combined with the abil-
ity for wireless reprogramming – results in an easy to operate
and maintain sensor network. The IEEE 802.15.4 standard-
compliant core features a ZigBee-ready radio, hardware en-
cryption and high data rates. The flexible software API with
rich a variety of software modules and the use of well-known
development tools enables rapid development of market-
ready applications. Future work will include support for
TinyOS [6] (expected this year) and the integration of the
network visualizer SpyGlass [1] into iShell.

5. REFERENCES
[1] C. Buschmann, D. Pfisterer, S. Fischer, S. P. Fekete,

and A. Kröller. SpyGlass: A wireless sensor network
visualizer. ACM SIGBED Review, 2005.

[2] Crossbow Technology Inc. MICAz wireless
measurement system. http://www.xbow.com, 2004.

[3] Eclipse Foundation. Eclipse - an open development
platform, 2001. http://www.eclipse.org/.

[4] S. P. Fekete, A. Kröller, S. Fischer, and D. Pfisterer.
Shawn: The fast, highly customizable sensor network
simulator. In Proceedings of the Fourth International
Conference on Networked Sensing Systems (INSS
2007), June 2007.

[5] Free Software Foundation, Inc. Gnu Compiler
Collection (GCC), 1984. http://gcc.gnu.org/.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000.

[7] IEEE 802.15 Working Group. IEEE 802.15 WPAN
Task Group 4 (TG4).
http://www.ieee802.org/15/pub/TG4.html.

[8] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete,
and S. Fischer. Shawn: A new approach to simulating
wireless sensor networks. In Design, Analysis, and
Simulation of Distributed Systems 2005, Part of the
SpringSim 2005, pages 117–124, April 2005.

[9] Moteiv Corporation. Tmote Sky.
http://www.moteiv.com/products-tmotesky.php,
2005.

[10] J. Polastre, R. Szewczyk, and D. E. Culler. Telos:
enabling ultra-low power wireless research. In IPSN
’05: Proceedings of the 4th international symposium
on Information processing in sensor networks, pages
364–369, 2005.

[11] ScatterWeb GmbH. ScatterNode.
http://www.scatterweb.com/, 2005.

18

Accurate Timing in Sensor Network Simulation
Muhammad Hamad Alizai, Olaf Landsiedel, Klaus Wehrle

Distributed Systems Group
RWTH Aachen

{hamad.alizai, olaf.landsiedel, klaus.wehrle}@rwth-aachen.de

ABSTRACT
Accuracy, speed and scalability are the basic requirements of
sensor network simulation. To comprehend the accurate behavior
of resource constrained embedded systems such as sensor nodes it
is important in simulations to model the time-dependent behavior
of the system. In this paper we present our extensions of TOSSIM
[2] – a widely used event-driven simulation environment for
sensor networks – to enable its simulation models to capture the
time-accurate behavior of sensor networks by exhibiting timing
and interrupt properties of the platform dependent source-code.
By mapping the device specific code with the simulation model,
we can derive the timing of functional code blocks. As result of
such a mapping it is possible to determine the time when a certain
code block gets executed and the time the execution takes,
eliminating the need of expensive cycle-accurate instruction level
simulators with limited speed and restricted scalability.

1. INTRODUCTION
Simulation indisputably remains one of the most important tools
for analyzing, evaluating and validating system design. The
importance of simulation is further aggravated for systems having
an embedded nature, high deployment costs, or possessing
unobservable fast interactions yet important to validate the system
design. Sensor Networks with their distributed behavior,
strenuous deployment requirements, constrained resources, and
invisible and unpredictable interaction between the sensor nodes
poses additional demands on their simulation.

In the past few years a great deal of effort has been invested in the
design and development of simulators for sensor networks to
embrace the special requirements imposed by the highly
distributed and dynamic nature of sensor networks. Unfortunately
all these efforts have made compromises over different attributes
of the simulation, for example, accuracy has been compromised
over scalability and vice versa. SWAN [4], SensorSim [5], and
SENS [6] are examples of sensor network simulators which
compromise scalability over accuracy by using nonfigurative
models of the sensor nodes. Such simulation models only
contribute to quantify network delays, throughputs, packet
collisions, power usage and the effect of several power
management schemes [3]. However, these models do not reveal
the timing and interrupt properties of applications, the operating
systems, and hardware components.

ATEMU [7] and Avrora [3] on the other hand are cycle-accurate
instruction level simulators for sensor networks with the most
expressive simulation models. Nevertheless, they compromise the
scalability and performance/speed. ATEMU is 30 times slower
than TOSSIM [3], and its poor performance limits its scalability
to 120 nodes. Avrora shows better performance measures than

ATEMU with reasonably good speed for small number of sensor
network nodes but it is still 50% slower than TOSSIM. The
performance measures of Avrora have been calculated on a 16
processor machine, not easily accessible to normal end-users and
developers. Avrora exhibits typical performance bottlenecks of
instruction level simulators when run on customary end-user
machines, especially, when several avrora-monitors are enabled
for detailed analysis of the sensor network behavior.

Our goal is to provide time accurate simulation for sensor
networks at the basic-block granularity (i.e. sequence of
instructions with a single entry point, single exit point, and no
internal branches) of the source code without compromising the
speed and scalability, and hence eliminating the need to use
expensive instruction level simulators. We extend TOSSIM to
exhibit the timing and interrupt properties of sensor network code
without destroying its performance and scalability advantages.

2. TOSSIM
TOSSIM is an extremely fast sensor network simulator scalable to
thousands of sensor network nodes. It compiles directly from the
TinyOS source code into the simulation environment by adding
an alternative compilation target. The fact that it compiles directly
from the platform dependent source-code makes it more
expressive than SensorSim, SWAN, and SENS. TOSSIM only
requires to model the low level components responsible for
hardware interaction such as low level access to timers,
communication channels, sensors, and the radio. These low level
components expose the real hardware and are placed at the
Hardware Presentation Layer (HPL) of the TinyOS-2.0’s platform
abstraction model [8]. TOSSIM also benefits from the event-
based, component oriented programming model of TinyOS by
translating the asynchronous-events and hardware interrupts into
discrete simulator events which drive the simulation.

TOSSIM’s level of detail was sufficient to measure packet losses,
packet CRC failure rates, and the length of the send queue for up
to 8,192 nodes [3]. However, TOSSIM’s compilation steps lose
the fine-grained timing and interrupt properties of the code that
are extremely important for a time-accurate simulation [3].

We address these problems by exploiting the fact that TinyOS
runs the same code (except the small platform dependent HPL
layer) in simulation and on the sensor network hardware. This
feature of TOSSIM enables to create a mapping between the
platform dependent binary and the simulation code. We use Mica-
2 as our target platform. Our method is to (1) analyze the platform
dependent assembly program and compute the cycle count
corresponding to each basic-block; (2) assign a priority number to
every simulator event to enable TOSSIM to model the interrupt

19

and preemption behavior of the real hardware; (3) extend the C-
source code generated by TOSSIM to (a) increment the
simulation clock at the start of every source-code line by the cycle
count information obtained in the first step, hence, enabling the
TOSSIM to exhibit the timing properties of the code. (b) Re-
schedule the TOSSIM event queue at the start of every basic-
block on the basis of new timing information obtained, and also
on basis of the assigned interrupt priority of each event in the
simulation queue to model the masking and preemption properties
of the hardware interrupts in the simulation infrastructure.

Our approach is different from CPU-profiling approach in
PowerTOSSIM[1] – an extension of TOSSIM for simulating the
power consumption of sensor networks, which does offline
processing to obtain the cycle counts for CPU power profiling.
We, on the other hand embed TOSSIM with the information
obtained from the assembly of Mica-2 motes to perform online
adjustments in the simulation clock and event queue.

3. TIME ACCURATE SIMULATION
This section describes the details of the time accuracy related
problems in TOSSIM and our approach to address these
problems.

3.1 Timing Discrepancy
TOSSIM captures the TinyOS event-driven concurrency model at
interrupt and task granularity [9], and it has a single queue both
for the tasks and the events. The simulation is triggered by the
events and the tasks in the TOSSIM event-queue which is sorted
in the increasing time order. TOSSIM adjusts its simulation clock
at the start of the execution of every event by assigning the time
stamp of the recently popped event from the queue to the
simulation clock. Events and tasks take zero execution time in
TOSSIM as the simulation clock remains unadjusted during the
course of execution; hence, TOSSIM loses the fine-grained time
accuracy of the code. This imperfection of TOSSIM introduces
even more problems, for example, TOSSIM is unable to
differentiate between a task requiring a large number clock cycles
to transmit several bytes over the radio from a task requiring few
clock cycles just to blink an LED attached to the microcontroller
pin or to report a timer fire.

The execution time of an event or task may also affect the timing
of next events or tasks in the queue as shown in Figure-1. For
example, if TOSSIM is currently executing an event associated
with high priority interrupt and there is an immediately scheduled
task or event representing a low priority interrupt, then its
execution time should be delayed – timestamp should be
readjusted, at least until the execution of current event is finished.
TOSSIM, because of its imperfection to track the system time
during execution of an event, is unable to capture this priority
based interrupt behavior of the hardware which masks the less
priority interrupt or delays the execution of tasks while handling a
high priority interrupt. Similarly, in TOSSIM the simulator events
run atomically one after another, therefore, unlike on real
hardware, interrupts cannot preempt one another [9]. On the other
hand, long tasks – tasks requiring several clock cycles to execute,

delay the execution of other tasks and can be preempted by
events, but TOSSIM is unable to model such behaviors as show in
Figure-2.

3.2 Our Solution
Our approach to solve this timing discrepancy involves three
steps.

3.2.1 Basic-block Mapping
We address the timing discrepancy of TOSSIM by enabling it to
exhibit the timing properties of the code at the basic-block
granularity. We achieve this by creating a mapping between the
TOSSIM’s C-source code and the assembly of platform
dependent code (Mica-2 in our case). Our mapping technique is
similar to PowerTOSSIM.

TinyOS uses the NesC compiler to compile the TinyOS
component graph to a single C-source file, which in effect is then
compiled into the binary for the specified target platform through
appropriate C-compiler (i.e. gcc for TOSSIM and avr-gcc for
Mica-2). We use the avr-objdump utility with appropriate options
to obtain the assembly of Mica-2 platform which also contains a
mapping of the assembly instructions to the original nesC source-
code. We parse this assembly file to obtain the cycle counts
corresponding to the basic-blocks of the source-code. On the other
hand, we use the C-source file generated by the nesC compiler for
the TOSSIM platform. The C-source file of TOSSIM also
provides the mapping between C-source code and the original
nesC source code, thus, enabling the mapping between the
platform dependent assembly and the TOSSIM’s C-source file.

Figure 1. TinyOS event handling and execution flow

Figure 2. TOSSIM execution flow

20

Figure 3. Block Diagram: Extending TOSSIM to capture time-accurate behavior of the system

We parse the C-source file of TOSSIM using ANTLR’s [10]
GNU-C grammar to perform source-to-source transformation. Our
transformation includes (1) extending the C-source file by adding
functions that increment the simulation clock and perform online
adjustments in the TOSSIM Queue; (2) adding a call to these
functions at the start of every basic-block. These transformations
enable TOSSIM to exhibit the timing properties of application at
the basic-block granularity. The whole process of extending the
TOSSIM is shown in Figure-3.

3.2.2 Rescheduling the TOSSIM Event Queue
By extending TOSSIM to incorporate the timing properties of the
system at basic-block granularity also enables us to reschedule the
TOSSIM queue and intensify TOSSIM even further to exhibit the
interrupt properties of the hardware. We do this by rescheduling
every event and task in the TOSSIM queue (hereinafter referred
to as target event) whose time-stamp is less than the simulation
clock time. Additionally, we assign interrupt priority numbers to
every event in the TOSSIM Queue. Tasks are assigned zero
interrupt priority. Rescheduling the event queue introduces two
possibilities; (1) either the target event in the event-queue has an
interrupt priority less than or equal to the current event or task
being executed. In this case we increment the time-stamp of the
target event by the amount of time needed to execute the current
basic-block; (2) or the target event represents a high priority
interrupt. In this case we interleave the execution of the current
event or task (i.e. at the start of the basic-block) and start the
execution of the target event in the queue with high priority.

3.2.3 Hardware Component Profiling
The NesC compiler, when compiling for TOSSIM, replaces the
components at the HPL of platform abstraction architecture with
their corresponding reimplementation for TOSSIM. Our
transformations work very well when the TOSSIM is executing
the platform independent part of the application code (i.e
.common for TOSSIM and Mica-2 platform), and we achieve
100% basic-block mapping. But this basic-block mapping fails
and we loose our granularity once the TOSSIM enters the

execution of its own reimplementation of hardware related
components.

We address this problem by profiling the hardware related
components. We observed that the behavior of these low level
components, that expose the hardware, is static. For example, it
always takes the same amount of cycles to turn an LED On or
Off. It is also possible to do some manual mapping between the
components that share the same algorithmic properties and
execution flow but their execution time is not static. For example,
TOSSIM has its own scheduler but its execution flow is
analogous to the TinyOS Scheduler, nonetheless, execution time
of the scheduler is not static because it performs some context
switching as well as processes long queues of tasks. We do
manual mapping between the TinyOS scheduler and the TOSSIM
Scheduler to maintain the same basic-block granularity and
timing resolutions that we desire to achieve.

4. CONCLUSION AND FUTURE WORK
In this paper we discussed the importance of timing properties of
the source code in simulations. We showcased a distinct technique
and demonstrated how time-accurate simulation can be achieved
using this approach as described in section-3.2. It enables to
model the time-accurate behavior of the system at the basic-block
granularity without using the non scalable and low performance
instruction level simulators.
We are still in the active development phase of our work. Intense
evaluation is yet to be performed, though the initial results are
very promising. We achieve a beyond 99% time accuracy with
basic prototype applications like Blink and TestScheduler. We
plan to rectify TOSSIM’s hardware models including timers and
radio to model the original hardware accurately. TOSSIM is also
unable to model the behavior of atomic statements – block of
statement that run uninterrupted. Access to the application code at
the basic-block level can also help in accurately modeling the
atomic statement blocks in the code.

21

5. REFERENCES
[1] Victor Schnayder, Mark Hampstead, Bor-rong Chen, Geoff

Werner Allen, and Matt Welsh. Simulating the power
consumption of large-scale sensor network applications. In
Proceedings of the 2nd international conference on
Embedded networked sensor systems (SenSys) 2003, Nov.
2003.

[2] P. Levis, N. Lee, M. Welsh, and D. Culler.
TOSSIM:Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the First ACM Conference
on Embedded Networked Sensor Systems (SenSys) 2003,
Nov. 2003.

[3] Ben Titzer, Daniel Lee, and Jens Palsberg. Avrora: Scalable
Sensor Network Simulation with Precise Timing. In
Proceedings of IPSN'05, Fourth International Conference on
Information Processing in Sensor Networks, Los Angeles,
2005.

[4] J. Liu, D. Nicol, F. Perrone, M. Liljenstam, C. Elliot, and D.
Pearson. Simulation modeling of large-scale ad-hoc sensor
networks. In Proc. European Interoperability Workshop
2001, London, England, June 2001.

[5] S. Park, A. Savvides, and M. B. Srivastava. SensorSim: A
simulation framework for sensor networks. In Proc. MSWIM
2000, Boston, MA, August 2000.

[6] S. Sundresh, W.-Y. Kim, and G. Agha. SENS: A sensor,
environment and network simulator. In Proc. 37th Annual
Simulation Symposium (ANSS ’04), 2004.

[7] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and
M. Karir. ATEMU: A fine-grained sensor network simulator.
In Proceedings of SECON’04, First IEEE Communications
Society Conference on Sensor and Ad Hoc Communications
and Networks, 2004.

[8] Vlado Handziski, Joseph Polastre, Jan-Hinrich Hauer, Cory
Sharp, Adam Wolisz, David Culler, David Gay. TinyOS 2.0
Enhancement Proposal (TEP – 2).
http://www.tinyos.net/tinyos-2.x/doc/html/tep2.html

[9] Philip Levis and Nelson Lee. TOSSIM: A Simulator for
TinyOS Networks
http://www.cs.berkeley.edu/~pal/research/../pubs/nido.pdf.

[10] Terence Parr. ANTLR Parser Generator.
http://www.antlr.org/.

22

A Quantitative Evaluation of the Simulation
Accuracy of Wireless Sensor Networks

Georg Wittenburg
wittenbu@inf.fu-berlin.de

Jochen Schiller
schiller@inf.fu-berlin.de

Department of Mathematics and Computer Science
Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany

ABSTRACT

In the field of wireless sensor networks, network simulators
are commonly used to evaluate properties of software com-
ponents or the network as a whole. Their advantages in
reduced experimental overhead, flexibility, and repeatability
come at the expense of questionable credibility of the results.
In order to quantify the simulation accuracy of wireless sen-
sor networks, we have conducted a field test measuring the
packet loss rate and compared the data with the results ob-
tained from a carefully configured simulation of the same
scenario. Our evaluation gives insight into how much trust
can be put into the results of simulations of comparable sce-
narios.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication; I.6.4 [Si-
mulation and Modeling]: Model Validation and Analy-
sis; D.2.8 [Software Engineering]: Metrics—performance
measures

Keywords

Wireless Sensor Networks, Simulation, Accuracy, Scatter-
Web, ns-2

1. INTRODUCTION
Simulating a Wireless Sensor Network (WSN) provides

distinct advantages over a full-scale, real-world deployment
when it comes to evaluating new software components: A
simulation can be set up in less time, is more flexible with
regard to network layout and communication parameters,
and allows for different algorithms to be run under exactly
the same conditions. These advantages of reduced experi-
mental overhead, flexibility, and repeatability come at the
expense of questionable credibility of the results. For most
simulations it is unknown how closely the results obtained
resemble those from a similar real-world deployment.

The contribution of this paper is to quantitatively evalu-
ate the inaccuracy incurred by relying on a simulation rather
than a real deployment. Our approach is to first measure
certain metrics in a field test, and then recreate the exact
conditions of this test as closely as possible in a simulation
with the goal of comparing the measurements taken. While
doing so, we pay special care not to use our knowledge of the

results of the field test to over-optimize the simulation pa-
rameters with regard to reducing the discrepancy between
simulative and real-world measurements. Instead, our in-
tention is for this simulation to be just as accurate as any
other simulation that is configured carefully following the
recommendations from the literature.

For our field test, we used ScatterWeb ESB sensor nodes
based on the Texas Instruments MSP430 ultra-low power
microcontroller with 60KB Flash and 2 KB RAM [12]. Inter-
node radio communication takes place at 868MHz on the
license-free ISM band using the RF Monolithics TR1001 ra-
dio transceiver at a data transfer rate of 19.2 kbps [11]. For
the simulations, we relied on our previous work [14] that al-
lows us to run the same software components on both real
sensor nodes and the ns-2 network simulator. This work is
briefly summarized in Section 2.1.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes key aspects of preliminary work that led
up to the current experiment. Section 3 describes in de-
tail the experiment, which consists of both a field test using
ScatterWeb sensor nodes and a corresponding simulation.
Section 4 presents and evaluates the results. Section 5 gives
a brief overview of current research in the area of simulation
accuracy, and Section 6 concludes.

2. PRELIMINARIES
In this section, we briefly recapitulate the most important

aspects of preliminary work.

2.1 ScatterWeb on ns-2
As pointed out above, simulations offer several advantages

over regular deployments when it comes to evaluating new
software components for WSNs. Therefore, we have devel-
oped an approach to run the same software components both
on ScatterWeb sensor nodes and the ns-2 network simulator
[3]. In a nutshell, this was achieved by porting the C API
provided by the ScatterWeb firmware to ns-2, which was
chosen as a simulation platform due to its architectural com-
patibility with existing ScatterWeb software components, its
wide-spread use in research, and in order to avoid the pit-
falls of implementing a network simulator from scratch. The
key advantage of our simulation approach is that – except
for the effects of program execution speed and energy con-
sumption which we intend to address in future work – it
leaves the higher-layered software components oblivious to
whether they are being executed on a real sensor node or as
part of a simulation.

23

In our previous work [14], we concentrated on API com-
patibility and the transparent integration of ScatterWeb soft-
ware components into ns-2, while leaving questions regard-
ing the simulation accuracy for future work. In this paper,
we add to these results by evaluating the simulation accu-
racy with regard to packet transmissions over the wireless
interface.

2.2 Network Metrics

Table 1: Metrics for Different Network Layers as
Applicable in the Field of WSNs

Layer Metrics
PHY Bit Error Rate (BER)

Radio Signal Strength (RSS)
DLL Packet Loss Rate (PLR)

Packet Collision Rate (PCR)
NET Packet Delivery Rate (PDR)

Hop Count, Latency
Overhead Traffic

APP Application QoS Parameters

Several options are available when deciding which met-
ric to use for comparing simulation and reality. The choice
depends on the ISO/OSI layer that we intend to look at.
Table 1 lists commonly used metrics sorted by the layers
they correspond to.1While it would certainly be interesting
to compare simulation and reality for measurements of all
of these metrics and explore how inaccuracies at lower lay-
ers interact with those on the upper layers, this is beyond
the scope of this work. Instead, we focus on the Packet Loss
Rate (PLR) as seen by the network layer. This choice is mo-
tivated by the fact that layer 2 packets are well supported as
a networking concept in virtually all simulation tools on one
side (bit errors, for instance, are not), and because we want
to avoid tying our results to any particular routing protocol
on the other side.

2.3 Radio Propagation Models
Given the experimental setup proposed above, the most

crucial component of the simulator with regard to the ex-
pected results is the radio propagation model. ns-2 imple-
ments three radio propagation models: free space, two-ray
ground reflection, and shadowing [3]. The first two are vari-
ations of the unit disc graph model, i.e. within a certain
radius of the sender all nodes always have perfect reception.
These models are known to resemble reality quite poorly
[9]. The shadowing model is the only one to include a prob-
abilistic term as part of the calculation of the received signal
power:

»
Pr(d)

Pr(d0)

–
dB

= −10βlog

„
d

d0

«
+ XdB

where Pr(d) is the mean received power at distance d as
computed relative to a reference power Pr(d0) at distance d0.
β is the path loss exponent, and XdB is a Gaussian random

1Some of these metrics may also be applicable at other layers
than those listed. For example, one could argue that PLR
and PDR can also be observed in the NET and DLL layers
respectively.

variable with zero mean and standard deviation σdB , called
the shadowing deviation. For an accurate simulation, both
β and σdB need to be measured at the site of the planned
deployment. Typical values for an urban outdoor area range
between 2.7 dB and 5 dB for β and between 4 dB and 12 dB
for σdB [10].

We also considered using more sophisticated radio prop-
agation models, e.g. the Radio Irregularity Model (RIM)
proposed by Zhou et al. [15]. However, the drawback of
more recent models is that less data and recommendations
exist for a realistic choice of parameter values. Hence, we
decided to only consider well-established models for this ex-
periment.

3. EXPERIMENTAL SETUP
This section describes the field test using ScatterWeb sen-

sor nodes as well as the corresponding simulation. In both
tests, we transmitted several packets from one sending sen-
sor node to another receiving sensor node and varied both
the distance between the nodes as well as the transmission
power setting while observing the PLR.

3.1 Field Test
We conducted the field test using two ScatterWeb ESB

sensor nodes placed in an urban outdoor environment at
a height of 60 cm without any obstructions in their direct
line of sight. The distance between the nodes was varied in
the range from 5m to 90m in steps of 5m. At each of the
distances, we varied the transmission power setting on the
firmware API between 0 and 100 (which corresponds to the
full range of the TR1001 as connected on the ESB) in steps of
10. For all these combinations of distance and transmission
power setting, we sent 20 128-byte packets from one node,
counted the correctly received packets on the other node,
and calculated the PLR.

3.2 Simulation
For the simulated sensor nodes, we mapped the informa-

tion from the datasheet [11] and as extracted by inspecting
the implementation of the low-level ScatterWeb firmware as
closely as possible to the simulation. We tried to reuse ex-
isting ns-2 components wherever possible by adapting their
parameters to match the characteristics of the real sensor
nodes. As the version of ns-2 used in our experiments had
no support for changing the transmission power for individ-
ual packets during the simulation, we modified the simulator
to add this feature. Further, there was no information avail-
able on how the transmission power setting between 0 and
100 maps to the actual transmission power in milliwatts, so
we separately measured these values and configured the sim-
ulated sensor nodes accordingly. Due to space constraints
we omit the details of these measurements.

Finding good recommendations for the path loss expo-
nent β and the shadowing deviation σdB in the literature
was challenging. In most cases, the focus is on communica-
tion distances one order of magnitude higher than the one
commonly found in current WSNs. The most suitable values
we found are due to Seidel et al. [13], who measured β =
2.7 and σdB = 11.8 dB for a frequency of 900MHz. Further,
ITU-R P.1546 [4] recommends σdB = 9.5 dB for a frequency
of 600MHz. The only measurements that target WSNs di-
rectly are due to Darbari et al. [1], whose results are not
applicable to our experiment because they were measured at

24

Figure 1: PLR Against Distance with Fixed Trans-
mission Power Setting of 60

Figure 3: PLR Differences Between Simulation and
Reality with Parameters According to [12]

distances below 1m and at a frequency of 2.4GHz. For our
experiment, we decided to use the recommended values from
[13] and, in a second simulation run, the path loss exponent
from [13] combined with the shadowing deviation from [4].

4. RESULTS AND DISCUSSION
Given the experimental setup described in the previous

section, we now proceed to present and evaluate the results
obtained.

In Figure 1, the PLR is plotted against the distance be-
tween two sensor nodes. With the transmission power set-
ting fixed at 60, the diagram representatively illustrates the
effects observed and allows us to omit diagrams for the re-
maining transmission power settings for brevity. The three
curves in the diagram correspond to the measurements from
the real-world field test and two simulations with different
parameters for the radio propagation model. As expected,
the PLR increases with larger distances for all three curves
and the rate at which it increases differs as a result of inaccu-
racies in the simulation. Similarly, Figure 2 shows the PLR,
but this time plotted against the transmission power setting
at a fixed distance of 60m. Analogous to the observation
above, the PLR decreases with higher transmission power
settings and simulation inaccuracies can be observed in the
different rates of decrease. Once again we omit diagrams for
the remaining transmission power settings for brevity.

We now proceed to compare the complete results from
the field test with each of the two simulation runs in Fig-
ures 3 and 4. These diagrams show the differences between

Figure 2: PLR Against Transmission Power Setting
with Fixed Distance of 60 m

Figure 4: PLR Differences Between Simulation and
Reality with Parameters According to [12] and [4]

PLRs from the field test and from one simulation respec-
tively. In both diagrams the differences are low for both
low transmission power settings at large distances and high
transmission power settings at short distances. This is due
to the fact that these scenarios are comparatively easy to
describe correctly in the radio propagation model and hence
the simulation is quite accurate. In contrast, this is not true
for values along the diagonal of the diagram as both distance
and transmission power setting increase. In these situations,
larger differences in PLRs can be observed as the radio prop-
agation model shows its weakness at correctly predicting the
characteristics of the signal at the border of the transmission
range. Outliers in the diagram, such as the local maximum
in the top left quadrant of Figure 4, can be attributed to
multi-path signal propagation and additive or subtractive
interference at the receiver which are not part of the simu-
lation due to lacking information about the surroundings.

For a quantitative evaluation of the simulation accuracy,
one would have to estimate how likely it is for each combina-
tion of distance and transmission power setting to occur dur-
ing a test run, weight the data points accordingly, and then
calculate the average difference. For our particular exper-
iment, all combination of distance and transmission power
setting occurred equally often, hence no weights are neces-
sary. The average difference between the field test and the
simulation according to [13] is 12.3%. The simulation with
combined values from [13] and [4] is slightly more accurate
with an average difference of 8,2%. It is important to keep in
mind that these numbers are closely tied to the metric used
for the measurements, which in this case is the PLR, and

25

hence one should not think of them as the one comprehen-
sive quantifier for simulation accuracy. Still, these results
give a good indication on how much confidence can be put
into the results from a carefully configured simulation.

5. RELATED WORK
The accuracy of network simulators has been studied by

Johnson [7] and more recently by Jansen and McGregor [6].
Both works differ from ours in that they use application and
transport layer metrics, and for this reason are not directly
concerned with the problems arising from transmitting over
a wireless medium. Furthermore, they do not compare their
results with data from field tests, and generally focus more
on the validation of networking algorithms and simulation
methodology. [6] is similar to our work in that we share
the advantages of integrating existing implementations of
software components directly into the simulator.

Liu et al. [8] compares data of network layer metrics from
a large field test using up to 40 laptop computers commu-
nicating over IEEE 802.11 with corresponding simulations.
They use different radio propagation models for their com-
parisons including a “generic model” that is similar to the
shadowing model used in our simulations. In their evalua-
tion they observe effects similar to those depicted in Figure
1, however they neither try to quantify the simulation accu-
racy nor do they elaborate on their choice of parameters.

Ivanov et al. [5] discusses the accuracy of ns-2-based sim-
ulations and emulations with regard to packet delivery ratio,
the network connectivity graph, and packet latencies. They
partly fine-tuned the parameters of the radio propagation
model to match the observed real network topology. Hence,
their results correspond to the optimal values for a given
scenario, which we intentionally avoid in our approach.

Finally, Newport et al. [9] evaluates the impact of com-
monly made assumptions on simulation accuracy in general.

6. CONCLUSION AND FUTURE WORK
In this paper, we have evaluated the accuracy of a care-

fully configured simulation with regard to the Packet Loss
Rate (PLR) by comparing the results with data from a field
test using two ScatterWeb ESB sensor nodes. The average
difference between simulation and reality for this metric is
12.3% or 8,2%, depending on which recommendation is fol-
lowed for the choice of parameters for the radio propagation
model. These results allow us to judge the credibility of
other simulations for similar deployments.

As a next step we intent to undertake similar experiments
for other metrics and analyze how the inaccuracies of the
simulation interact over different network layers. Further
experiments relying on ray-tracing-based radio propagation
models such as proposed in [2] and [16] may complement
this work for indoor scenarios. Finally, we are planning to
improve our simulations by adding the notions of program
execution speed of the simulated software components and
correct modelling of energy consumption.

7. REFERENCES
[1] F. Darbari, I. McGregor, G. Whyte, R. W. Stewart,

and I. Thayne. Channel Estimation for Short Range
Wireless Sensor Network. In Proceedings of the IEE
Conference on DSPenabledRadio, Southampton,
United Kingdom, Sept. 2005.

[2] J.-M. Dricot and P. D. Doncker. High-accuracy
Physical Layer Model for Wireless Network
Simulations in NS-2. In Proceedings of the
International Workshop on Wireless Ad-Hoc Networks
(IWWAN ’04), pages 249–253, Oulu, Finland, May
2004.

[3] K. Fall and K. Varadhan. The ns Manual, May 2007.

[4] International Telecommunication Union.
Recommendation ITU-R P.1546-2: Method for
Point-to-area Predictions for Terrestrial Services in the
Frequency Range 30 MHz to 3.000 MHz, Aug. 2005.

[5] S. Ivanov, A. Herms, and G. Lukas. Experimental
Validation of the ns-2 Wireless Model using
Simulation, Emulation, and Real Network. In
Proceedings of the 4th Workshop on Mobile Ad-Hoc
Networks (WMAN 2007), pages 433–444, Bern,
Switzerland, Feb. 2007.

[6] S. Jansen and A. McGregor. Performance, Validation
and Testing with the Network Simulation Cradle. In
Proceedings of MASCOT 2006, Monterey, CA, U.S.A.,
Sept. 2006.

[7] D. B. Johnson. Validation of Wireless and Mobile
Network Models and Simulation. In Proceedings of the
DARPA/NIST Workshop on Validation of Large-Scale
Network Models and Simulation, Fairfax, VA, U.S.A.,
May 1999.

[8] J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C.
Newport, D. Kotz, and L. F. Perrone. Empirical
Validation of Wireless Models in Simulations of Ad
Hoc Routing Protocols. Simulation: Transactions of
The Society for Modeling and Simulation
International, 81(4):307–323, Apr. 2005.

[9] C. Newport, D. Kotz, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott. Experimental Evaluation of Wireless
Simulation Assumptions. Simulation: Transactions of
The Society for Modeling and Simulation
International, 2007 (accepted for publication).

[10] T. S. Rappaport. Wireless Communications:
Principles and Practice. Prentice Hall, Dec. 2001.

[11] RF Monolithics Inc. TR1001 868.35 MHz Hybrid
Transceiver Data Sheet, Aug. 2001.

[12] J. Schiller, A. Liers, and H. Ritter. ScatterWeb: A
Wireless Sensornet Platform for Research and
Teaching. Computer Communications, 28:1545–1551,
Apr. 2005.

[13] S. Y. Seidel, T. S. Rappaport, and R. Singh. Path
Loss and Multipath Delay Statistics in Four European
Cities for 900 MHz Cellular and Microcellular
Communications. IEE Electronics Letters,
26(20):1713–1715, Sept. 1990.

[14] G. Wittenburg and J. Schiller. Running Real-World
Software on Simulated Wireless Sensor Nodes. In
Proceedings of the ACM Workshop on Real-World
Wireless Sensor Networks (REALWSN’06), pages
7–11, Uppsala, Sweden, June 2006.

[15] G. Zhou, T. He, S. Krishnamurthy, and J. A.
Stankovic. Impact of Radio Irregularity on Wireless
Sensor Networks. In Proceedings of the 2nd
International Conference on Mobile Systems,
Applications, and Services (MobySys ’04), 2004.

[16] F. Österlind. A Ray-Tracing Based Radio Medium in
COOJA. Dec. 2006.

26

Model Checking for Energy Efficient Scheduling in
Wireless Sensor Networks∗

Peter H. Schmitt, Frank Werner
†

Universität Karlsruhe (TH)
Institut für Theoretische Informatik
{pschmitt,werner}@ira.uka.de

ABSTRACT
Networking and power management of wireless energy - con-
scious sensor networks is an important area of current re-
search and considering the competitive constraints on the
global energy market it will even gain importance. We in-
vestigate in the present work a network of MicaZ sensor
motes using the Zigbee protocol for communication, and
provide a model using Timed Safety Automata. The TA
model will comprise a full functional scenario set-up consist-
ing of a network controller, network routers, and sensor de-
vices collecting information. Along with the model sending
and receiving mechanisms included, a realistic need-specific
investigation is feasible.
Our analysis’ focus is on estimating energy consumption by
model checking in different scenarios within a fixed but vari-
able topology using the Uppaal[7] tool. Special interest is
devoted to the energy use in marginal situations that rarely
occur and are consequently not fully covered by simulation.

1. INTRODUCTION
The technique of model checking has been successfully used
in many application areas and has proved particularly useful
in very early design stages when only a model or a blueprint
of the product is available. Using model checking tools flaws
and errors have been revealed early, reducing costly changes
in the later product design cycle. The technique has been
widely used for the analysis of security protocols, and con-
current, distributed algorithms.
In this paper we investigate the question whether the success
story of model checking can be repeated in the area of low-
energy sensor networks. We want to gain experience how
these networks can be modelled, and what kind of analysis
should and can be performed.
Common safety and liveness properties will certainly still
play a role, although we rather focus on questions related
to energy consumption. What is the minimal energy needed
to reach a state for a given property? Can we formulate
conditions that will guarantee that the lifetime of a sensor
node is at least three month or at least contribute to their
solution? Furthermore we want to evaluate to which extent
rarely occurring situations can be identified.
The plan of this paper is as follows. In the rest of this in-

∗This work has previously been published as a re-
port available at http://www.ubka.uni-karlsruhe.de/
cgi-bin/psview?document=ira/2007/1.
†This research position is funded by the BW-FIT Project
ZeuS (Zuverlässige Informationsbereitstellung in energiebe-
wussten ubiquitären Systemen).

troduction we briefly introduce the theoretical framework of
model checking. Section 2 describes our model for sensor
networks, in Section 3 we present our results, and conclude
with the usual wrap-up and suggestions for future research
in Section 4.

What Model Checking is. Model checking is a formal
method for automatically verifying system designs which has
been applied to an impressive variety of areas. The method
requires a model M of the system under investigation, a
property φ that the system should have, and an algorithm
to check whether M indeed satisfies φ. The method is very
flexible since it is applicable to all systems that can be mod-
elled as some kind of finite state machine. Investigations into
application areas related to wireless sensor networks are just
starting [6, 5, 9].
Due to several considerations we decided to choose for mod-
elling the sensor network Uppaal[7], an integrated tool en-
vironment for the design, simulation and verification of real-
time systems. The tool is fairly efficient, and adequate
for systems that can be modelled as a collection of non-
deterministic processes, communicating through binary ac-
tions, broadcasting channels, or shared variables, and having
a finite control structure, and real-valued clocks. Especially
the natural use of clocks in Uppaal is promising an adequate
and realistic modelling of the sensor network.

2. MODEL OF SENSOR NETWORK
For being comparable to other studies we chose the MicaZ
sensor mote manufactured by Crossbow since it provides
a versatile platform in particular for low-energy sensor net-
works [8]. The protocol for communication between the sen-
sors is the Zigbee protocol[10] because it can be beneficially
used, combining low transmission rates while fulfilling the
criteria of being energy-conscious.
Out of the different topologies that exist we choose the
Mesh-Network to be the most appropriate one in our sce-
nario. What we pursue is a Peer-to-Peer network consisting
of only FFDs (full functional devices) since we aim on using
a beacon disabled network. Device-to-device, and device-to-
router communication is established using the CSMA/CA
access on the common medium. As such devices wake up in
certain intervals send their recently gathered information,
and fall back to sleep. The communication medium is rep-
resented as one channel on which all devices communicate,
which is fixed over the analysis. This is intentionally done
since it introduces collisions and related situations of inter-

27

est. The more, it allows us to neglect the overhead arising
from network maintenance like active-, passive scans, and
channel changes because of high traffic with close-by net-
works. Apart from having bidirectional communication we
restrict the model on passing information from the sensor
devices to the network coordinator, and explicitly forbid a
vice versa communication flow.
Whenever a sensor end device (ZED) is waking up, it is
forwarding the recently collected data packets to the router
(ZR), and the going back to sleep again. The routers in
turn pass the packet along the network link - possibly using
other routers - to the Zigbee network controller (ZC) which
is the root of each Zigbee network and unique. Routers are
the only devices in our model that embody a sending and
receiving side.

Uppaal Model. The sensor nodes are the only devices
which have the capability of collecting sensor values and
in turn have no means to receive packets from the rest of
the network. Routers can receive and forward packets, and
finally the network controller has a mere capability of re-
ceiving packets. For the measure of energy consumed, a
reference sensor, and a reference router are modelled. Due
to this design issues the state space is kept small, retaining
the essential functions for each device.
The power draw of the reference devices [1] is incorporated
into the model, using values as shown in the table below
(Tab. 1), and costs are accumulated whenever state changes
occur.
Although the model makes no use of changing transmission
rates during execution due to complexity considerations, the
MicaZ transmission can be changed in advance accordingly
to the distance matrix from Fig. 1(b) in concrete steps of
−10dBm, −5dBm, and 0dBm. To account for a very re-
stricted state space, the models transmission rate is con-
stant in the model but changed over different properties to
imitate different scenarios.

Sensor Nodes and Routers. Modelling the sensor nodes,
routers, and controllers shown in Fig. 2 we singly use the
MicaZ motes, although heterogeneous networks with more
powerful routers can be desirable for other applications. In
our approach Zigbee Controller (ZC), Router (ZR), and End
Devices (ZED) are modelled in a similar fashion with only
subliminal differences, corresponding to the requirements of
a homogeneous networking scenario. The costs i.e. the en-
ergy use of the individual sensor devices, is incorporated into
the model to allow even distinct transmission rates for a re-
alistic scenario. By using this approach the required energy
to reach a specific state can be immediately derived from
the verification.

Network Controller. is intentionally modelled without
an energy function. This is mainly because we assume it
to be attached to some persistent power supply since it is
most critical to the network.

Table 1: MicaZ’s energy measures in [μA] for pro-
cessor (proc) and transmission unit (trans).

State proc trans Remarks
PDown 15 1 down mode
PSleep 8 000 1 proc up, trans down
PIdle 8 000 20 proc and trans up
PSnd1 8 000 11 000 sending at −10dBm
PSnd2 8 000 14 000 sending at −5dBm
PSnd3 8 000 17 400 sending at 0dBm
PRcv 8 000 19 700 receiving mode

(a) Scenario with reference sensor (ZEDR),
sensors (ZED), routers (ZR), reference
router (ZRR) with cost function, and Zig-
bee Controller (ZC). Edges are labelled
with distances and numbers in parenthesis
denoted process.

(b) Distance
matrix for
the selected
scenario.

Figure 1: Scenario settings underlying the analysed
sensor network.

Zigbee Protocol. For being comparable to results gained
through practical experiments the model is designed as pro-
posed in the Zigbee specification [10] for homogeneous net-
works underlying a tree topology with devices as shown in
Fig. 1(a). Digits in parenthesis indicate the process num-
ber used for identification later on in the verification part.
Distances between respective entities are modelled using the
distance matrix from Fig. 1(b) to determine communication
flow within the sensor network as well as the number of hops
a packet as to undergo until arriving at its destination.
Since most energy is preserved in sleep mode - where proces-
sor, and on-board transmission unit are shut down - we tar-
get an average duty cycle of 1%[8] by defining ActivePeriod
1 and BeaconInterval 100 in our model in Fig. 2. The Zigbee
protocol is designed to handle most of the communication
within the contention free period collision free, although we
consider the contention period in which the CSMA/CA fea-
ture is used to be an interesting point to investigate.

Cost Estimation. Since special interest is on the estima-
tion of costs, a reference sensor node cf. Fig. 2(c) and a
reference router cf. Fig. 2(b) are equipped with a cost esti-
mation function CE() where energy costs are accumulated
along the paths, avoiding a gratuitous blow-up of the state
space. Consequently, costs from Tab. 1 are used according
to state changes by the automata, giving some observables
at hand. Respectively adopted to this design is the cost
of leaving state Down. Using the cost PDown multiplied

28

(a) The Zigbee Network Controller in charge of the net-
work beacon maintenance.

(b) The Zigbee reference Router with cost function CE()
forwarding packets along the network links.

(c) The reference Zigbee sensor node with cost function
CE() delivering sensor values to the network.

Figure 2: Uppaal timed automata models of the Zig-
bee sensor network.

by 99 time units gives an accurate energy consumption for
the time spent in this state, totalling the transition cost to
PDown′ = 1 548μA.

3. VERIFICATION RESULTS
Before the outcomes of different properties are tested us-
ing the new model, the scenario is tested for deadlock free-
ness (A�¬deadlock) to assure plausible sound modelling and
sanity. For all experiments the state space is bound by in-
troducing variable MOD which is set to appropriate val-
ues, and computing all variables modulo this upper bound.
The transmission rate is increased over different scenarios
from −10dBm, −5dBm, to 0dBm, augmenting the theoret-
ical coverage. These energy draws correspond to ranges of
two, four, and six units of the distance matrix shown in fig-
ure 1(b) and have a merely theoretic character. Properties

Table 2: Energy consumed by the sensor device for
different ranges of two, four, and six units of cover-
age.

range Property energy [μA]
2 E� ZC.rcv = 1&ZEDR.snd = 1 64 300
4 E� ZC.rcv = 1&ZEDR.snd = 1 67 300
6 E� ZC.rcv = 1&ZEDR.snd = 1 70 700

are verified by using a hash table size of 512MB for state
hashing in the Uppaal tool setting, and giving the short-
est path for some satisfying property, needed for finding the
lowest cost. Using a bigger hashtable does only fractionally
increase the modelling size since the state space grows ex-
ponentially with the number of variables used (assuming no
optimisation at all is done).

3.1 Energy Considerations
Starting with a deadlock free model, energy considerations
are obtained by searching the state space spanned by the
model for properties as specified by the user. Whenever a
satisfying state is found, a path is generated that shows the
transitions taken until the state is reached. All experiments
conducted here investigate the use of energy of the reference
sensor and router under different scenarios. The desired
properties are checked by definition of CTL[4, 2] formulae.

Sensor Devices. The first experiment conducted is observ-
ing the power drawn by the reference MicaZ sensor under
the following property:

E� ZC(7).rcv = 1&ZEDR(0).snd = 1

This CTL property expresses in a verbalised form, questions:
“What is the energy used by the reference node if it trans-
mits one packet (ZEDR(0).snd = 1) which is routed through
the network and finally received by the Zigbee Controller
(ZC(7).rcv = 1)?”
By use of the temporal operator E� φ (”Does there exist
a path such that φ does eventually hold in the future”),
the shortest path is returned as defined by the appropriate
strategy. Tab. 2 captures the energy drawn for the above
property while varying the theoretic transmission range.

Zigbee Routers. After having studied the energy drawn
by Zigbee sensor gadgets, a further step is to investigate the
cost that occur at the routing devices, since they need more
power due to higher activity. For this scenario the reference
Zigbee router ZRR from Fig. 2(b) has been chosen, since
it interlinks the Zigbee controller with the network, and is
hence most critical to energy constraints.
The analysis observes the energy consumption by the router
using different transmission rates, and increasing collisions
occurring at the router over the experiments. Results are
illustrated in the table 3 below. As expected, by increasing
the transmission rates more devices in the network are capa-
ble of over-leaping the reference router node, thus preserving
the ZRR’s energy, and enable a faster delivery of packets to
the ZC at the root.

29

Table 3: Energy in [mA] consumed by the reference
Zigbee router with varying transmission range to
account for an packet successfully send and received
with varying collisions.

range Property Energy
2 E�ZC(0).rcv = 1 167
4 E�ZC(0).rcv = 1 138
6 E�ZC(0).rcv = 1 91
2 E�ZC(0).rcv = 1&ZRR(6).col = 1 214
4 E�ZC(0).rcv = 1&ZRR(6).col = 1 128
6 E�ZC(0).rcv = 1&ZRR(6).col = 1 144
2 E�ZC(0).rcv = 1&ZRR(6).col = 2 261
4 E�ZC(0).rcv = 1&ZRR(6).col = 2 138
6 E�ZC(0).rcv = 1&ZRR(6).col = 2 197
2 E�ZC(0).rcv = 1&ZRR(6).col = 3 355
4 E�ZC(0).rcv = 1&ZRR(6).col = 3 138
6 E�ZC(0).rcv = 1&ZRR(6).col = 3 250

4. CONCLUSION
Our experiments showed that the timed automata model
presented in Section 2 is a good basis for the analysis of en-
ergy consumption of sensor motes within an arbitrary sce-
nario. Special emphasis is hereby on the investigation of
marginal or borderline situations which rarely occur in sim-
ulation and can thus be exhaustively analysed using the here
presented approach.
Furthermore we were able to determine cost optimal timings
for specific schedules. The features provided by the Uppaal
tool proved to be flexible enough to formulate queries in-
volving the estimation of energy consumption. Especially
the fact that Uppaal offers a built-in concept of multi-cast
and a notion of timing were very useful during the modelling
phase. It seems notable, that although the model consists
of eight devices - and modern simulation tools can do up
to thousands - the analysis presented here is more exhaus-
tive. As such situations which rarely occur in simulation can
be identified by the current approach using timed automata
theory and hereby help to investigate these border-line sce-
narios.
As can be seen from Table 3 higher transmission rates im-
pose a higher energy consumption on each device, but si-
multaneously enable packets to reach the ZC using less hops
along the network links. On the other side packets transmit-
ted from other motes might collide more often in this case,
and consequently the number of retransmissions before a
packet’s successful delivery to its destination is increased.
Although the verification is restricted due to limitations of
Uppaal, we believe that the model can be adopted to suit an
even deeper analysis than shown here. To tackle the size of
the state space, several attempts techniques are introduced
that allow an increasing model complexity.
By accompanying the verification techniques pursued here
with more realistic data, a deeper understanding of routing,
contentions, and the hereby related energy consumption can
be obtained. So far we have not made a serious attempt to
use the counter measures recommended in the Uppaal tu-
torial[3] to curb state explosion. It will also be promising to
explore the potentials of other tools, and to look into infinite
model checkers.

5. REFERENCES
[1] Micaz data sheet - wireless sensor networks.

www.xbow.com.

[2] Rajeev Alur, Costas Courcoubetis, and David L. Dill.
Model-checking for real-time systems. 1990.

[3] Gerd Behrmann, Alexandre David, and Kim G.
Larsen. A tutorial on uppaal. Technical report,
Department of Computer Science, Aalborg University,
Denmark, November 2004.

[4] E. Clarke and I.A. Draghicescu. Expressibility results
for linear-time and branching-time logics. In J.W.
deBakker, W.P. deRoever, and G. Rozenberg, editors,
Proc. Workshop on Linear Time, Branching Time,
and Order in Logics and Models for Concurrency,
volume 354 of LNCS, pages 257–268. Springer, 1988.

[5] Sinem Coleri, Mustafa Ergen, and T. John Koo.
Lifetime analysis of a sensor network with hybrid
automata modelling. In WSNA ’02: Proceedings of the
1st ACM international workshop on Wireless sensor
networks and applications, pages 98–104, New York,
NY, USA, 2002. ACM Press.

[6] YoungMin Kwon and Gul Agha. Performance
evaluation of sensor networks: A statistical modeling
and probabilistic model checking approach. In ACM
Transactions on Embedded Computing Systems (ACM
TECS), 2006.

[7] Kim G. Larsen, Paul Pettersson, and Wang Yi.
Uppaal in a nutshell. Int. Journal on Software Tools
for Technology Transfer, 1997.

[8] Ciaran Lynch and Fergus O’Reilly. Processor choice
for wireless sensor networks. In Proc. 1st Workshop on
Real-World Wireless Sensor Networks REALWSN,
number T2005:09 in SICS Technical Reports, pages
58–62. SICS, Stockholm, Sweden, 2005.

[9] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla,
and R. Gupta. Using probabilistic model checking for
dynamic power management. Formal Aspects of
Computing, 17(2):160–176, August 2005.

[10] ZigBee specification. Zig-Bee Document 053474r06,
Version 1.0, June 2005.

30

Simulation von plattformunabhängigen
TinyOS-Applikationen mit ns-2

Juri Saragazki, Olaf Landsiedel, Klaus Wehrle
Computer Science Department, Distributed Systems Group

RWTH Aachen
{juri.saragazki, olaf.landsiedel, klaus.wehrle}@

rwth-aachen.de

Kurzfassung
Die Entwicklung von verteilten Algorithmen, Betriebssyste-
men und Applikationen stellt aufgrund der außerordentlich
beschränkten Ressourcen der einzelnen Sensorknoten und
der hohen Dynamik, der drahtlose Sensornetzwerke unterlie-
gen, eine besondere Herausforderung in der Forschung dar.
Die Simulation von verteilten Applikationen und Betriebs-
systemen mit schlecht überschaubaren, komplizierten Vor-
gängen ist ein wichtiger Schritt in Bezug auf die Evaluierung
von Algorithmen und ihren Implementierungen. In dieser
Arbeit wird ein Rahmenwerk zur Simulation von TinyOS-
Anwendungen vorgestellt. Es ermöglicht Anwendungen, die
ohne Modifikationen auf Sensorknoten lauffähig sind, sowie
deren Interaktion miteinander zu untersuchen und somit ge-
naue und detaillierte Vorhersagen mit Hilfe des weit verbrei-
teten Netzwerksimulators ns-2 über ihr Verhalten in einer
natürlichen Umgebung zu machen.

Schlüsselbegriffe
Drahtlose Sensornetzwerke, Simulation von Applikationen,
TinyOS 2.x, Network Simulator 2, ns-2

1. MOTIVATION
Beim Aufbau von drahtlosen Sensornetzwerken mit autono-
men Sensorknoten existiert eine Reihe von verschiedenar-
tigen Herausforderungen. Für Elektroingenieure bringt die
kompakte Größe der einzelnen Knoten einige Schwierigkei-
ten mit sich, wohingegen Informatiker bei der Entwicklung
von Applikationen und Betriebssystemen mit der Limitie-
rung der Ressourcen zurechtkommen müssen.

Aufgrund des hohen Komplexitätsgrads von verteilten An-
wendungen, der Beschränkungen hinsichtlich der Hardware-
ressourcen und der hohen Anschaffungskosten der Kompo-
nenten ist ein Verzicht auf eine ausführliche Evaluierungs-
phase in einer realen Umgebung oder in einer Simulations-
umgebung vor der Inbetriebnahme nicht denkbar. Der Auf-
bau einer realistischen Testumgebung mit einer hohen An-
zahl von Knoten erweist sich jedoch wegen mehrerer Gründe
oft als unmöglich bzw. nicht zweckmäßig. Es wird eine große
Fläche benötigt und viele der natürlichen Phänomene kön-
nen in einer solchen Umgebung nicht reproduziert werden.
Die Kosten für einen zeitintensiven und materialaufwendi-
gen Aufbau würden dabei realistische Grenzen übersteigen.

Um Applikationen und Netzwerke dennoch zu evaluieren,
werden Netzwerksimulatoren eingesetzt. Je nach Wahl des
Simulators muss die Anwendung, die später auf dem Sen-

sorknoten ausgeführt wird, an den Simulatorkern angepasst
werden, was wiederum einen hohen Zeitaufwand und eine
Verschlechterung der Übertragbarkeit der Ergebnisse bedeu-
tet.

Die rasante Entwicklung im Bereich der Miniaturisierung
hat zu einer hohen Anzahl von verfügbaren Sensorknoten-
plattformen geführt. So unterscheiden sich die Geräte in Pro-
zessorleistung, Speichergröße, Funkübertragungsbandbreite
und -reichweite, Energieverbrauch, usw. Die hohe Vielfalt
an Hardware bringt einerseits viele Vorteile mit sich, führt
jedoch bei der Entwicklung von zuverlässigen Anwendungen
zu einer Reihe von Schwierigkeiten.

TinyOS 2.x [3, 7] ist ein weit verbreitetes und frei verfügba-
res Betriebssystem für Sensornetzwerke der zweiten Gene-
ration, das eine plattformunabhängige Softwareentwicklung
ermöglicht und eine Vielzahl von unterschiedlichen Hard-
wareplattformen unterstützt. TOSSIM [5, 6] ist der einzige
den Autoren bekannte Simulator, der eine Simulation von
unmodifizierten TinyOS 2.0-Anwendungen ermöglicht. Je-
doch hat dieser Simulator einige Nachteile. So ist es nicht
möglich unterschiedliche Applikationen in einem Netzwerk
zu simulieren und die Anzahl der verfügbaren Modelle bzgl.
Funkwellenausbreitung, sowie Umgebungssimulation ist be-
grenzt. NesCT [8] ist ein Sprachenübersetzer, der aus NesC -
Quelltext C++-Klassen für den Simulator OMNeT++ [1]
erstellt.

”
Network Simulator 2“ [2, 9] ist ein weit verbreiteter Netz-

werksimulator mit einer breiten Palette von unterschiedli-
chen Modellen. In dieser Arbeit wird ein Rahmenwerk zur
Simulation von unmodifizierten TinyOS-Anwendungen mit
ns-2 vorgestellt. Mit Hilfe dieses Werkzeugs kann der Ent-
wicklungsprozess von TinyOS-Applikationen erleichtert und
beschleunigt werden. Eine zeitnahe Evaluierungsphase kann
zur Verbesserung der Qualität der Software führen. Der Ent-
wickler ist in der Lage Anwendungen in einer simulierten
Umgebung zu testen und zu bewerten, eventuell vorhande-
ne Fehler zu beseitigen und die Leistungsfähigkeit bzw. die
Netzwerktopologie zu optimieren.

2. SYSTEMDESIGN
In dieser Arbeit wird ein System zur Evaluierung von unmo-
difizierten Anwendungen für Sensorknotennetzwerke vorge-
stellt. Der Fokus liegt dabei auf der Portierbarkeit der An-
wendungen. Bei der Realisierung des Rahmenwerks stand
der Faktor Benutzerfreundlichkeit im Vordergrund. Der Pro-

31

TinyOS

ns-2

Sensorknoten

Applikation

Radio

Sensorik

LED

Zeitgeber
C-Quelltext

(app.c)

Quelltext-

Transformator

C C++

Kommunikationskanal

Sensorknoten

ZeitgeberApplikation

Radio

Sensorik

LED

Zeitgeber

Sensorknoten

Sensorkknotenk

Sensorknoten
RadioRadioRadio

kk

Sensorknoten

Radioo ensorikSeeRZeitgeberi Applikation

Radio

Sensorik

LED

Zeitgeber

Ereignis-

schlange

- in dieser Arbeit entwickelte Komponenten

micaz-Plattformm

telosb-Plattform

Ns-2-Plattform

C-Quelltext

TinyOS-Anwendung

nesc-Quelltext

Systembibliotheken

Abbildung 1: Adaption von TinyOS-Anwendungen an ns-2

zess bei der Erstellung einer Simulation von TinyOS-Anwen-
dungen sollte daher automatisch bzw. mit möglichst wenigen
manuellen Modifikationen ablaufen.

Um eine schnelle Portierung der Applikation zu erreichen,
ist die Modifikation des Betriebssystems TinyOS 2.x ein an-
gemessener Weg. Eine neue Plattform dient als Grundla-
ge für eine Applikationsabstraktion bei der Simulation. Ein
Vorteil einer abstrakten Plattform gegenüber einer hardwa-
renahen Plattform ist eine höhere Leistungsfähigkeit, da we-
niger Quelltext entsteht und so auch weniger Speicher be-
nötigt wird. Diese neue Plattform bildet die Grundlage für
die Verknüpfung zwischen der Applikation und dem Simu-
latorkern von ns-2. Sie beinhaltet die wichtigsten abstrak-
ten Hardwarekomponenten auf der HIL [4] in der Abstrak-
tionsarchitektur von TinyOS 2.x, wie z.B. Zeitgeber, Ra-
dio, Sensorik und Speicher. Der nesC -Compiler übersetzt
den Quelltext der Applikation sowie der benötigten Kompo-
nenten in einen ausführbaren Quelltext der Sprache C. So
entsteht eine große Systemdatei, die alle benötigten Dekla-
rationen und Komponenten beinhaltet, wobei die originäre
Strukturierung des ursprünglichen Quelltextes nicht erhal-
ten bleibt. Diese Datei besteht aus vielen tausend Zeilen
Quelltext und enthält eine Ansammlung von Prozedurdefini-
tionen, die aufgrund der modularen Betriebssystemarchitek-
tur von TinyOS umfangreich ineinander verschachtelt sind.

Weiterhin wurde im Rahmen dieser Arbeit ein Werkzeug
entwickelt, das aus der Systemdatei eine Klasse, die bei der
Simulation zur Abstraktion der Applikation benutzt wird,
generiert. Durch die Anwendung dieses Tools entsteht aus ei-
ner prozedurbasierten Sensorknotenanwendung, implemen-
tiert in der Programmiersprache C, eine abstrakte C++-
Applikationsklasse. Bei der Transformation erfolgt eine Auf-
splittung der großen Systemdatei in eine syntaktisch C++-
typische Strukturierung mit einer Definitionsdatei mit Typ-,
Variablen- und Funktionsdeklarationen und einer Hauptda-
tei, die die Methodenimplementierungen enthält. Das Werk-

zeug wurde in der Programmiersprache Java realisiert, weil
diese umfangreiche Möglichkeiten zur Bearbeitung von regu-
lären Ausdrücken bietet. Der Erstellungsprozess der Platt-
form wurde dabei so geändert, dass die Quelltexttransfor-
mation automatisch eingeleitet wird.

Der Simulator ns-2 wurde durch Komponenten erweitert,
die die Hardware eines Sensorknotens abstrahieren. Virtu-
elle Sensorknoten führen Anwendungen aus, kommunizieren
miteinander, lesen mit Hilfe von Sensoreinheiten Daten aus
der Umgebung aus und verarbeiten diese. Jeder Knoten ent-
hält eine Instanz der Applikationsklasse. Während der Simu-
lation der Applikation greift die Applikationsinstanz auf die
Funktionalitäten der ns-2-Klassen zu. Dieser Aufbau ermög-
licht die Simulation von unterschiedlichen Applikationen auf
verschiedenen Sensorknoten.

Da ns-2 ereignisgesteuert abläuft, muss jede Komponente
mit Hilfe eines Zeitgebers ein Ereignis in die Warteschlan-
ge der Ablaufkontrolle des Simulators einfügen. Die Instanz
der Applikation ruft die Methode der benötigten Hardware-
Instanz, z.B. des Radiosenders auf. Nach Ablauf des Zeit-
gebers wird ein Ereignis ausgelöst, das für eine Rückfüh-
rung zur Applikation sorgt. Die benötigte Instanz ruft die
Methode der Applikation auf, die der Anwendung mitteilt,
dass die Funktionalität im Simulator durchgeführt wurde.
Nachfolgend wird die Hauptschleife der Ablaufkontrolle der
Applikation aufgerufen, um evtl. anstehende Aufträge zu
bearbeiten. Abbildung 2 skizziert das Zusammenspiel der
Komponenten eines Sensorknotens in ns-2.

Die Aufrufkette beinhaltet dabei folgende Schritte:

1. Aufruf zur Ausführung einer Funktionalität aus der
Applikation an die Simulatorkomponente.

2. Einordnung des Ereignisses in die Ereigniswarteschlan-
ge des Simulators.

32

Sensorknoten

App.h

App.cc

RadioNS2.h

RadioNS2.cc

1

Ereignis-

schlange

2

3

4
5

App::AMSend

Radio::send

Radio::expire

App::AMSend_senddone

App::Scheduler-TaskLoop

Abbildung 2: Aufrufkette bei der Simulation der Ap-
plikationen

3. Abarbeitung des Ereignisses.

4. Rückführung zur Applikation.

5. Anstoßen der Hauptschleife der Ablaufsteuerung der
Applikation.

Detaillierte Beschreibung der einzelnen Schritte und Kom-
ponenten kann in [10] eingesehen werden.

3. EVALUIERUNG
Es wurden zahlreiche Funktionalitätstests und Simulations-
läufe zur Messung der Leistungscharakteristiken durchge-
führt. Bei den Tests wurde die Funktionalität der neu er-
stellten TinyOS-Plattform sowie der Funktionsumfang des
Quelltexttransformators bei der Adaption an den Simulator
ns-2 geprüft. Dabei wurden Standardanwendungen, die im
Umfang des Betriebssystems enthalten sind, getestet. Bei
nahezu 70% aller getesteten Applikationen war die Ausfüh-
rung des originären TinyOS-Quelltextes im Simulator mög-
lich. In den restlichen Fällen, z.B. bei der Verwendung einer
Funktionalität, die nicht in der ns-2-Plattform implemen-
tiert wurde, war eine Kompilierung der Applikation nicht
möglich. Dabei wurde die Anpassung an den Simulatorkern
in den meisten Fällen automatisch durchgeführt, jedoch wa-
ren in einigen Fällen kleine manuelle Änderungen notwendig.
Betriebssystemkomponenten von TinyOS greifen bei der Si-
mulation auf die Funktionalitäten der virtuellen Knoten zu.
Daher ist ihre Implementierung in TinyOS nur dann zweck-
mäßig, wenn die entsprechende Funktionalität im Simulator
vorhanden ist. So wird z.B. im Rahmen dieser Arbeit der
Energieverbrauch der Sensorknoten nicht betrachtet. Aus
diesem Grund wurden die Konfigurationen, die unter die
HIL [4] greifen, nicht realisiert.

Um die Leistungsfähigkeit des Simulators zu testen wurde ei-
ne Vielzahl von unterschiedlichen Messungen durchgeführt.
Dabei wurden der Speicherverbrauch und die zur Simula-
tion benötigte Zeit als Leistungsmerkmale protokolliert, da
diese beiden Faktoren oft eine Beschränkung bei komplexen
Berechnungsaufgaben darstellen.

Bei der Bewertung der Leistungsfähigkeit des Simulator-
kerns existiert eine Vielzahl von Parametern, die einen Ein-
fluss auf die Resultate haben. So spielen die Anzahl der

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700

S
p
e
ic

h
e
r

in
 M

B
y
te

s

Anzahl Sensorknoten

Fläche 200*200
1000*1000
2000*2000

Abbildung 3: Speicherverbrauch bei der Variation
der Anzahl der Sensorknoten

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700

Z
e
it
 i
n
 S

e
k
u
n
d
e
n

Anzahl Sensorknoten

200*200
1000*1000
2000*2000

Abbildung 4: Benötigte Zeit bei der Variation der
Anzahl der Sensorknoten

Sensorknoten, die Knotendichte, die Simulationsanwendung,
insbesondere die Anzahl der gesendeten und der empfange-
nen Nachrichten, die virtuelle Simulationsdauer, die Wahl
des Funkausbreitungsmodells und die Netzwerktopologie ei-
ne bedeutende Rolle und beeinflussen die Ergebnisse bei der
Messung der Ressourcen. Bei einer solch hohen Anzahl von
Einfussfaktoren sind alles einschließende Aussagen schwie-
rig. Es lassen sich jedoch Tendenzen erkennen. Bei den Simu-
lationsmessungen hat sich herausgestellt, dass die Berech-
nung des Funkausbreitungsmodells die benötigte Zeit bei ei-
ner Simulation beschränkt. Der exponentielle Anstieg der
benötigten Zeit (siehe Abbildung 4) im Verhältnis zur Erhö-
hung der Anzahl der Sensorknoten sorgt für einen rasanten
Anstieg der Rechenzeit, da die Simulation der Radioüber-
tragung aufwendig und rechenintensiv ist. Der Speicherver-
brauch (siehe Abbildung 3) entwickelte sich bei den Tests
linear.

4. FAZIT UND AUSBLICK
Zusammenfassend stellt das Rahmenwerk gemeinsam mit
dem Simulator ns-2 ein mächtiges und effizientes Werkzeug
bei der Entwicklung von TinyOS-Anwendungen dar und er-
möglicht eine schnelle Analyse der umgesetzten Ideen. Diese

33

Arbeit stellt eine Grundlage für die Simulation von unmodi-
fizierten TinyOS-Applikationen, wobei weitere Optimierun-
gen zur Verbesserung der Simulationsergebnisse beitragen
könnten.

Ein wichtiger Aspekt bei der Simulation von Sensornetzwer-
ken ist der Energieverbrauch. Sensorknoten sollen über ei-
ne längere Zeit in einer natürlichen Umgebung wartungsfrei
im Einsatz sein können. Die Möglichkeit der Simulation des
Energieverbrauchs von TinyOS-Applikationen würde zu wei-
teren Optimierungsoptionen bei der Erstellung der Software
führen. Eine Erweiterung der Abstraktion des Sensorknotens
in ns-2, die den Energieverbrauch simuliert, würde auch zu
detaillierten Simulationsergebnissen über das gesamte Netz-
werk beitragen. Knoten, die aufgrund eines erhöhten Ener-
gieverbrauchs ausfallen würden, könnten schneller identifi-
ziert werden.

Eine genaue zeitliche Abbildung zwischen der Applikation
und der Ablaufkontrolle des Simulators könnte eine weitere
Optimierung der Ergebnisse hervorbringen. Die Simulation
läuft ereignisbasiert ab. Das hat zur Folge, dass eine Re-
chenoperation ein Ereignis im Simulator auslöst. Die War-
teschlange, in der sich Ereignisse befinden, wird von der Ab-
laufkontrolle des Simulators abgearbeitet. Jedoch ist die zur
Abarbeitung benötigte Zeit auf einem PC aufgrund der un-
terschiedlichen Hardwarearchitektur nicht auf Sensorknoten
übertragbar. Für eine genaue Abbildung der realen und vir-
tuellen Zeit ist eine exakte hardwarebezogene, plattformspe-
zifische Modellierung notwendig.

5. QUELLENANGABEN
[1] OMNeT++ Community Site. URL:

http://www.omnetpp.org/ [zuletzt besucht am
25.06.2007].

[2] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin
Fall, Sally Floyd, Padma Haldar, Mark Handley,
Ahmed Helmy, John Heidemann, Polly Huang, Satish
Kumar, Steven McCanne, Reza Rejaie, Puneet
Sharma, Kannan Varadhan, Ya Xu, Haobo Yu und
Daniel Zappala. Improving Simulation for Network
Research. Technical Report 99-702b, University of
Southern California, März 1999.

[3] TinyOS Research Group. TinyOS 2.0 Dokumentation.
URL: http://www.tinyos.net/tinyos-2.x/doc/
[zuletzt besucht am 08.05.2005].

[4] Vlado Handziski, Joseph Polastre, Jan-Hinrich Hauer,
Cory Sharp, Adam Wolisz, David Culler und David
Gay. TinyOS-Dokumentation TEP 2 - Hardware
Abstraction Architecture. URL: http:
//www.tinyos.net/tinyos-2.x/doc/html/tep2.html

[zuletzt besucht am 27.05.2007].

[5] Philip Levis. TOSSIM: A Simulator for TinyOS
Networks. URL: citeseer.ist.psu.edu/642439.html.

[6] Philip Levis. TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications, 2003. URL:
citeseer.ist.psu.edu/levis03tossim.html.

[7] Philip Levis. T2: A Second Generation OS For
Embedded Sensor Networks. Technical report,
University of California, Berkeley, 2005.

[8] Offizielle Internetpräsenz. NesCT: A Language
Translator. URL:
http://nesct.sourceforge.net/index.html [zuletzt
besucht am 21.06.2007].

[9] Offizielle Internetpräsenz. The Network Simulator -
ns-2. URL: http://www.isi.edu/nsnam/ns/ [zuletzt
besucht am 20.05.2007].

[10] Juri Saragazki. Entwurf und Realisierung eines
plattformunabhängigen Kommunikationsubsystems für
Sensornetzwerke. Diplomarbeit, RWTH Aachen,
Fachbereich Informatik, LuFGI 4 Verteilte Systeme,
2007.

34

A Simulation Model of IEEE 802.15.4 in OMNeT++

Feng Chen Falko Dressler

Computer Networks and Communication Systems
University of Erlangen-Nuremberg

91058 Erlangen, Germany
{feng.chen,dressler}@informatik.uni-erlangen.de

ABSTRACT
IEEE 802.15.4 defines the physical and MAC layer specifica-
tions for low-rate wireless personal area networks (WPANs).
In order to evaluate its performance, we develop a simulation
model of IEEE 802.15.4 in OMNeT++, which is a popular
simulation platform especially suitable for the simulation of
communication networks. The model consists of two mod-
ules for PHY and MAC layers respectively and supports star
and cluster tree topologies. Our model is built conforming
to the latest version - IEEE Std 802.15.4-2006 and has the
extendibility to the ZigBee protocol stack.

Keywords
IEEE 802.15.4, simulation model, OMNeT++

1. INTRODUCTION
IEEE 802.15.4 [1] is a standard designed for low-rate wireless
personal area networks (LR-WPAN) and defines the spec-
ifications at the physical layer (PHY) and medium access
control (MAC) sublayer. In contrast to wireless local area
network (WLAN), which is standardized by IEEE 802.11
family, LR-WPAN stresses short-range operation, low-data-
rate, energy-efficiency and low-cost. Thus, LR-WPAN has
become one of the most foreseen technologies enabling WSNs.
An example is ZigBee [4], which is an open specification
built on the LR-WPAN standard and targeted at low-cost,
low-data-rate and low-power wireless networking.

OMNeT++ [2] is a public-source, component-based and dis-
crete event simulation environment and is becoming a very
popular simulation platform especially in communication
and networking community. Its primary application area
covers the simulation of communication networks, IT sys-
tems, queuing networks and business processes as well. [5]
has shown that OMNeT++ is very suitable for simulating
wireless sensor networks owing to its modular structure and
using NED language for ease of simulation configuration.

In this paper, we present a simulation model of IEEE 802.15.4
in OMNeT++. It consists of two modules for PHY and
MAC layers respectively and supports simulations of star
and cluster tree topologies. The PHY model implements the
complete functions defined in the specifications. The MAC
model implements three data transfer modes (direct, indi-
rect and GTS), beacon transmission and synchronization,
complete CSMA-CA mechanism and partial PAN manage-
ment functions, like association. To measure energy con-
sumption of nodes. we implement an energy model in the
MAC module. All parameters defined in the specification
except for those for security functions are implemented in
the model and adjustable in the OMNeT++ configuration
file omnetpp.ini or in a C++ source file where the default
values for the majority protocol parameters are stored.

The rest of the paper is organized as follows. In section
2, we give a brief description of 802.15.4. In section 3, the
model of IEEE 802.15.4 in OMNeT++ will be introduced
in detail. Section 4 concludes the paper and give a vision to
the future work.

2. A BRIEF OVERVIEW OF IEEE 802.15.4
In this section, we give a brief overview of IEEE 802.15.4.
Only those parts related to our model are introduced.

The IEEE 802.15.4 network can work in one of three ISM
frequency bands and choose from a total of 27 channels.
Two different types of devices are defined in an LR-WPAN,
a full function device (FFD) and a reduced function device
(RFD). An FFD can talk to any other device and serves as
a PAN coordinator, a coordinator or a device. An RFD can
only talk to an FFD node. The standard supports two net-
work topologies, star and peer-to-peer. In the star network,
the communication occurs only between devices and a single
central controller, called the PAN coordinator, which man-
ages the whole PAN. The peer-to-peer topology also has a
PAN coordinator, however is differs from the star topology
in that any devices can communicate with any other one as
long as they are in range of one another. A special case of
peer-to-peer topology is cluster tree, in which a node talks
only to its parent or children nodes.

To achieve better energy-efficiency, the IEEE 802.15.4 can
operate on beacon-enabled mode, for which a superframe
structure is utilized. A super frame is bounded by period-
ically transmitted beacon frames, which allow nodes to as-
sociate with and synchronize to their coordinators. It con-

35

MAC

PHY

Traffic

CSMA - CA

Beacon Tx /Rx

Direct, indirect and GTS

data transmission

Frame filtering and

duplication detection

Simplified association

process

IFS delay

Radio sleeping control

Energy model

Radio model

ED

CCA

Channel switch

Packet Tx /Rx

Collision detection

Ideal/ lossy channel

Packets generator with

a FIFO queue

Channel
Control

Figure 1: The structure and components of the 802.15.4 model

sists of two parts, active and inactive period. An active
portion is divided into 16 contiguous time slots that form
three parts: the beacon, contention access period (CAP)
and contention-free period (CFP). In CAP, all data trans-
mission should follow a successful execution of the slotted
CSMA-CA algorithm. There are two data transfer modes
defined in CAP, the indirect transmission for downlink data
and the direct transmission for uplink data. In CFP, a de-
vice can communicate with the PAN coordinator directly in
the called guaranteed time slots (GTS) without contending
for the channel using CSMA-CA mechanism. The GTS are
allocated by the PAN coordinator, therefor GTS transfer
mode is only applicable in the star network.

3. DESCRIPTION OF IEEE 802.15.4 MODEL
IN OMNET++

The IEEE 802.15.4 model is developed in the INET frame-
work, which is an open-source communication networks sim-
ulation package for the OMNeT++ simulation environment
and suited for simulations of wired, wireless and ad-hoc net-
works. The architecture of the 802.15.4 model is shown in
Fig. 1. There are three sub models, traffic, MAC and PHY,
each of which is a independent module and inherited from

the basic C++ class cSimpleModule in OMNeT++. The
modules are connected with each other via gates and com-
municate via messages. A snapshot of the model in the
graphical interface of OMNeT++ called Tkenv is shown in
Fig. 2. In the following sub sections, each of these modules
is introduced in detail.

3.1 PHY Module
In the INET framework, a general radio module called Ab-

stractRadio implements the common functionality of the ra-
dio, like packet transmission and reception with collision
detection, channel switch, etc.. We adapt this module to
create a proper radio model conforming to IEEE 802.15.4,
by changing or adding the following contents:

• Redefine radio states: according to the specification,
the radio is modeled with three states: transceiver dis-
abled (TRX OFF), transmitter enabled (TX ON) and
receiver enabled (RX ON). The MAC module com-
pletely controls radio operation and can set the radio
into different states via a request primitive. The PHY
module reports the setting result back to the MAC via
a confirm primitive.

• Clear channel access (CCA): the MAC module requires
the PHY to perform CCA via the PLME-CCA.request
primitive. The channel state (busy or idle) is deter-
mined in the model by checking two flags, isRxing and
isTxing, which indicate whether the radio is currently
receiving or transmitting packets. The PHY will set
the flag isRxing by either of the following two facts: a
packet (not a noise) is currently being received or the
current noise level is above the sensitivity value. For
a CCA request, checking flags will take place twice at
both the beginning and the end of a period of 8 sym-
bols. The CCA result will be reported back to the
MAC via a corresponding confirm primitive.

In addition, the PHY module can be configured to work in
any one of a total 27 channels and transmit packets at three
different data rates, as defined in the specification. Dynam-
ical channel switch during the simulation is also supported.

3.2 MAC Module
This is the main module in the whole model and contains
the following three main parts:

3.2.1 Channel access
Channel access is the core function for any MAC protocol.
We have implemented the majority functions and primi-
tives for channel access defined in the specifications, includ-
ing three data transfer modes (direct, indirect and GTS),
MAC frame filtering, detection for duplicate received pack-
ets and the most important part - CSMA-CA mechanism

36

Figure 2: The 802.15.4 model in TKenv, the graphical interface of OMNeT++

(slotted and unslotted). To make the model more accurate,
we also consider the IFS delay, which is defined as the re-
quired process time for a frame received from the PHY by
the MAC.

3.2.2 Beacon mechanism and PAN management
IEEE 802.15.4 achieves good energy-efficiency owing to its
beaconing mechanism. We implements in our model the
complete beacon transmission and reception for nodes form-
ing star and cluster tree network automatically. For exam-
ple, to simulate a cluster tree topology, user can specify in
the simulation setup phase which node to be the PAN co-
ordinator and when to broadcast its first beacon. During
the simulation running, when those nodes being placed one
hop away from the PAN coordinator receive their first bea-
con from the PAN coordinator, they initiate the association
process. After successful association, if those nodes are not
leaf nodes, they will act as a coordinator and start transmit-
ting beacons to those nodes placed at the next level in the
cluster tree. When all leaf nodes are associated, the network
forming phase is complete. With respect to PAN manage-
ment functions, a simplified association process is modeled,
that is, the node will associate with the coordinator, from
which it receives the first beacon. Furthermore, loss of syn-
chronization due to time drift (e.g. use of oscillator with
±20ppm) can be simulated with our model. Other PAN
management functions, like channel scan and dissociation,
are not considered in our model.

3.2.3 Energy model
Energy consumption is always a major interest in study-
ing MAC protocols like IEEE 802.15.4 designed for energy-
restricted wireless applications. In our model, we measure
only the energy consumed at the radio. To achieve this in
the MAC module, we let the MAC module keep tracking
the current radio state in the PHY module via a message
passing module defined in the INET framework called Noti-

ficationBoard. Therefor we only need to count the total time
that the radio has spent in each state during the simulation.
As long as the radio power for each state is known, the total
energy consumption can be easily calculated. Although in
our model we use a single state RX ON to represent two
possible working state in a real radio, idle listening and re-
ceiving, it is reasonable to assume that radios in these two
states consume approximately the same power.

3.3 Traffic Module
The traffic module is not a part of IEEE 802.15.4, however
we need a traffic generator to run the simulation. This mod-
ule is modeled as the upper layers above the IEEE 802.15.4
model and acts as both a traffic source generating packets
for the MAC module and a traffic sink collecting and ana-
lyzing received packets. The traffic module is inherited from

the existing traffic generator class, which is implemented by
Dietrich Isabel [3] and supports generating traffic with vari-
ous types, including CBR, Exponential, and On-off. It uses
a flexible XML-based parameter structure and supports dy-
namical change of traffic pattern during the simulation.

37

Table 1: Model Parameters
transmitterPower power for sending packets (mW)

sensitivity carrier sense threshold

thermalNoise base noise level (dBm)

snirThreshold signal/noise threshold

isPANCoor is a PAN coordinator or not

BO beacon order

SO superframe order

startTime when PAN starts beaconing

3.4 Model Parameters
Our model provides a vast amount of parameters adjustable
for conducting a comprehensive study of IEEE 802.15.4.
The default values for the majority protocol parameters are
stored in a single C++ header file. We also put some pa-
rameters, which are most likely to be modified during the
simulation, into the corresponding NED file for each simple
module, so that user can change them conveniently in the
simulation configuration file omnetpp.ini. Those parameters
are listed in Table 1.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we present a simulation model for IEEE Std.
802.15.4 developed in the popular simulation environment
OMNeT++. Except for the PAN management and security
functions, the model implements the majority parameters
and functions defined in the specifications. Compared with
the existing IEEE 802.15.4 model in ns-2, our model is built
conforming to the latest IEEE Std. 802.15.4-2006 and im-
plements the GTS data transfer mode, as well as an energy
model. In the future work, more PAN management func-
tions will be added to support simulating more complicated
scenarios, e.g. mesh topology with ZigBee routing. A se-
ries of simulations for evaluating the performance of IEEE
802.15.4 in the QoS aspect are running. We also plan to
integrate the security functions into our model and inves-
tigate how the performances are affected by those security
mechanisms.

5. REFERENCES
[1] IEEE std. 802.15.4-2006, wireless medium access

control (MAC) and physical layer (PHY) specifications
for low-rate wireless personal area networks (WPANs).

[2] OMNeT++ homepage. [online]. available:
http://www.omnetpp.org.

[3] OMNeT++ page at Isabel Dietrich’s homepage.
[online]. available: http://www7.informatik.uni-
erlangen.de/ isabel/omnet/.

[4] ZigBee Alliance homepage. [online]. available:
http://www.zigbee.org.

[5] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar,
R. Kannan, A. Durresi, and S. Sastry. Simulating
wireless sensor networks with omnet++.

38

ServiceCast: Eine Architektur zur dienstorientierten
Kommunikation in selbstorganisierenden

Sensor-Aktor-Netzen

Andreas L. Kuntz
Institut für Telematik

Universität Karlsruhe (TH)
akuntz@tm.uka.de

Martina Zitterbart
Institut für Telematik

Universität Karlsruhe (TH)
zit@tm.uka.de

ABSTRACT
ServiceCast ist eine Architektur zur dienstorientierten Kom-
munikation in selbstorganisierenden Sensor-Aktor-Netzen
(SSAN). Ziel ist es Methoden der Dienstorientierug auf
niederen Protokollschichten verfügbar zu machen, um
im gesamten Stack einem einheitlichen Kommunikations-
Paradigma folgen zu können. Als zentrales Merkmal werden
Dienste statt Knoten als Grundlage der Adressierung und
des Routings betrachtet. Die folgenden von ServiceCast be-
handelten Aspekte sind für die Kommunikation in Selbstor-
ganisierenden Sensor-Aktor-Netzen essentiell und daher von
besonderem Interesse: Dienstorientierte Adressierung, Auf-
finden von Diensten, Verwaltung von Verbindungen sowie
die verteilte Konfiguration und Initialisierung der Dienstin-
stanzen im Netz.

1. EINLEITUNG
Sensornetze werden üblicherweise als aus vielen kleinen, res-
sourcenarmen Knoten bestehend angenommen. Die Kno-
ten erbringen dabei Dienste, welche sie anderen Knoten zur
Verfügung stellen. Aufgrund der häufig beschränkten Ener-
gieressourcen, wird in vielen Arbeiten davon ausgegangen,
dass Knoten temporär in Energiesparmodi wechseln, wo-
durch auch die vom Knoten erbrachten Dienste zeitweise
nicht verfügbar sind. Daneben sind zahlreiche weitere Ur-
sachen denkbar, welche zu Dynamik und damit zu ähnli-
chen Auswirkungen führen. Wir gehen davon aus, dass ein
Großteil der Dienste redundant im Netz vorhanden ist, also
mehrere Instanzen desselben Dienstes auf unterschiedlichen
Knoten zur Verfügung stehen. Durch geeignete Abstrak-
tion der Adressierung der Kommunikationspartner möchten
wir diese Redundanz ausnutzen, um Nachrichten transpa-
rent an aktive Diensterbringer auszuliefern und damit die
Verfügbarkeit der erbrachten Dienste zu erhöhen. Wir halten
Dienstorientierung auf niederen Protokollschichten für einen
vielversprechenden Ansatz, um eine geeignete Abstraktion
zu realisieren.

Aufgrund der Annahme, dass Dienste durch mehrere Instan-
zen redundant vertreten sind, kann der Dienstbezeichner al-
leine den Kommunikationspartner nicht eindeutig identifi-
zieren. Daher führt ServiceCast als orthogonales Merkmal
Kontexte ein, welche Sensorknoten ihrer Umgebung zuord-
nen. Kontexte erlauben, das

”
wo“ in einer vom Benutzer

beeinflussbaren Granularität zu definieren (z. B.
”
Lokati-

on innerhalb eines Rechtecks mit den Eckpunkten (�x, �y)“),
während der Dienstbezeichner das

”
was“ definiert (z. B.

”
Temperaturdienst“).

Anstatt Knoten und Dienstinstanzen direkt zu adressieren,
werden Nachrichten mit einem Ziel-Kontextbereich und ei-
nem Ziel-Dienstbezeichner versehen. Aufsuchen des Kontex-
tes und Auswahl der Dienstinstanz werden vom Netz über-
nommen. So ist weder explizit das Übersetzen von Dienst-
bezeichner auf die ID des diensterbringenden Knotens not-
wendig, noch muss auf temporäre Nicht-Erreichbarkeit eines
Dienstes Rücksicht genommen werden.

Architekturen zur Dienstfindung wie [3, 4, 5, 9] stützen
sich auf Dienstverzeichnisse. Das Dienstverzeichnis bildet
Dienstbezeichner auf die Adressen der Wirtsknoten ab, wel-
che als Grundlage der späteren Kommunikationsbeziehung
dienen. ServiceCast kommt ohne ein solches Verzeichnis aus.
D. h. Dienstbezeichner müssen nicht in eine netzweit gültige
Knotenadresse umgesetzt werden.

Im Folgenden wird der Ansatz anhand eines kurzen Bei-
spiels erläutert. Auf Kontexte, Dienstfindung und Instanz-
auswahl wird anschließend eingegangen. Aspekte des Rou-
tings bezüglich der Kontexte sollen hier nicht weiter vertieft
werden, da für viele mögliche Kontexträume bereits geeigne-
te, spezielle Ansätze existieren [1, 7, 8]. Das Anycast-ähnli-
che Adressierungsschema erfordert besonderes Augenmerk
bei der Zustellung von Nachrichtenfolgen, wenn mehrere,
zueinander in Beziehung stehende Nachrichten an dieselbe
Dienstinstanz übermittelt werden müssen. Auf diesen Punkt
wird in Abschnitt 2.4 kurz eingegangen. Abschließend wer-
den Aspekte der verteilten Konfiguration, der Dynamik und
der Sicherheit kurz angerissen. Eine umfassende Behandlung
derselben ist für zukünftige Arbeiten vorgesehen.

2. KONZEPT
ServiceCast adressiert Kommunikationspartner durch die
Kombination von Ziel-Kontextbereich und Ziel-Dienst-
bezeichner. So werden durch dieselbe Adresse potentiell
alle gleichwertigen Dienstinstanzen innerhalb des angege-
benen Kontextbereiches angesprochen. Die Instanzauswahl
wird transparent vom Netz vorgenommen, was die effekti-
ve Verfügbarkeit des Dienstes verbessert. ServiceCast setzt
keine netzweit eindeutigen Knoten-Identifikatoren voraus;
einzig lokal eindeutige Identifikatoren sind notwendig, um
Nachbarknoten voneinander unterscheiden zu können.

Nachrichten werden in zwei Schritten zur Ziel-Dienstinstanz

39

Figure 1: Adressierung und Routing mit ServiceCast

geleitet: (1) Routing der Nachricht in den Ziel-Kontext,
(2) Auswahl der Ziel-Dienstinstanz. Abbildung 1 zeigt ein
Beispielszenario: Sensorknoten sind durch Ovale angedeu-
tet, Dienste durch die Piktogramme auf den Knoten. Das
Beispiel-Netz bietet Temperatur- und Schallsensoren, sowie
Lampen als Aktoren. Sensoren und Aktoren werden jeweils
durch die zugehörigen Dienste gekapselt. Als Kontextraum
soll hier beispielhaft die Lokation der Knoten in einem zwei-
dimensionalen Koordinatensystem dienen.

Möchte beispielsweise ein Knoten die Temperatursensoren
innerhalb eines bestimmten Bereiches abfragen, versendet
er eine Nachricht, in welcher der gewünschte Bereich als
Ziel-Kontextbereich codiert ist. In der Abbildung ist die-
ser durch das graue Feld rechts gekennzeichnet. Als Ziel-
Dienstbezeichner trägt der Knoten

”
Temperaturdienst“ in

die Nachricht ein. Die Nachricht wird zunächst — ohne
Berücksichtigung des Zieldienstes — in den

”
grauen“ Kon-

textbereich geroutet (Abbildung 1, links). Erst innerhalb des
Ziel-Kontextbereiches wird der Ziel-Dienstbezeichner

”
Tem-

peraturdienst“ ausgewertet und die Nachricht an die aktiven
Instanzen des Temperaturdienstes geleitet (Abbildung 1,
rechts). So kann z. B. die temporäre Nicht-Verfügbarkeit ei-
nes Dienstes, verursacht durch einen schlafenden Knoten,
kompensiert werden. Ein Parameter in der Nachricht gibt
an, wieviele der Instanzen die Nachricht erhalten sollen. Der-
zeit sind

”
genau eine“,

”
mehrere“ und

”
alle“ als mögliche

Werte vorgesehen.

2.1 Kontexte
Sensoren beobachten Phänomene ihrer Umwelt. Gemessene
Sensorwerte sind an die Lokation ihrer Messung gebunden
und verlieren ohne diese Information an Aussagekraft. Ein
Kontext ordnet einen Sensorknoten seiner Umgebung zu und
soll den Begriff der Lokation eines Sensorknotens verallge-
meinern bzw. von ihm abstrahieren. Kontexte können sym-
bolisch, diskreter Natur sein (z. B. die Nummer eines Raum-
es innerhalb eines Gebäudes oder die symbolische Identität
eines Patienten) oder auch kontinuierlich (z. B. eine geogra-
phische Koordinate). Kontexte sollen als abstraktes Kon-
strukt gesehen werden und sind nicht auf die hier angeführ-
ten Beispiele beschränkt. Anforderungen an Kontexträume
sind im diskreten Fall zwei Kontexte auf Gleichheit prüfen
zu können, im kontinuierlichen Fall der Vergleich bezüglich

Figure 2: Trans Service Sets

einer zum Kontextraum gehörenden Ordnungsrelation. Kon-
texte erhöhen einerseits die Spezifität einer Anfrage indem
sie die Menge der adressierten Knoten einschränken. Ande-
rerseits erlauben sie die Kompensation der Auswirkungen
von Dynamik, z. B. im Falle von schlafenden Knoten.

2.2 Auffinden von Diensten
Da ServiceCast Dienste als Grundlage des Routings ver-
wendet, wird kein explizites Verzeichnis benötigt, welches
Dienstbezeichner auf die IDs der diensterbringenden Kno-
ten abbildet. Stattdessen werden Dienstinstanzen anhand
von Dienstverfügbarkeitsinformationen gefunden. Diese wer-
den periodisch zwischen benachbarten Knoten ausgetauscht.
Während ein Knoten initial nur seine lokal angebotenen
Dienste, das

”
Local Service Set“ (LSS) kennt, lernt er mit

der Zeit welche Dienstmengen über seine Nachbarknoten di-
rekt und indirekt verfügbar sind. Eine solche Dienstmenge
wird als

”
Trans Service Set“ (TSS) bezeichnet. TSSs las-

sen sich als Erreichbarkeitsrelation wie folgt definieren:
”
Das

TSS(x, y) ist die Menge aller über einen Knoten x erreich-
baren Dienste aus Sicht des Nachbarknotens y.“ TSSs sind
also immer für ein Paar von benachbarten Knoten definiert.
Genauer:

TSS(x, y) :=

0
B@ [

n∈N(x)
n�=y

TSS(n, x)

1
CA ∪ LSS(x),

wobei N (x) die Menge aller zu x benachbarten Knoten ist.

Abbildung 2 verdeutlicht dies an einem Beispiel. Die Kan-
ten zwischen den Knoten deuten die Nachbarschaftsbezie-
hungen an. Die Dienstsymbole in geschweiften Klammern
repräsentieren das jeweilige TSS, also die Menge der Diens-
te, welche der Knoten über die entsprechende Verbindung
seinem Nachbar verfügbar macht. In diesem Beispiel wur-
den bidirektionale Kanten angenommen. Ferner wurden die
Knoten durch Buchstaben mit Namen versehen. Es sei hier
noch einmal ausdrücklich erwähnt, dass die eindeutige Un-
terscheidbarkeit der Knoten keine für ServiceCast notwen-
dige Voraussetzungen ist, sondern hier nur der einfacheren

40

(a) eine aktive (b) alle aktiven

Figure 3: Auswahl (a) einer bzw. (b) aller aktiven
Instanzen des Temperaturdienstes

Beschreibung dient. ServiceCast kommt mit lokal eindeuti-
gen Knoten-Identifikatoren aus. Innerhalb von Zyklen (z. B.
ABDE oder EFH) steht an jeder Kante das selbe TSS. Ver-
einfachend ist dieses nur einmal in der Mitte des entspre-
chenden Zyklus eingetragen. Anders verhalten sich die TSSs
am Rand des Netzes. Knoten K ist beispielsweise über Kno-
ten G mit dem restlichen Netz verbunden. So enthält hier
das TSS(G, K) alle im Netz verfügbaren Dienste, da K jeden
einzelnen über G erreichen kann. Umgekehrt enthält TSS(G,
D) nur die von G und K angebotenen Dienste.

Das Beispiel macht deutlich, dass in stark vermaschten Net-
zen TSSs alleine nur wenig Information zur Routingentschei-
dung beitragen können. Denn TSSs spiegeln die Erreichbar-
keit von Diensten wider und codieren inhärent die Menge al-
ler alternativen Pfade zu jedem der Dienste. TSSs repräsen-
tieren also die eingangs erwähnte Redundanz der Dienste.
Um sinnvolle Entscheidungen bezüglich des Routings treffen
zu können, wird das Einbeziehen zusätzlicher Informatio-
nen wie z. B. die

”
Entfernung zur nächsten Dienst-Instanz“,

Informationen über
”
Multiplizitäten“ oder über die Ener-

giereserven des Wirtsknoten notwendig. Untersuchung und
Evaluation der Einsatzfähigkeit und des Nutzens solcher Zu-
satzinformationen, sowie die Integration in ServiceCast ist
für weiterführende Arbeiten geplant.

TSSs lassen sich z. B. mittels Bloomfilter [2] kompakt, und
mit konstantem Speicherbedarf verwalten. Da für jeden
Nachbarknoten exakt ein TSS gepflegt werden muss, wächst
der gesamte Speicherbedarf linear mit der Anzahl der direk-
ten Nachbarn pro Knoten (bzw. mit der Dichte der Knoten)
und mit der maximalen Anzahl der Dienste. Wir erwarten,
diese Anzahl für viele Applikationen einheitlich nach oben
abschätzen zu können.

2.3 Dienstinstanz Auswahl
Innerhalb des Ziel-Kontextbereiches sind gleichwertige
Dienstinstanzen austauschbar, falls (1) die Kommunikation
mit einem Dienst aus einer einzigen Nachricht besteht oder
(2) während einer längeren Verbindung zu einem Dienst
kein Zustand innerhalb des Dienstes aufgebaut wird oder
(3) der Zustand vollständig auf andere Dinstinstanzen repli-
ziert werden kann. Die Behandlung von Nachrichtenfolgen,
in welchen die einzelnen Nachrichten zueinander in Bezie-
hung stehen, wird im nächsten Abschnitt besprochen. Ein
Parameter in der Nachricht gibt an, wieviele der aktiven

Instanzen die Nachricht erhalten sollen. Derzeit vorgesehen
sind die Werte:

”
genau eine“ (=1),

”
mehrere“ (≥ 0) und

”
alle“ (all). Der Wert

”
genau eine“ realisiert einen dienst-

und kontextspezifischen Anycast, d. h. es wird eine beliebige,
aktive Instanz des Ziel-Dienstes angesprochen, welche sich
im Ziel-Kontextbereich befindet (siehe Abbildung 3(a)).
Da hier implizit eine Garantie (

”
genau eine“) ausgespro-

chen wurde, ist es notwendig für diese Art der Zustellung
in den weiterleitenden Knoten temporär Zustand zu halten.
Der Wert

”
mehrere“ spricht beliebige aktive Instanzen des

Ziel-Dienstes innerhalb des Ziel-Kontextbereiches an. Un-
definiert viele weitere Instanzen im Zielkontext können die
Nachricht ebenfalls erhalten. Ein dienst- und kontextspezi-
fischer Broadcast wird durch den Wert

”
alle“ bereit gestellt,

welcher die Nachricht an alle aktiven Instanzen des Ziel-
Dienstes innerhalb des Kontextbereiches übermitteln lässt
(siehe Abbildung 3(b)).

2.4 Verbindungsorientierte Kommunikation
Obwohl angenommen werden kann, dass ein großer Teil des
Datenaufkommens in Sensornetzen in oben beschriebener
Weise behandelbar ist, sind Fälle denkbar in denen es not-
wendig sein wird den Kommunikationspartner temporär zu
fixieren, also eine länger dauernde Kommunikationsverbin-
dung mit derselben Instanz eines Dienstes (oder Gruppe von
Instanzen) zu ermöglichen. Insbesondere im Umgang mit
Aktoren kann dies wichtig sein. Für diesen Fall sollen —
ähnlich der in [6] vorgeschlagenen Architektur — sogenannte
Pseudo-Dienste eingeführt werden (in [6]

”
Transaction Iden-

tifier“ genannt). Pseudo-Dienste tragen probabilistisch und
temporär netzweit eindeutige Dienstbezeichner. Sie werden
bei Bedarf dynamisch instantiiert und markieren den Pfad,
welchen die Nachricht durch das Netz genommen hat. Fol-
genachrichten enthalten den Pseudo-Dienst als Zieldienst,
wodurch sie zu den selben Ziel-Dienstinstanzen wie die in-
ititale Nachricht gelangen. So kann ein einzelner oder eine
Gruppe von Kommunikationspartnern temporär fixiert wer-
den. Die Pseudo-Dienste etablieren einen Softstate in den
Zwischenknoten, welcher nach Nichtbenutzung der Verbin-
dung wieder abgebaut wird.

2.5 Verteilte Konfiguration
Knoten sollen zunächst in die Zielregion ausgebracht und
erst anschließend konfiguriert bzw. programmiert werden.
Aus energietechnischen Gründen kann es sinnvoll sein, Sen-
sorknoten von schon initial mit den applikationsspezifischen,
zur Hardware passenden Diensten auszustatten, aber erst
während der Konfigurationsphase zu entscheiden, welche
von ihnen gestartet werden. Während der Konfigurations-
phase soll durch lokale Kommunikation benachbarter Kno-
ten entschieden werden, welche Dienste auf einem Knoten
zur Verfügung gestellt werden. Dabei sollen Parameter wie
die Anzahl der auf (möglicherweise indirekt) benachbarten
Knoten verfügbaren Instanzen eines Dienstes oder die Lage
des Knotens innerhalb des Kontextraumes eine Rolle spielen.
Denkbar wäre z. B. eine gleichmäßige Verteilung von Diens-
tinstanzen bei einer vorgegebenen mittleren Dichte. Genau-
so sind andersartige Verteilungen (z. B. Gauss, etc.) als Vor-
gabe vorstellbar.

2.6 Dynamik
Neben Knoten-Mobilität sind Reprogrammierung oder
Rekonfiguration von Knoten, Ausbringen neuer Knoten

41

bzw. deren Wegfall, Kommunikationsstörungen und tem-
poräre Unerreichbarkeit aufgrund von Energiesparmaßnah-
men wichtige Ursachen für Dynamik. Allen Ursachen ge-
meinsam ist eine Veränderung der Topologie des Netzes, wel-
che Auswirkungen auf Routing, das Auffinden von Diensten
und andere Funktionalitäten haben kann. Durch die mit Ser-
viceCast eingeführte abstrakte, topologiefreie Adressierung
durch Dienstbezeichner und Kontexte, lassen sich Auswir-
kungen von Dynamik transparent kompensieren. Denn an-
statt eine spezielle Dienstinstanz (oder einen Knoten) als
Kommunikationspartner zu wählen, wird durch den Dienst-
bezeichner nur die Art des Dienstes spezifiziert, die Auswahl
der Instanz(en) bleibt dem Netz überlassen.

2.7 Sicherheit
Zur Realisierung von Sicherheitszielen wie Integrität, Ver-
traulichkeit, Authentizität, Autorisation, etc. sind Sicher-
heitsprimitive wie Hashing, Verschlüsselung und ein Ver-
trauensanker notwendig. Kritisch ist in diesem Falle der
Vertrauensanker zu betrachten. Ist er klassisch fest einem
Knoten zugeordnet, muss für ServiceCast ein neuer Ansatz
gefunden werden, da Knoten hier als austauschbar, ano-
nym und frei von jeglichen fixen IDs angenommen werden.
Darüber hinaus sollen Dienste unabhängig vom Wirtskno-
ten, also verlagerbar sein, was ebenfalls gegen einen an den
Knoten gebundenen Vertrauensanker spricht.

Der Weg, welcher mit ServiceCast beschritten werden soll,
ist Sicherheit als dienstbasiertes Konzept zu realisieren. An-
statt z. B. einen Knoten zu authentifizieren, gilt es die Inte-
grität eines Dienstes zu überprüfen. Andere Ziele sind analog
auf Dienste zu übertragen.

3. ZUSAMMENFASSUNG
Mit ServiceCast wurde ein Ansatz vorgestellt, welcher Me-
thoden der Dienstorientierung auf niederen Protokollschich-
ten verfügbar macht. Die Adressierung über Dienste, anstatt
durch knotenspezifische Adressen, erlaubt eine Abstraktion
der Kommunikation von der Topologie des Netzes. Diens-
tinstanzen werden innerhalb des Zielkontextbereiches lo-
kal vom Netz ausgewählt, wodurch Dynamik-Auswirkungen
für den Benutzer transparent kompensiert werden. Da-
durch erwarten wir ein verbessertes Verhalten bezüglich der
Verfügbarkeit von Diensten in dynamischen Netzen. Service-
Cast kommt ohne explizites Dienstverzeichnis aus, was einen
im Vergleich zu anderen Architekturen geringeren Protokol-
loverhead erwarten lässt. Darüber hinaus verlangt Service-
Cast keine fixen, netzweit eindeutigen Knotenidentifikato-
ren, wodurch Knoten austauschbar und anonym werden.

4. DANKSAGUNG
Dank gilt es meinem geduldigen Kollegen Hans-Joachim Hof
zu sagen für viele fruchtbare Diskussionen.
Diese Arbeit wurde im Rahmen des DFG-Graduiertenkollegs
1194

”
Selbstorganisierende Sensor-Aktor-Netzwerke“ durch

die Deutsche Forschungsgemeinschaft gefördert.

5. REFERENCES
[1] Brad Karp and H. T. Kung. GPSR: greedy perimeter

stateless routing for wireless networks. In MobiCom
’00: Proceedings of the 6th annual international

conference on Mobile computing and networking, pages
243–254, New York, NY, USA, 2000. ACM Press.

[2] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[3] K. Edwards and T. Rodden. Jini Example by Example.
Prentice Hall PTR Upper Saddle River, NJ, USA, 2001.

[4] Hans-Joachim Hof and Martina Zitterbart. SCAN: A
secure service directory for service-centric wireless
sensor networks. Computer Communications,
28(13):1517–1522, Aug. 2005. ISSN 0140-3664.

[5] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In
SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 149–160, New
York, NY, USA, 2001. ACM Press.

[6] Jeremy Elson and Deborah Estrin. Random, Ephemeral
Transaction Identifiers in Dynamic Sensor Networks. In
Proceedings of the Twenty First International
Conference on Distributed Computing Systems
(ICDCS-21), pages 459 – 468, Phoenix, Arizona, April
2001.

[7] Matthias Gauger, Pedro José Marrón, Marcus Handte,
and Kurt Rothermel. Routing in Sensor Networks
based on Symbolic Coordinates. In P. Marrón, editor,
5. GI/ITG KuVS Fachgespräch “Drahtlose
Sensornetze“, Technischer Bericht 2006/07, pages
81–86. Stuttgart: Universität Stuttgart, Juli 2006.

[8] M. Mauve, A. Widmer, and H. Hartenstein. A survey
on position-based routing in mobile ad hoc networks.
Network, IEEE, 15(6):30–39, Nov.-Dec. 2001.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Schenker. A scalable
content-addressable network. In SIGCOMM ’01:
Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 161–172, New York, NY, USA,
2001. ACM Press.

42

Coordinated group adaptation in sensor networks

Daniel Minder Pedro José Marrón Andreas Lachenmann Kurt Rothermel
Universität Stuttgart, IPVS, Germany

{minder|marron|lachenmann|rothermel}@ipvs.uni-stuttgart.de

ABSTRACT
In Wireless Sensor Networks, several algorithms are used to
perform different functionality, e.g. routing or clock syn-
chronization. Each algorithm is intended for specific net-
work characteristics and user requirements. But the acutal
characteristics and requirements may change during system
runtime. TinyCubus and particularly its Tiny Data Manag-
ment Framework use adaptation to solve this problem.

In this paper, we first explain the centralized adaptation
process. Then, we examine how this can be done localized
in the network. Since coordination between local adaptation
decisions is found to be necessary, metrics for this coordina-
tion and their dependencies are shown.

1. INTRODUCTION
Sensor Networks are used today in several domains to mon-
itor real-world phenomena, e.g. in logistics, health care,
biological studies or smart offices. Due to their small di-
mensions and their autonomous operation, sensor nodes can
be installed in places where traditional monitoring is com-
plicated or even impossible. Since the research is still young
we expect further application areas in the future.

Despite the variety in domains, most applications share a
common set of basic algorithms, e.g. routing, clustering or
time synchronisation. However, each particular algorithm

is suitable for a set of environments, e.g. mobile or static,
where it exhibits best performance. When developing an
application, it is a cumbersome task for the programmer to
select the algorithms for a specific environment.

Moreover, the conditions of many systems change over time.
Consider a logistics application where goods may be stored
for several days but are moved to different places using var-
ious means of transportation. A single algorithm is unlikely
to work in all settings. Therefore, the performance of the
sensor network changes significantly over time. The user of
the sensor network might change her requirements during
runtime as well. For example, he could decide that a high
delivery ratio is now more important than low latency. This
has to change the behavior of the algorithms as well.

To cope with the changing environment and changing user
requirements, we presented the TinyCubus system [1]. Its
Tiny Data Management Framework (TDMF) is able to se-
lect appropriate algorithms or parameterizations for an al-
gorithm based on network conditions, user requirements and
algorithm characteristics.

In larger networks, a centralized adaptation has a high over-
head since the network conditions have to be collected at a
single node. Moreover, larger networks are likely to be di-
verse so that different parameterizations for different groups
of nodes result in a better behavior than a global setting.
Since adjacent groups influence each other, the separate
adaptation results of the groups have to be coordinated.

In this paper, we start with a centralized adaptation ap-
proach and show how the adaptation can be localized in
the network. Then, we examine how the local adaptation
decisions can be coordinated to achieve better network per-
formance.

The rest of the paper is organised as follows: In Section 2,
the adaptation process of TDMF is shown. The locality
of the adaptation is examined in Section 3. Section 4 then
deals with the coordination of group adaptation results. The
paper concludes with Section 5.

2. ADAPTATION PROCESS

2.1 Simulation
The basic assumption of TDMF is that the accuracy of sim-
ulation is sufficient to derive properties for real-world sensor
networks. Each algorithm can thus be evaluated for differ-
ent settings with respect to several performance parameters
P . Some parameters, like power consumption, are general
for all algorithms, others, like the delivery ratio for routing
algorithms, are specific for one particular class. These per-
formance parameters are the output of the simulation and
are, therefore, measured. The simulation process can be
controled by several input parameters that are divided into
groups as well: Some parameters N influence the whole net-
work, e.g. node density or mobility; some parameters A only
the algorithms, e.g. the maximal number of retransmissions
of a routing algorithm.

The user of TDMF has to decide which input parameter
space is relevant for him. For example, in a network that
remains static it is of no use to simulate mobile nodes. De-
pending on the available computing power for simulation,
the granularity of the input parameters N and A is chosen.
Especially for continuous parameters like network density,
reasonable increments have to be set. In a second step, the
parts of the first simulation step where the output parame-
ters exhibit a high rate of change can be simulated in more
detail.

Input parameters and measured output parameters describe
the behavior of an algorithm and are, therefore, called its

43

Figure 1: Scenario 1

meta-data. In TDMF, each algorithm module is annotated
with this meta-data.

2.2 User preferences
The user of a sensor network has requirements that the ap-
plication has to fulfil. They can be expressed as an inequa-
tion using the elements of P . For example, the user could
specify that the estimated lifetime of the sensor network
should be at least 1 year and the delivery ratio should be at
least 80%.

Two interesting cases can happen: In the first case, more
than one algorithm or more than one parameterization of
an algorithm fits these requirements. In the second case,
none is found. TDMF provides a way for resolving both. If
more than one fits, the use can specify an optimization pa-
rameter and a direction. For example, the lifetime should be
optimized in such a way that the network lives the longest.
On the other hand, if no algorithm is found, the user lists
the requirements which can be relaxed, e.g. the delivery
ratio from 80% to 50%.

2.3 Adaptation process
Input and output parameters change in adaptation com-
pared to the simulation. The network parameters N cannot
be influenced by the user or the system but are given by the
environment and must be measured. The performance pa-
rameters P are given by the user as described above. Thus,
the adaptation systems selects the algorithms whose meta-
data match N and the conditions over P and performs nec-
essary optimization or relaxation to chose exactly one algo-
rithm. Then, this algorithm is installed and parameterized
with parameters A if needed.

2.4 Example
To test and evaluate the adaptation system, we used the
Avrora simulator [3]. 44 nodes are arranged in a grid as
shown in Figure 1 with 10m distance in horizontal and ver-
tical direction. The base station is located in the lower left
corner.

Each node sends a data packet every 10 seconds to this base
station. A routing algorithm implementing the GEM met-
ric [2] is used. Two parameters A can be adapted in this
algorithm: the transmission power and the maximal num-
ber of retransmissions per packet. In simulation, 9 different
transmission power levels and 5 different retransmission lim-
its, thus 45 different combinations in total, are evaluated.

 100 120 140 160 180 200 220 240 260

 4

 3

 2

 1

 0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

delivery ratio

transmission power

retransmission limit

delivery ratio

Figure 2: Parameter space for scenario 1

The performance parameters P the delivery ratio and the
energy needed are measured. Figure 2 shows the delivery
ratio for all 45 simulations.

A very simple adaptation goal could be to maximize the de-
livery ratio. The adaptation process would select the param-
eterization “transmission power = 255” and “retransmission
limit = 3” which leads to a delivery ratio of 88% on average.

3. DECENTRALIZED ADAPTATION

3.1 Purely Local Adaptation
In the previous global and centralized adaptation approach,
messages have to be sent through the network to collect
the network parameters and to propagate the adaptation
decision. Since the adaptation is often used to maximize
the network lifetime, this adaptation message overhead has
to be minimized. If the adaptation decision can be made
purely local, there would be no message overhead.

We used the simulation results of the previous example and
evaluated each of the 45 simulations per node, resulting in a
single parameter curve for each node. Then, the adaptation
process is executed as explained before on each node locally,
resulting in different and independent parameter values for
each node.

According to the simulation basis, the worst delivery ratio
of a node should be 80%. But in fact, the average ratio
for the whole adapted network was 60%, with 29% for the
worst single node. The reason for this is that the simulation
basis was created using the same parameterization for the
complete network, but TDMF uses these values to adapt
each node separately. Interferences between nodes were not
taken into account.

To cover the interferences, all possible combinations would
have to be simulated. This is not possible since it would lead
to 4544 (or approximately 5.51·1072) combinations in the ex-
ample. Additionally, the adaptation process need to be done
centralized again to assign a suitable parameter combination
to all the nodes which contradicts the local approach.

44

3.2 Group Adaptation
A balance between global and local adaptation is the intro-
duction of groups. Inside a group, the same parameteriza-
tion is used. The behavior of a group is, therefore, expected
to be more stable and to resemble the basic simulations that
used the same parameters for the whole network. The dis-
advantage of this approach is that network parameters have
to be collected and the adaptation decision has to be an-
nounced, but both happens in a smaller area than in the
global case.

The example network is divided horizontally and vertically
in the middle, thus forming 4 groups. The 45 basic simula-
tions are evaluated per group, thus forming a new adapta-
tion basis for the group adaptation. The adaptation process
uses these per-group results to find optimal settings for each
group.

An overall delivery ratio of 89% should be achieved accord-
ing to the simulation basis. The resulting ratio of 71% is
lower than expected, but the gap is lower than in the purely
local adaptation.

3.3 Coordinated Groups
Most of the packet losses in the group adaptation example
occur at group transitions. In the example, the transmission
power of the group with the base station was set to 180,
while all other groups use a transmission power of 255. The
simulation shows that the packet loss is much higher at the
two nodes connecting two groups if the transmission power
differs between these groups.

Therefore, to achieve better delivery ratios the parameters of
the groups have to be coordinated. Each adaptation process
selects not only the best parameter setting for each group
but the best k settings. We have chosen k = 3. A coor-
dination metric calculates the distance of the transmission
power settings for all possible combinations of the settings.
Finally, the combination of parameters with the least dis-
tance is selected.

The coordination introduced in this approach revives a cen-
tralized step that was eliminated when moving from the
global to the local view. The difference is that only a few
parameters have to be joined at a single place and not all
the network conditions from all the nodes.

Simulation shows that using a combination with the highest
distance value has a low delivery ratio of 69% while the
lowest distance values lead to high delivery ratios of 87%,
which is very close to the predicted 89%. This dependency
is also expressed by a Pearson’s correlation coefficient of
−0.78. This coefficient measures the mutual dependency of
two variables and ranges from −1 to 1. A value of −1 or 1
show that there is a linear relationship, a value of 0 indicates
that a linear model is inappropriate.

4. GENERAL METRICS
Not all scenarios allow to find a simple coordination metric.
Moreover, a coordination metric suitable for one scenario
might be useless in another. We, therefore, introduce a sec-
ond scenario with a larger network and change the grouping
and parts of the algorithm.

Figure 3: Scenario 2 with circular groups

4.1 Topology
In Scenario 2, 100 nodes are placed on a regular grid with
10m distance in either direction forming a square of 10x10
nodes. 4 groups of 25 nodes each are formed by divid-
ing the network horizontally and vertically in the middle.
The base station is still in the lower left corner. Again, the
adaptation basis is determined by simulating all 45 combi-
nations of transmission power and retransmission limit for
the whole network and by evaluating these simulations per
group. Then, the adaptation process selects the best 3 pa-
rameter settings for each group.

When applying the distance function of the first scenario
as coordination metric to this scenario, “wrong” parameter
combinations for the groups are selected. A correlation co-
efficient between distance metric and delivery ratio for all
81 combinations of 0.21 shows that the metric is less signif-
icant in this scenario, but indeed more distant transmission
power levels are better than close ones. This contradicts the
finding from the first scenario.

4.2 Different Grouping
The analysis of the previous experiment showed a problem
in the center of the network where four different groups are
adjacent. Such a constellation should be avoided by a clever
grouping. Therefore, we examined another method with
groups based on the distance from the base station. Figure 3
shows such a grouping with equidistant radii.

The 45 basic simulations of Scenario 2 were reevaluated us-
ing this new grouping and, again, the best 3 parameter set-
tings for each group were determined. The simulation of all
81 combinations and the calculation of the correlation coef-
ficient between delivery ratio and the distance metric show
that, with a coefficient of −0.50, this grouping reacts sim-
ilarly to differences in the transmission power as the first
scenario.

4.3 Different Routing Metric
The groupwise adaptation of an algorithm is based on the
assumption that the algorithm works inside a group inde-
pendently from the surrounding groups. The previous ex-
amples show that this is not the case. Especially intelligent
routing metrics react very sensitive to changing traffic due
to changed neighboring groups. Thus, these metrics may
counteract the adaptation goal.

45

Therefore, a scenario using static routing trees was set up.
The trees were built before simulation by taking into account
the radio model characteristics and by trying to balance the
number of child nodes in each tree node. That way, a group
shows similar behavior also with different adjacent groups.

After simulating the 81 combinations of the best 3 settings
for each group based on 45 new basic simulations, the corre-
lation coefficients were calculated. With quadratic groups,
the correlation is −0.33, but 0.44 when using circular groups.
Compared to the simulations that used the GEM routing
metric, the static trees react diametrically opposed to dif-
ferences in the transmission power.

4.4 Coordination Metrics
As the previous sections have shown, the simple distance
metric developed for the example scenario of Section 2 does
not work in all cases of the enlarged second scenario. There-
fore, a different metric for this scenario has to be found.
Since constructive approaches were not successful, possible
metrics were tested systematically.

A metric is an addition of single components that are based
on the algorithm parameters A. In the given scenario, the
tranmission power or retransmission limit of a single group
or the “distance” of the transmission power or the retrans-
mission limit between two groups are used. A component is
built using a parameter mapped to the interval [0, 1]. The
value resulting from the mapping is fed into the metric.
Each component can also be used as 1−value in the metric.

Having 4 groups, this leads to 40 different single components
that could be part of a metric. Of course, some combinations
make no sense to be used at the same time, e.g. value and
1− value. Moreover, a metric consisting of too many single
components is likely to be useful for a specific setting only.
Therefore, we limited the search to 6 single components.

To evaluate each metric, 9 different settings were used: 5
using the GEM metric and 4 using static trees. The settings
with GEM metric are further divided into 3 using quadratic
groups and 2 using circular groups, the settings with static
trees are divided into 2 settings of each grouping. The single
settings differ again in further adaptation restrictions like
energy.

For each metric and each setting, Spearman’s rank correla-
tion coefficient between the metric and the average delivery
ratio of the network was calculated. The rank correlation co-
efficient does not assume a linear relationship between the
variables and is, therefore, more suitable, for the abstract
metric. The metrics were finally sorted by the average cor-
relation coefficient, thus selecting metrics that pedict well
the quality of a parameter combination.

As Figure 4 shows, a good metric covering all 9 settings
could be found, exhibiting an average correlation coefficient
of 0.30, but ranging up to 0.65 for a single setting. When
calculating the best metrics for a subset of the settings that
only used (1) static trees, (2) GEM routing metric, (3)
quadratic groups or (4) circular groups, even better metrics
could be found. As expected, the static trees behave better
under adaptation than the algorithm using the GEM rout-
ing metric, even using the best coordination metric found.
Also, circular groups can be better predicted than quadratic
groups due to the “center problem” of the latter.

 0

 0.2

 0.4

 0.6

 0.8

 1

circquadmetricstaticall

Figure 4: Correlation coefficients of best metric

5. CONCLUSION AND FUTURE WORK
Pure local adaptation of neighoring groups of nodes or even
adaptation of single nodes in a sensor network can deterio-
rate network performance. Coordination of local adaptation
decisions can improve the overall adaptation result although
this implies additional overhead. The quality of the coordi-
nation is heavily dependent on the coordination metric. We
have shown that such a metric can be found and that it can
be improved further when restricting the domain.

As next steps, we will examine the metrics found in more
detail to explain why each single component is part of a met-
ric. Using this knowledge, it might be possible to develop a
constructive method to build a metric.

When simulating the algorithms, no network or application
characteristics have been changed. In the future, different
traffic loads and node densities have to be included in the
simulation space to cover the characteristics of the algorithm

more completely.

6. REFERENCES
[1] P. J. Marrón, A. Lachenmann, D. Minder, J. Hähner,

R. Sauter, and K. Rothermel. TinyCubus: A flexible
and adaptive framework for sensor networks. In
Proceedings of the Second European Workshop on

Wireless Sensor Networks (EWSN 2005), pages
278–289, January 2005.

[2] O. Saukh, P. J. Marrón, A. Lachenmann, M. Gauger,
D. Minder, and K. Rothermel. Generic routing metric
and policies for WSNs. In Proc. of the Third European

Workshop on Wireless Sensor Networks, pages 99–114,
2006.

[3] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable
sensor network simulation with precise timing. In
Proceedings of the Fourth International Conference on

Information Processing in Sensor Networks, pages
477–482, 2005.

46

Towards a Distributed Java VM in Sensor Networks using
Scalable Source Routing

[Extended Abstract]

Bjoern Saballus
University of Karlsruhe
Am Fasanengarten 5

76131 Karlsruhe
saballus@ira.uka.de

Johannes Eickhold
University of Karlsruhe
Am Fasanengarten 5

76131 Karlsruhe
jeick@ira.uka.de

Thomas Fuhrmann
Technical University Munich

Boltzmannstrasse 3
85748 Garching

fuhrmann@net.in.tum.de

ABSTRACT
One of the major drawbacks of small embedded systems
such as sensor nodes is the need to program in a low level
programming language like C or assembler. The resulting
code is often unportable, system specific and demands deep
knowledge of the hardware details. This paper motivates the
use of Java as an alternative programming language. We fo-
cus on the tiny AmbiComp Virtual Machine (ACVM) which
we currently develop as the main part of a more general
Java based development platform for interconnected sensor
nodes. This VM is designed to run on different small em-
bedded devices in a distributed network. It uses the novel
scalable source routing (SSR) algorithm to distribute and
share data and workload. SSR provides key based routing
which enables distributed hash table (DHT) structures as a
substrate for the VM to disseminate and access remote code
and objects. This approach allows all VMs in the network to
collaborate. The result looks like one large, distributed VM
which supports a subset of the Java language. The ACVM
substitutes functionality of an operating system which is
missing on the target platform. As this development is work
in progress, we outline the ideas behind this approach to
provide first insights into the upcoming problems.

Keywords
distributed Java VM, sensor networks, embedded systems

1. INTRODUCTION
Today’s life is hard to imagine without mobile phones, PDA’s
and other small devices. Additionally, everyday’s life de-
vices such as toasters and refrigerators are equipped with
an increasing amount of computational power. As most of
the usual tasks of these devices hardly exhaust this com-
putational power, there is room to implement new, more
sophisticated tasks. This idea becomes even more interest-
ing if all these devices will be equipped with some kind of
communication interface which allows to exchange data and
trigger actions on remote nodes. The result is a distributed
network of communicating small, embedded devices which
belongs to the field of ubiquitous computing and ambient
intelligence.

The BmBF research project AmbiComp aims at intercon-
necting all the above mentioned everyday life devices in an
ad-hoc manner. Although the idea originated in the field
of ”digital” or ”intelligent” homes, it extends to a much

broader view of distributed computing: the devices will
share data and distribute their workload among each other.
The vision will be leveraged by the algorithms and protocols
that we will develop in this project.

The paper is structured as follows: Section 2 gives an overview
over other projects that have similar goals as the AmbiComp
project. In section 3 we describe our novel AmbiComp VM,
its design rationale and the tool chain from the Java file to
the running program on the ACVM. Section 4 outlines how
the ACVM addresses code and object migration. Finally,
section 5 concludes with a summary of this paper.

2. RELATED WORK
Distributed Java VMs have been addressed in the literature
before. Until now, most of these works originate from the
fields of cluster computing and high performance comput-
ing. For example, Zhu et al. [9] propose JESSICA2, a dis-
tributed Java virtual machine (DJVM) which uses a global
object space and transparent Java thread migration to pro-
vide a single system illusion. Haumacher et al. [5] describe
how Java’s remote method invocation (RMI) can be used to
create and control transparent distributed threads in their
JavaParty system.

In contrast to these heavy-weight approaches, we want to
explore how they can be applied to embedded systems, for
example, in sensor actor networks. To this end, our start-
ing point is a small footprint Java VM. From its beginning,
Java has been associated with the idea of cross-platform pro-
gramming of embedded devices. Especially, the Java Micro
Edition sets the focus on VMs that shall run on mobile de-
vices like cell phones, PDA’s etc.

Here, we give an overview of these VMs including their ad-
vantages and disadvantages concerning their use on even
smaller embedded devices like sensor nodes. The criteria for
this comparison are:

1. What are the specifics of the target platform hardware
(processor, flash-rom, ram and clock speed) the VM is
supposed to run on?

2. To which extent does the VM support the Java lan-
guage specified by the Java Language Specification [3]?

3. Which set of class libraries is supported by the VM?

47

Beside the ACVM, the compared VMs are the KVM (Java
ME: CLDC 1.1), Squawk VM (Sun SPOTs), NanoVM (Ro-
bots: Asuro) and the ParticleVM (Particles).

The KVM is a CLDC reference implementation implemented
in ANSI C. It is the predecessor of the CLDC HotSpot Im-
plementation [8] virtual machine and was specially devel-
oped for ARM processors. The KVM supports many differ-
ent 16 and 32 bit micro processors which run at a minimum
of 25MHz. Its memory demand is 160KB ROM and 32 KB
RAM. The language complexity is specified by the CLDC
1.1 which also defines the supported API together with the
MIDP.

The Squawk VM [7] was developed to run on the Sun SPOTs,
developed by SUN Microsystems. It is nearly solely written
in Java and does not need an operating system but comes
with OS functions of its own. The target processor is the
32 Bit ARM-9 at a clock speed of 180MHz. Its memory de-
mand is 149KB for the VM, 363KB for the VM suite, 158KB
for the library suite in ROM. The Sun SPOTs have 512KB
RAM from which about 20% are needed by the VM. The
Java language is fully supported and the set of provided
APIs are defined by the CLDC 1.1 extended by APIs for
802.15.4 radio communication and different low level hard-
ware features.

The NanoVM [2][4] is a very limited VM which is distributed
unter the GPL license and which runs e.g. on the Asuro
roboters. The target platform is an ATmega8 or ATmega32
which both are 8 Bit microcontroller running at 8MHz clock
frequency. The memory demand of this VM are 8KB ROM
and less than 1KB RAM. It comes with a limited language
support and only supports 15/31 Bit integer arithmetic, lim-
ited inheritance and a proprietary mechanism to support
native code. There is no API present, only some native
methods implemented in C.

The ParticleVM described in [6], is based on the NanoVM
and is supported by the ParticleOS. Its memory demand
is 45KB ROM and 0,5KB RAM. The target platform is a
PIC18F6720 8 Bit microcontroller which runs at 20MHz.
Its memory demand is 60KB ROM and 1,5KB RAM. The
language support is the same as in case of the NanoVM, but
the ParticleVM additionally supports interfaces. The API
contains 20 classes with special functions for deployment and
code migration via radio.

3. THE AMBICOMP VM
Like its small brother, the NanoVM, the new AmbiComp
VM targets small microcontrollers such as the AVR 8-bit
family, but provides more functionality than the NanoVM.
The ACVM uses an external transcoding step, which trans-
forms the original SUN Java opcodes and provides class
loader functionality. This enables a very small footprint of
the VM binary itself while supporting almost all SUN Java
opcodes and a substantial part of the J2ME API. More-
over, the ACVM has been designed to support different tar-
get platforms with varying memory and processing capabil-
ities. However, as a consequence, the entire bytecode that is
needed by the ACVM must be passed through a transcoder
instance before start up of a particular VM instance.

The tool chain for the ACVM starts with a regular javac
compiler. It compiles a general albeit small Java program
into one or more .class-Files. Then the transcoder takes
this bytecode, transcodes it for the respective target plat-
form, and links it, for example, statically to the plattform
specific system libraries. Typically, only a small part of
these libraries will be actually used. Thus the transcoder
can eliminate a large portion of the library code.

The result of these transcoding process is a so-called binary
large object (BLOB) file, which – in the case of static linking
– contains the entire code that is needed to run the appli-
cation on the target platform’s ACVM. The BLOB is then
transferred to the embedded device, for example, via Ether-
net, USB, Bluetooth, or Zigbee depending on its respective
networking capabilities. When the BLOB is fully loaded the
ACVM starts to execute it.

Within the AmbiComp project, this tool chain will be fully
integrated into the Eclipse software development environ-
ment, so that a programmer can directly deploy its code onto
the target platform. In order for the transcoder to partic-
ularly transcode for respective target platform, the Eclipse
user must select the desired target platform. The BLOB will
then only be able to run on the according ACVM variant.
Nevertheless, the Eclipse plugin will also have emulation ca-
pability so that the developers can check their program for
compatibility with the respective target platform before de-
ployment.

Unlike the NanoVM, the ACVM does not allow external
users to provide native code directly. It comes however with
several low level functions such as direct access to input and
output pins of the microcontroller. Thereby, the ACVM
– together with the system libraries – provides much of the
functionality that is normally provided by the operating sys-
tem: scheduling of threads in the VM, memory management
and memory protection including garbage collection, and
all kinds of IO functionality including the communication
stacks. Hence, the ACVM does not need any further oper-
ating system.

4. DISTRIBUTED OPERATION OF ACVM
So far, we have described the ACVM as a stand-alone sys-
tem. This impression is not quite true because the ACVM
can access external objects. To this end, it makes use of the
scalable source routing (SSR) protocol, which provides key
based routing (KBR) for low-resource embedded nodes. A
detailed description of SSR can be found in [1].

The ACVM uses SSR to route object access requests to re-
mote objects. It can do so because KBR can address objects
rather than nodes. Thus, it is easy to retrieve an object by
its globally unique identifier. Unlike other distributed Java
VMs this approach does not need any centralized server.

We will illustrate the use of this beneficial property with the
following example: Consider a scenario where a temperature
sensor shall send its measured values to a display device.
Similar to a multi-threaded local system we use a sensor
thread (cf. listing 1) and a display thread (cf. listing 2).
Both are coupled via a singleton which stores the data that
is published by the sensor (cf. listing 3). The display could

48

regularly pull the published values from the data store, or
it registers a listener with the data store in order to have
the values pushed. To this end, the display implements the
respective listener interface (cf. listing 4).

1 package push.sensors;
2

3 import hardware.TemperatureSource;
4 import push.TemperatureDataStore;
5

6 public class TemperatureSensor {
7

8 private TemperatureDataStore dataStore;
9 private TemperatureSource sensorHardware;

10 private String name;
11

12 public TemperatureSensor(String name) {
13 this .name = name;
14 this .dataStore = TemperatureDataStore.
15 getInstance () ;
16 this .sensorHardware = new TemperatureSource();
17 }
18

19 public void run() throws InterruptedException {
20 while (true) {
21 Thread.sleep(500) ;
22 System.out. println (”s” + name + ” pushed”);
23 this .dataStore. store (
24 this .sensorHardware.getValue()
25) ;
26 }
27 }
28 }

Listing 1: The sensor

1 package push.actuators;
2

3 import hardware.Display;
4 import push.IDataListener;
5 import push.TemperatureDataStore;
6

7 public class TemperatureDisplay implements
IDataListener {

8

9 private Display actorHardware;
10 private String name;
11

12 public TemperatureDisplay(String name) {
13 this .name = name;
14 // create access to hardware
15 this .actorHardware = new Display();
16 // register ourself as listener to the data store
17 TemperatureDataStore.getInstance().
18 addDataListener(this);
19 }
20

21 public void notify(float value) {
22 actorHardware.show(this.name + ”: ”+ value + ”C”);
23 }
24 }

Listing 2: The display

1 package push;
2

3 import java.util .ArrayList ;
4 import java.util . List ;
5

6 public class TemperatureDataStore {
7

8 // we are a singelton
9 private static TemperatureDataStore instance = null;

10 // the actual data store
11 private List<Float> temperatureValues;
12 // listeners to be notified about new temperature
13 private List<IDataListener> dataListeners;
14

15 private TemperatureDataStore() {
16 this .temperatureValues = new ArrayList<Float>();
17 this . dataListeners =
18 new ArrayList<IDataListener>();
19 }
20

21 /∗∗
22 ∗ This class implements the singelton pattern .
23 ∗ @return The instance of this singelton .
24 ∗/
25 public static TemperatureDataStore getInstance() {
26 if (instance == null) {
27 instance = new TemperatureDataStore();
28 }
29 return instance;
30 }
31

32 /∗∗
33 ∗ Publish a value to the store .
34 ∗ @param value The value to be stored .
35 ∗/
36 synchronized public void store(float value) {
37 this .temperatureValues.add(value) ;
38 notify (value) ; // notify listeners
39 }
40

41 /∗∗
42 ∗ Notify all registered IDataListeners
43 ∗ about a new value.
44 ∗ @param value The new value.
45 ∗/
46 private void notify(float value) {
47 for (IDataListener listener : dataListeners) {
48 listener . notify (value) ;
49 }
50 }
51

52 /∗∗
53 ∗ Adds a new IDataListener to the list of listeners .
54 ∗ @param listener The listener to be added.
55 ∗/
56 public void addDataListener(IDataListener listener) {
57 this . dataListeners .add(listener) ;
58 }
59 }

Listing 3: The data store

49

1 package push;
2

3 public interface IDataListener {
4 public void notify(float value) ;
5 }

Listing 4: The listener

Since the data store is a singleton, only one such instance
will be available (in the local domain). Accordingly, the
respective class member will be remote for the nodes except
for the one that holds this member. SSR will find this node
based on its globally unique ID. Such an ID is obtained by
combining a BLOB-local ID with the hash of the BLOB that
defines the member.

At the current stage of the project, this mechanism is only
about to be available in practice. Moreover, not all design
decissions have been made up to now. Let us briefly sketch
some of the respective problems.

For example, the concept of administrative domains has only
been phrased roughly. It addresses the fact that depending
on the application, singleton objects should not be global
but somehow local. In the described scenario, the tempera-
ture sensor and the display should belong to the same house-
hold or the same machine. Thus, the ACVM needs to be
equipped with a means to let the application developers de-
cided which singleton domain they want to have for a par-
ticular aspect of their application. We envisage to support
this via an API, but it is still unclear which granularity of
control this API should provide.

Another open issue that has not been decided yet is the
question of how to treat synchronized remote objects. On
a local machine synchronized objects are rather simple be-
cause deadlocks can be considered a bug in the application.
In a distributed environment deadlocks can also be caused
by failing nodes or lost communication links. At the time
being, it is unclear to what extend the application program-
mer needs to be confronted with these issues.

Furthermore, we are still considering various aspects of ob-
ject and code migration. For example, BLOBs cannot only
be linked statically, but also dynamically so that other BL-
OBs are loaded on demand. This can again be done via
SSR’s KBR semantic, for example, with exploiting caching
of BLOBs in nodes that have enough memory. This will
enable each node to load and execute software on demand
whenever it is needed. Moreover, this feature also allows to
trade several remote object accesses (ROA) for potentially
one remote method invokation (RMI). Albeit it is rather
easy to implement RMI on top of SSR, it is yet unclear how
a simple heuristic can help the ACVM decide between ROA
and RMI.

5. SUMMARY
In this paper we have described ongoing work in the Am-
biComp project: We have briefly presented the AmbiComp
Virtual Machine (ACVM) that executes BLOBs that an ex-
ternal transcoder creates from Java .class-files; we have also

described how the ACVM together with the scalable source
routing (SSR) protocol manages remote object access; and
we have illustrated the use of this idea with a simple tem-
peratur sensor and display example.

Yet, since this is still very early work, we have not addressed
all the open issues in this field. In essence, the ACVM can
provide a powerful means to hide the distributedness of a
sensor-actor-system. But in practice the application devel-
opers need a way to craft their distributed system. To this
end they need to decide, for example, on the administra-
tive domain in which an application may exchange data, or
on the semantics of synchronization in case of failing nodes.
We hope therefore that this paper stimulates the discussion
about these questions.

6. REFERENCES
[1] T. Fuhrmann. Scalable routing for networked sensors

and actuators. In Proceedings of the Second Annual
IEEE Communications Society Conference on Sensor
and Ad Hoc Communications and Networks, Sept. 2005.

[2] T. Fuhrmann and T. Harbaum. A platform for lab
exercises in sensor networks. Technical report, Z?rich,
Switzerland, Mar. 23–24 2005.

[3] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java
Language Specification. Addison-Wesley Professional,
third edition, July 2005.

[4] T. Harbaum. The NanoVM - Java for the AVR, 2005.
http://www.harbaum.org/till/nanovm.

[5] B. Haumacher, T. Moschny, J. Reuter, and W. F.
Tichy. Transparent distributed threads for java. page
147, Nov. 12 2003.

[6] T. Riedel, A. Arnold, and C. Decker. An OO Approch
to Sensor Programming. In EWSN 2007 - Adjunct
poster proceedings, number PDS-2007-001, pages 39–40,
Delft, The Netherlands, Jan. 29-31 2007.

[7] N. Shaylor, D. N. Simon, and W. R. Bush. A java
virtual machine architecture for very small devices. In
ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems (LCTES), pages 34–41,
New York, NY, USA, 2003. ACM Press.

[8] Sun microsystems. CLDC HotSpot Implementation
Virtual Machine, Feb. 2005.
http://java.sun.com/j2me/docs/pdf/CLDC-HI_

whitepaper-February_2005.pdf, accessed on
2007-05-21.

[9] W. Zhu, C.-L. Wang, and F. C. M. Lau. Jessica2: A
distributed java virtual machine with transparent
thread migration support. In IEEE Fourth
International Conference on Cluster Computing,
Chicago, USA, September 2002.

50

Misbehaviour Detection for Wireless Sensor Networks -
Necessary or Not?

Sven Schaust
FG Simulation and Modellierung
Institute of Systems Engineering

Welfengarten 1, 30167 Hannover, Germany
svs@sim.uni-hannover.de

Helena Szczerbicka
FG Simulation und Modellierung
Institute of Systems Engineering

Welfengarten 1, 30167 Hannover, Germany
hsz@sim.uni-hannover.de

Keywords
misbehaviour detection, artificial immune system, sensor net-
works

ABSTRACT
As radio communication modules combined with adequate
hardware based cryptography are becoming available at low
cost, sensor network security has reached a new level. How-
ever it is still possible to gain access to networks, even if they
require authorisation and authentication, as single nodes
cannot be assumed to be tamper proof. Therefore the ques-
tion remains what kind of misbehaviour is possible within
a secured network and how it can be detected. A possible
solution to detect misbehaviour is the usage of an artificial
immune system (AIS). The advantage of an AIS in contrast
to protocol based security improvements is the generality
of the approach, as it tries to identify anomalies which are
not known to exist within the regular range of network be-
haviour. In this paper we present some results obtained
from our simulation experiments looking at the possibilities
of artificial immune system based misbehaviour detection.

1. INTRODUCTION
Detection of misbehaviour in wireless sensor networks (WSN)
is an important research area as the number of companies
using such networks for logistics, production cycle mainte-
nance, indoor security or area surveillance is rising. Compa-
nies cannot afford to experience losses due to malfunction-
ing systems. Sensor networks have to be able to detect any
malfunction not only as fast as possible but also with high
accuracy, thus having only a low level ratio of false alarms
and a high level ratio of true alarms.
When talking about securing ad-hoc sensor networks, the
crucial point is the hardware used to form such networks.
Typically a single node is a battery powered device with
limited computational abilities and therefore using strong
software cryptography to secure communication channels is
almost impossible. Thus a software based security system
has to be frugal in terms of memory space usage and com-
putation time consumed.
Due to the latest developments of wireless communication
protocols intended to be used with sensor networks (for ex-
ample the work of the ZigBee R© Alliance [18]) and the de-
velopment of radio modules with support of hardware based
AES-128 cryptography, unauthorised access to sensor net-
works is becoming more and more difficult. However com-
monly available sensor nodes are not tamper proof, leaving
possibilities to access secured networks. Even if the access

to such a network is difficult, a sensor network still has to
deal with malicious nodes as network protocols alone cannot
guarantee to avoide security or node behaviour problems.
In this paper we present some results obtained from our sim-
ulation experiments looking at the possibilities of artificial
immune system based misbehaviour detection. We exam-
ine the AIS’s detection ability when exposed to Poisson and
constant bit rate (CBR) traffic. The paper is organised as
follows. Section 2 describes briefly the concept of an arti-
ficial immune system. Section 3 explains our experimental
setup followed by Section 4 presenting the results. In section
5 related work and in 6 the conclusion are presented.

2. ARTIFICIAL IMMUNE SYSTEM
Artificial immune systems are derived from the human im-
mune system and therefore several terms and descriptions
have been adopted from the medical perspective on immune
systems.
A gene is defined by a characteristic based on the volume of
traffic, the assumed protocol behaviour or both (for example
the number of complete MAC handshakes1 during a specific
time period).
An antigen is an observation within a time window for a set
of genes which can either be interpreted as an self-antigen
or a non-self-antigen.
A detector is based on several immune system methods which
are related to the detection of alien cells. In AIS a detector
is defined as a bit sequence which is produced by a negative-
selection algorithm [7] which only matches against non-self
antigens.
A simple artificial immune system can be divided into a
learning phase and a detection phase [1]. During the learn-
ing phase detectors are produced (using the available self
information) which will be used later in the detection phase
to discover misbehaviour indicators. An AIS is running lo-
cally on every node, using the observed traffic to create the
self set, the detectors and the antigens necessary to detect
misbehaviour at its neighbours. There are several extensions
which allow adaptive learning and maturation of detectors,
thus avoiding the necessity of an intensive self-set only learn-
ing phase. See [2], [3] and [4] for more information on the
different mechanisms and the immune system in general.

3. EXPERIMENTAL SETUP
The purpose of our experiments was to exam the detection
abilities of our AIS when exposed to different packet injec-

1A MAC handshake is defined by the sequence of RTS, CTS,
DATA and ACK packets.

51

tion models. We choose the Poisson distribution model (as
example for event triggered packet injection) as sensor net-
works are expected to measure Poisson distributed events.
The CBR model was chosen as comparison model assuming
that CBR traffic is unlikely but possible in a sensor network.
Similar to [1] a bit string representation was chosen for self,
non-self and detectors. We captured self and non-self packet
traffic and tested whether the AIS was able to detect misbe-
haviour. We captured for every transmitted packet the IP
header type (UDP, 802.11 or DSR), the MAC frame type
(RTS, CTS, DATA or ACK), the current simulation time,
the node address, the next hop address, the global packet
source, the global packet destination and the packet size.
These values where used to compute the necessary genes.
In each scenario we ensured that the average hop count dis-
tance between two nodes was about 8 hops. See section 3.1
and section 3.2 for simulation and AIS details.
We choose DSR [5] as routing protocol. Misbehaviour was
implemented at 236 of our 1718 nodes using a simple packet
dropping misbehaviour with a 10, 30 and 50% probability
(Sink and source nodes were excluded). Although the num-
ber seems relatively high only one to three malicious nodes
were actually part of a route as the nodes were distributed
randomly.
Each scenario was simulated using Glomosim 2.03 (see [6])
20 times with different seeds for the Glomosim random num-
ber generator.

3.1 Simulation details
• Negative selection algorithm: random generate

and test. Implemented in C++, compiled with GNU
g++ v4.0 with -O3 option.

• Input parameters: 1. r-contiguous matching rule
with r = 10. 2. Encoding: 5 genes each 10 bits long
= 50 bits. 3. Number of detectors {500, 1000, 2000}.
4. Misbehaviour level {10%, 30%, 50%} 5. Window
size 500 seconds; 28 complete windows over 4-hours
simulation time.

• CBR Injection rate: 1 packet/second. 14400 pack-
ets per connection were injected. Packet size was 512
bytes.

• Poisson Injection rate: λ = 1.0, meanArrivalEx-
pectation = 1 packet/second. Packet size was 512
bytes.

• Performance measures: detection rate, data traf-
fic rate at nodes; Values were produced per simulation
run and compared as arithmetic average over all sim-
ulations for each misbehaviour probability.

• MAC protocol: IEEE 802.11b DCF.

• Routing protocol: DSR.

• Other parameters: (i) Propagation path-loss model:
two ray (ii) Channel frequency: 2.4 GHz (iii) Topogra-
phy: Line-of-sight (iv) Radio type: Accnoise (v) Net-
work protocol: IPv4 (vi) Connection type: UDP.

3.2 AIS details
When defining a misbehaviour detection system several ob-
servable facts have to be specified, otherwise no detection is
possible. For artificial immune systems these facts are de-
fined by genes. For our experiments we decided to observe
two layers of the OSI Stack namely the MAC and Routing
layer using the following set of genes:

MAC layer:

#1 Ratio of complete MAC layer handshakes between nodes
si and si+1 and RTS packets sent by si to si+1. If there
is no traffic between two nodes this ratio is set to ∞ (a
large number). This ratio is averaged over a time pe-
riod. A complete handshake is defined as a completed
sequence of RTS, CTS, DATA, ACK packets between
si and si+1.

#2 Ratio of data packets sent from si to si+1 and then
subsequently forwarded to si+2. If there is no traf-
fic between two nodes this ratio is set to ∞ (a large
number). This ratio is computed by si in promiscuous
mode. This ratio is also averaged over a time period.
This gene was adapted from the watchdog idea in [14].

#3 Time delay that a data packet spends at si+1 before
being forwarded to si+2. The time delay is observed
by si in promiscuous mode. If there is no traffic be-
tween two nodes the time delay is set to zero. This
measure is averaged over a time period. This gene is
a quantitative extension of the previous gene.

Routing Layer:

#4 The same ratio as in #2 but computed separately for
RERR routing packets.

#5 The same delay as in #3 but computed separately for
RERR routing packets.

Each gene was encoded using an interval representation of
size 10 which was adopted from [8]. The correspondend-
ing interval was marked by a single 1 within the 10 bit se-
quence. Antigens were produced by the concatenation of all
five genes and always checked against the complete detector
set.

4. RESULTS
The task of detecting misbehaviour requires comparison of
the computed detectors with observed non-self antigens. In
our experiments a 500 second time window was used to
sample overheard node traffic and to generate one antigen.
Therefore the resulting number of time windows for 4 hours
simulated times was 28 per node. In order to avoid outliers
in our analysis we defined a detection threshold of 14 time
windows to mark a node as misbehaving.
The evaluation of the detection rate requires that the num-
ber of packets that a node forwards is over a certain thresh-
old. If a node lacks packets to forward in the learning phase,
the AIS’s ability to learn is limited. If it lacks packets to
forward during the detection phase and at the same time
wants to execute misbehaviour, the impact of misbehaviour
is weakened. As a result we performed our evaluation using

52

 0

 20

 40

 60

 80

 100

400020001000500

D
et

ec
tio

n
ra

tio
 [%

]

Packet threshold

Number of detectors = 500

10%
30%
50%

(a)

 0

 20

 40

 60

 80

 100

400020001000500

D
et

ec
tio

n
ra

tio
 [%

]

Packet threshold

Number of detectors = 500

10%
30%
50%

(b)

Figure 1: The figure shows the detection rate for different misbehaviour rates vs. forwarded packet threshold
for 500 detectors (a) CBR packet injection model. (b) Poisson packet injection model.

 0

 20

 40

 60

 80

 100

400020001000500

D
ev

ia
tio

n
ra

tio
 [%

]

Packet threshold

95% Confidence interval - 500 detectors

10%
30%
50%

(a)

 0

 20

 40

 60

 80

 100

400020001000500

D
ev

ia
tio

n
ra

tio
 [%

]

Packet threshold

95% Confidence interval - 500 detectors

10%
30%
50%

(b)

Figure 2: The figure shows the deviation ratio for different misbehaviour rates vs. forwarded packet threshold
for 500 detectors. (a) Deviation for CBR packet injection model. (b) Deviation for Poisson packet injection
model.

different threshold values for packet forwarding (minValue =
500, 1000, 2000 and 4000) and considered only those nodes
which were above the given thresholds.

Definition: The detection rate is defined as dr = 100 ∗
nd

nm+nd
, were nm = the number of misbehaving nodes to de-

tect, and nd = the number of detected nodes.

Definition: The deviation ratio is defined as dvr = 100∗ dv
dr

,

were dv = the deviation value of the 95% confidence inter-
val, and dr = the detection rate for a specific misbehaviour.

The graphs in figure 1 show the average detection results2

for CBR and Poisson packet injection using 500 detectors.
While the detection rate is about 10% higher for the Poisson
packet injection with a low packet threshold of 500 packets,
the ratio for the CBR model seems to be better for higher
thresholds. In order to verify the results for the CBR and
Poisson model we calculated a 95% confidence interval for

2We used the arithmetic average of all simulation runs to
calculate the detection rate.

all three misbehaviour probabilities. The deviation ratios
for each misbehaviour with 500 detectors are shown in figure
2. The CBR and the Poisson model show similar deviation
ratio values, suggesting that both models have a similar in-
fluence on the detection rate.

5. RELATED WORK
Hofmeyr and Forrest presented in 1999 a paper about the
usage of an immune system inspired misbehaviour detec-
tion system. Their artificial immune system was designed
to work on a wired network observing TCP/IP connections.
The pattern matching was based on a r-contiguous bits match-
ing with r = 12 bits. The antigen and detector length was
49 bits. [1]
In [8] and [9] Sarafijanovic and Boudec presented an arti-
ficial immune system based misbehaviour detection system
designed for wireless ad-hoc networks. The approach was
tested using Glomosim to simulate a network of 40 mobile
nodes (1 m/s) of which 5 to 20 nodes were misbehaving.
They defined four genes to be used to capture local be-
haviour at the OSI network layer. The detection rate of
the presented system was about 55%. They also used a rep-
utation system with a danger signal which allows nodes to

53

inform neighbours on the routing path about misbehaviour.
This interaction was adopted from the results by Aickelin
et. al.[3].
Aickelin et. al. have been working on artificial immune sys-
tems since 2003 in an interdisciplinary project called danger
theory. In [3] and [4] they introduced work showing links
between intrusion detection systems and artificial immune
systems. They also introduced a danger signal approach
allowing nodes to judge the misbehaviour information and
presented work on adaptive learning mechanisms.
In [12] Drozda et. al. showed that artificial immune systems
can be applied to sensor networks having only low compu-
tational costs. The detection rate of the introduced AIS is
higher than the one presented by Sarafijanovic and Boudec,
as the authors use a static ad-hoc network of 1718 nodes
with 10 CBR connections instead of a mobile network.

6. CONCLUSION
Finding misbehaviour in deployed sensor networks is an im-
portant factor when routing and data reliabiltiy are required.
In the presented experiments we studied the impact of two
different traffic patterns. The results obtained in our sim-
ulation experiments show a similar detection rate for both
traffic models. Our AIS accomplished a detection rate of
70% to 80% independent from the traffic model. We con-
clude that artificial immune systems are a preferable mecha-
nism for misbehaviour detection in sensor networks as traffic
models or attack patterns are not known in advance. AIS of-
fer a universal approach which is only limited by the quality
of the chosen genes and the number of observed OSI layers.
We are currently working on a simulation experiment using
50 fixed but randomly chosen connections with a different
variety of misbehaving nodes. We want to consider different
packet injection parameters in order to test the AIS with
other typical sensor network traffic patterns (for example
Poisson distributions with different packet arrival expecta-
tions or a massive packet injection by a small group of nodes
followed by a long quiet period for the whole network) and
different, more complex attack patterns. The intention of
these experiments is to verify which genes should be part of
an AIS in general.
Additionally we are working on a TinyOS [19] implementa-
tion of our AIS and the proposed AIS by Sarafijanovic and
Boudec [8] using Crossbows [17] mica2 sensor nodes. We
want to verify our simulation results and show that AIS are
indeed a preferable method for misbehaviour detection using
commonly available sensor network hardware. Our network
will consist of 40 mica2 nodes using realistic data collection
scenarios.

7. REFERENCES
[1] S. Hofmeyr, S. Forrest. Immunity by Design: An

Artificial Immune System. Proc. Genetic and
Evolutionary Computation Conference (GECCO), 1999.

[2] Charles A. Janeway Jr. How the immune system works
to protect the host from infection: a personal view.
Proc. Natl. Acad. Sci. U S A., 2001 Jun
19;98(13):7461-8.

[3] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, J. McLeod.
Danger theory: The link between ais and ids. Proc.
International Conference on Artificial Immune Systems
(ICARIS), 2003.

[4] U. Aickelin, J. Greensmith, J. Twycross. Immune
System Approaches to Intrusion Detection - A Review.
Proc. the 3rd International Conference on Artificial
Immune Systems (ICARIS), 2004.

[5] D. Johnson, D. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. Mobile Computing, Tomasz
Imielinski and Hank Korth, Eds. Chapter 5, pp.
153-181, Kluwer Academic Publishers, 1996.

[6] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia,
M. Gerla. GloMoSim: A Scalable Network Simulation
Environment. UCLA Computer Science Department
Technical Report 990027, May 1999.

[7] J. Kim, P.J. Bentley. Evaluating Negative Selection in
an Artificial Immune System for Network Intrusion
Detection, Proc. Genetic and Evolutionary
Computation Conference (GECCO), 2001.

[8] S. Sarafijanović, J.-Y. Le Boudec. An Artificial Immune
System for Misbehavior Detection in Mobile Ad-Hoc
Networks with Virtual Thymus, Clustering, Danger
Signal and Memory Detectors. Proc. the 3rd
International Conference on Artificial Immune Systems
(ICARIS), 2004.

[9] J.-Y. Le Boudec, S. Sarafijanović. An Artificial Immune
System Approach to Misbehavior Detection in Mobile
Ad-Hoc Networks. Proc. Bio-ADIT’04, 2004.

[10] J.P.G. Sterbenz, R. Krishnan, R. Rosales Hain, A.W.
Jackson, D. Levin, R. Ramanathan, J. Zao. Survivable
mobile wireless networks: issues, challenges, and
research directions. Proc. ACM workshop on Wireless
security, 2002.

[11] Y. Zhang, W. Lee, Y.A. Huang. Intrusion Detection
Techniques for Mobile Wireless Networks. Wireless
Networks, vol. 9, no. 5, pp. 545–556, 2003.

[12] M. Drozda, S. Schaust, H. Szczerbicka. Is AIS Based
Misbehavior Detection Suitable for Wireless Sensor
Networks? Proc. IEEE Wireless Communications and
Networking Conference (WCNC), 2007.

[13] H. Karl, A. Willig. Protocols and Architectures for
Wireless Sensor Networks. John Wiley & Sons, 2005.

[14] S. Marti, T. J. Giuli, K. Lai, M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. Proc.
the 6th annual international conference on Mobile
Computing and Networking (MobiCom), 2000.

[15] J. Balthrop, S. Forrest, M. Glickman. Revisiting lisys:
Parameters and normal behavior. Proc. Congress on
Evolutionary Computing, 2002.

[16] D. Dasgupta, F. Gonzalez. An immunity-based
technique to characterize intrusions in computer
networks. IEEE Trans. Evolutionary Computation, vol.
6, no. 3, pp. 281–291, 2002.

[17] Crossbow Technology Inc. www.xbow.com

[18] ZigBee Alliance R©www.zigbee.org

[19] TinyOS www.tinyos.net

54

Performance of Additive Homomorphic EC-ElGamal
Encryption for TinyPEDS

Osman Ugus
NEC Europe Ltd.

Kurfuersten-Anlage 36
69115 Heidelberg, Germany

ugus@netlab.nec.de

Alban Hessler
NEC Europe Ltd.

Kurfuersten-Anlage 36
69115 Heidelberg, Germany
hessler@netlab.nec.de

Dirk Westhoff
NEC Europe Ltd.

Kurfuersten-Anlage 36
69115 Heidelberg, Germany
westhoff@netlab.nec.de

ABSTRACT
Data aggregation is a popular approach employed in wireless sen-
sor networks (WSNs) to minimize data transmission and storage.
With aggregation techniques, the monitored data is expressed in a
condensed form: Therefore, instead of storing all data sensed by
several nodes, the network stores a condensed value only such as
the sum of these values. However, data aggregation becomes prob-
lematic when the data to be aggregated is encrypted. As a solution,
we apply an additive homomorphic encryption scheme, namely the
elliptic curve ElGamal (EC-ElGamal) cryptosystem, and present
the performance results of our implementation for the prominent
sensor platform MicaZ mote.

1. INTRODUCTION
Regarding the frequency of transmission wireless sensor net-

works (WSNs) may be divided into two subgroups, namely asyn-
chronous and synchronous [7]. In synchronous WSNs the moni-
tored data transmitted to a reader device is real-time responsive. In
asynchronous WSNs, however, the monitored data is transmitted
to a reader device only seldomly. Therefore, asynchronous WSNs
need to store the data in the network in a distributed manner. How-
ever, the implementation of distributed data storage for WSNs is
very challenging.

Firstly, due to the limited storage capacity of the nodes, the stor-
age capacity of the whole WSN is restricted. Thus, it is necessary to
reduce the amount of the data being processed, e.g. stored or trans-
mitted, in the network without loosing relevant information. Sec-
ondly, the nodes have limited power capacity. Distributed data stor-
age requires transmission between sensor nodes. Since the trans-
mission affects the power consumption, techniques for minimizing
it are mandatory. Finally, the nodes are in general equipped with
non-tamper-resistant hardware. Since WSNs are usually employed
in a public environment, data must be protected and concealed.

One popular method employed for minimizing the data transmis-
sion and storage is in-network data aggregation. This means that
the monitored data is expressed in a condensed form such that in-
stead of storing all the data sensed by several nodes, the network
stores only condensed values such as the sum or the average of
these values. In order to secure the data stored in the network, data
encryption techniques are employed. However, in-network data ag-
gregation becomes challenging when the data is encrypted. In such
case the encryption scheme needs to allow homomorphic addition
of ciphertexts. As solution for these problems, tiny persistent en-
crypted data storage (TinyPEDS) was proposed, see [7].

In this work we introduce the additive homomorphic elliptic curve
ElGamal (EC-ElGamal) encryption scheme, which is employed for
securing distributed storage and transmission of aggregated data in
TinyPEDS. Furthermore, the performance results of the implemen-

Figure 1: Data aggregation in WSNs

tation on MicaZ mote are presented.

2. CONCEALED DATA AGGREGATION
As resource consumption of the nodes is a critical factor for the

overall lifetime of a wireless sensor network, it is necessary to
employ techniques to reduce it. The in-network data aggregation
works toward this goal by reducing the amount of the data being
stored and transmitted, while still providing an appropriate degree
of information to the reader device. Figure 1 depicts a simple ex-
ample for the in-network data aggregation process where the sensed
values are not encrypted.

However, as WSNs are usually employed in a public environ-
ment, the data has to be encrypted in order to limit damage caused
by possible attacks. In this case, the aggregator node A should cal-
culate the Sum = [Enc(15) + Enc(16) + Enc(18) + Enc(14)]
of the encrypted values. This scenario is depicted in Figure 2.

Figure 2: Concealed data aggregation in WSNs

In general, the decrypted sum of ciphertexts Dec[Enc(15) +
Enc(16) + Enc(18) + Enc(14)] will not be equal to the sum of
the plaintexts (15+16+18+14). Thus, the encryption scheme em-
ployed needs to support the property such that the following equa-

55

tion holds:

Enc(a1 + a2 + ... + an) = Enc(a1) �Enc(a2) � ... �Enc(an),

where Enc(a) denotes the encryption of a message a and � repre-
sents an addition performed on ciphertexts from a public encryption
scheme. An encryption scheme with this property is called additive
homomorphic. TinyPEDS proposes to employ both a symmetric
and a public key encryption scheme. However, in this work we
introduce only the asymmetric additive homomorphic encryption
EC-ElGamal. An example for a symmetric additive homomorphic
encryption scheme is [4].

3. ELLIPTIC CURVE ELGAMAL ENCRYP-
TION SCHEME

The original ElGamal encryption scheme, see [6], is multiplica-
tive homomorphic. In order to get the desired additive homomor-
phic property, it can be implemented in elliptic curves. The meth-
ods for EC-ElGamal encryption and decryption is shown in Algo-
rithm 1 ([13]).

The function map() is a deterministic mapping function used to
map values mi ∈ GF (p) into plaintext curve points Mi ∈ E such
that

map(m1 + ... + mn) = map(m1)| {z }
M1

+... + map(mn)| {z }
Mn

holds. The function map() is necessary, because the addition over
an Elliptic Curve is only possible with points on that curve, thus,
integers have to be mapped to corresponding points. For this pur-
pose, each integer m is mapped to a curve point M , which is the
m-multiple of the generator point G, i.e. M = mG. The reverse
mapping function rmap() then extracts m from a given point mG.
The mapping function

map : m → mG with m ∈ GF (p)

fulfills the required homomorphic property, because

M1 + M2 + ... + Mn = map(m1 + m2 + ... + mn)

= (m1 + m2 + ... + mn)G

= m1G + m2G + ... + mnG

holds, where m1, m2, ..., mn ∈ GF (p).
The mapping function is not security relevant, i.e. it neither in-

creases nor decreases the security of the EC-ElGamal encryption
scheme. Note that the reverse mapping function is the same as
solving the discrete logarithm problem over an elliptic curve and,
therefore, a weakness of this scheme. However, since the reverse
mapping function is only performed on the powerful reader device
and the maximum length of the final aggregation is assumed to be
small for realistic WSNs, see [13], the m can be obtained by per-
forming a brute force attack on M = mG on the reader device.

Algorithm 1 Elliptic curve ElGamal encryption scheme

Private key: x ∈ GF (p)
Public key: E, p, G, Y , whereby Y = xG and elliptic curve E over
GF(p) with G, Y ∈ E
Encryption: For a given plaintext m ∈ [0, p − 1] and random k ∈
[1, n − 1], where n is the order of E.

M = map(m)
ciphertext C = enc(m) = (R, S) = (kG, M + kY)

Decryption:
M = dec(C) = dec(R, S) = −xR + S
m = rmap(M)

4. IMPLEMENTATION
The software architecture of the EC-ElGamal cryptosystem de-

picted in Figure 3 consists of three abstraction levels. The low-
est level contains finite field arithmetic operations such as modular
addition, modular subtraction, and modular multiplication. Since
the operations on higher levels are based on the operations on this
level, the finite field level is the most critical level for the perfor-
mance. Elliptic curve arithmetic operations such as point addition,
point doubling, and scalar point multiplication are grouped on the
second level. Finally, on the application level, by using the oper-
ations from lower levels any elliptic curve cryptosystem such as
EC-ElGamal may be implemented.

The performance of a cryptosystem is influenced by the em-
ployed algorithms. Therefore, it is important to choose the best
combination carefully. In the following the algorithms employed
in each abstraction level are introduced.

4.1 Design decisions at finite field level

4.1.1 Selecting the underlying field
In [3] Branovic et al. studied the performance and memory

requirements of several elliptic curve algorithms over the prime
GF(p) and binary field GF(2n). They found that the number of
memory accesses and the code sizes of elliptic curve algorithms
for binary fields is higher than those for prime fields. Moreover,
the binary field arithmetic, particularly multiplication, is not suffi-
ciently supported by usual microprocessors. Thus, the use of binary
field would lead to lower performance [9].

On the other hand, the main disadvantage of the prime field arith-
metic is that the inversion over GF(p) is computationally much
more expensive than the inversion over a binary field. However,
by using different coordinate systems, the number of inversions re-
quired by finite field and elliptic curve arithmetic can be reduced
to only one, which is needed for converting the final results back
to affine coordinates. Since the implemented cryptosystem in this
work allows those final conversions on the external reader device,
the performance drawback of prime fields stemming from expen-
sive inversions can be ignored.

In contrast to the inversion, modular reduction can be performed
over prime fields faster than over binary fields when special Pseudo-
Mersenne primes [18] are used. Therefore, the arithmetic opera-
tions in this work were implemented over GF(p).

4.1.2 Multi-precision multiplication
The efficiency of the multi-precision multiplication dominates

the overall performance. In [9] Gura et al. show that on resource
constrained devices such as MicaZ mote, 85% of the execution
time is spent on the multi-precision multiplication for a typical
point multiplication. That means that the performance of the multi-
precision multiplication is critical for the entire cryptosystem and
therefore, it is especially necessary to concentrate on its optimiza-
tion possibilities.

Figure 3: Elliptic curve ElGamal (EC-ElGamal) design archi-
tecture

56

Additionally to the well-known Schoolbook and Karatsuba mul-
tiplication, see [11], [17] analyzed the Comba multiplication, see
[8], and the Hybrid multiplication from [9]. Our analysis showed
that the Hybrid method is the most promising one, because it com-
bines the advantages of the Schoolbook and Comba method. There-
fore, it requires a small amount of registers and memory accesses.

4.1.3 Modular reduction
After each finite field operation the modular reduction is neces-

sary whenever the result is bigger than the modulus. Therefore,
the performance of the modular reduction is as important as multi-
precision multiplication for the overall performance of the cryp-
tosystem.

In [17] we analyzed three methods to perform modular reduc-
tion: Montgomery reduction, Barrett reduction, and the pseudo-
Mersenne prime reduction [11]. Our analysis showed that the pseudo-
Mersenne prime reduction is superior to the other methods.

4.2 Design decisions at elliptic curve level

4.2.1 Selecting the coordinate system
Elliptic curve points may be represented in several coordinate

systems. For each of such systems, the performance and the mem-
ory requirements of the elliptic curve operations are different. There-
fore, a good choice for the coordinate systems is an important factor
for the successful implementation of the elliptic curve cryptosys-
tems on resource limited devices. In [17] we compared six popular
coordinate systems in terms of performance and memory require-
ments, namely Affine, Projective, Jacobian, Chudnovsky-Jacobian,
modified Jacobian, and mixed coordinate systems.

We showed that AJJ coordinates are superior to the other mixed
coordinate systems. Thereby, A, J and M denotes the affine, Ja-
cobian and modified Jacobian coordinates, respectively. Note that
AJJ denotes the point addition, whereby the result is in Jacobian
coordinates, while the input points are in affine and Jacobian coor-
dinates. Similarly, MJ denotes the point doubling with the input
point is in modified Jacobian and the result is in Jacobian coordi-
nates. The performance of the point doublings in MJ coordinates
is the highest, whereas the point doublings in those coordinates re-
quire more temporary storage than the point doublings in JJ co-
ordinates. However, since the results of the point additions in the
application level are used as input for the point doublings during
the scalar point multiplication, the use of MJ coordinates needs
one more additional conversion from Jacobian to modified Jaco-
bian coordinates. This means the computational efficiency of point
doublings in MJ coordinates is equal to the point doublings in JJ
coordinates. Thus, AJJ and JJ coordinates were chosen in the
implementation of the point addition and point doubling, respec-
tively.

4.2.2 Scalar point multiplication
The main operation in elliptic curve cryptosystems is the scalar

point multiplication. Since the scalar point multiplication is a time
critical operation, many efficient implementations have been pro-
posed. We evaluated the Left-to-Right and Right-to-Left binary
methods, see [11], as a core algorithm for scalar multiplication.

The examination in [17] showed that he Left-to-Right method
is superior due to lower storage requirements and the fact that the
Right-to-Left method does not allow AJJ point additions.

Several techniques may be employed to further speed up the
scalar point multiplication on elliptic curves. One of them is the
Interleave method [12], which aims at reducing the required num-
ber of point doublings. The Interleave method was originally pro-
posed for the multi-scalar multiplications of the form (k1 · P1 +

Table 1: Comparison of the scalar point multiplication imple-
mentations

160-bit (sec160r1) #Precom. points Ex. time
[s]

This work (L2R) 0 1.23

This work (2MOF) 0 1.03

[9] 0 0.81

[18] 0 1.35

TinyECC-0.2 0 1.78

This work 1 0.69

This work 2 0.57

[18] 15 1.24

k2 ·P2 + ... + kn ·Pn). However, this idea can be used to perform
single scalar multiplications. This is due to the fact that the scalar
multiplication kP with a n-bit scalar k and a point P may also be
represented as a sum of t partial multiplications with t scalars ki

and t points Pi as follows

kP = (kt · 2(t−1)n/t + ... + k2 · 2n/t + k1) · P (1)

=

tX
i=1

ki · Pi (2)

Thereby, each scalar ki is a n/t-bit long part of k and Pi =

2(i−1)n/tP . Note that n is padded with 0’s from left until it is
a multiple of t. In order to increase the performance the points
Pt, Pt−1, ..., P2 are ideally precomputed and stored off-line.

Another way for accelerating scalar multiplication is to reduce
the required number of point additions. The point additions are pre-
formed, if the corresponding bit of the scalar is 1. This means that
the number of point additions may be further reduced, if the scalar
is represented with a low Hamming weight, which is the number
of the non-zero bits. In general the Hamming weight of a scalar is
low, if it is represented in a signed representation. [17] analyzed
both the non-adjacent form (NAF) and the mutual opposite form
(MOF), see [15] and [14], respectively. Although both lead to the
same Hamming weight, MOF is superior to NAF, because it ex-
hibits lower memory requirements.

5. IMPLEMENTATION RESULTS
The implementation was done on the MicaZ mote [2], which is

a typical device for WSNs and equipped with 8-bit processor. The
operating system employed in the implementation was TinyOS-2.0
[1], an open-source operating system designed for wireless em-
bedded sensor networks. The timing results are the average over
500 executions with random numbers and were generated using the
curve parameters secp160r1 from [16]. The operations on the low-
est abstraction level were realized using Assembler, while those on
higher levels were written in NesC.

Table 1 compares the performance of the point multiplication
with existing solutions, namely TinyECC-0.2 [10] and the solution
from [9] and [18]. Note that in Table 1 the results in the first row im-
ply that the point multiplication employed in the ECElGamal was
realized by using only the Left-to-Right binary method. The val-
ues in the second row of the table present the point multiplication
accelerated by using 2MOF. The results presented in the remain-
der of the table were obtained by employing the Interleave method.
Therefore, the first five rows imply general point multiplication,
while the rest of the table represents fixed point multiplication.

The performance of the point multiplication from TinyECC-0.2
is not presented in [10]. Thus, the TinyECC-0.2 was integrated in
the test suite employed for evaluating this work. Note that the finite

57

Table 2: Implementation results for EC-ElGamal
#Precom. points Ex. time

[s]

0 (L2R) 2.48

0 (2MOF) 2.16

2 1.42

4 1.19

field inversion is required for converting the elliptic curve points
from Jacobian to affine coordinates during the decryption process.
Since that needs to be performed only on the reader device, the
finite field inversion was not implemented. However, since one
inversion and four multiplications are needed for the conversion,
some assumptions are necessary. According to [5], the ratio be-
tween finite field multiplications and inversions Inv/Mult is 30.
Hence, together with the additional four modular multiplications
needed for the conversion, this results in 34 · 0.532ms = 18ms,
where 0.532ms is the execution time of one modular multiplica-
tion, see [17]. For a fair comparison, this value is already added to
the results in Table 1. Finally, Table 2 shows the performance of
the different realizations of the EC-ElGamal, which contains two
point multiplications with n-bit scalar k and one short point mul-
tiplication with the sensed data m, see Algorithm 1. Note that for
testing purposes m was chosen to be 8-bit.

6. CONCLUSION
We implemented elliptic curve and finite field arithmetic opera-

tions on MicaZ mote which is a typical device employed in wire-
less sensor networks. Our tests showed that scalar point multipli-
cation with a random base takes 1.03s, while it takes only 0.57s in
the case of fixed point multiplication, when 2 precomputed points
are employed. According to our knowledge, our implementation
is the second fastest for general point multiplication. Moreover,
compared to the best previous result, our implementation is at least
44% faster for fixed point multiplication. The implementation of
the elliptic curve EC-ElGamal encryption showed that the encryp-
tion operation only takes 1.19s, when in total 4 precomputed points
are utilized.

7. ACKNOWLEDGMENTS
The work presented in this paper is supported in part by the Euro-

pean Commission within the STREP UbiSec&Sens. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the UbiSec&Sens
project or the European Commission.

8. REFERENCES
[1] http://www.tinyos.net.

[2] Crossbow Technology Inc. http://www.xbow.com.

[3] I. Branovic, R. Giorgi, and E. Martinelli. Memory
Performance of Public-Key cryptography Methods in Mobile
Environments. In ACM SIGARCH Workshop on MEmory
performance: DEaling with Applications, systems and
architecture (MEDEA-03), pages 24–31, New Orleans, LA,
USA, September 2003.

[4] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient
Aggregation of Encrypted Data in Wireless Sensor
Networks. 3rd Intl. Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Sensor
Networks, Italy, April 2005.

[5] H. Cohen, A. Miyaji, and T. Ono. Efficient Elliptic Curve
Exponentiation Using Mixed Coordinates. In Advances in
Cryptology - ASIACRYPT ’98, volume 1514 of Lecture Notes
in Computer Science, pages 51–65, London, UK, 1998.
Springer-Verlag.

[6] T. E. Gamal. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. In Advances in
cryptology – Proceedings of CRYPTO 84, volume 196 of
Lecture Notes in Computer Science, pages 10–18.
Springer-Verlag New York, Inc., 1985.

[7] J. Girao, D. Westhoff, E. Mykletun, and T. Araki. TinyPEDS:
Tiny Persistent Encrypted Data Storage in Asynchronous
Wireless Sensor Networks. Elsevier Ad Hoc Journal,
5(7):1073–1089, September 2007.

[8] J. Großschädl, R. M. Avanzi, E. Savas, and S. Tillich.
Energy-efficient software implementation of long integer
modular arithmetic. In Cryptographic Hardware and
Embedded Systems, volume 3659 of Lecture Notes in
Computer Science, pages 75–90, 2005.

[9] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz.
Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs. In Cryptographic Hardware and Embedded Systems -
CHES, volume 3156 of Lecture Notes in Computer Science,
pages 119–132, Cambridge, MA, USA, August 2004.

[10] A. Liu and P. Ning. TinyECC: Elliptic Curve Cryptography
for Sensor Networks, September 2006.

[11] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[12] B. Möller. Algorithms for Multi-exponentiation. In Selected
Areas in Cryptography – SAC 2001, volume 2259 of Lecture
Notes In Computer Science, pages 165–180, London, UK,
2001. Springer-Verlag.

[13] E. Mykletun, J. Girao, and D. Westhoff. Public Key Based
Cryptoschemes for Data Concealment in Wireless Sensor
Networks. In IEEE Int. Conference on Communications –
ICC, Istanbul, Turkey, June 2006.

[14] K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi.
Signed Binary Representations Revisited. In Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes
in Computer Science, pages 123–139, 2004.

[15] G. W. Reitwiesner. Binary arithmetic. Advances in
Computers, 1:231–308, 1960.

[16] Standards for Efficient Cryptography Group (SECG).
Specification of Standards for Efficient Cryptography — SEC
2: Recommended Elliptic Curve Domain Parameters,
September 2000.

[17] O. Ugus. Asymmetric Homomorphic Encryption
Transformation for Securing Distributed Data Storage in
Wireless Sensor Networks. Master’s thesis, Technische

Universität Darmstadt - in Cooperation with NEC Europe
Ltd., Heidelberg, Darmstadt, 2007.

[18] H. Wang and Q. Li. Efficient Implementation of Public Key
Cryptosystems on Mote Sensors. In Eighth International
Conference on Information and Communications Security
(ICICS 2006), volume 4307 of Lecture Notes in Computer
Science, pages 519–528, December 2006.

58

SNIF: A Comprehensive Tool for
Passive Inspection of Sensor Networks

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing

ETH Zurich, Switzerland
{mringwald,roemer}@inf.ethz.ch

ABSTRACT
Deployment of sensor networks in real-world settings is a labor-
intensive and cumbersome task: environmental influences often
trigger problems that are difficult to track down due to limited visi-
bility of the network state. In this extended abstract, we summarize
our ongoing efforts to develop a tool for passive inspection of sen-
sor networks, where the network state can be inferred without in-
strumentation of sensor nodes. We also discuss next steps to make
this tool applicable to a larger class of applications.

1. INTRODUCTION
Deployment of sensor networks in real-world settings is typi-

cally a labor-intensive and cumbersome task (e.g. [5, 6, 12, 13,
15]). While simulation and lab testbeds are helpful tools to test an
application prior to deployment, they fail to provide realistic envi-
ronmental models (e.g., regarding radio signal propagation, sensor
stimuli, chemical/mechanical strain on sensor nodes). Hence, en-
vironmental effects often trigger bugs or degrade performance in a
way that could not be observed during pre-deployment testing. To
track down such problems, a developer needs to inspect the state
of network and nodes. While this is easily possible during sim-
ulation and experiments on lab testbeds (wired backchannel from
every node), access to network and node states is very constrained
after deployment.

Current practice to inspect a deployed sensor network requires
active instrumentation of sensor nodes with monitoring software.
Monitoring traffic is sent in-band with the sensor network traffic to
the sink (e.g., [6, 11, 14]). Unfortunately, this approach has sev-
eral limitations. Firstly, problems in the sensor network (e.g., par-
titions, message loss) also affect the monitoring mechanism, thus
reducing the desired benefit. Secondly, scarce sensor network re-
sources (energy, cpu cycles, memory, network bandwidth) are used
for inspection. Thirdly, the monitoring infrastructure is tightly in-
terwoven with the application. Hence, adding/removing instrumen-
tation may change the application behavior in subtle ways, causing
probe effects. Also, it is non-trivial to adopt the instrumentation
mechanism to different applications.

In contrast to the above, we propose a passive approach for sen-
sor network inspection by overhearing and analyzing sensor net-
work traffic to infer the existence and location of typical problems
encountered during deployment. To overhear network traffic, a so-
called deployment support network (DSN) [1] is used: a wireless
network that is temporarily installed alongside the actual sensor
network during the deployment process (see Fig. 1). Each DSN
node provides two different radio front-ends. The first radio is used
to overhear the traffic of the sensor network, while the second ra-
dio is used to form a robust and high-bandwidth network among
the DSN nodes to reliably collect overheard packets. A data stream

Figure 1: A deployment-support network (rectangular nodes)
is a physical overlay network that overhears sensor network
(round nodes) traffic and delivers it to a sink using a second
radio.

framework performs online analysis of the resulting packet stream
to infer and report problems soon after their occurrence.

This approach removes the above limitations of active inspec-
tion: no instrumentation of sensor nodes is required, sensor net-
work resources are not used. The inspection mechanism is com-
pletely separated from the application, can thus be more easily
adopted to different applications, and can be added and removed
without altering sensor network behavior.

So far, we analyzed and classified problems typically found dur-
ing deployment [7], implemented a basic version of the Sensor
Network Inspection Framework (SNIF) [10], and conducted a case
study on data gathering applications [9] to demonstrate the feasi-
bility and benefits of our approach. Although possible in princi-
ple, it is currently difficult to adopt SNIF to application types other
than data gathering application. Further work is needed to add this
missing flexibility. In the remainder of this abstract, we give an
overview of SNIF’s architecture and discuss next steps.

2. PASSIVE INSPECTION OF DATA GATH-
ERING APPLICATIONS

SNIF supports the detection of specific problems (e.g., node re-
boot) that occur during deployment of a sensor network. For this,
we first need to identify the problems that can occur and that should
be detected by SNIF. Secondly, we need to provide passive indica-
tors for each of the problems, which allow to infer the existence
of a problem from observed packet traces. For this, one needs to
analyze the message protocols used in the sensor network. Finally,
SNIF needs to be configured to implement these passive indicators.

In our work, we focus on so-called data gathering applications
(e.g., [12, 15]), where nodes send raw sensor readings at regular

59

intervals along a spanning tree across multiple hops to a sink. The
reason for our choice is that almost all existing non-trivial deploy-
ments are data gathering applications. Below, we will first charac-
terize data gathering applications in more detail, before presenting
typical problems with these applications and matching passive in-
dicators.

2.1 Application Model
Systems for data gathering such as the Extensible Sensing Sys-

tem (ESS) [4] need to maintain a spanning tree of the network along
which sensor values are routed to the sink. To support neighbor
discovery, all nodes broadcast beacon messages at regular inter-
vals. Each beacon message contains a sequence number. To dis-
cover neighbors, nodes overhear these messages and estimate the
quality of incoming links from neighbors based on message loss.
Nodes then broadcast link advertisement messages at regular in-
tervals, containing a list of neighbors and link quality estimates.
Overhearing these messages, nodes compute the bidirectional link
quality to decide on a good set of neighbors. To construct a span-
ning tree of the network with the sink at the root, nodes broadcast
path advertisement messages, containing the quality of their cur-
rent path to the sink. Nodes overhearing these messages can then
select the neighbor with the best path as their parent and broadcast
an according path advertisement message. Finally, data messages
are sent from nodes to the sink along the edges of the spanning tree
across multiple hops.

2.2 Problems and Indicators
A indicator is an observable behavior of a sensor network that

hints (in the sense of a heuristic) the existence of a specific problem.
We are interested in passive indicators that can be observed purely
by overhearing the traffic of the sensor network as this does not
require any instrumentation of the sensor nodes.

In [7] we studied existing deployments to identify common prob-
lems and derived passive indicators for them. We classify problems
according to the number of nodes involved into four classes based
on existing deployments: node problems that involve only a sin-
gle node, link problems that involve two neighboring nodes and
the wireless link between them, path problems that involve three
or more nodes and a multi-hop path formed by them, and global
problems that are properties of the network as a whole. Below, we
provide for each category an exemplary problem and passive indi-
cators to detect it.

Node reboot, as an example for a node problem, causes the se-
quence number counter of the affected node to be reset to an initial
value (typically zero). Hence, the sequence number contained in
beacon messages sent by the node will jump to a smaller value af-
ter a reboot with high probability even in case of lost messages,
which can serve as an indicator for reboot.

An isolated node, as an example for a link problem, has no
neighbors in the network topology. An indicator for this problem is
that the node is not listed in any link advertisement messages send
by other nodes.

An orphaned node, as an example for a path problem, has no
parent in the routing tree. Such nodes will either send no path an-
nouncement messages at all or path announcements contain an infi-
nite distance to the sink (depending on the protocol details), which
can be used as a passive indicator.

A partitioned node, as an example of a global problem, is dis-
conneted from the sink, for example due to death of a node on the
path. A node is considered as partitioned if all paths from the node
to the sink involve dead nodes. This predicate requires an approx-
imate view on the network topology which is reconstructed on the

DSN

Radio
Configuration

cc.freq = 868000000;

cc.bitrate = 19200;

cc.sop = 0x55aa;

cc.crc = 0xA001;

Packet Decoder

Packet
Description

struct TOS_Msg {

 uint16_t addr;

 uint8_t type, group, length;

 int8_t data [length];

 uint16_t crc;

};

struct Beacon : Tos_Msg.data (type==1){

 uint16_t node_id;

 uint16_t seq;

};

Data Stream
Processing

Root Cause
Analysis

GUI

filter seqReset

Decision Tree

Operator
Graph

Figure 2: Architecture of SNIF.

base of observed data packets. Periodic checks on the reconstructed
topology serve as a passive indicator here.

3. SNIF
In this section we outline how passive indicators discussed in the

previous section can be implemented in SNIF. For this, consider
the architecture of SNIF as depicted in Fig. 2, which consists of a
deployment support network to overhear sensor network traffic, a
packet decoder to access the contents of overheard packets, a data
stream processor to analyze packet streams for problems, a decision
tree to infer the state of each sensor node, and a user interface to
display these states. The key design goal for SNIF is generality that
is, it should support passive inspection of a wide variety of sensor
network protocols and applications. Below we give an overview of
these components. More details can be found in a [10].

3.1 Deployment Support Network (DSN)
To overhear the traffic of multi-hop networks, multiple radios are

needed, forming a distributed network sniffer. We use a so-called
deployment support network for this purpose, a wireless network
of DSN nodes, each of which provides two radios.

Our current implementation of a DSN is based on the BTnode
Rev. 3 [2], which provides two radio front-ends: a Zeevo ZV 4002
Bluetooth 1.2 radio which is used as the DSN radio, and a Chipcon
CC 1000 (e.g., also used on MICA2) which is used as the WSN ra-
dio. Using a scatternet formation algorithm, the DSN nodes form a
robust Bluetooth scatternet (see [1] for details). A laptop computer
with Bluetooth acts as the SNIF sink that connects to a nearby DSN
node. This DSN node thereupon acts as the DSN sink and forms
the root of an overlay tree spanning the whole DSN. The SNIF sink
can send data to DSN nodes down the tree while DSN nodes send
overheard packets up the tree to the sink.

Time synchronization exploits the fact that Bluetooth uses a
TDMA MAC protocol and thus performs clock synchronization in-
ternally, providing an interface to read the Bluetooth clock and its
offset to the clocks of network neighbors. We use this interface
to compute the clock offset of each DSN node to the DSN sink.
A detailed description of our time synchronization protocol can be
found in [8].

60

3.2 Physical Layer and Medium Access
DSN nodes need a receive-only implementation of the physical

(PHY) and MAC layers in order to overhear sensor network traffic.
Due to the lack of a standard protocol stack, many variants of PHY
and MAC are in use in sensor networks. Our generic PHY imple-
mentation supports configurable carrier frequency, baud rate, and
checksumming details as illustrated in Fig. 2. Regarding MAC, we
exploit the fact that – regardless of the specific MAC protocol used
– a radio packet always has to be preceded by a preamble and a
start-of-packet (SOP) delimiter to synchronize sender and receiver.
In our generic MAC implementation, every DSN node has its WSN
radio turned to receive mode all the time, looking for a preamble
followed by the SOP delimiter in the received stream of bits. Once
an SOP has been found, payload data and a CRC follow. This way,
DSN nodes can receive packets independent of the actual MAC
layer used.

3.3 Packet Decoder
Again, since no standard protocols exist for sensor networks, we

need a flexible mechanism to decode overheard packets. Since most
programming environments for sensor nodes are based on the C
programming language or a dialect of it (e.g., nesC for TinyOS),
it is common to specify message contents as (nested) C structs in
the source code of the sensor network application. Our packet de-
coder uses an annotated version of such C structs as a description of
the packet contents. This way, the user can copy and paste packet
descriptions from the source code.

The configuration of the packet decoder consists of some global
parameters (such as byte order and alignment), type definitions,
and one or more C structs. One of these structs is indicated as the
default packet layout. Note that such a struct can contain nested
other structs, effectively implementing a discriminated union.

Fig. 2 shows an example of a TinyOS message (TOS Msg) hold-
ing a beacon data unit if the message type of the TinyOS message
equals 1. The result of packet decoding is a record consisting of a
list of name-value pairs, where each pair holds the name and value
of a data field in the packet.

3.4 Data Stream Processor
The resulting stream of packets is then fed to a data stream pro-

cessor to detect any problems with the sensor network. The data
stream processor executes operators that take a stream of records as
input and produce a different stream of records as output. The out-
put of an operator can be connected to the input of other operators,
resulting in a directed operator graph. SNIF provides a set of stan-
dard operators, e.g., for filtering, aggregation over time windows,
or merging of multiple streams into one. In addition, application-
specific operators to detect specific problems in the sensor network
may be required. Fig. 2 shows an simple operator graph that is
used to detect node reboots as described in Sect. 2.2. The first op-
erator (filter) reads the packet stream generated by the DSN
and removes all packets that are not beacon packets. The sec-
ond operator (seqReset) remembers the last sequence number
received from each node and checks if a newly received sequence
number is smaller than the previous one for this node, in which
case the node has rebooted unless there was a sequence number
wrap-around (i.e., maximum sequence number has been reached
and sequence counter wraps to zero).

Figure 3: An instance of SNIF’s user interface.

3.5 Root Cause Analysis
The next step is to derive the state of each sensor node, which

can be either “node ok” or “node has problem X”. Note that the
operator graphs mentioned above may concurrently report multiple
problems for a single node. In many cases, one of the problems
is a consequence of another problem. For example, a node that is
dead also has a routing problem. In such cases, we want to report
only the primary problem and not secondary problems. For this,
we use a decision tree, where each internal node is a decision that
refers to the output of an operator graph, and each leaf is a node
state. In the example tree depicted in Fig. 2, we first check (using
the output of an operator graph that counts packets received during
a time window) if any messages have been received from a node.
If not, then the state of this node is set to “node dead”. Otherwise,
if we received packets from this node, we next check if this node
has any neighbors (using an operator graph that counts the number
of neighbors contained in link advertisement packets received from
this node). If there are no neighbors, then the node state is set to
“node isolated”. Here, the check for node death is above the check
for isolation in the decision tree, because a dead node (primary
problem) is also isolated (secondary problem).

3.6 User Interface
Finally, node states and additional information are displayed in

the graphical user interface. The core abstraction implemented by
the user interface is a network graph, where nodes and links can
be annotated with arbitrary information. The user interface also
supports recording and playback of executions. A snapshot of
an instance of the user interface is shown in Fig. 3. Here, node
color indicates state (green: ok, gray: not covered by DSN, yellow:
warning, red: severe problem), detailed node state can displayed
by selecting nodes. Thin arcs indicate what a node believes are its
neighbors, thick arcs indicate the paths of multi-hop data messages.

4. RELATED WORK
Most closely related to SNIF is work on active debugging of sen-

sor networks, notably Sympathy [6] and Memento [11]. However,
both systems require instrumentation of sensor nodes and introduce
monitoring protocols in-band with the actual sensor network traffic.
Also, both tools only support a fixed set of problems, while SNIF
provides an extensible framework.

Tools for sensor network management such as NUCLEUS [14]
provide read/write access to various parameters of a sensor node
that may be helpful to detect problems. However, this approach
also requires active instrumentation of the sensor network.

61

5. NEXT STEPS
As mentioned in Sect. 2.1, our current work is focused on data

gathering applications. As other types of applications such as track-
ing and event detection are deployed, we will analyze experiences
gained from deployments and add support for inspection of these
applications to SNIF. For this, novel indicators may have to be im-
plemented in SNIF. While SNIF supports this flexibility in principle
through composition and parametrization of data stream operators,
currently Java code needs to be written and the developer has to be
familiar with SNIF internals. One of the next steps is therefore the
development of appropriate high-level specification techniques to
support more convenient configuration of SNIF for different types
of applications. In particular, we envision a graphical notation, al-
lowing a user to devise these specifications using a graphical user
interface.

Ultimately, we want to achieve (semi-)automatic generation of
these specifications from application programs. For this, we will
work on analyzing high-level declarative program specifications
such as SNlog [3]. These capture the application semantics in a
more direct way than procedural programs, such that it may be pos-
sible to derive SNIF configurations without explicit annotations.

6. ACKNOWLEDGMENTS
The work presented in this paper was partially supported by the

National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant number
5005-67322.

7. REFERENCES
[1] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable

Topology Control for Deployment-Sensor Networks. In
IPSN 2005.

[2] BTnodes. A Distributed Environment for Prototyping Ad
Hoc Networks. www.btnode.ethz.ch.

[3] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation of
a declarative sensor network system. Technical Report
UCB/EECS-2006-132, EECS Department, UC Berkeley,
October 2006.

[4] R. Guy, B. Greenstein, J. Hicks, R. Kapur, N. Ramanathan,
T. Schoellhammer, T. Stathopoulos, K. Weeks, K. Chang,
L. Girod, and D. Estrin. Experiences with the Extensible
Sensing System ESS. Technical Report 61, CENS, 2006.

[5] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K.
Hart. Glacial Environment Monitoring using Sensor
Networks. In REALWSN 2005.

[6] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin. Sympathy for the Sensor Network Debugger.
In SenSys 2005.

[7] M. Ringwald and K. Römer. Deployment of Sensor
Networks: Problems and Passive Inspection. In WISES 2007.

[8] M. Ringwald and K. Römer. Practical Time Synchronization
for Bluetooth Scatternets. In BROADNETS 2007.

[9] M. Ringwald, K. Römer, and A. Vialetti. Passive Inspection
of Sensor Networks. In DCOSS 2007.

[10] M. Ringwald, K. Römer, and A. Vialetti. SNIF: Sensor
Network Inspection Framework. Technical Report 535,
Departement of Computer Science, ETH Zurich, 2006.

[11] S. Rost and H. Balakrishnan. Memento: A Health
Monitoring System for Wireless Sensor Networks. In
SECON 2006.

[12] R. Szewcyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. An Analysis of a Large Scale Habitat Monitoring
Application. In SenSys 2004.

[13] J. Tateson, C. Roadknight, A. Gonzalez, S. Fitz, N. Boyd,
C. Vincent, and I. Marshall. Real World Issues in Deploying
a Wireless Sensor Network for Oceanography. In REALWSN
2005.

[14] G. Tolle and D. Culler. Design of an
Application-Cooperative Management System for Wireless
Sensor Networks. In EWSN 2005.

[15] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A Macroscope in the Redwoods. In SenSys 2005.

62

Management of Heterogeneous Wireless Sensor Networks∗

Markus Anwander, Gerald Wagenknecht, Thomas Staub, and Torsten Braun
Institute of Computer Science and Applied Mathematics

Neubrückstrasse 10
3012 Bern, Switzerland

{anwander|wagen|staub|braun}@iam.unibe.ch

ABSTRACT
Wireless sensor networks (WSNs) are taking a big step for-
ward to productive deployments. Heterogeneous WSNs are
gaining importance. Complex problem settings consisting
of different environmental conditions require specific sen-
sor nodes for the individual tasks resulting in heterogeneous
networks. As the different types of sensor nodes may be
incompatible, a more general management architecture for
these heterogeneous environments is a necessity. Individ-
ual nodes have to be reconfigured and updated during their
lifetime. Our WSN management framework supports com-
mon management tasks such as monitoring the WSN, con-
figuration of the WSN, code updates, and managing sensor
data. Our management architecture consists of the following
infra-structural elements: a management station, a number
of management nodes and a high number of heterogeneous
sensor nodes. All management tasks are controlled by the
management station. Management nodes are implemented
as wireless mesh nodes.

1. INTRODUCTION
A WSN consists of a number of sensor nodes. They have
a large area of applications, e.g., event detection, localiza-
tion, tracking, monitoring and many more, which require
specific nodes to perform the individual tasks. This results
in heterogeneous networks.

Currently available sensor nodes are mainly prototypes for
research purposes. A number of sensor nodes have been eval-
uated. We selected four of them to build a heterogeneous
sensor network: ESB nodes [1], tmote SKY [2], BTnodes
[3] and micaZ [4]. For the management backbone a Wire-
less Mesh Network (WMN) consisting of Wireless Router
Application Platform boards (WRAP) [5] nodes have been
selected.

∗This work has been supported by the Hasler Foundation
under grant number ManCom 2060 and the Swiss National
Science Foundation under grant number 200020-113677/1

Contiki [6] is being used as operating system running on the
sensor nodes. It is a dynamic operating system with special
focus on portability. It is written in C and supports 14 plat-
forms and 5 CPU types. A small TCP/IP [7] stack (μIP) is
implemented. Contiki, moreover supports preemptive multi-
threading, inter-process communication and dynamic run-
time linking of standard Executable Linkable Format (ELF)
files. Program modules can be updated and loaded at run-
time. Contiki and the network simulator COOJA are open
source projects and run under BSD license.

To improve current research our concept adds mecha-
nisms to support heterogeneity for management in WSNs.
MANNA [8] presents an information architecture and a func-
tional management architecture for WSNs. The manage-
ment architecture provides functions to establish configu-
rations for sensor network entities. Each of the hierarchi-
cal deployed manager nodes is responsible for a cluster of
sensor nodes. The information architecture defines the in-
formation units and the information exchange among the
entities. Currently no implementation of MANNA exists.
Guidelines are proposed, but the communication model and
other issues are not yet defined. TinyCubus [9] presents
a management and configuration framework for WSNs. It
also bases on a clustered architecture assigning certain roles
to sensor nodes. Another focus is code distribution min-
imizing the code fragments to be distributed in a WSN.
Reliability shall be supported by implicit acknowledgments
and retransmissions. The code distribution mechanism has
been evaluated in rather friendly environments without high
error rates. The Deployment Support Network (DSN) to ob-
serve, control, and reprogram a deployed WSN over the air
is presented in [10]. Major drawback of this approach is
the need of an additional wireless backbone network. The
Global Sensor Networks (GSN) [11] provides a middleware
for fast and flexible integration and deployment of hetero-
geneous sensor networks. The key concept in GSN is the
usage of virtual sensors, which abstract from implementa-
tion details of access to sensor data and correspond either
to data streams received directly from sensors. [12] surveys
software update techniques in WSNs. Its design space con-
sists of the execution environment at the sensor nodes, the
software distribution protocol in the network and optimiza-
tion of transmitted updates.

The following sections describe the WSN management
framework including the management scenario and the man-
agement tasks (Section 2), the management architecture

63

(Section 3), as well as the management protocols (Section
4). Future work is presented in Section 5.

2. MANAGEMENT SCENARIO AND
TASKS

A heterogeneous wireless sensor network consists of different
types of sensor nodes, which might measure different data
and perform different tasks. To operate such a (sub)network
the following devices are required: one management station,
several mesh nodes and a comparatively high number of het-
erogeneous sensor nodes. A possible scenario is shown in
Figure 1.

The sensor nodes might have different sensors for monitoring
the environment. All sensor nodes of one type are able to
communicate with each other and build a sensor subnet.
Many existing sensor platforms have different radio modules
and are thus not able to communicate with each other. The
different subnets are interconnected by wireless mesh nodes.
They provide interfaces for different sensor subnets and act
as gateways. Besides the inter-subnet communication, the
mesh nodes perform management tasks. Each mesh node is
responsible for one or more subnets. Control of the sensor
nodes is done via the management station. The management
station is connected to the mesh nodes via Ethernet or via
IEEE 802.11.

IEEE 802.11

Internet

IEEE 802.3

mangement
station

mangement
station

mesh
node

sensor nodes

Figure 1: A possible management scenario

From the management point of view there are several tasks
required to manage a WSN and its sensor nodes. In gen-
eral we can divide these into four areas: (1) monitoring the
WSN and the sensor nodes, (2) (re)configuring the WSN
and the sensor nodes, (3) updating the sensor nodes and (4)
managing the sensor data.

The monitoring task requires that all sensor nodes in
the several subnets are displayed at the management sta-
tion with all necessary information. This includes sensor
node hardware details (e.g. chip, transceiver), sensor node
software details (e.g. operating system versions), and dy-
namic properties (e.g. battery). The node ID and other
static information is sent when a sensor node joins the net-
work. Additionally the management station may query sen-
sor nodes. The (re)configuration task includes sensor

node configuration and network configuration. Code dis-
tribution mechanisms perform the operating system or the
application updates. Mechanisms to handle incomplete, in-
consistent and failed updates have to be provided.

3. MANAGEMENT ARCHITECTURE
The management architecture contains the following struc-
tural elements: a management station, some mesh nodes
as management nodes, sensor node gateways plugged into a
mesh node, and the different sensor nodes.

3.1 Management Station
The management station is divided into two parts. It con-
sists of a laptop or remote workstation to access a web in-
terface to control the WSN and a mesh node running the
management system for Wireless Mesh Networks (WMNs)
[13] including a web server (shown in Figure 2).

HTTP Server with PHP

Management Station

User Interface
(Web Browser)

WSN
Monitor

WSN
Configurator

Code Update
Manager

CFEngine

Laptop or remote workstation

Management system for WMNs

Mesh
Network

1

2
3

4

Sensor
Nodes

Figure 2: Management station architecture

The communication between the user interface and the
management system for WMNs is done via HTTPS. The
management system for WMNs contains a small Linux
distribution including all required applications, especially a
HTTP server supporting PHP. The HTTP server maintains
several modules to handle the requests and transmit them
to mesh nodes, sensor nodes or CFEngine [14]. Communi-
cation with a mesh node is done via TCP/IP with HTTPS
servers running on the mesh nodes (depicted as 2 in Figure
2). The communication between the management station
and the sensor nodes is done via TCP/IP (depicted as 3 in
Figure 2). For data transmission within the mesh network,
CFEngine is used. The WSN monitor is responsible for
monitoring the whole network. It shows the mesh nodes
with their subordinate sensor nodes including all available
information of the sensor nodes. The user may request in-
formation from a single sensor node. The WSN configu-
rator is responsible for the configuration of the WSN. The
code update manager distributes the uploaded image via
CFEngine. It shows the available program versions and per-
forms the updating process.

3.2 WSN Manager
The WSN manager running on the mesh nodes consists of
the following components: program version database, WSN
information database, sensor database, WSN monitor mod-
ule, WSN configurator module, and code update manager
module (shown in Figure 3). The sensor database stores
all measured data as tuples (node ID, sensor ID, value,

64

Mesh Node

WSN Monitor
Module

WSN Configurator
Module

Code Update
Manager Module

WSN Manager

Mesh
Network 1

4

Program
Version DB

WSN
Information DB

Sensor
Data DB

2Sensor
Node

Gateways

3

6

HTTP Server

5

CFEngine

Figure 3: Mesh node architecture

timestamp). The WSN information database consists
of all infra-structural data. Each entry contains ID, prop-
erty ID, value, and timestamp. The properties are e.g. chip,
transceiver, and battery status. The program version
database stores the versions of all available programs con-
taining program ID, version, target platform, timestamp,
and link to the image. The CFEngine is responsible for
distributing the databases within the mesh network. The
WSN monitor module connects to the WSN information
DB and to the sensor data DB for responding the requests
from the management station. It writes sensor and node
data into the databases. The WSN configurator mod-
ule connects to the WSN information database to read and
write data. It further queries the sensor node properties
and sends commands. The code update manager mod-
ule stores newly uploaded images in the program version
DB. It also updates the sensor nodes. It includes methods
to reduce the distributed code (differential patch, compres-
sion).

3.3 Sensor Node Manager
As shown in Figure 4, the management tasks are handled by
a sensor node manager. It consists of sensor node moni-
tor, sensor node configurator, sensor data sender, and code
updater. The sensor node monitor sends the requested
values to the mesh node. The sensor node configurator
executes the configuration requests and notifies the mesh
node. The code updater receives the image of the appli-
cation or operating system (differential patch, compressed,
or uncompressed) and performs the update. It confirms the
success of the update to the mesh node.

Sensor Node

A
pp

lic
at
io
n

1

Contiki

1Sensor
Nodes

A
pp

lic
at
io
n

2

A
pp

lic
at
io
n

N

S
en
so
r

N
od
e

M
on
ito
r

S
en
so
r

N
od
e

C
on

fig
ur
at
or

C
od
e

up
da
te
r

Sensor Node Manager

Contiki Core

Figure 4: Sensor node architecture

4. WSN MANAGEMENT PROTOCOLS
4.1 WSN Monitoring Protocol
The monitoring protocol enables a management node to get
all information about the network topology, all sensor node
properties and all measured sensor data. It can be divided
into 2 cases: The first case describes how the management
station explores the mesh network and the subordinate sen-
sor node networks. The second case describes the situation
when the user queries a selected sensor directly.

WSN Inf
DB

MANAGEMENT
STATION

WSN
Monitor

MESH NODE

4 2

Sensor
Data DB

WSN Manager
(WSN Monitor Module)

MESH NETWORK

CFEngine WSN Inf
DB

MESH NODE

4 2

Sensor
Data DB

WSN Manager
(WSN Monitor Module)

CFEngine

3
1

Figure 5: WSN monitor queries the mesh nodes

When the management station joins the mesh network, it
connects to the next available mesh node. Because the in-
formation is distributed using CFEngine within the mesh
network, the information about the WSN topology of distant
mesh nodes is several minutes old. In order to receive the
actual topology, the management station queries all other
mesh nodes (Figure 5). The protocol works as follows: (1)
The management station queries all mesh nodes about their
subordinated sensor nodes. (2) The WSN monitor modules
queries the WSN information DB. (3) The management sta-
tion requests the current sensor data of every subordinated
sensor node. (4) The WSN monitor module queries the sen-
sor data DB.

WSN Inf
DB

MANAGEMENT
STATION

WSN
Monitor

MESH NODE

Sensor
Data DB

WSN Manager
(WSN Monitor Module)

MESH NETWORK

CFEngine

SENSOR NODE
GATEWAY

SENSOR
NODE

1

2

43

5

Figure 6: User requests sensor node information di-
rectly

The second case is shown in Figure 6 and works as follows:
(1) The user requests either sensor node information or sen-
sor data from a single sensor node or from a group of sen-
sor nodes. The request is transmitted via a unicast, multi-
cast or broadcast transport protocol to the queried sensor
nodes. (2) The sensor sends the requested information back
to the mesh node. (3) The WSN manager module writes the
new information into the according database. (4) It copies
the information to CFEngine which distributes it within the
WMN. (5) The WSN sends a confirmation to the WSN mon-
itor.

65

4.2 WSN Configuration Protocol
With the WSN configuration protocol the properties of the
sensor nodes as well as the network can be configured. Ex-
amples are changing sensing intervals or routing tables. It
works similar as the WSN monitoring described in 4.1. The
request message contains a configuration command.

When a new sensor node joins the following tasks are per-
formed (see Figure 7): (1) First, it broadcasts a ’Hello’ mes-
sage to the WSN configurator module. (2) An initial net-
work configuration is negotiated. Then all available infor-
mation of the sensor node is requested. (3) The sensor node
is registered in the WSN information DB. (4) All available
information is propagated to CFEngine for distribution.

WSN Inf
DB

MESH NODE

WSN Manager
(WSN Configurator Module)

CFEngin
e

SENSOR NODE
GATEWAY

SENSOR
NODE

1

43
2

Figure 7: A new sensor node joins the sensor net-
work

4.3 Code Update Protocol
The code update protocol contains mechanisms to upload
and distribute the images within the mesh network, notify-
ing the management station about the available programs,
and performing the update. The new image of an appli-
cation or the operating system is uploaded and stored in
the program version database and distributed within the
WMN. The management station is notified which programs
are available in the program version database.

MESH NETWORK

CFEngine Program
Version DB

MANAGEMENT
STATION

Code Update
Manager

MESH NODE
CFEngine

2

SENSOR NODE
GATEWAY

SENSOR
NODE

4

6

5
WSN Inf
DB

3

WSN Manager
(Code Update Manager Module)

1

7

8

Figure 8: The user initiates the code update for the
sensor node

Figure 8 shows the update process of the sensor nodes: (1)
The program version and the sensor nodes are selected. The
code update manager sends this request to the concerned
mesh nodes. (2) The installed program version is checked
by querying the WSN information DB. (3) A patch is gen-
erated from the old and new image. (4) This is sent to the
selected sensor nodes. (5) On the sensor node the update is
installed. (6) The update is acknowledged. (7) The WSN
information DB is updated. (8) The management station is
notified about the success.

5. FUTURE WORK
After defining the management architecture and selecting
the appropriate sensor node platforms and operating sys-
tem, the next tasks concern the implementation of the sen-
sor node management architecture. Other important tasks
are the development of reliable communication mechanisms
for WSNs. This includes reliable transport protocols for
unicast, multicast and broadcast communication. The next
step is to develop a reliable point-to-point transport proto-
col. In detail, the Contiki TCP stack for Distributed TCP
Caching (DTC) [15] mechanism and TCP Support for Sen-
sor networks (TSS) [7] will be extended.

6. REFERENCES
[1] J. Schiller, A. Liers, H. Ritter, R. Winter, Th. Voigt.

ScatterWeb Low Power Sensor Nodes and Energy
Aware Routing. HICSS-38, Hawaii, USA, Jan 2005.

[2] Tmote SKY. http://www.moteiv.com. Last visit 04.07.

[3] J. Beutel, M. Dyer, M. Hinz, L. Meier, M. Ringwald.
Next-generation prototyping of sensor networks.
SenSys’04, Baltimore, USA, Nov 2004.

[4] J. Hill, D. Culler. MICA: A Wireless Platform for
Deeply Embedded Networks. IEEE Micro, November
2002.

[5] WRAP. http://www.pcengines.ch. Last visit 04.07.

[6] A. Dunkels, B. Grönvall, Th. Voigt. Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. 1st IEEE Workshop on Embedded
Networked Sensors, Tampa, USA, Nov 2004.

[7] T. Braun, T. Voigt, A. Dunkels. TCP Support for
Sensor Networks. IEEE/IFIP (WONS 2007), Obergurgl,
Austria, Jan 2007.

[8] L. Ruiz, J. Nogueira, A. Loureiro. Manna: A
management architecture for wireless sensor networks
IEEE Communications Magazine, Vol. 41, No. 2, Feb
2003, pp. 116-125.

[9] P. Marron, A. Lachenmann, D. Minder, M. Gauger,
O. Saukh, K. Rothermel. Management and configuration
issues for sensor networks Int. Journal of Network
Management, Vol. 15, 2005, pp. 235-253.

[10] M. Dyer, J. Beutel, L. Thiele, T. Kalt, P. Oehen,
K. Martin, P. Blum. Deployment Support Network - A
Toolkit for the Development of WSNs EWSN’07, Delft,
Jan 2007.

[11] K. Aberer, G. Alonso, D. Kossmann. Data
Management for a Smart Earth. SIGMOD Record, Vol.
35, No. 4, Dec 2006.

[12] C. Han, R. Kumar, R. Shea, M. Srivastava. Sensor
network software update management: a survey. Int.
Journal of Network Management, Vol. 15, 2005, pp.
283-294.

[13] T. Staub, D. Balsiger, M. Lustenberger, T. Braun.
Secure Remote Management and Software Distribution
for Wireless Mesh Networks ASWN’07, Santander,
Spain, May 2007.

[14] Cfengine. http://www.cfengine.org. Last visit 04.07.

[15] A. Dunkels, T. Voigt, H. Ritter, and J. Alonso.
Distributed TCP Caching for Wireless Sensor Networks.
Annual Mediterranean Ad Hoc Networking Workshop,
Bodrum, Turkey, Jun 2004.

66

Verteiltes Sniffen von IEEE 802.15.4 Netzen unter
Zuhilfenahme eines WLAN ad-hoc Netzwerks

Lasse Thiem und Klaus Scholl
Fraunhofer Institut für Offene Kommunikationssysteme (FOKUS)

Kaiserin Augusta Allee 31
10589 Berlin

Germany
+ 49 (0)30 3463 7297

{Lasse.Thiem, Klaus.Scholl}@fokus.fraunhofer.de

ZUSAMMENFASSUNG
In diesem Papier werden aktuelle Arbeiten des Fraunhofer

Institutes für offene Kommunikationssysteme FOKUS zum

verteilten Sniffen von IEEE 802.15.4 Netzen vorgestellt. Dabei

wird sowohl auf einen verteilten Ansatz unter Nutzung von

WLAN als ad-hoc Steuerungsnetz als auch auf die Visualisierung

der gemessenen Daten eingegangen. Der beschriebene Ansatz

sieht dabei vor, verschiedene Sensornetzwerkprotokolle auf Basis

von IEEE 802.15.4 zu unterstützen.

Schlüsselwörter
WLAN, TinyOS, IEEE 802.15.4, Sniffing, Wireless Sensor

Networks, Visualisierung, Interferenzen, Ad- Hoc

1. EINLEITUNG
Im Bereich der drahtlosen Sensornetzwerke wird seit einigen

Jahren innerhalb einer großen Gemeinde weltweit geforscht.

Schwerpunkte sind dabei ad-hoc Protokolle, Energieeinsparung

und sich selbst konfigurierende Netze. Auf Seiten der

erforderlichen Laufzeitumgebungen und Software-Architekturen

für Sensornetze gibt es ebenfalls bereits einige brauchbare

Lösungen. Das Angebot an geeigneten Management-Tools für die

Installation, Konfiguration und Fehlerüberwachung von

Sensornetzen ist dabei noch eher dürftig. Ein Großteil der

zukünftigen Endkunden wollen Sensornetzwerke in erster Linie

schnell, zuverlässig und einfach nutzen, ohne sich näher mit den

internen Details beschäftigen zu müssen [1]. Aus diesem Grund

müssen geeignete Tools zur Installation und Wartung entwickelt

werden, die es Service Technikern ermöglichen, vor Ort

schnellstmöglich Wartungsaufgaben zu übernehmen und

eventuell anfallende Probleme zu lösen. Der vorliegende Artikel

stellt hierfür ein intelligentes System zum verteilten Sniffing und

Visualisieren von Sensornetzwerken unter Zuhilfenahme von

WLAN vor. Problematisch ist hier vor allem der parallele Betrieb

der beiden Funksysteme. Aus diesem Grund wird zunächst auf die

grundsätzliche Interferenz-Problematik zwischen WLAN und

IEEE 802.15.4 eingegangen und eine Methode zur Vermeidung

dieser Probleme erläutert, um dann das System-Konzept

vorzustellen.

2. WLAN/ IEEE 802.15.4 INTERFERENZEN
Grundsätzlich stehen IEEE 802.15.4 [3] und IEEE 802.11b

(WLAN) [4] nicht in direkter Konkurrenz zueinander. WLAN

wurde zur Vernetzung von Computern mit hohen

Datendurchsätzen entwickelt. IEEE 802.15.4 dagegen ist für

batteriebetriebene Kleinstsysteme zum Steuern und Monitoren

ausgelegt. Des Weiteren legen Knoten in IEEE 802.15.4

Schlafperioden ein, um so lange Batterielaufzeiten zu

ermöglichen. Dauerhaftes Streaming von Daten wie bei WLAN

ist hier nicht vorgesehen.

Da beide Übertragungstechniken im freien ISM-Band (Industrial,

Scientific and Medical [5]) bei 2,4 GHz arbeiten, ergeben sich

zwangläufig Interferenzen beider Systeme. Dabei werden

IEEE 802.15.4 Systeme eindeutig stärker von WLAN beeinflusst

als umgekehrt. Die Hauptursache hierfür stellt die deutlich höhere

Sendeleistung von WLAN von bis zu 100 mW im Gegensatz zu

IEEE 802.15.4 mit 1 mW dar. In ersten Messungen wurde

untersucht, ob trotz der beschriebenen Problematik ein paralleler

Betrieb beider Systeme möglich ist.

Eine grundsätzliche Möglichkeit Störungen dieser Art zu

minimieren, liegt darin, den Kanal bei zu schlechten

Übertragungsraten ähnlich dem Verfahren des

Frequenzsprungverfahren (Frequency Hopping) zu wechseln.

Grundsätzlich ist dies in den beiden Standards IEEE 802.15.4 und

IEEE 802.11b nicht vorgesehen. Andere Übertragungsverfahren

wie z. B. Bluetooth [6] zeichnen sich dadurch aus, dass sie diese

Technik nutzen, um ihren Kanal zu spreizen und somit

unanfälliger gegen externe Störer zu sein. Der mit diesem

Verfahren entstehende höhere Kommunikationsaufwand für die

Koordination der Kanalwechsel wirkt sich negativ auf die

Energiebilanz aus. Dies ist zumindest in den IEEE 802.15.4

Netzwerken nicht erstrebenswert. Sollte dennoch ein

Frequenzsprungverfahren erwünscht sein, kann dies in den

überliegenden Schichten durch eine geeignete dynamische Wahl

der Kanäle realisiert werden.

2.1 Übersicht über 2,4 GHz Kanäle
Wie in Abbildung 1 zu erkennen ist, sind alle IEEE 802.15.4

Kanäle in Europa vollständig von den WLAN Kanälen überdeckt.

Abbildung 1: Kanalübersicht von IEEE 802.15.4 und WLAN

Für einen möglichst reibungslosen Betrieb empfiehlt der

IEEE 802.11b Standard den Betrieb der drei „überlappungsfreien“

67

Kanäle 1, 7 und 13 in Europa und Japan und die Kanäle 1, 6 und

11 in den USA. Daraus ergibt sich die Möglichkeit, einige

IEEE 802.15.4 Kanäle ohne den Einfluss von WLAN zu nutzen.

2.2 Interferenzmessungen
Zur Untersuchung der am Anfang von Kapitel 2 beschriebenen

Problematik wurden zunächst Messungen in einem kontrollierten

Umfeld durchgeführt. Dabei wurden sowohl eine WLAN- als

auch eine IEEE 802.15.4 Funkstrecke aufgebaut.

2.2.1 Messaufbau
In Abbildung 2 ist der genaue Messaufbau mit den jeweiligen

Entfernungen der einzelnen Kommunikationspartner dargestellt.

Dabei wurde durch die Übertragung eines Videos eine möglichst

hohe Auslastung auf der WLAN-Strecke erzeugt. Die

Datenpakete der IEEE 802.15.4 Schnittstelle hatten eine Länge

von 50 Bytes und tauschten im Roundtrip-Verfahren diese in

einem zeitlichen Abstand von einer Sekunde fortlaufend aus.

Abbildung 2: Messaufbau zu Interferenzmessungen [12]

2.2.2 Messergebnisse
Folgend werden einige der Messergebnisse vorgestellt. Zunächst

wurden Messungen von völlig überlappenden IEEE 802.11b und

IEEE 802.15.4 Kanälen durchgeführt. Die IEEE 802.15.4

Funkstrecke wurde dabei sehr stark von der WLAN Strecke

beeinflusst. In der Tabelle 1 sind die Messergebnisse dargestellt,

diese beziehen sich jeweils auf die Übertragung von 500 Paketen.

Tabelle 1: Messergebnisse WLAN und IEEE 802.15.4

WLAN Kanal 7 und IEEE802.15.4 Kanal 18

Empfangen 2%

Verloren 98%

Tabelle 2: Messergebnisse WLAN und IEEE 802.15.4

WLAN Kanal 7 und IEEE 802.15.4 Kanal 16

Empfangen 99%

Verloren 1%

Bei den folgenden Messungen wurden die IEEE 802.15.4 und

WLAN Kanäle in ihrer Sendefrequenz immer weiter voneinander

entfernt. Dabei wurde festgestellt, dass auch bei einer noch

geringen Überlappung der Kanäle eine relativ sichere

Kommunikation in einem IEEE 802.15.4 Netzwerk möglich ist

(siehe auch Tabelle 2 und Abbildung 3)

Abbildung 3: Aufnahmen des Spektrum-Analyzers für WLAN

und IEEE802.15.4 [7]

3. AUFBAU
In diesem Kapitel soll kurz auf den Aufbau des Systems zum

Sniffing von IEEE 802.15.4 Netzen eingegangen werden.

Mögliche Lösungsansätze zur Vermeidung der oben

beschriebenen Problematik der Interferenzen und zum Aufbau

eines ad-hoc Steuerungs- und Kontrollnetzes auf Basis von

WLAN sind ebenfalls enthalten.

3.1 Lösung der Interferenzproblematik
Um das Problem der Frequenzüberlagerung zu vermeiden, sind

dynamische Wechsel der WLAN-Kanäle entsprechend des aktuell

gewählten IEEE 802.15.4 Kanals erforderlich. Hierfür wird mit

der Auswahl eines IEEE 802.15.4 Kanals ein entgegengesetzt

liegender WLAN-Kanal ausgewählt. Dadurch liegen die

Frequenzen beider Übertragungstechniken weit genug

auseinander, um Interferenzen zu vermeiden. Der parallele

Betrieb des WLAN Steuerungsnetzes und des vom

Sensornetzwerk genutzen IEEE 802.15.4 Netzes ist somit

gewährleistet.

3.2 Programm
Das entwickelte System besteht aus zwei Programmteilen bzw.

Komponenten. Ein Teil (Mesh Cube[2], s. 4.3) ist für den

Funkverkehr zuständig. Dieser ist für das Empfangen der Pakete

des Sensornetzes durch ein angeschlossenes IEEE 802.15.4

Modem verantwortlich (siehe hierzu 4.2) und ermöglicht das

Weiterleiten der ermittelten Daten über WLAN. Der zweite Teil

stellt das Endgerät dar, das für die Analyse und Visualisierung der

Daten durch eine Benutzerschnittstelle zuständig ist.

Alle vom Mesh Cube empfangenen Pakete werden in der

Benutzerschnittstelle analysiert, in einem Packet Store gespeichert

und je nach Einstellung in verschiedenen View-Areas visualisiert.

Gleichzeitig besteht die Möglichkeit, über einen Control-Bereich

Pakete über den Mesh Cube in das Sensornetz einzubringen, um

regulativ in das Netzwerk einzugreifen.

Reicht die räumliche Verteilung des Sensornetzes über den

Bereich eines Mesh Cubes hinaus, besteht die Möglichkeit,

mehrere Mesh Cubes in die Umgebung des Sensornetzwerks

einzubringen und so die gesamte räumliche Ausdehnung des

68

Netzwerks abzudecken. In einem solchen Fall bilden die Systeme

untereinander ein Netzwerk, bei dem an einer zentralen Stelle auf

die vollständige Umgebung aller eingesetzten Mesh Cubes

zugegriffen werden kann.

4. AUSARBEITUNGEN
In diesem Kapitel wird die grafische Benutzerschnittstelle des

Systems kurz dargestellt.

4.1 Benutzerschnittstelle
Innerhalb der Benutzerschnittstelle werden alle im

Sensornetzwerk relevanten Daten visualisiert. Diese sind in 5

Bereiche (siehe auch Abbildung 4) aufgeteilt:

1. PAN-View:

Die PAN-View bildet den zentralen Teil der

Benutzerschnittstelle. Hier werden alle Sensorknoten,

unabhängig vom verwendeten Protokoll, durch

typspezifische Icons und Verbindungen zwischen einzelnen

Knoten durch Kanten dargestellt. Informationen zu einzelnen

Knoten können hier zusätzlich abgerufen werden.

2. PAN-List

In der PAN-List werden alle im Umfeld erkannten PANs

aufgelistet. Gleichzeitig wird für jedes PAN der Protokolltyp

der enthaltenen Sensorknoten gespeichert und für spätere

Analysen zur Verfügung gestellt.

Des Weiteren dient die Liste als Filter für den PAN-View.

Die zu einem PAN gehörigen Nodes können hier durch

Markierung aus der View ausgeblendet werden.

3. Packet-List

Alle im Betrieb gesnifften Pakete werden in einer Packet-

List aufgeführt. An dieser Stelle führt das Programm eine

Voranalyse zum verwendeten Protokoll durch und listet

abhängig vom erkannten Protokoll Angaben zum Ursprung,

Ziel, Typ und Inhalt des Pakets auf. Durch Auswahl eines

gewünschten Pakets, wird dieses in den Packet-Details-

Bereich übernommen.

4. Packet-Details

Gewählte Pakete werden in diesem Bereich gemäß dem

verwendeten Protokoll detailliert aufgeschlüsselt. Der

komplette Inhalt wird den einzelnen OSI-Layern

entsprechend aufgeteilt, und die in den Bytes enthaltenen

Codes als Klartext ausgegeben.

5. Control-Panel

Das Control-Panel bildet den zweiten Hauptteil der

Benutzerschnittstelle. Dem Benutzer bietet sich hier die

Möglichkeit, das Sniffing ein- oder auszuschalten, durch

Versenden eigener Pakete in das Sensornetz einzugreifen

oder das System in ein Netzwerk aus mehreren Mesh Cubes

zum verteilten Sniffen zu integrieren.

Die Benutzerschnittstelle bietet dem User einen zentralen

Anlaufpunkt, um das umgebende Sensornetz zu analysieren, zu

visualisieren und zu managen. Die Struktur eines Netzes kann von

hier aus beeinflusst und umkonfiguriert werden. Eventuell

vorhandene Fehler können somit durch aktives Eingreifen des

Benutzers oder automatisiert durch einen Algorithmus behoben

werden.

Weiterhin bietet die Applikation die Möglichkeit, als zentraler

Server eines verteilten Sniffing-Netzwerks zu fungieren und/oder

sich als Client bei einem anderen Server anzumelden. In letzterem

Fall werden alle analysierten Strukturen und empfangenen Pakete

an den Server weitergeleitet, der dann mit den Informationen

mehrerer Clients ein Netzwerk in seinem vollen Umfang

darstellen kann.

Abbildung 4: Benutzerschnittstelle

4.2 Sensorknoten
Als Kommunikationsschnittstelle zwischen dem Mesh Cube und

dem Sensornetz kommt ein IEEE 802.15.4 USB-Dongle

(CompXS, [9]) zum Einsatz. Dieser kann an den Mesh Cube über

eine USB-Schnittstelle angeschlossen werden und diesen somit in

die Lage versetzten, auf einem frei wählbaren IEEE 802.15.4

Kanal die dort gesendeten Pakete zu empfangen und an das

verarbeitende System weiterzuleiten. Weiterhin können vom

System generierte Pakete entgegengenommen werden und über

den gewählten Kanal versendet werden.

Das Protokoll der verwendeten Sensorknoten spielt hier keine

entscheidende Rolle, da das System so programmiert wurde, dass

anhand der empfangenen Pakete ein Protokolltyp für das

entsprechende PAN eingestellt wird und anhand diesem

empfangende Pakete analysiert und zu sendende Pakete generiert

werden können.

Unterstützt werden bisher die Protokolle von ZigBee [10], das

TinyOS Message-Format [11] und Formate von 6lowpan [13].

Andere Protokolle sind über ein modular aufgebautes System

problemlos integrierbar. Hierzu muss lediglich eine Adapterklasse

für das neue Protokoll ergänzt werden.

4.3 Mesh Cube
Der Mesh Cube besteht aus zwei Komponenten. Zum einen

enthält er eine USB-Schnittstelle, an die der in Abschnitt 4.2

beschriebene IEEE 802.15.4-Dongle, der zum Empfangen und

Senden von Paketen dient, angeschlossen werden kann. Zum

anderen beinhaltet er eine WLAN-Schnittstelle, an der sich ein

mobiler Client anmelden kann. Dieser erhält über den Mesh Cube

eine Zugriffsmöglichkeit über Port 80 auf eine

Benutzerschnittstelle. Diese Schnittstelle bietet die Möglichkeit,

auf das komplette Sensornetz zuzugreifen und dieses zu

analysieren und zu manipulieren.

69

Als Betriebssystem kommt ein frei verfügbares Linux zum

Einsatz, welches an eigene Besonderheiten angepasst werden

kann. Ein Batteriebetrieb ist mit einem vertretbaren Aufwand über

ein Zeitraum von bis zu einer Stunde möglich. Selbstverständlich

kann der Mesh Cube auch über das Stromnetz versorgt werden.

Abbildung 5: Mesh Cube der Firma 4G Systems

Eine Besonderheit der Mesh Cubes ist die Möglichkeit eines sehr

flexiblen Aufbaus eines WLAN-Netzes. Die hieraus entstehenden

Vorteile können zur Vermeidung von Interferenzen mit IEEE

802.15.4 Netzen voll genutzt werden. So ist das System darauf

ausgelegt, den Frequenzunterschied zwischen dem verwendeten

WLAN und dem IEEE 802.15.4 Kanal so groß wie möglich zu

wählen und zu halten.

Des Weiteren kann bei entsprechend guter WLAN-Verbindung

die Sendeleistung auf ein Minimum reduziert werden, wodurch

eine noch sicherere Kommunikation ermöglicht wird.

5. SCHLUSSFOLGERUNG
In diesem Artikel wurde eine Möglichkeit des verteilten Sniffens

von IEEE 802.15.4 Netzen unter Zuhilfenahme eines WLAN Ad-

hoc Netzwerks vorgestellt, das die Visualisierung von

Netzwerken verschiedenster Protokolle ermöglicht und somit vor

allem für den Servicebereich von Sensornetzwerken in Zukunft

von Interesse sein könnte.

Des Weiteren kann durch die entwickelte Architektur auch eine

Verlängerung der Reichweiten durch WLAN positiv für die

Sensornetzwerke genutzt werden. Wie gezeigt werden konnte, ist

der parallele Betrieb von WLAN und IEEE 802.15.4 Netzwerken

bei einem intelligenten Management der Kanäle ohne

Interferenzen möglich.

Einen zusätzlichen Vorteil stellt die Bandbreite des WLAN dar.

So könnte z. B. ein Sniffing Device als Datensenke für mehrere

Teilnetze dienen und die Daten an andere Komponenten über die

von WLAN zur Verfügung gestellte Bandbreite weiterleiten.

6. REFERENZEN
[1] Prof. Gober, P. und Thiem, L. Making your smart home with

ZigBee. IPQC Workshop Wireless Sensornetworks, Nov

2005

[2] MeshCube Homepage, 4G Systeme GmbH,

http://www.meshcube.org, Mai 2007

[3] IEEE 802.15.4.4 – Homepage, The Institute of Electrical and

Electronics Engineers, Inc., Februar 2007,

http://www.ieee802.org/15/pub/TG4.html IEEE 802.11b

Standard

[4] IEEE 802.11TM WIRELESS LOCAL AREA NETWORKS

Homepage, Institute of Electrical and Electronics Engineers,

Inc., http://grouper.ieee.org/groups/802/11/, 2007

[5] Bundesnetzagentur, Allgemeinzuteilung von Frequenzen in

den Frequenzteilbereichen gemäß

Frequenzbereichszuweisungsplanverordnung (FreqBZPV),

Vfg 76 / 2003

[6] The Official Membership Site – Homepage, Bluetooth® SIG

Inc., Februar 2007, http://www.bluetooth.org

[7] Eisenreich, A., Thiem, L., Koexistenz nicht gewährleistet,

funkschau 25/2006, WEKA Fachzeitschriften-Verlag GmbH

[8] Shin, S. Y., Park, H. S., Choi, S. und Kwon, H., Packet Error

Rate Analysis of IEEE 802.15.4 under IEEE 802.11b

Interference, Workshop. on Wired/Wireless Internet

Communications, April, 2005, Phoenix, Arizona, USA

[9] CompXS Homepage, Integration Associates, Inc.,

http://www.integration.com , 2007

[10] ZigBee Homepage, Zigbee Alliance, http://www.zigbee.org,

2007

[11] TinyOS Homepage, UC Berkeley, http://www.tinyos.net,

2007

[12] Eisenreich, A., Interoperabilität zwischen ZigBee und

WLAN im 2,4 GHz ISM-Band, Diplomarbeit TFH Berlin,

August 2006

[13] 6lowpan Homepage, Ajou University, http://6lowpan.net/,

2007

70

Smart Composition of Sensor Network Applications

Stefan Schmitz, Olaf Landsiedel, Klaus Wehrle
RWTH Aachen University, Distributed Systems Group

Aachen, Germany
stefan.schmitz2@rwth-aachen.de, [olaf.landsiedel, klaus.wehrle]@cs.rwth-aachen.de

ABSTRACT
Sensor Networks have received much attention in Computer
Networks research in the recent years. They are small, long
living, need no infrastructure and can communicate with
each other. Therefore actual projects using sensor networks
cover a wide range of applications. In architecture they are
used to monitor buldings or bridges or they help observing
natural environments in biology. Most of the intended oper-
ators of sensor network deployments are without computer
science background. Thus, it is quite hard for them to use
the currently provided tools to develop sensor node appli-
cations. The goal of this research project is to provide a
intuitive tool which supports the user to create sensor net-
work applications. Based on the application needs the user
can compose the components provided by the sensor node
operating system. Afterwards the tool can create a source
code framework automatically which the user can fill with
the detailed application behaviour.

1. INTRODUCTION
TinyOS 2.x [6] is an operating system for sensor nodes. Pro-
grams for sensor nodes must be very limited in their use of
memory and computation time (i.e. power consumption).
They must be stable running for a long period (about years)
of time. Therefore, TinyOS is not programmed in a com-
mon computer language like ANSI C but in a extension to
it called nesC [2]. With the extensions a programmer can –
amongst others – implement modular and structured appli-
cations with strictly defined interfaces between each module.
That is a good entry point to meet sensor nodes hardware
and programming restrictions. The TinyOS operation sys-
tem itself gives a lot of predefined and hierarchical struc-
tured [5] modules to an application designer. The modules
(called components in TinyOS) provide or use specific func-
tionality of other components. A component can expose
such a specific functionality via an abstract interface. In-
terfaces define events that are a kind of callback functions
which a using component must implement and commands
are functions that initiating arbitrary calculation like com-
mon programming languages functions or method calls will
do. A component in TinyOS is either a configuration or
module. A configuration specifies a certain (part of an) ap-
plication. It groups other components and defines the so
called wiring between components. A wiring defines which
interfaces connect two components. Finally the modules
hold the “functionality” of a program, such as the work-
ing code like calculations and calls to commands of other
interfaces.

Figure 1: Diagram of the Blink application

Figure 1 shows a graphical represetation of a typical sample
application Blink which consists of four components in de-
tail: one module (BlinkC) and three configurations (MainC,
LedC, TimerMilliC). The interfaces are depicted as rectan-
gles with small triangles on the outside edge. The triangles
are symbols for an event (triangle point outside) or a com-
mand (points inside) of an interface. The interfaces itself
are at top or bottom of a component depending if they are
used or provided. The arrows between the interfaces are
showing the actual wiring for the BlinkAppC configuration.
This graphical representation is based on the typical repre-
sentation of TinyOS components [3].

2. MOTIVATION
As discussed nesC gives advantage to the experienced de-
veloper to implement stable and small applications but it is
quite hard to get used to nesC. Especially people with no
computer science background like biologists or others that
want to implement sensor nodes can get into some trouble.
It is hard to learn the concepts and much code browsing to
find all required information even for the simplest applica-
tion is needed. Thus, the idea was to give such newbies but
also experienced developers a guidiance in developing sen-
sor node applications. To demonstrate how the information
is spread over many files listing 1 gives a short overview of
involved files and their source code.

A graphical user interface is very helpful for development
because one basic design task is to group different compo-

71

nents and to plug them together. On the one side such tool
can display information which is spread over many files in
a compact and well arranged way. On the other side the
user can compose applications, do manipulations and define
configurations according to his needs. A smart interface can
guide his actions and avoid errors. For example, it can re-
strict certain actions such as connecting (wiring) interfaces
that match in type. Current available graphical tools and
application for development help the user while browsing
the application and system code and do syntax highlighting
of source codes, but do not offer generation of applications
in a graphical way [7].

After such a restricted and guided design step the tool gen-
erates source code. In this phase a smart implementation
can provide additional benefits. For example, if a module
uses the interface Timer it must implement a Timer.fired

event (that is the callback method for a started timer). All
this can cause compilation errors and interfere with the de-
velopment. However it could be avoided by knowing the
structural context of an application.

/∗ BlinkAppC . nc ∗/
c on f i g u r a t i on BlinkAppC { }
implementation {

components MainC , BlinkC , LedsC ;
components new TimerMil l iC () as Timer0 ;
BlinkC . Boot −> MainC ;
BlinkC . Timer0 −> Timer0 ;
BlinkC . Leds −> LedsC ;}

/∗ BlinkC . nc ∗/
module BlinkC {

uses i n t e r f a c e Timer<TMil l i> as Timer0 ;
uses i n t e r f a c e Leds ;
uses i n t e r f a c e Boot ;

} implementation {
event void Boot . booted () {

c a l l Timer0 . s t a r tP e r i o d i c (250) ; }
event void Timer0 . f i r e d () {

c a l l Leds . l ed0Toggle () ; } }
/∗ Timer . nc ∗/
i n t e r f a c e Timer {

command void s t a r tP e r i o d i c (u i n t 32 t dt) ;
event void f i r e d () ; /∗ . . . ∗/ }

Listing 1: Code for sample application Blink
only main parts

3. EDITOR DESIGN
The goal of this research project is to implement a tool which
gives advanced support and guidance to a sensor node appli-
cation designer. It must integrate into the existing toolchain
of the TinyOS environment to provide up-to-dateness with
the constant development in that research topic. Addition-
ally, it must produce an error-free source framework with all
information a user can graphically express. Figure 2 shows
an actual screenshot of the current version of the editor de-
veloped in this project.

3.1 Tool Architecture
The architecture of the editor is quite straight-forward. At
first it parses the TinyOS environment to generate abstract
syntax trees (AST) of the existing components and inter-
faces in the TinyOS system folder. This is done only once
(or if the user demands after an update). The created li-
brary of components is provided to the user as basic building

blocks of his new design. After that the graphical editing
process begins. The user can create an own configuration
as top level part for his new application. From a toolbar he
can add some of the components or new modules into his
configuration and then wire them up. When he finished his
work he can generate the source code files for his design.
The files contain all necessary parts and the user just has
to fill the missing module implemetation parts in the newly
created modules. After this has been done the compilation
can be initiated and the new sensor node application can be
loaded to the nodes.

The graphical user interface must be stable running and
user-friendly. Therefore, we decided to implement it in the
Eclipse Environment [1]. Eclipse provides a generic Inte-
grated Development Environment (IDE) with a quite com-
mon feature set like menues, toolbars and views and some
new features like workspaces, plugins and perspectives which
enhance the design and implementation process. Eclipse is
highly customizable and gives developers many entry point
for new plugins and features.

To implement the graphical part of the editor the Eclipse
Project Graphical Editor Framework (GEF) is used [4]. It
provides a framework designed for graphical editors based
on generic models. Much features like user feedback, generic
layouting, zooming and toolbars give powerful techniques to
an editor developer. The GEF is strictly designed using
the Model View Controller paradigm. All these help an
experienced developer to create new fetures very fast and
stable. The user interfaces created with GEF are additionaly
very intuitive to handle for users.

3.2 Workflow Example
To demonstrate the ease of use of such an editor we de-
scribe a typical design process in this section (see figure 3).
The sensor node application designer starts the eclipse en-
vironment and selects to create a new TinyOSDiagram via
a creation wizard. Doing so changes automatically to the
TinyOS Perspective which changes the layout of the Eclipse
IDE to the needs of the user. The Editor changes to an
empty graphical workspace with a toolbar for creation tools
and libray components. An outline view shows the struc-
ture of the current design. At bottom a view shows actual
source code. The user can create a new configuration at
the empty workspace by just selecting the “New Configu-
ration” tool at the toolbar (figure 3(a)). He can rename
it e.g. BlinkAppC (figure 3(b)) and then add a MainC, a
TimerMilliC and a LedsC component from the toolbar (fig-
ure 3(d)). To add functionality he then creates a new mod-
ule inside the BlinkAppC called BlinkC. At this point he has
only to do some wiring to make the components work to-
gether. He can easily drag e.g. the Timer interface from the
TimerMilliC component to the BlinkC module (figure 3(e)).
He repeats this step and wires all interfaces with the BlinkC

module. Now he can generate the source code and gets the
complete source code file BlinkAppC.nc like in listing 1. This
source code is complete and must not be changed anymore
by the user. All information was collected within the design
process. Additionaly a skeleton similar to BlinkC.nc (the
implementation of the functions are empty) wil be created.
There the user has just to fill in what to do after booted

and when the timer is fired.

72

Figure 2: Screenshot of application

4. CONCLUSIONS
This paper presented a tool with which users can intuitivly
design sensor network applications. It is integrated as plugin
into the Eclipse Integrated Development Environment. Ad-
ditionally, a framework for graphical editing is used. First
the tool analyses the TinyOS environment to collect all com-
ponents and interfaces the system provides. The plugin
shows the available components to the developer. The user
can plug these components togehter and wire them up in
an intuitive way. After this design step he can generate an
apropriate code framework as starting point for the imple-
mentation of the detailed application behavior.

A smart user interface can strongly improve the design pro-
cess of sensor node applications. The user can implement
simple programs in the manner of wake up, sense, anaylze
data, sleep very fast and without writing much code. This
gives especially new and inexperienced designers an easier
entry point for sensor node applications and can enlarge the
audience for this actual research topic. Experienced develop-
ers can also get benefit by avoiding errors at design time like
forgetting to implement events or type mismatch of wired
interfaces. Additionally, they can keep an overview of bigger
projects by making use of the browsing capabilities.

The current implementation allows to create new and browse
existing components and see its included components (in
case of a configuration), provided and used interfaces and
wirings in its context. Thus, there is a parser for nesC source
code. The user can add interfaces by dragging of an existing
interface to the target component with automatic wiring
or add new interfaces to an component and wire them up
manually. Next steps are code generation and optimizations
of the user interface.

5. REFERENCES
[1] Eclipse. www.eclipse.org.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach
to networked embedded systems. Proceedings of
Programming Language Design and Implementation
(PLDI), June 2003.

[3] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC Language: A Holistic
Approach to Networked Embedded Systems. In
Proceedings of Programming Language Design and
Implementation (PLDI’03), June 2003.

[4] Graphical editor framework. www.eclipse.org/gef.

[5] V. Handziski, J.Polastre, J.H.Hauer, C.Sharp,
A.Wolisz, and D.Culler. Flexible hardware abstraction
for wireless sensor networks. Proceedings of the 2nd
European Workshop on Wireless Sensor Networks
(EWSN 2005), January 2005.

[6] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The emergence of
networking abstractions and techniques in tinyos.
Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI
2004), March 2004.

[7] Tinyos plugin for eclipse. dcg.ethz.ch/projects/tos ide.

73

(a) Begin of design (b) Renaming configuration (c) Adding main user module

(d) Adding additional components (e) Wiring up components

Figure 3: Example sensor node application design steps.

74

Geographic Routing in 3D

Matthias Witt and Volker Turau
Hamburg University of Technology

Institute of Telematics
Schwarzenbergstr. 95, 21073 Hamburg, Germany

{matthias.witt,turau}@tuhh.de

ABSTRACT
Existing geographic routing algorithms assume a two-dimen-
sional topology. Dedicated wireless sensor network scenar-
ios demand for algorithms that operate in three-dimensional
environments. This paper discusses issues which arise when
making the step from 2D to 3D. Simulation studies show
that 3D routing is less efficient than its 2D counterpart when
comparing topologies with the same average node degree.

1. INTRODUCTION
Geographic routing algorithms forward messages using loca-
tion information rather than node addresses. Each node is
aware of its position via GPS or some localization algorithm.
The location of the destination is included in the message,
and the nodes route the message to the destination using
their location information. This is especially relevant for
wireless sensor networks, where the network topology is un-
known a priori and subject to change, radio communication
is unreliable, and position is more important than node IDs.

Existing geographic routing algorithms assume Euclidean
two-dimensional topologies. Location information is held as
x and y coordinates. This is sufficient when the network is
deployed in a plane, e. g., for environmental monitoring in a
large area. In some cases, however, the network can become
three-dimensional. Application scenarios include networks
within buildings, underwater networks, or even networks in
space. Especially underwater sensor networks gained re-
search interest recently [2, 8]. To enable 3D routing, the
existing algorithms have to be extended. However, it is not
sufficient to just add the z coordinate. This paper describes
the difficulties that arise when making the step from 2D to
3D with a special focus on the Blind Geographic Routing
(BGR) algorithm, which proved to come with very small
communication overhead and be robust against failures, lo-
cation errors, and radio irregularity.

Current research on three-dimensional networks is focused
on connectivity and coverage [1, 3, 9]. Little work has been
published that addresses 3D routing. In [8], two routing
algorithms for underwater networks are proposed based on
link metrics. The first algorithm, which is delay-insensitive,
only selects nodes that are closer to the destination, and
hence is subject to fail for sparse networks. The second al-
gorithm is delay-sensitive, but uses a centralized approach.
A heuristic variant of face routing, which does not guarantee
delivery, but has been shown to perform well in simulations,

is proposed in [4]. Some challenges in designing 3D algo-
rithms are presented in [7].

This paper is organized as follows: Section 2 provides a short
overview of the BGR algorithm. The problems when making
the step toward 3D are discussed in Section 3. Simulation
results for 2D and 3D topologies are presented in Section 4.
Section 5 concludes the paper.

2. OVERVIEW OF BGR
This section provides a short overview of the Blind Geo-
graphic Routing (BGR) algorithm. For a detailed descrip-
tion and comparison to similar routing algorithms, see [10].

BGR is a two-dimensional beacon-less geographic routing
algorithm using a broadcast-based contention scheme. The
nodes do not carry any neighborhood or topology informa-
tion. Packets are forwarded via broadcast. Nodes which
receive this broadcast determine if they are located within a
special area called forwarding area. A description of the for-
warding area is included in the packet. The forwarding area
is oriented toward the destination location, and its dimen-
sion ensures that all nodes within it can mutually commu-
nicate with each other (provided the unit disk graph model;
however, BGR also performs well with more realistic, irreg-
ular radio propagation). Examples for forwarding areas are
shown in Figure 1.

Figure 1: Forwarding areas: 60◦ sector, circle, and
Reuleaux triangle

Nodes which receive a broadcast and are located within
the forwarding area start a contention timer depending on
their distance to the destination. The timer of the node
which is closest to the destination expires first; this node
declares itself as next hop and forwards the packet again.
The other nodes which have still a timer running also re-
ceive this packet and cancel their timers.

To detect empty forwarding areas, the forwarder starts a
recovery timer which is scheduled to expire after the last

75

possible contention timer of any node within the forward-
ing area has expired. When the recovery timer expires, the
forwarder turns the forwarding area by 60◦ in an arbitrary
direction and broadcasts the packet again. If this forwarding
area is also empty, it is turned in the other direction. When
this third attempt also fails, the message is considered un-
deliverable and dropped. Simulation results show that this
is unlikely to happen when the network density is not too
low.

3. THE STEP FROM 2D TO 3D
When making the step from two to three dimensions, it is
not sufficient to simply add z coordinates to location descrip-
tions. In the following, the major issues of the transition to
3D are discussed.

Most beacon-based geographic routing algorithms perform
some variant of face routing [5, 6]. The faces to be traversed
are determined by the line from source to destination. How-
ever, in 3D graphs, this line does not determine the faces [4].
Thus, 2D face routing algorithms are not directly applica-
ble to 3D. It is not known if a distributed 3D face routing
algorithm exists.

Beacon-less algorithms, on the other hand, can easily be
extended to operate in 3D space. The forwarding areas have
to be converted into forwarding volumes by constructing the
solid of revolution around the forwarder-destination axis.
Hence, the 2D sector becomes a spherical sector, the circle
becomes a sphere, and the Reuleaux triangle becomes the
solid of revolution of a Reuleaux triangle. Note that this
is different from the Reuleaux tetrahedron, whose diameter
is slightly larger than the radius of the intersecting spheres
from which it is constructed.

A problem with three-dimensional topologies is that more
nodes are needed for network coverage than in two-dimen-
sional topologies. For a quantitative comparison, suppose
that the same average number of neighbors is to be achieved
in a 2D topology of area a

2 and a 3D topology of volume a
3.

The transmission range r is fixed, i. e., the unit disk graph
(or, in 3D, unit sphere graph) model is assumed. If the total
number of nodes in the 2D topology is n, then the average

number of neighbors is nπr
2

a
2 (ignoring border effects). For

this value to be the average number of neighbors in the 3D
topology, the total number of nodes has to be

nπr
2

a2
·

a
3

4

3
πr3

=
3an

4r
.

This means that in a 3D topology, the total number of nodes
has to be by a factor of 3a

4r
larger than in a 2D topology.

Even when the number of nodes is increased according to
these calculations, a remaining problem is the additional di-
mension of the destination location, which leads to more
possible routing directions, which result in lower delivery
rates. This can easily be seen when considering the fraction
of the transmission area/volume that is covered by the for-
warding areas/volumes. Table 1 indicates that in 3D, the
forwarding volumes cover only half as much of the transmis-
sion volume as the corresponding forwarding areas in 2D. As
a consequence, the 3D version of BGR performs recovery up
to four times per hop in contrast to two times in the 2D

Table 1: Sizes of forwarding areas/volumes as frac-
tion of transmission area/volume

Sector Circle Reuleaux triangle

(Sph. sector) (Sphere)

2D 1

6
≈ 0.167 1

4
= 0.25 1

2
−

√
3

2π
≈ 0.224

3D 1

2
−

√
3

4
≈ 0.067 1

8
= 0.125 1

2
−

π

8
≈ 0.107

version. The first forwarding volume is obtained by turning
the forwarder-destination axis by 60◦ in an arbitrary direc-
tion first, then in the opposite direction (mirrored about this
axis), then turned by 90◦ about this axis, and in the last try
mirrored again. A problem is that there are gaps between
the turned forwarding volumes, which is not the case for the
2D forwarding areas (with the exception of the circle, which
leaves two small gaps). Also, the overlapping regions are
larger than in the 2D case.

4. SIMULATION RESULTS
Simulation experiments have been conducted using the net-
work simulator ns-2 to compare the performance of BGR in
2D and 3D topologies. The experiments were run with 150
nodes and a sink in the center of the topology; each node
generates a data packet and sends it to the sink. The trans-
mission range is 40 m. The average node degree was varied
between 10 and 40 by adjusting the size of the (square or
cubic) topology. Each value represents the average of 20 sim-
ulation runs. The Reuleaux triangle was used as forwarding
area/volume.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 10 20 30 40 50

D
el

iv
er

y
R

at
io

Average node degree

2D
3D

Figure 2: Delivery ratio in 2D and 3D topologies

Figure 2 shows the average delivery ratio. The error bars
depict confidence intervals of 95%. As expected, 2D rout-
ing performs better than 3D routing; the difference is most
evident at low node degrees. At medium and high node de-
grees, however, both 2D and 3D routing perform very well
and achieve constant delivery ratios of 100 %.

The total number of sent packets is depicted in Figure 3.
At medium and low node degrees, 3D routing needs signifi-
cantly more packets than 2D routing, which is an indicator
that much more recovery is performed in 3D. The difference
vanishes at high node degrees.

76

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 10 20 30 40 50

T
ot

al
 n

um
be

r
of

 p
ac

ke
ts

Average node degree

2D
3D

Figure 3: Number of packets in 2D and 3D topolo-
gies

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

D
el

iv
er

y
R

at
io

Location error (%)

2D
3D

Figure 4: Delivery ratio in the presence of location
errors (standard deviation as fraction of transmis-
sion range), topologies with average degree 30

As a result, the simulation studies show that the perfor-
mance blockers identified in Section 3 are only relevant for
low node degrees, where also 2D topologies have delivery ra-
tios under 100%. When the node degree is above 25, both
2D and 3D routing perform similarly well.

Location errors have a negative impact on routing perfor-
mance. The impact of location errors on BGR has been
studied in [11]. The error has been modeled using a two-
dimensional Gaussian distribution with mean zero and stan-
dard deviation between zero and the transmission range.
For 3D routing, the location error can be modeled using
a three-dimensional Gaussian distribution. Figure 4 shows
the corresponding simulation results, which indicate that
3D topologies are significantly more vulnerable to location
errors than 2D topologies. Even small errors lead to a no-
ticeable decrease of the delivery ratio. The major reason
is that recovery is not performed when the forwarding vol-
ume is empty and the destination is assumed to be within
transmission range, but due to location errors, it is not.
In 2D topologies, this situation occurs less often because
of the larger coverage of the the forwarding areas (cf. Ta-
ble 1). Another issue is that in 3D topologies the average dis-
tance between the real and the estimated location is greater
than in 2D topologies with the same standard deviation σ.

In 2D, the distance follows a Rayleigh distribution, in 3D
a Maxwell-Boltzmann distribution. The expected value is√

π

2
σ ≈ 1.253σ in 2D and

√
8

π
σ ≈ 1.596σ in 3D.

5. CONCLUSION
Three-dimensional geographic routing is an important tech-
nique for future wireless sensor network scenarios. How-
ever, existing algorithms support merely the 2D case. The
step toward 3D routing imposes some fundamental prob-
lems. Beacon-based algorithms which operate on a variant
of face routing cannot simply be adopted for 3D topolo-
gies because the techniques are not directly applicable to
3D graphs. Beacon-less algorithms like BGR, on the other
hand, can easily be enhanced to a 3D version by defining
forwarding volumes instead of forwarding areas.

An inherent problem of 3D topologies is that more nodes
are required to achieve a similar node coverage for topolo-
gies with the same average number of neighbors. BGR’s
forwarding volumes suffer from an analogical problem, since
the covered fraction of the transmission volumes is only half
as large as in the 2D case. Hence, recovery mode is trig-
gered more often and the number of sent packets increases.
The delivery ratio is also slightly lower. Additionally, sim-
ulation revealed that in case of location errors, 3D routing
has significantly more problems than its 2D counterpart.

6. REFERENCES
[1] S. M. N. Alam and Z. Haas. Coverage and

Connectivity in Three-Dimensional Networks. In
Proceedings of the 12th Annual International

Conference on Mobile Computing and Networking,
pages 346–357, Los Angeles, CA, USA, Sept. 2006.

[2] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li.
Research Challenges and Applications for Underwater
Sensor Networking. In Proc. IEEE WCNC 2006, pages
228–235, Las Vegas, NV, USA, Apr. 2006.

[3] C.-F. Huang, Y.-C. Tseng, and L.-C. Lo. The
Coverage Problem in Three-Dimensional Wireless
Sensor Networks. In Proc. Global Telecommunications

Conference (GLOBECOM), pages 3182–3186, Dallas,
TX, USA, Dec. 2004.

[4] G. Kao, T. Fevens, and J. Opatrny. Position-Based
Routing on 3-D Geometric Graphs in Mobile Ad Hoc
Networks. In Proc. 17th Canadian Conference on

Computational Geometry (CCCG’05), pages 88–91,
Windsor, Ontario, Canada, Aug. 2005.

[5] B. Karp and H.-T. Kung. GPSR: Greedy Perimeter
Stateless Routing for Wireless Networks. In
Proceedings of the 6th Annual International

Conference on Mobile Computing and Networking,
pages 243–254, Boston, MA, USA, Aug. 2000.

[6] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger.
Geometric Ad-Hoc Routing: Of Theory and Practice.
In Proc. 22nd ACM Symposium on Principles of

Distributed Computing (PODC), pages 63–72, Boston,
MA, USA, July 2003.

[7] S. Poduri, S. Pattem, B. Krishnamachari, and
G. Sukhatme. Sensor Network Configuration and the
Curse of Dimensionality. In Proc. Third Workshop on

Embedded Networked Sensors (EmNets 2006),
Cambridge, MA, USA, May 2006.

77

[8] D. Pompili and T. Melodia. Three-Dimensional
Routing in Underwater Acoustic Sensor Networks. In
Proc. ACM Workshop on Performance Evaluation of

Wireless Ad Hoc, Sensor, and Ubiquitous Networks,
pages 214–221, Montreal, Quebec, Canada, Oct. 2005.

[9] V. Ravelomanana. Extremal Properties of
Three-Dimensional Sensor Networks with
Applications. IEEE Transactions on Mobile

Computing, 3(3):246–257, July 2004.

[10] M. Witt and V. Turau. BGR: Blind Geographic
Routing for Sensor Networks. In Proceedings of the

Third International Workshop on Intelligent Solutions

in Embedded Systems, Hamburg, Germany, May 2005.

[11] M. Witt and V. Turau. The Impact of Location Errors
on Geographic Routing in Sensor Networks. In Proc.

Second International Conference on Wireless and

Mobile Communications (ICWMC’06), Bucharest,
Romania, July 2006.

78

A Prototype Study on Hybrid Sensor-Vehicular Networks

Extended Abstract

Elias Weingärtner
RTWH Aachen

elias.weingaertner@cs.rwth-aachen.de

Frank Kargl
Ulm University

frank.kargl@uni-ulm.de

1. INTRODUCTION
In this paper we present a concept where we combine two

forms of networks that both attracted a lot of research efforts
recently. Both Vehicular Ad-hoc Networks (VANETs) and
Wireless Sensor Networks (WSNs) are subject of ongoing
research activities. However, the characteristics of VANETs
and WSNs are very different.

Nodes in sensor networks are highly miniaturized, mostly
static, very resource and energy constrained, and usually
have good sensing capabilities. In contrast, VANETs have
very dynamic topologies and the vehicles do not suffer from

significant energy constraints. The vehicles could be equipped
with sensors themselves. However, the sensor coverage can-
not be guaranteed, as vehicles are not present everywhere
and at all times and some kinds of events cannot be relia-
bily detected by moving entities.

We introduce the new concept of Hybrid Sensor-Vehicular
Networks so that both network types can benefit from the
strengths of each other while compensating the weaknesses.
We use a Wireless Sensor Network deployed in or near roads
as a sensor grid with constant availability and dense cover-
age in contrast to the vehicle-to-vehicle network which might
have only sparse coverage. The sensor network constantly
communicates its sensor data to the vehicles driving on the
road, delivering them with accurate and up-to-date sensor
information. Vehicles communicate to disseminate this in-
formation to over comparatively long distances. There, the
vehicles deliver this data back the sensor network where it is
stored for future retrieval by other vehicles. This relieves the
sensor network from the energy-consuming task to transfer
the data hop-by-hop inside the WSN itself.

Such Hybrid Sensor-Vehicular Networks are suited for all
applications where a stationary WSN collects sensor data
that is disseminated only on a small scale within the WSN,
then delivered to vehicles which transfer it to other regions
by multi-hop routing or vehicle movement and either hand
it off to interested vehicles or to remote WSN nodes that
store the data and deliver it to approaching cars on certain
conditions.

We use an example for further explaining this concept.
Assume we have a road segment as shown in Figure 1. The
application implements a dangerous road condition warning,
where drivers are warned about potentially dangerous road
conditions like e.g. icy road. First, a WSN node detects ice
on the road and shares this information with neighboring
motes (1©) inside a small region.

When a vehicle A enters this region, the WSN triggers
a vehicle-present event and the information is transmitted

to the car (2©). This way, the driver of vehicle A would
receive a short-term warning and can react accordingly. Ve-
hicle A forwards the information via the long-range VANET
to vehicle B (3©). A relevance function determines that ve-
hicle B is in a good position to feed the information back to
the WSN for further availability. As the road splits at po-
sition B, the icy road information would otherwise become
unavailable to vehicles approaching from the lower road. So
B transfers the information back to the WSN (4©) and the
nodes distribute it in a small neighbourship for redundancy
purposes (5©). A and B leave this road segment (6©) and
are out of communication range, when vehicle C approaches
the intersection and still receives the warning information
from the WSN (7©). The vehicle displays a warning to the
driver who has plenty of time to adapt his driving style to
the approaching danger.

There are two important observations here:

1. Vehicle C is never in direct reach of the other cars.
So a vehicular sensor network composed only of the
vehicles would never deliver the warning to vehicle C.

2. There is a significantly lower number of mote trans-
missions compared to the case where the motes try to
deliver the information hop-by-hop from the source to
the position of vehicle C. A lot of mote energy is saved
and the lifetime of the WSN nodes is prolonged.

2. INFORMATION DISTRIBUTION
Within Hybrid Sensor-Vehicular scenarios, five different

ways of information flow can be distinguished:

1. Information flow within the Wireless Sensor Network

2. Data transition from WSN to VANET

3. Dissemination within the VANET

4. Information injection from VANET to WSN

5. “Physical” data transport by moving vehicles

Each information distribution method faces specific chal-
lenges, which we are going to point out in the following
sections.

2.1 Distribution inside the WSN
When events are captured by the wireless sensor network

these events are about to be reported to mobile nodes. A
central idea in our perspective on such scenarios is that the

79

A

C

Icy road

B

B’ A’

1 1
2

3

4

55

6

7

Figure 1: Example scenario for a Hybrid Sensor-Vehicular application

WSN and the VANET are coupled directly, and hence, cer-
tain wireless sensor nodes that transmit WSN data to vehi-
cles have to be chosen. Those gateways are distinct from

the reporting nodes which are mainly responsible for event
detection and multi-hop routing.

As we rely on information transport using a VANET, the
sensors do not form one huge wireless sensor network. In-
stead, we propose a dynamic decomposition of the sensor
nodes in many small to mid-size sensor networks in which
data is reported to gateway sensors. Further spatial coverage
of events is reached using VANET message dissemination.

After an event has been detected or sensor data has been
collected, this information needs to be reported to a gate-
way sensor which can be realized by standard WSN source-
to-sink techniques like spanning trees. To equalize energy
consumption, the gateway role will change periodically.

2.2 Data transition from WSN to VANET
As illustrated, gateway sensors interact directly with mo-

bile nodes, and basically two questions are of particular in-
terest according to this way of information flow. First of all,
one might ask when information is to be sent to the vehicle.
Instead of a periodic transmission, we propose a triggered
scheme: Once a new vehicle is present, data should be trans-
mitted - and therefore, vehicle presence can be regarded as
a special type of an event detected by special sensors.

Once triggered, the actual transmission from sensors to
mobile nodes is a time-crucial task: As sensor nodes have a
limited transmission range, the data needs to be sent within
a very short time. Vehicles may move with relative speeds
up to 70 m/s, and as a delay between vehicle detection and
data transmission exists, the time frame left may be lower
than a second. Hence, all data being transmitted must be
fitted compactly into one or very few frames in order to
improve the probability of the transmission to succeed.

2.3 VANET Message Dissemination
The main task of the Vehicular Network in our approach

is to disseminate messages picked up from a local gateway
sensor. The primary goal is of course to inform approaching
vehicles about a potential hazard that was measured by a
local WSN. However, for the Hybrid Sensor-Vehicular Net-
work, the purpose of the vehicular part is also transporting
messages to remote locations for re-injection into a WSN.
This way, information becomes time stable and does not
rely on the presence of vehicles.

Geocast [1] is a well-known primitive in the VANET do-
main that is suitable for this kind of information dissemina-
tion.

2.4 Information Injection
Once information has been distributed over the VANET,

it can be stored back from the vehicle to the wireless sensor
network. While at first glance this might look like a un-
necessary gimmick, we argue that this mechanism is a key
feature of Hybrid Sensor-Vehicular information distribution:

It might happen that the VANET looses connectivity if
vehicles move out of range. In this case, messages cannot
be distributed to other vehicles using the VANET itself, al-
though cars approaching the current node’s position later
in time might be interested in this information, for exam-
ple if it is a warning notification. In this case, the warning
message can be stored to the WSN where it is kept until
other vehicles pass by and retrieve this information again.
Similarly, this mechanism could be further utilized for other
tasks like gateway notifications.

2.5 Physical data transport
Besides the vehicles’ interconnection, their spatial move-

ment can be utilized for data dissemination as well. If vehi-
cle density is sparse, data sampled from the wireless sensor
network will be cached by vehicles. Based on the relevance
function’s results, the information is injected back to wire-
less sensor network.

3. PROTOTYPE ARCHITECTURE
One approach to investigate the characteristics and issues

that arise in Hybrid Sensor-Vehicular Networks would be
a complex simulation that incorporates realistic models of
WSN data propagation, traffic flow, and an appropriate sim-
ulation of VANET message dissemination. Combining those
modules into one simulation is challenging. In addition, it
is questionable, how meaningful such results would be, as
integration of multiple radio systems like ZigBee and IEEE
802.11 within one single simulation is not well understood.

Therefore, we decided to create a prototype architecture
as starting point for future work. The goal behind the pro-
totype is to prove that all five ways of information flow can
be realized. Furthermore, the prototype allows us to spot
out more interesting issues and questions related to the new
field of Hybrid Sensor-Vehicular Networks. Within this sec-
tion, a brief overview over the prototype and its architecture
is given.

Figure 2 depicts the basic architecture of the prototype,
which consists of two subsystems, a Sensor Network Subsys-

tem running on motes and a Mobile Node System.

3.1 Sensor Network Subsystem
As laid out before, the main task of the Sensor Network

80

Mote Hardware: TinyOS / MicaZ

TinyOS Operating System

Spanning Trees
Sensing

Hardware

Environment

Functionality

Sensor Network Subsystem

Notebook with GPS / WLAN t-mote sky

JAVA with GPS/TinyOS libraries

Time limited- Broadcasting
Graphical User Interfac

Mobile Node Subsystem

Figure 2: Prototype architecture

Subsystem is the detection of events and the delivery of ad-
equate notifications to a near gateway sensor: Among the
sensor nodes, we distinguish between ordinary sensor nodes
and gateway sensors. While ordinary sensors report their
readings to a near-by gateway sensor, those gateway sensors
are responsible for reporting that information to a vehicle
once it is in range. Within the wireless sensor network, we
use simple spanning trees which are rooted at the gateway
sensors for data collection. As we assume that all sensor
nodes are provided with the same, limited energy supply,
we argue that having fixed gateway sensors assignment is
not feasible. Instead, all sensors act as gateway sensors at
some point in time: If a node does not know any gateway
sensor, it simply waits for a randomized time after which it
decides to become a gateway sensor itself. In this case, a
spanning tree is constructed within a limited range (mea-
sured by the hopcount). Similarly, gateway sensors cease
functioning as such after a certain period which forces other
sensors to take over.

Gateway sensors have to report the collected information
to mobile nodes once they are in range, and hence, the pres-
ence of vehicles must be detected. Two basic approaches
exist: Passive vehicle detection and active detection. Active
detection of vehicles relies on periodic beacon messages that
are sent by the mobile nodes, announcing their presence.
While passive detection of cars is possible using adequate
sensors, like magnetometers, we argue that a main drawback
of this approach is the disability to distinguish between cars
that can interact with gateway sensors directly and ones that
can not: If passive detection is used, cars might be detected
correctly although they are not equipped with the hardware
required to receive data from gateway sensors. Passive de-
tection will however lead to a transmission of data in such
cases. As unnecessary transmissions are to be avoided in or-
der to save energy, we decided to use active detection within
the prototype, where the cars announce their presence using
periodic beacon messages. Once such a beacon is received,
the collected data is sent to the mobile node immediately.
It is noteworthy that this way of information flow might be
time crucial as mobile nodes are in range of a gateway sensor
for a short time period only. Hence, the data is fitted into
one single data packet.

All mentioned functionality has been implemented using
TinyOS 2.0, which allows us to run the software on a variety
of platforms.

3.2 Mobile Node Subsystem
The Mobile Node System is responsible for data-collection

from the gateway sensors and the propagation of that data
to other vehicles. In order to retrieve sensor data, peri-
odic beacons are sent which also contain data to be stored
into the wireless sensor network: This way, readings from

a distant location can be stored at gateway sensors. Doing
so enables us to notify vehicles that pass by later when no
other cars are in reach. By using this piggy-back scheme, the
information flows from the sensors to the cars and vice versa
are interweaved and therefore the communication overhead
is reduced.

In order to send data to other vehicles, so far a WLAN-
based UDP flooding scheme is used in the implementation.
The sensor information that is retrieved from gateway sen-
sors is serialized and broadcasted to other vehicles in range.
A additional timestamp allows to control the data’s period of
validity. This also leads to a limitation of the informations’
geographical spread. While the current UDP dissemination
scheme is a very basic approach, we argue that much re-
search is currently carried out in the field of VANET message
distribution. The implementation allows an easy integration
of more advanced schemes, like Geocasting.

Considering the interaction of the mobile nodes with the
gateway sensors, information is not simply retrieved from

the sensor network, but also stored back into the WSN.
By doing so, some kind of information persistence can be
achieved: It is imaginable that the VANET breaks down,
for example because of low traffic density. In this case, it
is still possible to deliver information about distant events
to a car if they have been sent to a gateway sensor before-
hand. Within our architecture, the messages to be stored
at the gateways are embedded in the beacon messages used
for vehicle detection. Consequently, the gateway sensors in
fact report both their own data and, if available, injected
information upon the retrieval of a beacon message in an
alternating manner.

4. FIELD STUDIES
In order to investigate the principal feasibility of Hybrid

Sensor-Vehicular Networks, we conducted two field experi-
ments during Spring 2007 in order to address two questions.
First of all, we were interested if the direct communication
between mobile nodes and gateway sensors is possible. Fur-
thermore, a second field study with the prototype introduced
in Section 3 was carried out to show that all five ways of in-

81

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80

Vehicle speed [km/h]

P
a

c
k
e

ts
 r

e
c
e

iv
e

d

Total number of received packets

Upper boundary with 50m transmission range

Figure 3: Beacon messages received at various
speeds

formation flow can be integrated into one, cooperative sys-
tem. Within this section, we present our results and expe-
riences originating from those experiments.

4.1 Direct Communication
Within the first experiment, we deployed a Tmote SKY

module alongside a country road about 30 cm over ground.
The mote was flashed with a small application that broad-
casted 40 packets per second. Passing by the mote with a
car at various speeds, we investigated how the used 802.15.4
technology deals with mobility. Therefore, we simply counted
the number of packets that could be received at various
speeds. The results are summarized in Figure 3 where we
compare the number of packets that were totally received
with a theoretical, upper boundary. The upper boundary
is derived from the vehicle speed, the packet rate and the
maximum transmission range according to the specification
of a Tmote SKY. As one can see, we were able to receive a
significant number of packets at all speeds between 10 km/h
and 70 km/h, suggesting that 802.15.4 might be a consider-
able option for environments where care move with low to
medium speeds. Tests with higher speeds are planned for
the future, but need special preparation for safety reasons.

4.2 Prototype Field Test
In a second experiment, we verified the functionality of the

prototype introduced in Section 3. For this test, we deployed
16 motes on a parking lot, where the distance between two
motes was about 30m each. In order to allow an analy-
sis of the topology, we configured five motes as static gate-
way nodes and used the TinyOS 2.0 Collection framework
to gather the global topology within the network. A mobile
node, which consisted of a notebook computer equipped with
GPS and an attached Tmote SKY, was carried through the
field. Figure 4 shows a screenshot of the prototype’s GUI
component that provides real time visualization of the sen-
sor data gathered from gateway sensors.

Figure 4: Sensor Data Visualization during field test

Furthermore, the prototype allows to control the injection
behaviour of the mobile node and logs any packet that is
received from a gateway sensor. An analysis of these log
files revealed that both ways of information flows, from the
gateway sensors to the mobile node and vice versa, could
be realized. In addition, we checked if the communication
between two mobile nodes was possible. Therefore, a second
mobile node was turned on in range, and as this mobile node
was equipped with WLAN but no mote for sensor network
communication. As expected, all data was available at the
second mobile node within a one or two seconds.

5. SUMMARY
Within this paper, we presented some key ideas and re-

sults from our work on on Hybrid Vehicular-Sensor Net-
works. Our work can be considered as initial analysis of
such systems where yet many challenging questions exist. Of
particular interest are questions regarding energy efficiency
within the WSN and questions on reliability. We believe
that Hybrid Sensor-Vehicular Networks could be a tool to
effectively warn drivers in case of dangerous road situations
such as ice and aquaplaning and that the direct combination
of wireless sensor networks and VANETs is also more cost
effective than solutions which address the same application
domain but which rely on a more complex infrastructure.
At the same time, availability and accuracy should be much
higher compared to solutions that rely on vehicles alone.

6. REFERENCES
[1] J.C. Navas, T. Imielinski. GeoCast – Geographic Addressing

and Routing. Proceedings of the 3rd annual ACM/IEEE In-
ternational Conference on Mobile Computing and Network-
ing (MobiCom), 1997, 66-76

82

Handover in Sensor Networks using
Statistic-Based Routing

Alexander Klein
Innovation Works

EADS Deutschland GmbH
Munich, Germany

klein@informatik.uni-
wuerzburg.de

Phuoc Tran-Gia
University of Wuerzburg

Institute of Computer Science
Wuerzburg, Germany

trangia@informatik.uni-
wuerzburg.de

ABSTRACT
The support of mobility represents one of the challenging tasks in

Wireless Sensor Networks (WSN). The problem caused by

frequent topology changes is to find a tradeoff between reliability

and energy efficiency. The support of mobility often results in

additional complexity of the routing protocol. However, due to

limited memory and computational power of small wireless

devices, the routing protocol has to be kept as simple as possible.

In this paper, we give a short introduction of our Statistic-Based

Routing protocol. Furthermore, we analyze the capability of the

protocol to deal with the problem of handovers. In addition, the

reliability during the process of handover is simulated under

various conditions.

Categories and Subject Descriptors
A.0 [Introductory and Survey]: Miscellaneous; I.6.4 [Model

Validation and Analysis]: Miscellaneous;

General Terms
Documentation, Theory, Measurement Performance

Keywords
Statistic, Routing, Wireless, Sensor, Networks

1. INTRODUCTION
The improved capabilities of wireless sensors have raised the

interest in WSN solutions. The higher demand results in lower

hardware prices. Therefore, an increased number of applications

become interesting under economical aspects. Sensor networks

have high requirements on the routing protocol due to the large

number of nodes. Scalability represents an important issue in

WSNs since the nodes have to solve the problem of routing table

explosion. Beside the problem of scalability, the routing protocol

has to deal with frequent topology changes. These changes can be

the consequence of link breaks caused by e.g. sleep times,

interference, energy exhaustion or mobility.

Consider an ad hoc routing protocol like the Optimized Link State

Routing Protocol (OLSR) [1] in a mobile WSN. The routing table

with its expiry timers and the required neighbor, two hop

neighbor and Multi Point Relaying (MPR) lists would consume

most of the nodes memory in large WSNs. Furthermore, the

frequent recalculation of the topology and the MPR set would

consume most of the computational power of a node in large and

dense networks.

For that reason, we are looking for a new solution that is able to

deal with the typical WSN issues without the need of complex

algorithms. We investigate Statistic-Based techniques because

they represent a possibility to implement adaptive behavior.

The work is organized as follows. Section II gives a short

overview of protocols that have similarities to our approach. A

brief description of the functionalities of the presented protocol is

given in Section III. The problem of handover and the capability

of the approach to deal with it are presented in Section IV. The

results of our simulations are discussed in Section V. An

introduction of our work in the future is given in the final section.

2. RELATED WORK
In this section we describe two paradigms that have many

similarities compared to our approach. The basic functionalities of

these paradigms were used to create a new approach.

The first one is represented by direct diffusion which was

introduced by C. Intanagonwiwat et. al [2]. The idea behind direct

diffusion is to label data by attribute-value pairs. These pairs are

used to identify the content and further allow data aggregation.

A request or interest for this data is propagated through the

network via broadcast messages that are transmitted by the sink.

The broadcast messages are forwarded by intermediate nodes to

the source. Each intermediate node sets up a gradient towards the

previous node from which it has received the broadcast message.

Data that is transmitted by the source is routed along the

gradients. The strength of the gradients is set according to the

capabilities of the forwarding node and the attribute-value pair.

The variation of the gradient strength can be used to disseminate

traffic equally across the network.

The Minimum Cost Forward Algorithm (MCFA) [3] presents a

popular idea that is based on the paradigm of direct diffusion. In

this protocol, the base station broadcasts messages. These

messages contain a cost field which is set to zero. Before a node

retransmits a message it increases the value stored in the field by

the cost of the link from which it has received the message.

However, a message is only forwarded if the new value is smaller

than the one previously stored.

83

Another way to deal with routing issues is followed by protocols

using swarm intelligence. The most known heuristic for solving

the problem of routing is presented by ant-based algorithms. The

principle of ant-based algorithms is that shorter paths are traveled

more frequently than others. Thus, the pheromone that is left on a

path strongly depends on how often the path is traveled. Data is

forwarded according to a link probability function. The function

uses the amount of pheromone as input to calculate the next hop.

Therefore, the protocol uses the information gathered from the

past to decide the next hop. After each time step a certain

percentage of pheromone evaporates. As a result, existing paths

may change or even disappear over time. However, Zhang et. al

[4] have shown that standard ant-based routing algorithms have to

be adapted to meet the requirements of WSNs.

3. STATISTIC-BASED ROUTING
In this section the functionalities of the Statistic-Based Routing

are introduced. Furthermore, we describe the creation and

forwarding of hello messages. In addition, the usage of the routing

table is explained.

3.1 Hello Messages
Hello messages are periodically transmitted by each node. The

message consists of a source, intermediate, sequence number, and

a time-to-live field. The source field holds the address of the

originator of the message. The address of the node which has

forwarded the packet is stored in the intermediate field. The

identifier of the message is represented by the value in the

sequence number field. Each time a node transmits a new hello

message it increments the sequence number by one. The time-to-

live field indicates how often a hello message can be

retransmitted.

A node creates an entry in its routing table if it receives a hello

message from another node for the first time. If a node already

knows the creator of the message it compares the sequence

number in the hello message with the value stored in its routing

table. If the number in the message is higher than the stored value,

the entry in the table is updated and the packet is considered for

forwarding. In the case that both values are equal the node

compares the time-to-live fields. If the time-to-live value is

smaller than that of the stored entry it is forwarded. Otherwise the

message is discarded. Furthermore, messages are only considered

for forwarding if they are received from the best ranking

neighbor.

3.2 Routing Table
The routing table stores values that correspond to the link quality

or another metric depending on the used routing entry increase

algorithm. The value is increased each time a new hello message

is received. A hello message is called new if it is stored. Figure 1

shows a connectivity graph of an example network.

If the entry is increased by one every time a new hello message is

received then the stored value directly corresponds to the number

of received hello messages. Table 1 represents an example routing

table of node B resulting from the connectivity graph shown in

Figure 1.

Table 1: Example Routing Table of Node B

Node B Number of Received Hello Messages

Originators A C D E F

A 20 - - - -

C - 20 - - -

D 12 - - 7 -

E - - - 18 -

F - 8 - 12 -

The columns represent the neighbors through which the new hello

messages are received. An empty column is the result of the fact

that the node is not a neighbor. Several different paths to the

destination exist if more than one value is stored in a row.

The values in the routing table are decreased according to the

used routing entry decrease algorithm. The function to decrease

the values is called every Decrease Routing Value Interval.

3.3 Configuration
The Statistic-Based Routing offers the possibility to adapt its

behavior by setting the following parameters: Hello Message

Interval, Hello Message Time-To-Live, Hello Message

Forwarding Delay, Decrease Routing Value Interval, Maximum

Routing Value, Increase Routing Value Function, and Decrease

Routing Value Function.

Each node transmits hello messages according to the Hello

Message Interval. The broadcast of hello messages can be reduced

by using a smaller Hello Message Time-To-Live value. In

addition, the forwarding of hello messages can be delayed such

that a node falls back in the routing tables of the other nodes. This

mechanism could be used to spread traffic equally across the

WSN. A Decrease Routing Value Interval is used to trigger the

decrease of the routing entry values. Furthermore, the values in

the table are limited by the Maximum Routing Value to limit the

reaction time of the system to recognize topology changes.

Functions can be used instead of constant values to change the

entries of the table.

4. HANDOVER
The behavior of the protocol during a handover is discussed in

this section. First, we explain the increase and decrease of the

entries in the routing tables when a mobile node X passes two fix

nodes A and B. To keep things as simple as possible we assume a

constant increase and decrease value of one. The Decrease

Routing Value Interval is twice as long as the Increase Routing

Value Interval.

Figure 2 shows the trajectory of node X and the transmission

range of nodes A and B. Furthermore, important points in time are

marked by dashed lines. In addition, we assume that no hello

messages are lost and node X moves with constant speed.

A C

F

B

ED

Figure 1: Connectivity Graph of the Example Net

84

Node X enters the transmission range of node A at time to

resulting in the increase of the routing value in node A. At time

tstart node X can be reached by nodes A and B. Therefore, the

routing entry in node B increases, too. Node X leaves the range of

node A at time tloss. As a consequence, hello messages that are

transmitted by node X are only received by node B. Thus, the

routing value stored in node A decreases whereas the value in

node B further increases. The behavior of the entries is shown in

Figure 3.

No packets can be routed to node X between tloss and thandover

because the routing value of the corresponding entry is still higher

in node A. The protocol assumes that node A is the node in

charge to reach node X until the value in node B becomes higher.

The time needed by the protocol to select the correct node is

referred to as Downtime. No packets can be forwarded to node X

during the Downtime.

However, linear functions do not represent the best choice

because of their limited capabilities to minimize the Downtime. It

has to be kept in mind that using a higher gradient for the Increase

Routing Value function results in a higher routing value which

has to be decreased later on by the Decrease Routing Value

function. The only possibility to shorten the Downtime with linear

functions is to use a higher gradient for the Decrease Routing

Value function. In addition, a Maximum Routing Value could be

chosen to further minimize the Downtime. Nevertheless, the

gradients and the Maximum Routing Value have to be selected in

respect to the set Hello Message Interval and the Decrease

Routing Value Interval.

Instead of using linear functions we chose functions which take

the current value into account. The following characteristics are

desired. The gradient of the Increase Routing Value function

should be high for low values and low for high values. The

gradient of the Decrease Routing should be high for high values

and low for low values. The chosen Increase Routing Value

function has to be asymptotic. Otherwise a Maximum Routing

Value has to be set to limit the routing entry values.

Many different functions can be used to achieve quite good

performance. Here we use the following equations to calculate the

increase and decrease of the routing entry values.

Figure 2: Example Handover Scenario

1

4
2

21

n

nn
f

ff

Equation 1: Sample Increase Routing Value Function

2
1

n
n

g
g

Equation 2: Sample Decrease Routing Value Function

To give a better impression of the characteristics of the functions

we make the following assumptions. The Hello Message Interval

and the Decrease Routing Interval are set to the same value. The

increase is directly followed by the decrease. In addition, we

simulate the loss of a hello message by using a uniform

distribution. We set the uniform distribution such that three

percent of the hello messages are discarded. Thus, the decrease

function is called more often than the increase function. A typical

development of the value within a routing entry is shown in

Figure 4.

Figure 3: Routing Values during Handover

Figure 4: Snapshot of Routing Value Function

The drops of the values are the result of lost hello messages.

Therefore, the decrease function is called two times after another.

85

5. SIMULATION RESULTS
It is clear from the definition of the protocol that it finds a path to

a destination in the network if all nodes are fix. We want to

simulate the capability of the protocol to deal with changing

topologies. Thus, we place nodes along a manhatten grid such that

a node is able to communicate with its direct neighbor along the

grid. Then we add a mobile node that moves straight through the

network with a constant speed. If the node reaches the border of

the scenario it turns around and moves on with the same speed. A

node at the border of the network tries to transmit packets to the

moving node. The inter-arrival time of the packets is chosen

according to an exponential distribution with a mean value of one

second. The size of the packet is chosen such that the traffic load

of the network is very low. The protocol is developed as part of

our WSN simulation framework within the OPNET Modeler [5].

In the first scenario we simulate the end-to-end reliability of the

protocol depending on the speed of the moving node. The

duration of the Hello Message Interval is set to one second to

minimize the reaction time of the protocol. Furthermore, we set

the Decrease Routing Value Interval to 1.25 seconds. These

values ensure that the increase function is at least called once

before the decrease function. However, this is only the case if the

hello messages are not lost. It has to be kept in mind the duration

of these intervals have to be considered when choosing the

increase and decrease functions. Equations 1 and 2 are used to

modify the entries in the routing tables. To simulate the handover

performance we vary the speed of the moving node from 2 meters

per second to 20 in steps of 2. The transmission range of the

nodes is set to 140 meters. The grid length is 125 meters. Thus,

communication between direct neighbors along the grid is

possible.

Figure 5 shows the end-to-end reliability of the traffic between

the source node and the mobile destination depending on its

speed.

The intervals are the 99 percent confidence intervals. The results

of Figure 5 point out that the end-to-end reliability decreases

linearly for speed values between 2 and 20 meters per second.

However, the averages of lost packets per handover depending on

the mobile node speed which are presented in Figure 6 show a

different trend.

Figure 6: Number of Lost Packets per Handover

The number of lost packets per handover is higher for speeds

lower than 10 ms-1 compared to the results from simulations with

a higher mobile node speed. A slow node remains a long time

within the range of its supporting node. Thus, the routing entry

value has much time to reach a high value. As a consequence,

more than one hello message is required by the protocol to

recognize that another node has to be chosen as supporter for the

mobile node. It has to be kept in mind that nodes with higher

values are considered to be more reliable than those with a

smaller value. The constant value of 0.5 for speeds higher than 10

ms-1 is the result of the Hello Message Interval duration of one

second.

6. FUTURE WORK
Due to its simplicity Statistic-Based Routing should be considered

as alternative to existing routing protocols in networks where

nodes have limited capabilities. Our future studies include the

simulation of sensor nodes with sleep times using the Statistic-

Based approach. In addition, we will analyze the capability of the

protocol to save energy in WSNs through data dissemination.

7. REFERENCES
[1] T. Clausen and P. Jacquet, "Optimized Link State Routing

Protocol (OLSR) RFC 3626", IETF Network Working

Group, October 2003.

[2] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed

Diffusion: a Scalable and Robust Communication Paradigm

for Sensor Networks", Proceeding of ACM MobiCom `00,

pp. 56-67, Boston, MA, 2000.

[3] F. Ye, A. Chen, S. Liu, and L. Zhang, “A Scalable Solution

to Minimum Cost Forwarding in Large Sensor Networks”,

Proceeding of the tenth International Conference on

Computer Communications and Networks (ICCCN), pp.

304-309, 2001.
Figure 5: End-To-End Reliability

[4] Y. Zhang, L.D. Kuhn, and M.P.J. Fromherz, “Improvements

on Ant Routing for Sensor Networks”, Proceeding of the

fourth International Workshop ANTS 2004, pp. 154-165,

Brussels, Belgium, September, 2004.

[5] OPNET Modeler, OPNET University Program:

http://www.opnet.com/services/university/.

86

Optimizing TDMA Design for Real-Time Applications in
Wireless Sensor Networks

Nicos Gollan and Jens Schmitt
TU Kaiserslautern

Distributed Computer Systems Lab
p.o. box 3049

67653 Kaiserslautern, Germany

gollan@informatik.uni-kl.de
schmitt@informatik.uni-kl.de

ABSTRACT

General Terms

1. INTRODUCTION

2. OPTIMAL TDMA DESIGN

87

2.1 General TDMA Design Problem

n

Z = min1≤i≤n {f − si}Pn
i=1

si ≤ f
∀i : di(f,�s|r, b, C) ≤ D
∀i : si

f
· C ≥ Fir

∀i : si ≥ 0, f ≥ 0

f si

i
i

D

di(f,�s|r, b, C) = h(γr,b, β
i
eff)

i
βi

eff

Fi

i i C
r
b

γr,b

D

n + 1 3n + 2

f s

f
n s

f
n

Z = f − s

s ≤ f
n

d(f, s|r, b, C) = max1≤i≤n di(f, s|r, b, C) ≤ D
s
f
· C ≥ Fmaxr

f ≥ 0

C = 10 r =
1 b = 1 D = 1

s f s

88

g
s ∀f : ∂g

∂f
< 1

f

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6

sl
ot

 le
ng

th
 (

s)

frame length(f)

Delay constr.
TDMA integrity

Rate constr.
Objective

2.2 Analytical Solution for ESS in General
Sink Trees

β s
f

C,f−s

γr,b

βn
eff =

ˆ
[βR,T − γr1,b1]

+ ⊗ βR,T − γr2,b2

˜+ ⊗ . . .

= β
R−Pn−1

i=1 ri,
T(nR−Pn−1

i=0
Pi

j=1 rj)+
Pn−1

i=1 bi

R−Pn−1
i=1 ri

R = s
f
C T = f−s ri = air bi = cib+dirT

ai, ci, di ∈ N

n n
f s s

3. NUMERICAL APPROACH IN THE DIS-
CRETE SETTING

β

d(f, s|r, b, C, D)

s = f
n

d(f |r, b, C, D)
f f ′ d(f ′|.) = D

d(f |.) − D = 0
∀0 < f < f ′ : d(f |.)−D < 0 ∀f > f ′ : d(f |.)−D > 0

f ′

3.1 Numerical Examples

α
s
f
C

β′

C
β β′

∀α ∈ F : h(α, β) ≤ h(α, β′)

89

C r b D f f

h h′ − h

 3.572

 3.574

 3.576

 3.578

 3.58

 3.582

 3.584

 3.586

 3.588

 3.59

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

fr
am

e
le

ng
th

 (
f)

medium rate (C)

f D

C

C 1000 10000 100 r = 1
b = 1 D = 10

4. REFERENCES

90

Enabling the Sleep Mode in Non-beaconed 802.15.4
Multihop Networks - A Simulative Investigation

Barbara Staehle, Tobias Hossfeld,
Matthias Kuhnert

University of Würzburg
Institute of Computer Science

bstaehle@informatik.uni-wuerzburg.de

Norbert Vicari

Siemens AG
Corporate Technology

norbert.vicari@siemens.com

ABSTRACT
Large wireless sensor network deployments used for environ-
mental monitoring or cargo tracking, require energy efficient
mesh topologies. This implies duty cycling of sensor nodes
to be coordinated with the routing protocol. Staying in the
context of ZigBee, we simulate the combination of the sleep
enabled non-beaconed mode of 802.15.4 and AODV routing
and compare the duty cycling effects of synchronized and
unsynchronized sleep scheduling. We consider two different
link layer feedback schemes for AODV, denoted as regular

and smooth AODV.

1. INTRODUCTION
The large number of purposes, a Wireless Sensor Net-

work (WSN) can be dedicated to, are as different as habi-
tat monitoring, animal tracking, environmental surveillance,
forest fire detection, cargo tracking, industrial automation,
home automation or intrusion detection. All those situa-
tions have specific requirements and challenges, thus the de-
ployed hardware, radio communication techniques and pro-
tocols are manifold.

The use of a standardized communication layer would
simplify and enable the interoperability of different WSN
deployments. Among the existing IEEE wireless communi-
cation standards, 802.15.4 [2] seems to be the most suitable.
It specifies the PHY and MAC layer for low rate Wireless
Personal Area Networks (LR-WPANs) and promises to en-
able cheap wireless networking for applications with limited
battery power and small throughput requirements. ZigBee
is a set of network, security and application layer proto-
cols, that were specified upon 802.15.4 to create a universal
platform for use cases like home, building and industrial au-
tomation [9].

In these situations, one hop star topologies, where a sin-
gle (PAN) coordinator broadcasts beacons to synchronize
surrounding devices, are most suitable. Thus, much work
has been dedicated to the performance analysis of those so
called beacon-enabled 802.15.4 networks. If however, large
scale multihop 802.15.4 WSNs with battery powered nodes
should be established, these have to be realized as non-

beacon-enabled PANs. The most outstanding issue in such
networks is their size: they are too large to be synchronized
by a single PAN coordinator but nodes have also to switch
to sleep state to increase the battery lifetime. It is pro-
posed to use an AODV [4] like routing algorithm for non-
beaconed PANs [9], hence, sophisticated distributed sleep
scheduling strategies have to be deployed to make such a
routing algorithm work. In this work we investigate non-

beaconed 802.15.4 networks and especially the interdepen-
dency of multihop routing and sleeping sensor nodes. As
most previous work has focused on beaconed 802.15.4, these
problems have not yet been considered.

This work is structured as followed: In Section 2 we review
related work. In Section 3, we describe the simulation setup
in ns-2 [7], we used for our performance evaluation, whereof
we show results in Section 4. In Section 5 we conclude and
give an outlook on future work.

2. RELATED WORK
One of the first performance evaluations of 802.15.4 is re-

ported in [8]. The authors used ns-2 to investigate the gen-
eral performance of 802.15.4 and inquired various aspects
like the efficiency of slotted and non-slotted CSMA/CA dur-
ing the contention access period (CAP) of a 802.15.4 super-
frame more deeply. The authors did however not consider
the problem of establishing a multihop routing topology and
assumed, that their nodes were always on. To analyze the
CAP and the influence of radio-shutdowns on the energy
consumptions more deeply, the authors of [5] implemented
a more realistic energy and node state model. More modi-
fications to the code have been made by the authors of [6],
who examined the influence of the number of backoff periods
used for CSMA/CA in the CAP on the network efficiency.

The requirements for a WSN MAC protocol comprise more
than just channel access. In order to guarantee a maxi-
mal lifetime and nevertheless maintain a certain transmis-
sion delay and throughput, the MAC layer is responsible for
duty cycling the sensor node’s radio unit [3]. As the chal-
lenges are manifold, more than 50 different proposals for
MAC WSN protocols exist. The 802.15.4 standard, how-
ever, does only specify the channel access and does not con-
sider sleep scheduling. As this is mandatory, if 802.15.4 shall
be used for sensor networks, we examine the performance of
two straightforward duty cycling concepts, namely synchro-
nized and randomly scheduled sleep periods.

If 802.15.4 shall be used for a multihop WSN, a rout-
ing topology has to be established. The applicability of the
classical AODV and several of its modifications has been in-
vestigated in a 802.15.4 testbed consisting of 15 nodes [1].
The results showed, that both the existing and the newly
proposed protocols are not suitable for sensor networks, as
the routing overhead consumes too much energy. We there-
fore extended the existing ns-2 AODV implementation by
some modifications discussed in the ZigBee specification [9],
which concern the broadcast mechanism and the link layer
feedback handling.

91

3. IMPLEMENTATION DETAILS

3.1 Sleep Scheduling
Minimizing energy consumption is a key challenge for any

WSN deployment. Thus, in a non-beacon-enabled 802.15.4
WSN sleep scheduling has to be managed. As this is not
specified for the non-beacon-enabled mode [2, 9], this prob-
lem has also not been considered by the existing ns-2 im-
plementations [5, 8]. The most intuitive idea of letting each
node independently wake up for sending packets and going
to sleep afterwards can’t be applied, as in multihop net-
works most nodes have to relay packets for other nodes.
We therefore decided upon another simple method and im-
plemented the sensor node duty cycle as an on-off-process.
Each node in the network is awake for the same fraction pw

of a constant time interval T and spends the rest in sleep
state. pw = 100% corresponds to an always-on node. To de-
cide, which part of T the node is sleeping, we considered two
different strategies: The random scheduling strategy starts
the simulation by letting the nodes go active for pwT at
randomly distributed times, then sleep for (1− pw)T and so
on. The synchronized scheduling strategy assumes, that the
entire network is either on or off.

This fixed duty cycle is kept, expect for one situation:
If a node is on the point of going to sleep, but still has
a packet in the send queue, this packet is not discarded
but sent, and therefore some time of the sleep period is cut
off. Note that, in the random system, especially if pw <
0.5, it can happen, that some nodes will not be able to
communicate, as they are never awake, when their neighbors
are. Moreover, the usage of randomly distributed starting
points of sleep and wake phases introduces changing routes
during the initialization process. This is not the case under
the synchronized schedule, but the collision probability is
increased in this case, as all nodes try to send during the
same small activity period.

3.2 Routing
For routing in a multihop ZigBee mesh network, the Zig-

Bee specification proposes an algorithm which is very similar
to AODV [9]. For a first analysis, we thus take the existing
ns-2 AODV implementation [7] and include the proposed
modification to jitter the route request broadcast. Moreover,
link layer feedback (LLF) which is given after three not re-
ceived acknowledgments, thus failed MAC layer retransmis-
sions, is used to announce failed transmissions, upon which
the link is considered as broken and the route error mech-
anism is started. This consists basically of starting possi-
bly a local repair and sending out an error message to the
neighboring nodes. However, the cause of the outstanding
ACKs could not only be a dead, but also a sleeping destina-
tion or a packet collision which are quite frequent in dense
or low duty WSNs. Thus, if messages are broadcasted af-
ter each LLF, these messages can easily flood the system,
and decrease the system performance. We propose there-
fore smooth AODV with a modified LLF handling, as in-
dicated within the ZigBee specification [9], and summarize
this mechanism in Fig. 1. In contrast to the regular AODV,
smooth AODV only assumes a link failure, if the number of
LLFs nc during a certain guard interval g does not exceed
the LLF threshold LT . We introduced these two parameters
to tolerate occasional transmission failures and found, that
they improve the system performance significantly.

LLF after
failed packet
transmission

tc < g

nc < LT
no

no

yes

yes

drop the
packet

handle
broken

link

R
e

gular „unsm
o

othed
“ A

O
D

V

tc = 0
nc = 1

nc = nc + 1

tc = 0
nc = 0

time since first
LLF of observed

period length of guard
interval

number of
observed LLFs

LLF threshold

Figure 1: Modified LLF handling in smooth AODV

3.3 Simulation Setup
To investigate the performance of smooth AODV in a non-

beaconed 802.15.4 multihop WSN, we used a grid layout of
49 nodes with an inter-node spacing of 5 meters. The PAN
coordinator, also playing the role of the traffic sink, is in
one of the grid’s corners. We limited the radio range to 12
meters and assumed failure free transmissions, as our re-
search is targeted on the interaction of MAC and routing
layer. We used a simplified sensor node life cycle model and
assumed, that each node is either transmitting, receiving
which is equivalent to listening or sleeping and consumes
a power of 35.28 mW, 31.32 mW or 0.144 μW respectively.
These values have been taken from [5] and are representative
for state-of-the art hardware. The duration of one simula-
tion run was tsim = 10000 sec, and we used T = 1 sec,
g = 12 sec and LT = 3. We assumed furthermore, that each
node tries every Δt = 50 sec to send a data packet of size
s = 50 byte to the sink.

4. SIMULATION RESULTS
The goal of this section is to investigate the performance

of regular and smooth AODV for both random and synchro-

nized sleep scheduling. The impact of the wakeup ratio pw

on the performance is investigated for the four different pos-
sible scenarios a) regular rand, b) regular sync, c) smooth
rand, and d) smooth sync.

In order to quantify the performance of the system, we use
the packet delivery ratio PDR which is defined as the ratio
of received application datagrams at the sink and the sent
application datagrams of a node, PDR = Napp

rcvd/Napp
sent. The

resulting overhead required to find a path from a node to
the sink is expressed by the number of sent AODV packets,
NAODV

sent . In this context, the used energy Eb per successfully
received bit and the end-to-end (e2e) delay D are used. The
latter one is the time from starting to send the application
datagram until the time of successful reception.

Fig. 2 shows the packet delivery ratio for the four consid-
ered scenarios. In Fig. 2(a), the PDR for each sensor node
in the spatial network layout is plotted depending on its dis-
tance to the sink for a wakeup ratio of pw=90%. Each sim-
ulation run was repeated five times and the corresponding
confidence intervals at a significance level of 95% are illus-
trated as errorbars around the average PDR values. If the

92

10 20 30 40

40

50

60

70

80

90

100

distance to sink [m]

P
D

R
 [%

]

regular rand

smooth rand

smooth sync
regular sync

(a) pw=90% online ratio

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

PDR [%]

p
w

 = 50, 90, 100% sync, p
w

 = 100 rand%

p
w

 = 90% regular rand

p
w

 = 90% smooth rand

p
w

 = 50% smooth rand

p
w

 = 50% regular rand

(b) pw = 50%, 90%, 100%

Figure 2: Packet delivery ratio PDR

nodes are synchronized, i.e. regular sync or smooth sync, the
PDR is nearly 100% for each node independent of the node’s
distance to the sink, but smooth AODV shows a marginally
better performance than regular AODV. If the nodes are
active in an unsynchronized fashion, the PDR drastically
changes. While smooth AODV still leads to a PDR larger
than 80%, the PDR using regular AODV drops below 50%,
although the nodes are online 90% of the time.

Considering different online times, expressed by a different
pw, yields the same result. Fig. 2(b) shows the cumulative
distribution function (CDF) of the average PDR values for
each node, as given by the dots in the previous scatter plot.
We now vary pw from 100%, to 90% and 50%. If the nodes
are always on, i.e. pw=100%, or the nodes are synchronized,
then the PDR is about 100% with only slight differences. For
pw=90% the difference between smooth and regular AODV
is very large with 23% on average. For shorter online periods
with pw=50%, the difference of the PDR between regular
and smooth AODV narrows and leads to very small PDRs
in the unsynchronized case. To challenge this problem, the
nodes in the sensor network should try to coordinate and in
the best case to synchronize their wake times.

An explanation for this dramatic decrease of the PDR is
given by the number NAODV

sent of sent AODV packets per
node, as depicted in Fig. 3. First, we consider the CDF
of NAODV

sent when the nodes are always active. In that case,
the synchronized and the unsynchronized scheduling scheme
lead to the same results. As soon as a node has found a route
to the sink, there is no need to change it anymore. Never-
theless, there is already a small difference between regular
and smooth AODV. This is caused by dropped datagrams,
which is indicated by dropped AODV packets, cf. Table 1.
Smooth AODV does not try to find a new route for each
failed data transmission and uses additionally the guard in-
terval to smoothen its reaction. Reasons for dropped AODV
packets are packet collisions, a bad link quality according to
a too low link quality indicator (LQI), or system drops be-
cause of elapsed time-to-live counters.

Fig. 3(b) shows the CDF of the number of sent AODV
packets for each of the 48 nodes in the network. Note that
the x-axis is scaled logarithmically in this case. The first
observation is that NAODV

sent strongly varies between the four
different scenarios: For route establishment using both reg-
ular AODV and smooth AODV, under the random sleep
scheduling scheme, one order of magnitude more AODV
packets than under the synchronized scheme are required.
Observe, that smooth AODV decreases the number of sent
AODV packets significantly. The average number of sent
AODV packets per node is about a) 1557 for regular rand,
b) 102 for regular sync, c) 173 for smooth rand, and d) 30
for smooth sync during tsim = 10000 sec.

The second observation is that a high activity ratio of

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

C
D

F

AODV packets sent per node

smooth AODV

regular AODV

(a) pw=100% online ratio

10
2

10
30

0.2

0.4

0.6

0.8

1

C
D

F

AODV packets sent per node

smooth sync

regular sync

smooth rand

regular rand

(b) pw=90% online ratio

Figure 3: Sent AODV packets

pw=90% already requires a lot of AODV overhead if the
nodes are unsynchronized and start their wake/sleep cycle
at a random time instant. This means that for a random
observer a node is offline with a probability of 1− pw. For a
route with H hops between source and sink, the probability
that all nodes on the route are online is thus pw

H . In the
considered layout, we obtain for each path about 4 hops on
average per node and about 7 hops at most. In the worst
case, the packet is routed successfully with a probability of
only pw

H=0.48 for H=7 and pw=0.90. Due to the emerg-
ing frequent route requests, the number of dropped AODV
packets due to collisions or bad link quality increases which
intensifies this effect even more, cf. Table 1. As a conse-
quence, the packet delivery ratio will decrease even stronger
in high load situations.

Next, we investigate this assumption by varying the of-
fered load per node in the unsynchronized case and compare
regular and smooth AODV in Fig. 4. Therefore, the inter-
departure time Δt of two application datagrams at each sen-
sor node is varied between 1 sec and 25 sec. Fig. 4(a) shows

the normalized number N̂AODV
sent of sent AODV packets de-

pending on Δt for pw=25%, 75%, 100%. The normalized
number N̂AODV

sent takes the online time of a node into ac-
count during which the AODV packets can be sent. It is
N̂AODV

sent = NAODV
sent /(pw · tsim). Note that the y-axis is log-

arithmically scaled in Fig. 4(a). For pw=25% and pw=75%,

N̂AODV
sent is about 2.5 and 2.8 times larger for regular AODV

than for smooth AODV, respectively. In both cases, the
factor is independent of the time betwenn two packets, Δt.
For pw=100%, the smaller Δt, i.e. the higher the offered
load, the larger is the difference between regular and smooth
AODV. As expected, the normalized number of sent AODV
packets is increasing, if pw is decreasing. Fig. 4(b) shows the
corresponding PDRs for the same scenarios. As mentioned
above, the PDR is highly affected by the system load. For
pw=100%, smooth AODV softens significantly the impact
of a high datagram frequency and reaches a PDR of 95%,
while regular AODV results in a PDR of roughly 75%. For
shorter online times, smooth AODV always outperforms reg-
ular AODV.

In Fig. 5, the sensitivity of smooth AODV is evaluated

Table 1: AODV packet collisions and LQI
collisions LQI

regular smooth regular smooth
100% un-/sync 991 733 752 577

90%
sync 5249 1958 4488 1006

unsync 50215 9890 68693 6691

50%
sync 9369 2368 9276 1294

unsync 22921 10690 32738 11936

93

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

Δ t [sec]

N
se

nt
A

O
D

V

p
w

 = 25 % smooth

p
w

 = 75 % smooth

p
w

 = 75 % regular

p
w

 = 25 % regular

p
w

 = 100 % smooth

p
w

 = 100 % regular

(a) Sent AODV packets

5 10 15 20 25
30

40

50

60

70

80

90

100

Δ t [sec]

P
D

R
 [%

]

p
w

 = 25 % smooth

p
w

 = 75 % smooth

p
w

 = 75 % regular

p
w

 = 25 % regular

p
w

 = 100 % smooth

p
w

 = 100 % regular

(b) PDR

Figure 4: Impact of traffic load

with respect to the wake time of a node. From application
layer’s point of view, the end-to-end delay D and the used
energy Eb per successfully received bit are the important
performance metrics. The latter one implicitly describes the
PDR, as in our system the energy for sending and receiving
is almost the same and therefore Eb mainly depends on the
wake time pwT during the interval T . The energy required
per successfully received bit can thus be estimated as

Eb =
tsim · pw

PDR · s · tsim/Δt
P. (1)

The energy used during the online time is tsimpwP with the
average power consumption P for transmitting and receiv-
ing which is constant for all nodes with the same pw. The
number of successfully received bits at the sink is PDR · s ·
tsim/Δt with the packet size s.

Fig. 5(a) shows the minimum, maximum, and average Eb

of all nodes in the layout. In the synchronized scenario, the
PDR of each individual node is almost 100% and nearly all
sent packets are received at the sink. Thus, there is no dif-
ference between minimum, maximum, and mean Eb. In the
unsychronized scenario, the maximum PDR is almost 100%
for nodes which are directly sending the application data-
grams to the sink. However, there are datagramms which are
routed over several hops before they reach the sink. Hence,
the average and the maximum PDR over all nodes in the
network depends on the actual wakeup ratio pw. Accord-
ingly, the used energy Eb differs for the individual nodes
in the layout and the average and maximum value is much
larger than in the sychnronized scenario.

The related e2e delays of the considered simulation scenar-
ios are depicted in Fig. 5(b). The maximum and the average
e2e delay of successfully delivered application datagrams is
computed over all nodes in the system. As the wakeup ratio
pw impacts the amount of packet collisions and the resulting
retransmissions of packets, the e2e delay decreases with an
increasing activity ration pw. For the same reason, the syn-
chronized sleeping schedule shows a better performance than
the unsynchronized one. A consequence of multi-hop rout-
ing is the difference between the average and the maximum
delay. However, this difference vanishes with increasing pw.

20 40 60 80 100
10

−3

10
−2

10
−1

en
er

gy
 p

er
 d

at
a

bi
t [

J
/ b

it]

p
w

 [%]

rand max

rand mean

rand min + sync min, mean, max

(a) Energy Eb per bit

20 40 60 80 100

10
−1

10
0

e2
e

de
le

y
[s

ec
]

p
w

 [%]

sync mean

sync max

rand max

rand mean

(b) End-to-end delay D

Figure 5: Impact of wakeup time on smooth AODV

5. CONCLUSIONS
In this paper, we simulated the combination of the sleep

enabled non-beaconed mode of 802.15.4 and AODV routing.
Two duty cycle schedules were compared: random schedul-
ing and global synchronization. AODV used immediate and
smooth - with several drops as trigger - link layer feedback
for route maintenance. The performance of the synchro-
nized system under low load was not seriously limited by the
duty cycles, however, smoothing AODV reduced the routing
overhead significantly. The unsynchronized system perfor-
mance broke down to 50% already for sleeping only 25% of
the time. Again, smoothing AODV improved the situation
slightly. While the energy for a successfully transmitted in-
formation could be descreased with for a less active node in
the synchronized case, the energy consumption in the un-
synchronized case could not be reduced. We saw, that the
variation of the energy consumption were even increased if
the nodes are sleeping longer, i.e. some nodes may not be
efficient enough to fulfill their role in the WSN if the duty
cycle is cut down.

The results indicate the need for synchronization mecha-
nisms for wireless sensor networks. Our future work will be
dedicated to the evaluation of sleep scheduling mechanisms
for 802.15.4 WSNs with regard to the overhead induced by
in band signaling and the effects of concentrating the traffic
load on a fraction of the bandwidth.

6. REFERENCES
[1] C. Gomez, P. Salvatella, O. Alonso, and J. Paradells.

Adapting AODV for IEEE 802.15.4 Mesh Sensor
Networks: Theoretical Discussion and Performance
Evaluation in a Real Environment. In WOWMOM ’06,
Buffalo, NY, USA, June 2006.

[2] IEEE Computer Society. IEEE Standard 802.15.4:
Wireless Medium Access Control and Physical Layer
Specifications for Low-Rate Wireless Personal Area
Networks, October 2003.

[3] K. Langendoen. Medium Access Control in Wireless
Sensor Networks. In H.Wu and Y. Pan, editors, Medium

Access Control in Wireless Networks, Volume II:

Practice and Standards. Nova Science Publishers, 2007.

[4] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
On-Demand Distance Vector (AODV) Routing.
RFC3561, 2003.

[5] I. Ramachandran, A. K. Das, and S. Roy. Analysis of
the Contention Access Period of IEEE 802.15.4 MAC.
ACM Trans. Sen. Netw., 3(1), 2007.

[6] V. Rao and D. Marandin. Adaptive Backoff Exponent
Algorithm for Zigbee (IEEE 802.15.4). In NEW2AN

2006, St.Petersburg, Russia, May 2006.

[7] USC Information Sciences Institute. Network Simulator
NS2. http://www.isi.edu/nsnam/ns.

[8] J. Zheng and M. Lee. Will IEEE 802.15.4 Make
Ubiquitous Networking a Reality? IEEE Comm. Mag.,
42(6), June 2004.

[9] ZigBee Alliance. ZigBee Specification, December 2006.

94

Ratpack: Using Sensor Networks for Animal Observation

Jó Bitsch Link,
Klaus Wehrle

Distributed Systems Group
RWTH Aachen

first.last1.last2@rwth-aachen.de

Okuary Osechas,
Johannes Thiele,
Hanspeter Mallot

Cognitive Neuroscience
Department of Zoology
University of Tübingen

first.last@uni-tuebingen.de

ABSTRACT
The goal of this project is to describe the behaviour of rats.
To study this behaviour, we will resort to the use of wireless
sensor networks, monitoring various quantities that yield im-
portant information to complement current knowledge on
the behavioural repertoire of rats. The challenges we face
include data acquisition and processing on the one hand, as
rat-borne sensor nodes will need to be small enough not to
interfere with the rats’ own activities, thus limiting the avail-
able memory and processing capabilities. Additionally, rats
spend a significant amount of time underground, making
data transmission and routing a very interesting challenge,
for which we are currently developing novel strategies.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems

Keywords
Sensor network, Animal observation, Rattus norvegicus, Spo-
radic connectivity

1. INTRODUCTION
One of the core motivations for the research in sensor net-

works is the vision of deploying sensor networks in nature
to observe environmental phenomena. In this paper, we dis-
cuss our contribution to make this vision a reality. With the
help of sensor networks, we plan to observe several aspects
of rat behaviour.

Currently, we are equipping rats with standard sensor
nodes (mica2dot) and a sensor suite consisting of light, au-
dio, and acceleration sensors. Sensors are attached to labo-
ratory rats with the help of a special leather “jacket”, which
has a pocket fitted for this equipment. This jacket has open-
ings for the front legs and wraps around the rib cage and the
back. As an additional feature, it also has a reflective marker
to allow optical tracking in a controlled lab setting, such as
a maze. The long term goal is to attach (or even implant)
the sensor nodes to wild rats; this will have consequences on
the accessibility of the data.

In the wild, rats live in underground burrows and so ra-
dio propagation is very limited. Therefore, sensor nodes can
only communicate when the rats carrying these sensors meet
somewhere. As a result, the sensor nodes are only sporadi-
cally connected and the network topology is highly dynamic,
making our deployment scenario significantly different from

the typically envisioned static networks.
The remainder of this paper is structured as follows: first,

section 2 discusses other deployments of sensor nodes and
compares our deployment scenario to these. Section 3 de-
scribes the quantities we are interested in measuring and
the type of information we hope to obtain from them, while
section 4 discusses the impact of sporadic connectivity on
sensor network algorithms and protocols. Finally, section 5
offers some concluding remarks on our work.

2. RELATED WORK
Recently, a considerable number of sensor networks have

been deployed in the environment [8, 11, 13, 14]. Most of
these deployments – except ZebraNet [8] – are static net-
works. In these, researchers placed sensor nodes at locations
of interest and ensured that the nodes could communicate
with each other and the base station.

The ZebraNet project equipped zebras with customised
sensor nodes. Via GPS, the sensor nodes recorded the an-
imal’s position and other relevant quantities. Furthermore,
the sensor nodes recorded when and where zebras met. From
this data, biologists could evaluate the movements and social
interactions of zebras.

Our deployment scenario is somewhat similar to ZebraNet,
but has a number of interesting differences: (1) we cannot
use GPS for the observation of rats, as they live under the
surface; (2) due to the small size of the rats, we need to
use standard sensor nodes without large batteries or sev-
eral MB of storage space, as was the case in the ZebraNet
project. The GPS signal in the ZebraNet project provides
absolute and accurate time and location information. Slot-
ted medium access and routing benefit heavily from this
knowledge. As a result, many of the research challenges
we discuss in this paper are not relevant in the ZebraNet
project.

The DTAG project [7] has an application that relates to
ours in certain aspects but again differs in others. A very
interesting aspect is that whales spend most of their time (up
to 95%) underwater, making constant radio communication
impossible, and thus, the scenario is in a way similar to
ours. Their approach was to build a tag that records the
relevant data onto a digital tape; when the data storage
is full, the tag separates from the whale and floats to the
surface, where it is picked up by the research team. This
solution is not viable for our purpose since our motes need
to stay attached to the rats as the danger of losing them in
the burrow system is too high. Furthermore, our approach
has the advantage of automatic data collection (as opposed

95

to the manual collection of the tapes), thus speeding up the
availability of the collected data.

3. SENSING PRINCIPLES
The scheme we propose for studying the behaviour of rats

differs from existing methods in that it allows us to monitor
rats directly in their natural environment (as opposed to tra-
ditional laboratory experiments). One fascinating prospect
is the possibility of studying the structure of a burrow with
a minimally invasive method, as this was previously done by
excavating existing ones, thus disturbing the natural course
of its inhabitants. Should our scheme be accurate enough,
it would allow us to describe burrows, not only without dis-
rupting their everyday life (as, for example, in [1]), but also
in near-real-time as they are being built.

3.1 Social Interaction
Norway Rats live in burrows, usually shared in groups,

which naturally leads to the formation of social hierarchies
[1]. The communication between these rats is partially based
on ultrasound vocalisations Several scenarios of interaction
between rats are already known (mother/child, resident/in-
truder). Our setup should allow us to verify these and find
new situations. The main tool for this approach will be the
analysis of the vocalisations emitted by rats.

3.2 Motion
The motion of a rat may enable us to describe its forag-

ing habits, as well as the layout of its burrow. This may
also allow us to draw conclusions as to the actual use of dif-
ferent sections of the burrow, in a non-destructive fashion.
The first approach to this problem will be through inertial
measurements (acceleration, turn rates), but we expect to
require further sensing principles for more accurate descrip-
tions of the motion paths.

3.3 Activity
Sleeping and eating habits could be of interest as indica-

tors of energy consumption. For example instead of a de-
scription of the seasonal variations in the rats’ metabolism,
it should be possible to obtain a higher time resolution. Ac-
tivity monitoring could be accomplished by complementing
the motion information (see section 3.2) with heart rate and
breathing frequency data.

3.4 Higher Level Description
From the behavioural aspects described above, more ab-

stract concepts can be inferred; we expect to exploit the
synergy between different types of data, so we can inter-
pret behavioural patterns in more abstract concepts. For
example, the detection of vocalisations from infant rats, fol-
lowed by movements previously determined to be character-
istic of a mother carrying a child, might hint to a fostering
behaviour. These vocalisations could then be conferred a
certain interpretation, in the previously described case they
could be thought of as cries for help.

4. SPORADIC CONNECTIVITY
Currently the main research focus in the sensor network

community is on continuously connected sensor nodes. Thus,
although the network topology may vary slightly over time,
for example, due to node failure or changing radio condi-
tions, the network infrastructure mostly remains the same.

Today’s algorithms and protocols such as Medium Access
Control (MAC), routing, and data aggregation focus on this
static scenario. The requirements of our own scenario quickly
made obvious that the available algorithms and implemen-
tations are not efficiently usable for the following reasons.

4.1 Medium Access Control
Medium Access Control in a sporadically connected net-

work, especially in a sensor network, should have two modes
of operation: (1) an ultra low power beacon mode and (2)
a high throughput mode. In the beacon mode, two nodes
can find each other by periodically sending beacon messages
and listening for such messages from other nodes. Once two
nodes find each other, they switch to the high throughput
mode to exchange data. Existing MAC protocols such as
[12, 15] do not provide this functionality.

4.2 Routing
As we do not expect to know all exits of a rat burrow

and some rats may stay in the burrow for long durations,
we need the sensor nodes to exchange their measurements.
Today’s tree-based routing protocols [10] or even new any-
to-any versions [4] are not suitable for this purpose. Similar
to delay tolerant networks [3], data should be relayed from
one sensor node to another when their bearers, i.e. the rats,
meet. We place a base station at one (or more) exits of
the rat burrow. When a rat passes along this exit, all mea-
surements, e.g. data collected by this rat as well as the data
received from other rats, are transmitted to the base station.

4.3 Data Aggregation
Sensor nodes have very limited storage space, typically

4 kB of RAM and about 500 kB of additional flash space
[6]. As discussed, it may take some time until a certain
rat passes one of the base stations. Thus, its sensor node
needs to store large amounts of measurement data – its own
and those of the rats it has met. Efficient high-level data
aggregation is necessary to reduce storage requirements and
the communication overhead when two rats meet.

4.4 Time Synchronisation
Accurately synchronised clocks on the sensor nodes en-

sure consistent time stamps and measurements for the dis-
tributed observation of events. Nonetheless, typical time
synchronisation algorithms [2] assume continuously connec-
ted nodes and are thus not applicable.

4.5 Reprogramming
The lessons learned during the deployment may result

in changing application needs and therefore require flexible
schemes for reprogramming sensor nodes. We expect mod-
ular and flexible communication protocols [9] and operating
systems [5] to be very beneficial in our application scenario.

5. CONCLUSION
At first glance, the merits of a software architecture re-

quired for our deployment may not be very obvious – imple-
menting a software that can (1) record when two rats meet
and (2) record some additional sensor readings of temper-
ature and motion seems to be straightforward. However,
when looking at the presented scenario, it becomes obvious

96

that the necessary communication paradigms for sporadi-
cally connected networks are missing in the sensor network
community.

In this paper, we discussed the features such a communica-
tion paradigm should provide for efficient and energy-aware
animal observation. Currently, our ongoing work focuses
on designing and implementing the required features. The
main deployment scenario is rat observation. However, we
think that this architecture can be easily adapted to the
observation of many other species such as Flying Foxes or
Naked Mole Rats (Heterocephalus glaber), as their social in-
teraction is highly complex. Newly available platforms have
become sufficiently small to make it seem plausible to even
study smaller bats.

6. ACKNOWLEDGEMENT
We would like to thank Microsoft Research for the finan-

cial support of our project as part of their programme “To-
wards 2020 Science”.

7. REFERENCES
[1] The Ecology and Sociobiology of the Norway Rat.

Bethesda, Maryland, 1962.

[2] J. Elson and K. Römer. Wireless Sensor Networks: A
New Regime for Time Synchronization. ACM
SIGCOMM Computer Communication Review, 2003.

[3] K. Fall. A delay-tolerant network architecture for
challenged internets. In Proc. of the conference on
Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM), 2003.

[4] R. Fonseca, S. Ratnasamy, D. Culler, S. Shenker, and
I. Stoica. Beacon Vector Routing: Scalable
Point-to-Point in Wireless Sensornets. In Proc. of
Symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[5] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler,
and M. Srivastava. SOS: A dynamic operating system
for sensor networks. In Proc. of the International
Conference on Mobile Systems, Applications, And
Services (Mobisys), 2005.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In Proc. of conference on

Architectural support for programming languages and
operating systems (ASPLOS), 2000.

[7] M. Johnson and P. Tyack. A Digital Acoustic
Recording Tag for Measuring the Response of Wild
Marine Mammals to Sound. IEEE Journal of Oceanic
Engineering, 2003.

[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh,
and D. Rubenstein. Energy-efficient computing for
wildlife tracking: Design tradeoffs and early
experiences with zebranet. In Proc. of conference on
Architectural support for programming languages and
operating systems (ASPLOS), 2002.

[9] O. Landsiedel, J. Bitsch, K. Denkinger, and
K. Wehrle. Modular Communication Protocols for
Sensor Networks. In Proc. European Workshop on
Wireless Sensor Networks (EWSN), 2006.

[10] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. A. Brewer, and D. E. Culler. The
emergence of networking abstractions and techniques
in tinyos. In Proc. of Symposium on Networked
Systems Design and Implementation (NSDI), 2004.

[11] J. Paek, K. Chintalapudi, J. Caffrey, R. Govindan,
and S. Masri. A Wireless Sensor Network for
Structural Health Monitoring: Performance and
Experience. In Proc. of Workshop on Embedded
Networked Sensors (EmNets), 2005.

[12] J. Polastre, J. Hill, and D. Culler. Versatile Low
Power Media Access for Wireless Sensor Networks. In
Proc. of Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

[13] R. Szewczyk, J. Polastre, A. Mainwaring, and
D. Culler. Lessons from a Sensor Network Expedition.
In Proc. of European Workshop on Wireless Sensor
Networks (EWSN), 2004.

[14] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and
M. Welsh. Monitoring Volcanic Eruptions with a
Wireless Sensor Network. In Proc. of European
Workshop on Wireless Sensor Networks (EWSN),
2005.

[15] W. Ye, J. Heidemann, and D. Estrin. An
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In Proc. of conference on Computer
Communications (InfoCom), 2002.

97

Wireless Sensor Networks for
Environmental Noise Monitoring

Silvia Santini
Institute for Pervasive Computing

ETH Zurich, Switzerland
santinis@inf.ethz.ch

Andrea Vitaletti
Department of Computer Science

University of Rome “La Sapienza”, Italy
andrea.vitaletti@dis.uniroma1.it

ABSTRACT
While environmental issues keep gaining increasing atten-
tion from the public opinion and policy makers, several ex-
periments demonstrated the feasibility of wireless sensor net-
works to be used in a large variety of environmental mon-
itoring applications. Focusing on the assessment of envi-
ronmental noise pollution in urban areas, we provide qual-
itative considerations and preliminary experimental results
that motivate and encourage the use of wireless sensor net-
works in this context.

Keywords
Wireless sensor networks, environmental noise, noise indica-
tors

1. INTRODUCTION
In 1996, the European Community estimated in about 80
millions the number of its citizens that were exposed to un-
acceptable levels of environmental noise, while another 170
millions suffered serious annoyances from high noise pollu-
tion during daytime [2]. Directive 2002/49/EC of the Euro-
pean Parliament has since made the avoidance, prevention,
and reduction of environmental noise a prime issue in Eu-
ropean policy, requiring member states to firstly determine
the exposure of its citizens to environmental noise, and sec-
ondly, to ensure that information on environmental noise
and its effects is made available to the public [1].

According to the directive, Member States are required to
provide an accurate mapping of environmental noise expo-
sure in urban areas like public parks, schools, hospitals, and
other noise-sensitive zones, starting from June 2007. While
current noise maps are mostly based on sparse data and ad-
hoc noise propagation models, a recent position paper by
the Commission [6] has stressed that “every effort should be
made to obtain accurate real data on noise sources,” since
“detailed noise modelling/mapping and noise exposure as-
sessment may have to be undertaken in order to produce
detailed local action plans.” The demand for accurate data
about noise exposure levels will likely increase dramatically,
as this statement makes its way into mandatory regulation.
We believe that wireless sensor networks will be able to sat-
isfy this demand by providing noise measurements with an
accuracy and cost-efficiency that current noise assessment
procedures cannot afford.

Wireless sensor networks have already been used in a large
variety of environmental monitoring applications, e.g., to

monitor bird habitats and habits [8, 11], to investigate the
growth model of redwood trees [5], or to study the influence
of environmental parameters on the quality of agricultural
products [9]. Wireless sensor networks also allow monitor-
ing pollution parameters in urban areas at an accuracy and
scale that were previously unreachable, e.g., within the City-
Sense1 testbed, which plans to use a fixed network of 100
line-powered wireless sensors to collect fine-grained air pollu-
tion data and deliver it in real-time to the users. To the best
of our knowledge, however, wireless sensor networks have so
far not been used to perform fine-grained measurements of
noise pollution levels.

This article presents a preliminary assessment for using wire-
less sensor nodes to measure noise exposure levels in urban
settings. After briefly summarizing today’s environmental
noise assessment procedures, we give an overview of the var-
ious quantities involved in measuring environmental noise.
We close with initial experimental results of using a sensor
node to compute these quantities.

2. NOISE POLLUTION ASSESSMENT
TODAY

Today’s noise measurements in urban areas are mainly car-
ried out by designated officers that collect data in a loca-
tion of interest for successive analysis and storage, using a
sound level meter or similar device. This manual collec-
tion method using expensive equipment does not scale as
the demand for higher granularity of noise measurements
in both time and space increases. Instead, a network of
cheap wireless sensor nodes deployed over the area of inter-
est could collect noise pollution data over long periods of
time, and autonomously report it to a central server though
the sensor’s on-board radio, requiring human intervention
only to install and subsequently remove the sensing devices.
Moreover, since sensor nodes are typically equipped with
several different sensors, they can label the collected noise
data with additional information like, e.g., the temperature
and humidity values registered as the noise measurements
were collected. This information must indeed be provided
for any properly collected set of noise exposure data, along
with other meteorological parameters like wind speed and
direction.

Collected noise data is typically stored in a land register
and used, together with additional information about exist-

1http://www.citysense.net/

98

ing noise sources, to feed computational models that provide
extrapolated noise exposure levels for those areas for which
real data is unavailable. Even if this assessment procedure
is still compliant with European regulations, today’s com-
putational models often fail to provide accurate estimations
of the real noise pollution levels2. Indeed, while the free
propagation properties of noise generated from typical noise
sources3 are well understood, shadowing and reflection ef-
fects hinder accurate estimation of noise levels in complex
urban settings. For instance, estimated noise levels on inter-
nal buildings façades (e.g., facing a courtyard) are typically
unreliable, and this inaccuracy may become critical if noise
exposure data is used to drive decisions about construction
planning or to elaborate local noise abatement policies. The
accuracy of estimated noise levels could be easily verified and
improved by installing a wireless sensor network at those lo-
cations for which computational models are likely to provide
inaccurate estimations. In these settings, noise assessment
points must be closely spaced (about every 2 to 3 meters),
and measurements should be taken simultaneously at all as-
sessment points in the presence of sound from a noise source.
While this distributed sensing setup is extremely hard to re-
alize with current measurement procedures, it is a “natural”
setup for wireless sensor networks.

Wireless sensor networks may bring significant improvements
also in the assessment of noise pollution due to vehicu-
lar traffic on urban roads. The current procedure requires
estimating, for several different vehicle classes, the aver-
age number of units passing-by at daytime, evening and
night and the average noise level for each vehicle pass-by [4].
This estimation is either performed through computation,
with the drawbacks and problems outlined above, or it is
performed manually, i.e., by a designated officer standing
nearby the road and annotating the type and number of
vehicles passing-by. Wireless sensor networks have already
proved their ability to detect and classify vehicles [3] and
could therefore be used in this context to automate the ve-
hicle counting procedure and, at the same time, record the
corresponding noise levels.

3. MEASURING NOISE
Acoustic waves are pressure fluctuations, usually caused by a
solid vibrating surface, that propagate through an appropri-
ate medium like air or water. Sound is the sensation induced
at the human ear by incident acoustic waves that are cap-
tured and converted into neurological stimuli by the hearing
system. Similarly, a microphone converts pressure fluctua-
tions into an equivalent electrical signal, that can be post-
processed to compute the loudness of the noise source that
generated the acoustic wave. Average loudness levels over
long periods of time are commonly used as noise indicators.
For instance, the European directive 2002/49/EC requires
Member States to apply the Lden and Lnight indicators for
the preparation and revision of strategic noise mapping [1].
Before getting to the formal definition of these indicators,
we need to explain how the equivalent sound pressure level

2The authors are indebted to Hans Huber and Fridolin
Keller of the department for environmental noise protection
of the city of Zurich, who pointed this out in a personal
in-depth interview.
3Typical noise sources are, e.g., human activities, motor ve-
hicles, railways, aircrafts or industrial machinery.

of a noise source can be computed from the output signal of
a microphone [4].

The instantaneous sound pressure level (SPL) of a sound
is usually expressed in logarithmic units with respect to a
given reference pressure level and is computed according to
the following equation:

Lp(t) = 10 log
10

p(t)2

p2

ref

= 10 log
10

p(t)2 − 10 log
10

p2

ref (dB)

(1)

in which p(t) represents the instantaneous pressure of an
acoustic wave impinging the membrane of the microphone.
The standard reference pressure pref is 20μPa and conven-
tionally represents the minimum audible sound. Substitut-
ing this value into equation 1, one obtains:

Lp(t) = 10 log
10

p(t)2 + 94 (dB). (2)

If E(t) is the microphone output voltage induced by an in-
cident acoustic wave p(t), equation 2 may be rewritten as:

Lp(t) = 10 log
10

E(t)2 + 94 − S (dB) (3)

The sensitivity S of the microphone that appears in equa-
tion 3 defines how the microphone responds to a certain
pressure input and is typically expressed in decibel with re-
spect to a reference level. The following equation holds for
the sensitivity S of a microphone:

S = 20 log
10

Ep0

Erefp
(dB) (4)

It is common practice to set Eref = 1V and p0 = 1Pa and
thus to express the sensitivity as a (negative) value with
respect to the reference value: 0 dB = 1V/Pa.

Since noise typically fluctuates significantly even over short
periods of time, the instantaneous sound pressure level as
defined in 3 is of little practical relevance. The loudness of
a given noise source is therefore better represented by the
average of the time-varying sound pressure level Lp(t) over
a given period of time T :

Leq =
1

T

∫ T

0

10
Lp(t)

10 dt (dB) (5)

The equivalent sound level pressure Leq defined above is the
quantity that is typically measured by a sound level meter
and that drives the computation of most commonly used
noise indicators. For instance, the Lday, Levening and Lnight

noise indicators are the equivalent sound levels averaged over
day, evening and night periods4. The Lden (day-evening-
4Accurate definition of these indicators is provided in ISO

99

night) level is accordingly defined as:

Lden = 10 log
10

[
1

24

(
12 · 10

Ld
10 + 4 · 10

Le+5
10 + 8 · 10

Ln+10
10

)]

(6)

where we abbreviated Lday, Levening and Lnight to Ld, Le

and Ln, respectively5. For the purpose of noise mapping,
Member States of the European Community must provide
noise pollution data in terms of the Lden and Lnight indica-
tors [1].

Even if there are several different standard procedures for
the computation of the above defined noise indicators, a few
important issues like, e.g., the spatial distribution of the
measurement points or the necessary acoustic data process-
ing, must always be carefully considered when measuring
sound pressure levels. Indeed, since the human ear does
not respond equally to all the frequencies in the audible
range, measured sound levels must be adequately weighted
(in the frequency domain) to take into account this selec-
tive behavior of the human hearing system. Among the
available standard weighting methods the European regula-
tion requires the use of the A-weighting function, originally
defined in [7] and then adopted in numerous international
standards. Even if A-weighting should better be performed
using an analog filter before sampling, digital post-sampling
filtering is also tolerated, even if typically less accurate. The
A-weighted sound level pressures and noise indicators are in-
dicated in A-weighted decibels or dB(A).

When assessing noise indicators, the location of the mea-
suring devices must follow clearly defined rules [1, 6]. In
particular, for the purpose of noise mapping near to build-
ings, the assessment points must be 4.0 ± 0.2 m above the
ground and at the most exposed façade. If necessary, other
heights may be used but they shall never be less than 1, 5 m
above the ground, and results should be corrected in accor-
dance with an equivalent height of 4 m. This requirement
assumes particular importance since it disqualifies portable
hand-held devices like mobile phones to be used for noise
pollution measurements.

4. PRELIMINARY RESULTS
To be used as noise pollution sensing devices, wireless sensor
nodes must be able to compute the noise indicators defined
in the previous section. We therefore performed a prelimi-
nary study to understand the feasibility of currently avail-
able sensor networks platforms to compute such indicators.
We used the Tmote Sky prototyping platform6, equipped
with the SBT80 multi-modality sensor board available from
EasySen7. This sensor board features, among other sensors,
the EM6050P-423 omni directional condenser microphone,
which we used to capture audio signals from the environ-
ment. The output voltage of the microphone is quantized
using the Tmote Sky’s 12 bits analog to digital converter

1996-1:2003 (that very recently replaced the currently with-
drawn ISO 1996-2:1987 standard).
5Lden, Ld, Le and Ln are all expressed in dB.
6www.moteiv.com
7www.easysen.com

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Measured Output Voltage

time [s]

V
ol

ts
 [V

]

Figure 1: Microphone response to a 250Hz sine wave
stimulus of increasing amplitude.

(ADC). The voltage levels recorded by the microphone may
be reconstructed from the ADC samples using the simple
formula: E = EADC

4096
· Vref , where Vref is set to 2.5V for

the Easysen sensor board and EADC are the ADC samples.
Figure 1 reports the (A-weighted) voltage response of the
microphone to a synthetically generated 250Hz sine wave
stimulus, whose amplitude has been progressively increased
to bring the microphone to saturation. The raw signal sam-
ples, read from the ADC at a a 2kHz rate, has been sent
from the node to the pc through the serial port. We post-
processed the data in Matlab to compute the A-weighted
equivalent SPL, which is 90 dB(A).

The first consideration we can derive by observing the sam-
ple data in figure 1 is the high level of background noise.
The EM6050P-423 has indeed a self-noise level of 54 dB(A)
SPL8, which makes sounds corresponding to SPL levels be-
low 54 dB(A) to be indistinguishable from electrical back-
ground noise9. Since this high level of background noise se-
riously limits the applicability of the EM6050P-423 for our
purposes, we are considering using alternative acoustic sen-
sors like e.g., the Tmote Invent10 on-board microphone or a
custom made sound level meter. The EM6050P-423 has in-
deed further suboptimal characteristics. First, its frequency
response start deviating from linearity already at 5kHz and
distorts significantly harmonic components above 10 kHz.
Second, the EM6050P-423 datasheet does not report the
maximum SPL the microphone can measure without sig-
nificant total harmonic distortion (THD). This parameter
is nevertheless necessary to define the upper bound of the
dynamic range of the microphone and without a specifica-
tion it is unclear up to which SPL level the microphone may

8The self-noise (or equivalent noise) level may be computed
subtracting the nominal signal to noise ratio (S/N) from the
reference sound pressure level of 94dB. For the EM6050P-
423 the S/N is 40 dB.
954 dB(A) is the SPL level that corresponds to the noise pro-
duced during a normal conversation taking place at about 1
m distance from the microphone.

10www.moteiv.com

100

provide a reliable response.

Besides the electrical and acoustic characteristics of the mi-
crophone there are other issues influencing the quality of
the performed noise measurements like the rate at which
voltage samples are read from the ADC. Since the human
ear can only perceive acoustic waves whose frequencies range
from 20 Hz to 20 kHz, sampling the output signal of a micro-
phone must occur at at least 40 kHz [4,10]. In the context of
noise pollution measurements this sampling frequency may
be reduced 32 kHz since the hearing system of adult humans
cannot perceive frequencies above 16 kHz [4, 8]. Neverthe-
less, this sampling rate seems prohibitively high for sensor
network platforms, which typically rely only on limited com-
putational resources. However, as long as no radio commu-
nication is involved, the Tmote Sky is able to support the
required sampling rate. Since noise indicators are are long-
term SPL averages, transmitting raw data back to a central
sensor is not necessary as the aggregated noise indicators are
of interest and not the time-varying pressure levels. Further-
more, sensor nodes must not necessarily continuously sample
the acoustic levels, but they can apply intelligent data col-
lection techniques to estimate noise indicators in accordance
to pre-specified accuracy requirements. Limiting radio com-
munication and data acquisition, the power consumption of
the sensor nodes can be adequately controlled to allow long-
term, unattended network operation.

In order to rapidly get first quantitative data we neglected
calibration issues, that should otherwise be considered care-
fully. Sensor nodes needs indeed to be opportunely cali-
brated in order to be used as noise pollution sensors. The
calibration procedure may be carried out using a piston-
phone, i.e., a device that generates (in anechoic conditions),
well-defined sound pressure levels. Measuring discrepancies
between the effective microphone response and the expected
(ideal) response would allow to adequately tune individual
sensor nodes gains to make them provide reliable SPL mea-
surements. Furthermore, in-network calibration methods
could be investigated to ensure long-term correct network
operation.

Even if the way to the first ”wireless noise sensing network“
must still pass through several important milestones, the
considerations and the preliminary results reported in this
paper show that using wireless sensor networks for envi-
ronmental noise monitoring is not only technically possi-
ble, but would also bring significant advantages with re-
spect to the current assessment procedures. We will there-
fore concentrate our future work in building a reliable hard-
ware/software prototype, and in testing it extensively in the
real, noisy world.

5. REFERENCES
[1] Directive 2002/49/EC of the European Parliament

and of the Council of 25 June 2002 relating to the
Assessment and Management of Environmental Noise.

[2] Future Noise Policy. European Commission Green
Paper. COM (96) 540 final, November 1996.

[3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani,
H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demirbas,
M. Gouda, Y. Choi, T. Herman, S. Kulkarni,
U. Arumugam, M. Nesterenko, A. Vora, and

M. Miyashita. A Line in the Sand: A Wireless Sensor
Network for Target Detection, Classification, and
Tracking. Computer Networks (Military
Communications Systems and Technologies),
46(5):605–634, December 2004. Military
Communications Systems and Technologies.

[4] D. A. Bies and C. H. Hansen. Engineering Noise
Control: Theory and Practice. Spon Press (Taylor
&Francis Group), London and New York, 3rd edition,
2003.

[5] P. Buonadonna, D. Gay, J. M. Hellerstein, W. Hong,
and S. Madden. TASK: Sensor Network in a Box. In
S. B. Erdal Cayirci and P. Havinga, editors,
Proceedings of the Second IEEE European Workshop
on Wireless Sensor Networks and Applications
(EWSN’05), Istanbul, Turkey, February 2005.

[6] European Commission Working Group Assessment of
Exposure to Noise (WG-AEN). Good Practice Guide
for Strategic Noise Mapping and the Production of
Associated Data on Noise Exposure, January 2006.

[7] H. Fletcher and W. A. Munson. Loudness, its
Definition, Measurement and Calculation. Journal of
the Acoustic Society of America, 4(2):82–108, 1933.

[8] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi,
E. Kohler, J. Judy, and D. Estrin. Capturing
High-Frequency Phenomena Using a
Bandwidth-Limited Sensor Networks. In Proceedings
of the 4th ACM Intl. Conf. on Embedded Networked
Sensor Systems (SenSys’06), Boulder, Colorado, USA,
November 1–3 2006.

[9] Sensor Network in a Vineyard. GoodFood EU
Integrated Project: Food Safety and Quality
Monitoring with Microsystems. Project Website:
www3.unifi.it/midra/goodfood/.

[10] C. E. Shannon. Communication in the Presence of
Noise. Proc. Institute of Radio Engineers, 37(1):10–21,
January 1949.

[11] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson,
and D. Culler. An Analysis of a Large Scale Habitat
Monitoring Application. In Proceedings of the Second
ACM Conference on Embedded Networked Sensor
Systems (SenSys’04), Baltimore, Maryland, USA,
November 3-5 2004.

101

Security in Pervasive Healthcare

Oscar Garcia Morchon, Heribert Baldus
Philips Research Europe
Weisshaussstrasse 2

52062 Aachen, Germany

firstname.lastname@philips.com

Tobias Heer, Klaus Wehrle
Distributed Systems Group
RWTH Aachen University
52074 Aachen, Germany

lastname@cs.rwth-aachen.de

1. INTRODUCTION
Pervasive healthcare is an emerging application in which wireless

sensor networks (WSNs) are going to be used in medical

environments. In this context, patients will be outfitted with

wearable wireless sensors, forming a body sensor network (BSN)

that will sense, process, and transmit patients’ vital signs to their

caregivers.

In a first step, this technology will be introduced in medical

centers, replacing existing wired telemetry systems and improving

the flexibility of health monitoring systems. Later, pervasive

healthcare will extend its scope to home monitoring, allowing

applications such as monitoring of elderly people. Finally,

pervasive healthcare may enable ubiquitous patient monitoring. In

this vision, which is pursued by health alliances, such as Continua

[1], everybody will carry a BSN which may enable real time vital

sign monitoring, independently of the positioning of patients and

caregivers.

Security is a fundamental part of this pervasive healthcare

architecture. The demand for security is driven by the

responsibility of the caregiver for the patient as well as by legal

laws such as the Health Insurance Portability and Accountability

Act (HIPAA) in the USA [1] or the European Directive 95/46 [3]

on the protection of personal data. In this context, the provision of

basic security services, such as, e.g., confidentiality,

authentication, integrity and availability depends upon the

definition of a consistent key management architecture as it

manages the cryptographic secrets that are necessary to enable

secure communication between the sensor nodes and monitoring

devices. However, the design of a key-management architecture in

the framework of pervasive healthcare is not straightforward due

to inherent technical restrictions and operational requirements.

On the one hand, the resource-constrained nature of medical

sensor nodes, e.g., the MICAz platform [3], which is used in some

pervasive healthcare projects (e.g. Codeblue [5]), presents

computational, communication, memory and energy constrains.

On the other hand, pervasive healthcare architectures introduce

novel operational requirements that make key management

challenging.

• Access to infrastructure like a centralized key-

management-service cannot be guaranteed at all times,

and thus, sensor nodes must be able to establish a secure

communication in an ad hoc manner. However,

whenever sufficient network coverage is provided (as it

would be the case in a hospital), timeliness and

reliability are crucial.

• Pervasive healthcare architectures need to be highly

scalable. Consequently, key management solutions must

be scalable as well in order to guarantee global coverage

and to support typical workflows and patient-caregiver

relationships in medical facilities.

• Security solutions must take into account the distinct

ways of communication in a BSN scenario: Intra-BSN

communication between the nodes of a BSN and inter-

BSN communication with nodes of other BSNs or

medical monitors.

• Pervasive healthcare architectures must also address the

problem of bridging the distance between several BSNs

and healthcare monitors whenever patients leave

medical facilities. Other network technologies need to

be utilized in order to allow remote monitoring.

• Privacy concerns appear and aggravate due to the

ubiquitous nature of pervasive healthcare applications

whenever a patient leaves the medical facility.

In this context, the definition of an appropriate key management

architecture for pervasive healthcare must address four specific

problems, namely (1) key distribution within a BSN, (2)

scalability, (3) secure BSN management, (4) secure ubiquitous

connection of BSNs with medical facilities, and (5) protection of

the patients’ privacy. This paper addresses all of these aspects and

discusses challenges and solutions in respect of the particular

conditions in pervasive healthcare.

2. KEY DISTRIBUTION
Key distribution refers to the mechanisms used to distribute

secrets and to set up trust relationships in a network. Hence, key

distribution is of paramount importance in order to enable basic

security services in pervasive healthcare applications. The design

of a key distribution approach must consider both technical

restrictions and operational requirements.

Research on key distribution for WSNs shows that the use of

public key based solutions in WSNs is feasible at the cost of high

memory, energy, and computational requirements. Experimental

results [6] show that efficient public key cryptosystems based on

elliptic curve cryptography (ECC) still require about 0,81 second

for a 160-bit ECC point multiplication. This result might be

satisfactory in static wireless sensor networks, but not in pervasive

healthcare in which key agreement takes place very frequently

due to the high mobility of sensor nodes. A public key based

solution would rapidly exhaust sensor node’s batteries and lead to

unacceptable delays in the transmission of patient’s vital signs.

102

Online trust centre alternatives, such as, e.g., SPINS [7] or S2RP

[8] are also not feasible, since continuous access to infrastructure

is not guaranteed in most BSN scenarios. Key pre-distribution

schemes (KPSs) [9] seems to be one of the most promising

solution to enable key management in pervasive healthcare due to

their low resource requirements and operational flexibility.

In [13], we proposed the use of a key-distribution scheme that

allows any pair of sensor nodes to generate a pair-wise key from a

relatively small set of keying material. The keying material

consists of a set of polynomials, which is distinct for every node.

Two nodes can generate a pair-wise key from their sets of

polynomials that cannot be reproduced by other nodes that own a

different set of polynomials. This key distribution and key

generation scheme forms a suitable foundation for securing the

inter- and intra-BSN communication. The key distribution scheme

is scalable and allows to securely connecting millions of nodes

without the utilization of a centralized key management service.

Nevertheless, its resiliency must be improved and needs to be

enriched with suitable identification, authentication, and privacy

protection features.

3. SECURE GROUP MANAGEMENT
BSNs are small clusters of sensors that connect in an ad hoc

manner. These clusters collaborate to optimize measurements,

detect intruders, aggregate data, and minimize energy

consumption [8]. Hierarchical clustering of sensor nodes into

different domain allows reducing the overall complexity of the

system and makes the relationships between sensor nodes

manageable. Therefore, clustering is an important step towards a

scalable and manageable system.

Key distribution techniques allow sensor nodes, which are picked

from a pool of nodes, to establish a secure link. However, that is

just a part of the key management architecture as according to the

definition of key management in [10], key management must

support the establishment and the maintenance of keying

relationships between authorized parties, including initialization

of nodes in a security domain (SD), distribution, update,

revocation and storage of keying material. Therefore, solutions to

enable the dynamic formation of a BSN, in the sense of an

independent SD, are required. This must include solutions to

allow the entrance, leaving and the revocation of misbehaving

devices within a BSN.

Current solutions such as BLIG [11] require human intervention

to establish a BSN at network layer. Distributed device and key

revocation solutions [17] are not applicable since they have been

specially designed to revoke nodes (and keys) in systems based on

a random pairwise KPS. Therefore, they do not perfectly fit other

key distribution approaches. Additionally, they work under strong

assumptions such as static networks, or the instantaneous

deployment of nodes.

4. BRIDGING BSNs
BSNs are not only useful when used in a controlled environment

like hospitals and medical practices. Due to the small size and low

weight of the sensors, these networks are especially suited to be

worn outside of medical facilities during a patient’s everyday life.

The sensors can record the patients’ vital signs during their daily

activity and, therefore, provide detailed information that cannot be

obtained in a hospital. However, ubiquitous patient monitoring
raises several technical problems.

As the communication range of the sensors in a BSN is very

limited, direct communication is not always suitable for inter-

BSN communication. Hence, other networking technologies are

required to connect a BSN to a remote monitor in a transparent

way. A special mobile gateway device that receives data from the

sensors and transmits it over other wireless access technologies

can be used to bridge the potentially large distance between a
remote patient and the healthcare monitor on-site.

Modern mobile phones can use various access technologies like

GSM, UMTS, and Wi-Fi to connect to the Internet and, thus, to a

remote healthcare monitor. Therefore, these devices are suited as

mobile gateways. Seamless handovers between different

networking technologies and, therefore, between different

addressing and routing paradigms are required to allow flexible

and reliable monitoring of patients. GSM, for example, may not

be available in all parts of a medical facility but IEEE 802.11-

based wireless networks may be present. In urban areas, UMTS is

an option for transmitting patients’ vital signs with high

bandwidth while a GSM network might be the only option in rural

areas. Moreover, with the requirement for high reliability in mind,

utilizing these technologies in parallel makes traditional
networking protocols inapplicable.

Moreover, secure communication requires strong authentication

of a communication peer. A BSN must be sure that it is

communicating with an authorized healthcare monitor while the

monitor must be able undoubtedly to verify that its data source is

a certain patient’s BSN regardless of the networking technology

or a certain network address which is used to transfer the data.

Therefore, a strong end-to-end trust relationship must be

established and maintained between the monitor and the mobile
gateway device.

The Host Identity Protocol (HIP) [12] is a secure networking

protocol that enables end-host mobility and multihoming. HIP

allows hosts to change their point of network attachment and to

use several networking interfaces at the same time. Hence, HIP

allows connecting mobile BSNs to a stationary healthcare monitor

over various networking technologies while keeping the same

identifier. Moreover, HIP allows authenticating hosts with strong

cryptography. Thus, it allows the gateway device to verify the

identity of a healthcare monitor and vice versa. However, HIP has

not been designed for the use in medical environments and, thus,

does not comply with the rigid requirements for medical devices

such as timeliness and reliability. Although additional research

must be conducted in order to allow the use of HIP in a medical

environment, HIP is a compelling platform for connecting mobile
BSNs.

5. PRIVACY PROTECTION
In the second phase of medical BSN deployment, more and more

BSNs will operate off-site. Therefore, identity management and

privacy protection will become a serious problem. CASPIAN,

Consumers Against Supermarket Privacy Invasion and

Numbering, is an example of an initiative restraining the

deployment of the ubiquitous technologies due to privacy

concerns [18]. CASPIAN is a real proof of the necessity of

solving privacy concerns in order ubiquitous technologies, such

as, e.g., pervasive healthcare, to be deployed.

Privacy protection in pervasive healthcare is relatively new, being

only addressed in the context of data protection within the hospital

framework [19]. However, the vision of pervasive healthcare is

103

more ambitious as it enables ubiquitous monitoring, making inter-

BSN communications especially worrying from the privacy point

of view, as for instance, patient’s identity or context information

might be exposed. This fact leads to new privacy threats. For

instance, a medical sensor node using a unique identifier can

allow attackers to track people, in the same manner an RFID tag

does. Another example emerges when access control issues are

not considered leading to uncontrolled misuses of patients’ digital

identity. For instance, health insurance companies might be

interested in knowing the patient health state before taking out an

insurance policy.

Key exchange and authentication protocols like SIGMA [14]

allow for privacy protection in the Internet. However, these

protocols make use of computationally expensive public-key

cryptography that is not suitable for resource constrained sensor

nodes. P3P and PawS [15] aim at protecting the users’ privacy in

the Internet and ubiquitous computing environments respectively.

Although, these protocols do not completely fit the requirements

of pervasive healthcare, some guiding principles, such as, e.g.,

notice and disclosure, choice and consent, anonymity and

pseudonymity, and proximity and locality, can be reused to

guarantee an adequate privacy level in pervasive healthcare.

In this context, privacy protection must be addressed in a different

manner depending on the kind of communication. On the one

hand, intra-BSN communication must ensure that information and

identifiers are not recognizable, so that patients cannot be tracked.

For instance, by forcing the healthcare monitor to authenticate

before the BSN reveals its identity allows protecting the BSNs

identity from being exposed to an unauthorized party. On the

other hand, inter-BSN communications must ensure that patient’s

identity and related medical information is only transmitted to

authorized parties according to legal laws. Another peculiarity of

BSNs in the context of pervasive healthcare is that the BSNs need

identity control while the healthcare monitors do not require this

protection.

Typically healthcare monitors are not as resource constrained as

mobile sensor nodes. Therefore, it is possible to compute public

key algorithms on them. This imbalance in processing power

nicely matches the imbalance of computational cost of a public

key signature and encryption algorithm. RSA signatures are

typically costly to generate but cheap to verify and RSA

decryption requires much more computation than RSA

encryption. Watro et al. [16] proposed a system that exploits this

imbalance to negotiate shared keys but this imbalance can also be

used to authenticate the healthcare monitor and to encrypt the

BSNs identity. Elliptic curve cryptography also offers promising

possibilities to reduce the communicational and computational

overheads of public-key cryptography.

6. CONCLUSION: OPEN ISSUES IN KEY

MANAGEMENT
The provision of basic security services in pervasive healthcare

requires the definition of an appropriate key management

architecture. However, the definition of a suitable key

management architecture is only feasible by overcoming previous

problems. To this end, the following specific open issues must be

solved:

On the one hand, further research into key distribution is required

in order to enable efficient and secure key distribution in

pervasive BSNs. Firstly, KPSs with a higher resiliency level are

required in order to improve the security of current KPSs.

Secondly, scalability of KPSs must be taken into consideration in

order to make feasible the secure deployment of highly scalable

pervasive healthcare systems. Thirdly, new KPSs must enable

easy implementation of security services such as authentication

and access control. Finally, developed KPSs must ensure security

interoperability in highly mobile healthcare systems, and in short,

make key distribution feasible in pervasive healthcare systems.

In the context of secure group management, a fully distributed

security solution for BSNs is necessary, so that BSNs are able to

maintain its own security relationships in a distributed manner. To

this end, approaches to securely form a BSN, understood as an

independent SD, must be developed. For instance, each person’s

BSN will be transformed into an independent SD that is able to

manage the admittance and leaving of nodes, the distribution of

secrets within the SD, as well as the detection and revocation of

malfunctioning or intruder devices.

Remote monitoring requires utilizing other network technologies

besides the sensor-to-sensor communication to bridge the physical

distance between the BSN and the monitoring devices. These

technologies must be combined and adapted to meet the strong

security and reliability requirements of medical applications.

Solutions must be able to seamlessly combine several access

technologies in order to allow continuous secure monitoring in

situations that cannot be covered with a single access technology.

Finally, further research is compulsory in order to address privacy

concerns that emerge in different healthcare application scenarios.

Firstly, new identification models are required for sensor nodes,

person’s BSNs and doctors in order to avoid patient tracking and

protect patient and doctor digital identities. Secondly,

authorization and access control systems must be designed to

guarantee that patient’s vital signs and context cannot be accessed

by unauthorized personal.

7. REFERENCES
[1] Continua Health Alliance, Website, May 20

th
2007. URL: -

http://www.continuaalliance.org/home

[2] Health Insurance Portability and Accountability Act,
Website, May 20

th
2007, URL: http://www.hipaa.org/

[3] European Directive 95/46, Website, May 20
th

2007. URL:

http://www.cdt.org/privacy/eudirective/EU_Directive_.html

[4] Datasheet of the MICAz mote MPR2400CA – Document

part number: 6020-0060-04 Rev A. Available online. URL:

http://www.xbow.com/Products/Product_pdf_files/Wireless_
pdf/MICAz_Datasheet.pdf

[5] Shnayder, V. and Chen, B. and Lorincz, K. and Gulford-

Jones, T.R.F. and Welsh, M.: Sensor Networks for Medical

Care, Harvard University Technical Report TR-08-05, April
2005.

[6] Gupta, V. and Wurm, M. and Zhu, Y. and Millard, M. and

Fung, S. and Gura, N. and Eberle, H. and Chang Shantz, S.:

Sizzle: A Standars-based end-to-end Security Architecture

for the Embedded Internet. In PERCOM’05: Procedings of

the third IEEE International Conference on Pervasive
Computing and Communications, 2005.

[7] Perrig, A. and Szewczyk, R. and Tygar, JD and Wen, V. and

Culler, D.E.: SPINS: Security suite for Sensor Networks. In

104

Proc. of the Seventh Annual International Conference on

Mobie Compution and Networking (MOBICOM-01) New
York, July 2001

[8] Dini, G. and Savino, M.: S2RP: a Secure and Scalable

Rekeying Protocol for Wireless Sensor Networks. In Proc. of

Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE
International Conference, 2006.

[9] Çamtepe, S. A. and Yener, B.: Key Distribution Mechanisms

for Wireless Sensor Networks: a Survey, Rensselaer
Polytechnic Institute TR-05-07, March 2005.

[10] Menezes, A. J. and van Oorschot, P.C and Vanstone, S.A.:
Handbook of Applied Cryptography. CRC Press 1996.

[11] Andersen, J. and Bardram, J. E.: BLIG: A New Approach for

Sensor Identification, Grouping and Authorization in Body

Sensor Networks. In Proc of 4th International. Workshop on

Wearable and Implantable Body Sensor Networks (BSN

2007), March 2007.

[12] Moskowitz, R. and Nikander P.: Host Identity Protocol (HIP)

Architecture. RFC4423, May 2006

[13] Garcia, O and Baldus, H. and Sanchez, D.: Resource-

Efficient Security for Medical Body Sensor Networks. In

Proc. of 3th International. Workshop on Wearable and
Implantable Body Sensor Networks (BSN 2006). 2006.

[14] Krawczyk, H.: SIGMA: The “SIGn-and-MAc” approach to

authenticated Diffie-Hellman and its use in the IKE

protocols. Advances in Cryptology—CRYPTO, Vol. 2729, pp.
400-425, 2003

[15] Langheinrich, M.: Personal Privacy in Ubiquitous
Computing, Ph.D. Thesis, ETH Zürich, CH, 2005

[16] Watro, R. and Kong, D. and Cuti, S. and Gardiner, C. and

Lynn, C. and Kruus, P.: Securing Sensor Networks with

Public Key Technology. In Proc. of 2nd ACM Workshop on
Security of Ad hoc and Sensor Networks, Washingon, 2004

[17] Chan, H. and Gligor, V.D. and Perrig, A. and Muralidharan,

G.: In proc of IEEE Transactions on Dependable and Secure
Computing Vol. 2 No.3, July-September 2005.

[18] CASPIAN - Consumers Against Supermarket Privacy

Invasion and Numbering, Website, May 20
th.

2007. URL:
http://www.nocards.org/

[19] Tentori, M. and Favela, F and Rodriguez, M. D.: Privacy-

Aware Autonomous Agents for Pervasive Healthcare. IEEE

Intelligent Systems, vol. 21, no. 6, pp. 55-62, Nov/Dec,
2006

105

Reliable Data Transport in Wireless Sensor Networks

[Extended Abstract]

Mesut Günes, Christoph Bürger, Martin Wenig, Ulrich Meis
Department of Computer Science, Informatik 4

RWTH Aachen University, Germany
{guenes, buerger, wenig, meis}@cs.rwth-aachen.de

Keywords
Transport protocols, Wireless Sensor Networks

1. MOTIVATION
In the future we expect to live in a riched internetworked en-
vironment which will be created by the integration of various
wired and wireless networks. To realize such an internet-
worked environment different wireless networks will be used
to accomplish particular tasks, e.g. mobile ad-hoc networks
(MANET), wireless mesh networks (WMN), and wireless
sensor networks (WSN). WMNs will provide network con-
nections to large areas, MANETs may provide access to the
Internet and WMN for particular situations, and WSN will
be deployed for collecting data from the environment.

Wireless sensor networks [4] consist of a large number of
sensor nodes. These measure data and send it over wireless
links to a sink which may be several hops away. They can
be deployed in a random way and organize themselves. The
sink processes the received data and reacts on it if necessary.
Application areas for wireless sensor networks are environ-
mental monitoring, military applications, healthcare, and
medicine.

To transport the sensed data from the sensor nodes to the
sink is the responsibility of transport protocols. Although,
wireless sensor networks does not exhibit the layered archi-
tecture of ISO/OSI and TCP/IP models, it is common to
use the same terminology. In fact, wireless sensor networks
have a cross-layer architecture. In wireless sensor networks
it is often assumed that the source node is one of the plenty
existing sensor nodes and the destination node is the sink.
The reason for this assumption lies in the consideration,
that WSNs will be established by application specific sensor
nodes which are distributed once, operate until the energy
is decayed totally and the sensor node will not be collected
anymore.

However, there are also applications which do not need as
many sensor nodes as in the aforementioned application sce-
narios and the sensor nodes can be accessed without any
problems. Additionally, it is desired that the application of
the sensor nodes can be modified. In that case, the sensor
nodes need to be re-configurable or re-programmable. For
such sensor networks, support from the transport protocol
is required. It has to work in both ways from the sensor
node to the sink as well as from the sink to the sensor node.

The remainder of the paper is as follows. Characteristics
of transport protocols and existing transport protocols for
wireless sensor networks are discussed in section 2. Sub-
sequently the Two-way Reliable Transport Protocol is pre-
sented in section 3. The paper closes with some remarks
and conclusions in section 4.

2. RELATED WORK
2.1 Characteristics of Transport Protocols
In this section we discuss some characteristics which are ex-
pected from transport protocols for wireless sensor networks.
These characteristics can also be understood as ”require-
ments” [10], however it is typically not feasible to support
all of them in one protocol.

The data streams in a wireless sensor network can be classi-
fied by different aspects. The first aspect refers to whether
the data stream is continuous or event based. Another as-
pect refers to the direction of the data stream namely from
the sink to the sensor nodes (downstream) or vice versa
from the sensor nodes to the sink (upstream). Continuous
data streams are characterized by transmitting data period-
ically from the source to the destination. Event based data
streams transmit only data when a defined event occurs.
There are typically continuous and event based data streams
from the sensor nodes to the sink and only event based data
streams from the sink to the sensor nodes, e.g., manage-
ment of data streams and reprogramming of the nodes. The
support of both continuous and event based data streams
is important for many applications, since the nature of the
sensed information may command the type of the generated
data stream.

Another aspect in classifying transport protocols is the reli-
ability. Reliability on the transport protocol layer refers to
the transmission of packets from the source to the destina-
tion. Either the reliability is guaranteed, i.e., 100 % or it is
stochastic. In wireless sensor networks there is no need for
100 % reliability and very often it is enough to reach only
p % reliability. Reliability is typically defined as the ratio
of received packets and sent packets. To achieve reliabil-
ity at least two problems have to be overcome by the WSN
namely packet loss due to the wireless channel and due to
congestion. The sensor nodes will be densely distributed.
However, they have to transmit the data to the sink. This
creates a funnel shape towards the sink. Therefore, con-
gestion will typically occur in the vicinity of the sink. To
prevent packet loss due to congestion a special arrangement

106

has to be made.

The transport protocol should also support dynamics in
wireless sensor networks. We refer to application dynamics
of the wireless sensor network, i.e., the kind of communi-
cation should be reprogrammable when it is needed. This
requires that the application and data communication is not
fixed in the sensor nodes and can be changed later.

2.2 Existing Transport Protocols
The transport protocols used in the Internet, TCP [2] and
UDP [1], are not suitable for wireless sensor networks due to
several reasons. First of all, they incorporate too much over-
head, the kind of connection establishment is not needed,
the performance of TCP in wireless networks is poor, the
reliability provided is not necessary [4, 10].

The focus of Pump Slowly Fetch Quickly (PSFQ) [9] is the
reprogramming of one or more sensor nodes. This task re-
quires the reliable transmission of all packets belonging to
the reprogramming code from the sink to the sensor nodes.
The protocol consists of three operations. In the pump op-
eration the packets of the reprogramming code are transmit-
ted in intervals, which are also cached in the relaying sensor
nodes. The fetch operation deals with lost packets which
can be restored from the caching nodes. With the last op-
eration, report, the sink collects status information from the
sensor nodes.

The goal of the Reliable Multi-Segment Transport protocol
(RMST) [8] is the transport of data from the sensor nodes to
the sink and it works on top of Directed Diffusion [5]. When
a packet does not arrive at the sink, which is recognized
by timer expiration, the packet is requested by a NACK.
It may happen that the requested packet is in the cache of
intermediate sensor nodes which can send the packet directly
to the sink. The protocol is suitable for continuous data
streams, but not for event based streams.

The goal of the Event-to-Sink Reliable Transport (ESRT) [7,
3] protocol is to provide a reliable transport of event based
data from the sensor nodes to the sink. The occurrence of an
event is accepted by the sink if it is reported by a specified
number of sensor nodes. For this each sensor node reports
with the frequency f , which is adapted by the sink. ESRT
supports also congestion detection based on the queue level
of the sensor nodes. When a sensor node recognizes con-
gestion it informs the sink by setting the CN-bit of relayed
packets. Subsequently, the sink reduces the report frequency
of the sensor nodes.

The Sensor TCP (STCP) [6] protocol supports continuous
as well as event based data streams from the sensor nodes to
the sink. The sink initiates the transmission of data streams
with a Session Initiation Packet. The reliability and trans-
fer rate of continuous streams are tracked by the sink and
requested with a NACK if a packet does not arrive. The
reliability of event based packets are tracked by the source
sensor node and resent if required.

3. TWO-WAY RELIABLE TRANSPORT PRO-
TOCOL FOR WSN

In this section we present the Two-way Reliable Transport
Protocol (TRTP) which is designed for reliable communica-
tion for both upstream and downstream traffic. It supports
continuous and event based data streams, session manage-
ment, and congestion control.

All the presented transport protocols were designed for a
particular application. They either support upstream traf-
fic or downstream traffic. In contrast to typical applica-
tion scenarios with potentially millions of sensor nodes, we
consider application scenarios with a moderate number of
sensor nodes which are also accessable. Thus, energy con-
siderations are not a main issue in these applications. Ap-
plications in the area of healthcare, medicine, and building
management are in our focus. In these applications there is a
demand for dynamic configuration of available data streams
and reprogramming of sensor nodes.

3.1 Design Criteria for TRTP
Data streams
TRTP is designed to support continuous as well as event
based data streams. The affiliation of a packet is indicated
by a particular bit in the packet header. The packets of
event based data streams have a higher priority than the
packets of continuous data streams. Therefore, when a sen-
sor node receives an event packet, it schedules this packet
before the continuous ones. Furthermore, each data stream
has a priority which is assigned by the sink, i.e., the prior-
ity of a data stream is set by the user on the application
layer which is propagated by the sink when it requests data
streams from sensor nodes. Packets of the same kind (con-
tinuous, event based) are handled according to their priority
which is also indicated in the packet header.

The recognition of packet loss is done by the sink and the
sensor nodes and is performed by exchanging ACKs and
NACKs. Packet loss in continuous data streams is recog-
nized by the sink due to timer expiration. The sink requests
the packet by sending a NACK to the sensor node. In the
case of event based data streams the sensor node recognizes
a packet loss if it does not receive an ACK from the sink
and resends the packet.

Reliability
In the context of TRTP reliability is defined by the user. The
reliability of continuous data streams is tracked by the sink.
When the reliability of a continuous data stream falls below
the specified reliability, the sink requests packets from the
source node to increase it. Reliability is interdependent with
packet loss. When packet loss occurs, the sink only requests
packets if the reliability falls below the specified value. In
the case of event based data streams the reliability is tracked
by the source sensor node. When the sensor node sends
an event based packet it calculates the reliability when this
packet is not received by the sink. In that case this packet
is stored to be able to resend it later.

Dynamic configuration
TRTP supports dynamic configuration with a session man-
agement concept which is realized by Session Management

107

PSFQ ESRT RMST STCP TRTP

Direction DS US US US DS, US
Loss Detection NACK NACK ACK/NACK ACK/NACK
Loss Recovery HbH HbH, E2E E2E E2E
Reliability Packet Event Packet Packet, Event Packet, Event
Congestion Control X X X

DS = Downstream, US = Upstream, HbH = Hop-by-hop, E2E = End-to-End

Figure 1: Characteristics of transport protocols

Packets (SMP). The sink can request, delete, and modify
data streams from the sensor nodes. Each SMP can concern
many data streams.

Congestion Control
Congestion control in TRTP is done in three phases. i) Con-
gestion Detection (CD), ii) Congestion Notification (CN),
and iii) Rate Adjustment. Congestion detection is based on
the queue level of the sensor nodes. When the queue level
reaches a threshold qc the sensor node assumes a congestion.
It informs the sink by setting the CN bit of relayed packets
and the source sensor node by a management packet. In this
way both the sink and the source sensor nodes are informed
and can react. The source sensor node decreases the transfer
rate of the data stream and the sink adapts the transfer rate
also. This is done only once. Further, changes in transfer
rate have to be performed over the session management and
with feedback from the application layer.

4. CONCLUSIONS
In this paper we introduced a new transport protocol for
wireless sensor networks which provides reliable communica-
tion for both upstream and downstream traffic. It supports
continuous and event based data streams and has a conges-
tion control concept. Furthermore, the configuration of the
wireless sensor network can be changed dynamically, i.e., the
number and kind of data streams can be modified, new data
streams can be requested and existing data streams can be
deleted.

This functionality is required for applications where the sen-
sor network is deployed manually or semiautomatically and
is accessable. In these scenarios energy considerations are
not the main issue. Figure 1 depicts the characteristics of
the discussed transport protocols and TRTP. The most sim-
ilar transport protocol in functionality to TRTP is STCP.
However, STCP considers only upstream traffic and does
not support the dynamic configuration of data streams.

5. REFERENCES
[1] RFC 768: User Datagram Protocol, August 1980.

[2] RFC 793: Transmission Control Protocol, September
1981.

[3] O. B. Akan and I. F. Akyildiz. ESRT: Event-to-Sink
Reliable Transport in Wireless Sensor Networks.
IEEE/ACM Transactions on Networking,
13(5):1003–1016, October 2005.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless Sensor Networks: A Survey.
Computer Networks, 38:393–422, 2002.

[5] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
MobiCom ’00: Proceedings of the 6th Annual
International Conference on Mobile Computing and
Networking, pages 56–67, New York, NY, USA, 2000.
ACM Press.

[6] Y. G. Iyer, S. Gandhalm, and S. Venkatesan. STCP: A
Generic Transport Layer Protocol for Wireless Sensor
Networks. In Proceedings of the 14th International
Conference on Computer Communications and
Networks (ICCCN 2005), pages 449–454, 2005.

[7] Y. Sankarasubramaniam, O. B. Akan, and I. F.
Akyildiz. ESRT: Event-to-Sink Reliable Transport in
Wireless Sensor Networks. In MobiHoc ’03:
Proceedings of the 4th ACM International Symposium
on Mobile ad hoc Networking & Computing, pages
177–188, New York, NY, USA, 2003. ACM Press.

[8] F. Stann and J. Heidemann. RMST: Reliable Data
Transport in Sensor Networks. In Proceedings of the
First International Workshop on Sensor Net Protocols
and Applications , pages 102–112, Anchorage, Alaska,
USA, April 2003. IEEE.

[9] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy.
PSFQ: A Reliable Transport Protocol for Sensor
Networks. IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS, 23:862 – 872, 2005.

[10] C. Wang, K. Sohraby, B. Li, and M. Y. H.
Daneshmand. A Survey of Transport Protocols for
Wireless Sensor Networks. Network, IEEE, 20:34–40,
May-June 2006.

108

A 6lowpan Implementation for TinyOS 2.0

Matúš Harvan
Computer Science

Jacobs University Bremen
Campus Ring 1

28759 Bremen, Germany
m.harvan@jacobs-university.de

Jürgen Schönwälder
Computer Science

Jacobs University Bremen
Campus Ring 1

28759 Bremen, Germany
j.schoenwaelder@jacobs-university.de

1. INTRODUCTION
Traditionally, wireless sensor networks have used custom,
light-weight network protocols such as Active Messages. How-
ever, given the common presence of an 802.15.4 radio inter-
face [4] on the motes and the 6lowpan adaptation layer [6]
allowing the exchange of IPv6 packets over 802.15.4 links,
enabling IPv6 connectivity in wireless sensor networks and
connecting them to the global Internet becomes feasible. By
natively supporting the IPv6 protocol, these devices would
become first-class Internet citizens capable of communica-
tion with any other IPv6-enabled host and benefit from
the standardized and already estabilished technology and
a plethora of readily available applications. To this end a
6lowpan/IPv6 stack [3] has been implemented for TinyOS
2.0 [2], an embedded operating system commonly used in
wireless sensor networks.

The rest of this document is structured as follows. The
6lowpan adaptation layer is briefly introduced in Section 2,
the implementation is discussed in Section 3, related work
is described in Section 4 and the document concludes in
Section 5.

2. 6LOWPAN
The 6lowpan adaptation layer allows to transport IPv6 pack-
ets over 802.15.4 links. To meet the IPv6-required MTU of
at least 1280 bytes with the 802.15.4 layer offering at most
102 bytes of payload per frame, a fragmentation mechanism
below the IP layer is specified using an optional Fragmenta-
tion Header before the actual IPv6 header. Support for mesh
networking is provided by the optional Mesh Addressing and
Broadcast Headers. The former carries the Originator and
Final Destination link-layer addresses while the latter con-
tains a sequence number used to detect duplicated frames.
Both are carried at the beginning of the 802.15.4 payload.
Furthermore, mechanisms for compressing the IPv6 header
from 40 down to 2 bytes and the UDP header from 8 down
to 4 bytes, in the ideal case, are specified. To distinguish
between a compressed and uncompressed header, a 1-byte
dispatch value is prepended before the header. The optional
6lowpan headers mentioned earlier also start with a dispatch
value allowing the recipient to determine what types of head-
ers are present. The format of the 6lowpan adaptation layer
is specified in [6].

3. IMPLEMENTATION
The goal for the implementation was to support replying
to an ICMP echo request message (ping) and exchanging
of UDP datagrams. Only the bare minimum necessary for
meeting that goal was implemented.

The main restriction of the implementation was the amount
of RAM available on the target platform, i.e., 4 KB on the
MicaZ. Although aiming for an embedded implementation,
easily readable and maintainable code was preferred over op-
timizing to squeeze into the least possible amount of memory
at the cost of hard to understand programming constructs,
hacks or munging of code into a few large functions for sav-
ing space on the stack. Each network layer and protocol are
handled by a separate function. This allows to easily add
more functionality in the future.

3.1 6lowpan for Linux
Most PCs today do not have an 802.15.4 interface and com-
mon operating systems such as Linux or the BSDs do not
include a 6lowpan implementation. To allow for exchang-
ing packets between the motes and a Linux PC, a tunneling
daemon has been developed to use a mote as an 802.15.4
interface. The scenario is shown in Figure 1.

The mote runs the TinyOS sample application BaseSta-
tionCC2420 forwarding traffic between the 802.15.4 and the
USB interface of a mote. This mote is connected to the PC
via the USB interface.

The translating daemon on the PC is a C program exchang-
ing packets between the USB interface and a tun interface.
The latter is a virtual network interface allowing a user
space process to read and write packets to it. The dae-
mon decapsulates the 6lowpan-encapsulated IPv6 packets
received from the mote and 6lowpan-encapsulates the plain
IPv6 packets received on the tun interface. This allows to
use standard IPv6 applications on Linux for communica-
tion with the motes without modifying the Linux kernel.
Furthermore, by enabling IPv6 forwarding on the PC, the
motes can be connected to the global Internet.

3.2 Evaluation
The implementation was tested using a scenario as shown in
Figure 1. A TelosB mote with the BaseStationCC2420 appli-
cation was connected to a Linux PC running the translating
daemon. Two other TelosB motes and a MicaZ mote were
flashed with the 6lowpan implementation. The motes were

109

serial_tunnel
daemon

tun(4)
interface

linux/BSD
IP stack

serial
interface

mote running
BaseStationCC2420

serial
interface

802.15.4
interface

802.15.4
interface

mote with
a IPv6/6lowpan stack

USB

IPv6 packets
802.15.4

PC

6lowpan-encapsulated
IPv6 packets

(SLIP)

6lowpan-encapsulated
IPv6 packets

IPv6 packets

Internet

IPv6 packets

Figure 1: The motes and the Internet

successfully replying to ICMP echo requests initiated from
the PC as well as exchanging UDP datagrams. Both short
unfragmented packets as well as large, fragmented packets
of size up to 1280 bytes were successfully exchanged.

The main limitation to interoperability with other 6low-
pan implementations is the absence of a proper 802.15.4
stack in TinyOS 2.0. Although the implementation sup-
ports the ICMP echo mechanism and the UDP protocol,
many features required for IPv6 implementations are miss-
ing. Among others, the Neighbor Discovery has not been
implemented and packets are broadcasted on the link-layer,
IPv6 extensions headers are not processed, IPv6 fragmen-
tation is not supported and ICMP error messages are not
generated. While many of these could be added, it is un-
clear whether they make sense in an embedded system. For
example, is one willing to trade decreased battery life for
regular neighbor advertisements or neighbor unreachability
detection? Or if an error is encountered while processing a
received packet, should a 1280 bytes long ICMP error mes-
sage be sent back? Should one be sent back at all?

4. RELATED WORK
Several 6lowpan implementations for wireless sensor net-
works have been announced while this project was in progress.

The Arch Rock company has announced a commercial 6low-
pan implementation Primer Pack/IP in March 2007. As
this is a commercial implementation, technical information
is scarce.

The Sensinode company has released a GPL-licensed 6low-
pan implementation called NanoStack v0.9.4 in April 2007.
It is claimed to be up to date with version 12 of the 6low-
pan format draft and to include IEEE 802.15.4 Beacon-mode
support. The source code, however, does not seem to include
6lowpan fragmentation support and UDP checksumming.

uIP[1] is a TCP/IPv4 stack written by Adam Dunkels. It
runs on 8-bit controllers with a few hundred bytes of RAM.
It has been ported to TinyOS 1.1 by Andrew Christian
from the Hewlett-Packard Company. It is available in the
tinyos-1.x/contrib/handhelds/tos/lib/UIP/ directory of
the TinyOS 1.1 distribution.

While an IP stack can be implemented on the motes, it
is also possible to use a proxy-based scheme. In this case
a special proxy server is employed as a gateway separating
the sensor network and the IP network. This allows to freely
choose the communication protocol used within the sensor
network. Although limited to IPv4, the Sensor Internet Pro-
tocol (SIP) [5] is an example of such a proxy scheme.

5. CONCLUSION
A 6lowpan/IPv6 stack has been implemented for the TinyOS
2.0 operating system and was tested on the TelosB and Mi-
caZ hardware platforms. Using the translating daemon on
the PC and a mote as the base station, it is possible to ex-
change IPv6 packets between the motes and a PC without
an 802.15.4 interface. In case IP forwarding is set up on
the PC and a properly assigned and routable global IPv6
prefix is used, the motes can be connected to the global In-
ternet. More information about the implementation can be
found in [3] and it can be downloaded from [7]. Further-
more, discussions have started to include it in the TinyOS
distribution.

As future work it would be useful to add a proper 802.15.4
stack. Instead of broadcasting on the link-layer, Neighbor
Discovery could be implemented. Various mesh routing al-
gorithms could be investigated and the Mesh Addressing
and Broadcast Headers could be used for mesh networking.
Finally, SNMP could be implemented on top of the 6lowpan
stack for collecting sensor values.

6. REFERENCES
[1] A. Dunkels. Full TCP/IP for 8-bit architectures. In

Proceedings of The First International Conference on
Mobile Systems, Applications, and Services (MOBISYS
‘03), May 2003.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC Language: A Holistic
Approach to Networked Embedded Systems. In
PLDI03. ACM, June 2003.

[3] M. Harvan. Connecting Wireless Sensor Networks to
the Internet - a 6lowpan Implementation for TinyOS
2.0. Master’s thesis, School of Engineering and Science,
Jacobs University Bremen, May 2007.

[4] IEEE. IEEE Std. 802.15.4-2003, Oct. 2003.

[5] X. Luo, K. Zheng, Y. Pan, and Z. Wu. A TCP/IP
implementation for wireless sensor networks. In IEEE
International Conference on Systems, Man, and
Cybernetics, 2004.

[6] G. Montenegro, N. Kushalnagar, D. E. Culler, and
J. W. Hui. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. Internet-Draft Version 13, IETF,
April 2007. Work in progress.

[7] http://www.eecs.iu-bremen.de/users/harvan/

files/6lowpan.tar.gz.

110

4

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from http://aib.informatik.rwth-

aachen.de/. To obtain copies consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

5

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

6

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

7

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

8

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

9

	fgsn07proc.pdf
	cover-final.pdf
	fgsn_complete.pdf
	fgsn_toc.pdf
	fgsn_a4.pdf

