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Abstract

Software of microcontrollers is getting more and more complex. It is mandatory to
extensively analyze their software as errors can lead to severe failures or cause high
costs. Model checking is a formal method used to verify whether a system satisfies
certain properties.
This thesis describes a new approach for model checking software for microcon-

trollers. In this approach, assembly code is used for model checking instead of an
intermediate representation such as C code.
The development of [mc]square, which is a microcontroller assembly code

model checker implementing this approach, is detailed. [mc]square has a modular
architecture to cope with the hardware dependency of this approach. The single steps
of the model checking process are divided into separate packages. The creation of
the states is conducted by a specific simulator, which is the only hardware-dependent
package. Within the simulator, the different microcontrollers are modeled accurately.

This work describes the modeling of the ATMEL ATmega16 microcontroller and
details implemented abstraction techniques, which are used to tackle the state-
explosion problem. These abstraction techniques include lazy interrupt evaluation,
lazy stack evaluation, delayed nondeterminism, dead variable reduction, and path
reduction. Delayed nondeterminism introduces symbolic states, which represent a
set of states, into [mc]square while still explicit model checking techniques are used.
Thus, we successfully combined explicit and symbolic model checking techniques.

A formal model of the simulator, which we developed to prove the correctness of
abstraction techniques, is described. In this work, the formal model is used to show
the correctness of delayed nondeterminism.
To show the applicability of the approach, two case studies are described. In

these case studies, we used programs of different sizes. All these programs were
created by students in lab courses, during diploma theses, or in exercises without
the intention to use them for model checking.
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1 Introduction

Embedded systems are widely used in our daily life. They are, for example, employed
in airplanes, cars, mobile phones, and household appliances. Embedded systems
consist of hardware and software. The importance of the software on these devices is
increasing because more and more functionality is implemented within the software
and no longer realized by the hardware. The software of embedded systems has
to be tested extensively and validated because errors in the software may lead to
severe or even fatal events, as in case of the Ariane 5 disaster [76], or high costs and
loss of reputation, as in the case of the Toyota Prius bug [68].

Many embedded systems are based on microcontrollers, which are special purpose
computers on a single chip. They are often specifically developed for single appli-
cations. The software for microcontrollers is mostly written in C or in assembly
language.
Removing errors in microcontroller software is difficult in the field because de-

ploying the updates is complicated and cost-intensive. In contrast to software run
on general-purpose personal computers, it is often not possible for users to update
microcontroller software themselves. For example, the software of a car can only
be updated in a garage. In some cases, the software cannot be updated at all due
to the type of memory used to store the program. This may render the affected
microcontrollers useless.

Full or extensive testing of microcontroller software is often not possible because it
is too time-consuming for the desired time to market or too expensive for the specific
product. Also, testing alone is not sufficient for safety critical systems. There are
standards such as IEC61508 [66] that strongly recommend the application of formal
methods if a system requires a certain safety level. An example for safety levels are
the safety integrity levels defined in the IEC61508 standard. The formal methods
mentioned in this standard include verification techniques such as model checking
[5, 15, 33, 78, 108] and automatic theorem proving.
Model checking is able to automatically verify systems. It uses an exhaustive

search over all reachable system states to check whether the system (model) satisfies
a given property (specification). If the system does not satisfy the property, the
model checker provides a counterexample, which details the error. Model checking
can be applied to systems that do not have a full specification.

Automatic theorem proving is a verification technique used to prove the correctness
of a system. Depending on the complexity of the problem, an automatic theorem

1



1 Introduction

prover is able to prove that something is true, but it may be unable to disprove
something, which is not true. In this case it is possible that the theorem prover
does not terminate. Often, the theorem prover requires user interaction and hence,
developers have to be educated to use theorem provers. In contrast, developers
familiar with simulators can use model checkers more easily as their application is
similar [33].

Model checking is used by companies such as AMD, Infineon, Intel, and Siemens
for the analysis of hardware systems. After the Pentium FDIV bug [128], hardware
vendors realized that errors in designs can cause major losses and hence started
to use model checking and other formal methods to analyze their systems. Also,
software companies such as Microsoft are beginning to use model checking for the
verification of crucial parts of their software.

Industries such as the automotive industry are interested in using model checking
for the analysis of software for microcontrollers. In the development of software
for microcontrollers, however, model checkers are far from being well established.
Besides the state-explosion problem, one of the limiting factors is that most of
the available model checkers use custom input models. Consequently, developers
have to remodel specifications and implementations to feed them into the model
checker. They have to do this every time the system is changed. This is usually not
considered to be worth the effort as it is time-consuming and error-prone.
Existing model checkers are not able to handle all constructs needed to check

microcontroller programs out-of-the-box [101, 104]. Due to short market cycles in
many microcontroller software projects, developers often do not have enough time
and training to create models of their software for model checking. Furthermore,
many model checkers are not intuitively usable and differ from development tools
usually applied by developers. Therefore, model checking is not widely used in
microcontroller software projects.

1.1 Objectives

Our objective is to develop an approach for verifying microcontroller software. We
want to implement this approach in a model checker, which should be usable by
developers of microcontroller software. The approach should work on source code
out-of-the-box. That is, the user should be able to check the source code without
preprocessing or manually annotating the code or creating a model in a custom
language.

To achieve our goals, we first have to decide whether to model check C or assembly
code. Furthermore, we need to find out whether we can implement our approach by
extending an existing model checker or if it is beneficial to develop a new model
checker. We have to apply techniques to mitigate the state-explosion problem, which

2



1.2 Contributions

model checking can suffer from. For this purpose, we want to utilize static analysis
and employ different abstraction techniques. Furthermore, we want to find out
whether accurately modeling particular microcontrollers enables us to develop more
specific abstraction techniques. Finally, we have to develop a formal model to prove
the validity of such abstraction techniques.
Since developers of microcontroller software should apply the model checker

themselves, we must hide its internal details from them and provide a GUI that is
similar to their other tools.

1.2 Contributions

The main contributions of this thesis supporting our objectives are as follows.

• We have developed an approach to model check microcontroller assembly pro-
grams and implemented this approach within our model checker [mc]square.
[mc]square uses a special simulator for microcontroller assembly code to
build the state space. Within this simulator, we have accurately modeled
the microcontroller to support reasoning about microcontroller features such
as registers, I/O registers, and the values of variables. To tackle the state-
explosion problem, we have implemented various abstraction techniques in the
simulator.

• We have developed a new abstraction technique called delayed nondeterminism,
which reduces the size of the state space. It introduces lazy states into our
model checker. A lazy state is a state that consists of explicit and symbolic
parts and hence represents a set of states. As our model checking algorithms are
explicit, the symbolic parts, which are induced by nondeterminism, are lazily
resolved only when the model checker accesses them. Using this technique, we
have combined explicit and symbolic techniques in [mc]square.

• We have adapted two abstraction techniques, namely dead variable reduction
and path reduction, to be applicable in model checking of microcontroller as-
sembly code. These two techniques use static analyses, which were initially not
directly applicable to microcontroller assembly code. We have adapted these
static analyses and improved their accuracy by using abstract interpretation.

• Within the simulator, we have realized two abstractions techniques that exploit
the specifics of the microcontroller. One technique called lazy stack evaluation
deals with the contents of the stack. The other technique called lazy interrupt
evaluation addresses the invocation of interrupt handlers.

3



1 Introduction

• We have developed a formal model of our microcontroller simulator, which can
be used to prove the validity of abstraction techniques implemented in [mc]-
square. This formal model can also be used as an intermediate representation
for the implementation of simulators for other microcontrollers.

• Using our formal model, we have proven that the abstraction technique called
delayed nondeterminism preserves a simulation relation between the concrete
and the abstract state space.

• We have conducted two case studies showing that model checking can indeed
be used to analyze microcontroller assembly programs of a certain, reasonable
size.

1.3 Outline

Chapter 2 describes preliminaries used throughout the thesis. The next chapter
discusses the choice of whether to model check C or assembly code and provides
requirements for a new model checker for microcontroller assembly code.
Chapter 4 gives an overview of our assembly code model checker [mc]square

and depicts its architecture. The subsequent three chapters detail the four main
packages of [mc]square. First, the Simulator package, which is used to create
states, is described. Then, the Static Analyzer package, which conducts the static
analyses used by some abstraction techniques, is presented. Finally, in Chapter 7,
the Model Checker package, which performs the actual model checking, and the
State Space package, which manages the states, are detailed.

Chapter 8 presents two case studies, which demonstrate the usage of [mc]square.
The first case study presents the effects of the different abstraction techniques
implemented in [mc]square. The second case study details the way the user applies
[mc]square for model checking. Chapter 9 concludes the thesis and gives directions
for future improvements. We cover related work within each chapter.

1.4 Bibliographic Notes

Some parts of this thesis are based on work that we described in earlier publica-
tions. The survey of the C code model checkers, which is described in Sect. 3.1, is
summarized by us in two papers [101, 104]. We described a preliminary version of
the architecture of [mc]square presented in Sect. 4.2 elsewhere [103]. The idea
to use a simulator to build the state space for model checking is sketched in two
publications [102, 103]. We outlined the handling of nondeterminism detailed in
Sect. 5.6 in a paper [60]. The formal model presented in Sect. 5.7 is described by us
in two publications [60, 88]. The static analyses detailed in Chap. 6 are summarized

4



1.5 Notation

in a paper [107]. We also applied the programs used in the case study shown in
Sect. 8.1 elsewhere [60, 88, 101–104, 107]. The case study presented in Sect. 8.2
is published in a paper [106]. The individual chapters of this thesis detail related
work.

1.5 Notation

In this thesis, we use the following notations. Names of tools are typeset in a
capitalized font like ExampleTool. Names of packages and classes are set in a
slanted font, for example, ExampleClass. Source code is typeset in a sans-serif font,
for instance, exampleMethod(). Ideas and important terms are emphasized such as
example idea.

5
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2 Preliminaries

This chapter presents some preliminaries, which are used throughout this thesis.
The first section describes the computation tree logic. Section 2.2 presents the
basic idea of model checking, gives a basic classification of different model checking
algorithms, and explains the terms counterexample and witness. The last section
gives an introduction into static analysis.

2.1 Computation Tree Logic

Propositional logic only allows to reason about states. In reactive systems we are
also interested in describing the sequence of states. Temporal logic [93] extends
propositional logic to allow the reasoning about the sequence of states. Examples
for a temporal logic are Linear Temporal Logic (LTL) [92, 93] and Computation
Tree Logic (CTL) [13, 31, 42]. LTL formulas describe properties of the set of all
paths. In contrast, CTL formulas describe properties of computation trees. That
is, these formulas can describe properties of single paths within these trees. In the
following we describe CTL in detail. This section is primarily based on the book by
Clarke et al. [33].

CTL is a sublogic of CTL* [31, 32, 43]. In CTL*, there are path quantifiers and
temporal operators. Path quantifiers include A and E. A means that from a certain
state on all paths satisfy some property. E means that at least one path leaving
the current states satisfies some property. The temporal operators describe the
properties of a path through the tree:

• Next (X) means that the property has to hold in the next state.

• Finally (F) requires that the property holds in one state on the path.

• Globally (G) means that the property holds in all states on the path.

• Until (U) requires that the first property holds until the second property
becomes true.

In CTL* there is no restriction on how to combine temporal operators and
path quantifiers. In CTL, a temporal operator always must be preceded by a path
quantifier. In CTL there are two kinds of formulas: state formulas and path formulas.
Given a set AP of atomic propositions, the syntax of CTL is defined as follows:

7



2 Preliminaries

• If p ∈ AP , then p is a state formula.

• If f1 and f2 are state formulas, then ¬f1, f1∨f2, and f1∧f2 are state formulas.

• If f1 is a path formula, then E f1 and A f1 are state formulas.

• If f1 and f2 are state formulas, then X f1, F f1, G f1, and f1 U f2 are path
formulas.

The semantic of CTL can be defined with respect to a Kripke structure. A Kripke
structure is triple 〈S,R,L〉, where:

• S is the set of states,

• R ⊆ S × S is the total transition relation and

• L : S → 2AP is a function that labels each state with a set of atomic
propositions.

Details about the semantics of CTL formulas are given elsewhere [5, 15, 33, 57].
In this thesis, we need the terms subformulas, proper subformulas, length of

a formula, and the subformula evaluation order. These terms are defined in the
following. All these definitions are taken from Heljanko [57].

Definition 1 (Subformulas). Let f be a CTL formula. The set of subformulas
sub(f) of f is recursively defined as follows:

1. If f is an atomic proposition p ∈ AP , then sub(f) = {f}.

2. If f is of the form ¬f1, EX f1, EF f1, EG f1, AX f1, AF f1, or AG f1, then
sub(f) = {f} ∪ sub(f1).

3. If f is of the form f1 ∨ f2, f1 ∧ f2, E[f1 U f2], or A[f1 U f2], then sub(f) =
{f} ∪ sub(f1) ∪ sub(f2).

Definition 2 (Proper Subformulas). Let f be a CTL formula. The set of proper
subformulas psub(f) of f is defined by:

psub(f) = sub(f)\{f}.

Definition 3 (Length of a Formula). Let f be a CTL formula. The length of a
formula f , length(f) is defined by:

length(f) = |sub(f)|,

where |sub(F )| means the cardinality of the set sub(f).

8



2.2 Model Checking

Definition 4 (Subformula Evaluation Order). Let f be a CTL formula. We define
the partial order <s, which is called subformula evaluation order , as follows. For all
CTL formulas f ′ and f ′′ ∈ sub(f), (f ′, f ′′) ∈ <s (also written as f ′ <s f

′′), iff f ′ ∈
psub(f ′′) (f ′ belongs to the set of proper subformulas of f ′′).

In this thesis, we often refer to a logic called ACTL [38, 41, 52]. ACTL is a
sublogic of CTL in which only the A path quantifier is allowed and negations are
only feasible in atomic propositions. This fragment is called the universal fragment
of CTL. Another sublogic of CTL is ECTL [38, 41, 52]. In ECTL formulas only the
E path quantifier is permitted and negations are only allowed in atomic propositions.
This fragment of CTL is called existential fragment of CTL.

Furthermore, we often refer to invariants. An invariant is a formula of the form
AG f , where f is only using operators from propositional logic and not using path
operators or temporal operators.

2.2 Model Checking

Model checking [5, 15, 33, 78, 108] is a formal method for the automatic verification
of systems. It uses an exhaustive search over all reachable states of the system to
check whether the system (model) satisfies a given property (specification). The
method was independently proposed by Clarke and Emerson [31] and by Queille
and Sifakis [95]. Given a model M and a formula f , it checks whether M is a model
of f (M |= f). That is, it checks if the system satisfies the given property.

The method is depicted in Fig. 2.1. In a first step, which is called modeling, the
system description is transformed into the system model. A system description is, for
example, a program written in C, Java or Assembly language. A system model is, for
example, a Kripke structure, a labeled transition system, or a finite automaton. The
modeling can be done manually or automatically. A manual modeling is error-prone
and time-consuming, but it can help to find errors in the system description or in
the specification because it complies with an intensive review of the system. When
dealing with large descriptions of real systems, an automatic approach is preferable.

The requirements have to be manually formalized because they are mostly given
in natural language. The result of this formalization is the formal specification given
as formulas in a temporal logic such as CTL*, CTL, or LTL. The model and the
specification are inputs given to the model checker.

The model checker uses an exhaustive search over all reachable states of the model
to check whether the model satisfies the formula. In the end, it returns a result.
The result may be that the model satisfies the formula together with a witness or
that the model does not satisfy the formula together with a counterexample (see
Sect. 2.2.3). Due to the state-explosion problem, it may happen that the model
checker runs out of memory and does not return a result.

9



2 Preliminaries

System Description

Modeling

System Model

Requirements

Formalizing

Specification

Model Checking

Satisfied + Witness
Violated + 
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Figure 2.1: Model checking process (see Baier and Katoen [5] and Manna and Pnueli
[78]).

There are different ways to conduct model checking. In the following, we describe
and compare some of them. A thorough classification of different model checking
techniques is given by Visser [123]. At the end of this section, we detail the differences
between a counterexample and a witness.

2.2.1 Explicit vs. Symbolic Model Checking

In explicit model checking the state and the transitions are represented explicitly.
That is, each state is stored as it is. Explicit model checking algorithms have to
visit single states and work on them. In symbolic model checking states are not
represented explicitly but implicitly. Symbolic model checking algorithms work on
sets of states instead of single states. The sets of visited states and transitions is
often encoded in Binary Decision Diagrams or Ordered Binary Decision Diagrams.
Depending on the structure of the transition system, these representations can be
very compact. However, there are cases where these representations are not effective.
Hu et al. [65] show that each of these two methods has domains where it outperforms
its counterpart.

10
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2.2.2 Global vs. Local Model Checking

In global model checking , the complete state space is built before model checking be-
cause a global model checking algorithm evaluates the truth values of all subformulas
for all states. In contrast, only the truth values of certain subformulas in certain
states are evaluated in local model checking . A local model checking algorithm only
needs to evaluate the subformulas and visit the states that are needed to evaluate
the truth value of the formula in the initial states of the model. Therefore, it is
possible generate the state space on-the-fly during model checking when using a
local model checking algorithm.

2.2.3 Counterexamples & Witnesses

As we use CTL model checking, we define counterexamples and witnesses in reference
to model checking of CTL formulas. These definitions are based on the books by
Baier and Katoen [5] and Clarke et al. [33].

Definition 5 (Counterexample). A counterexample is a part of the state space
indicating why a universally quantified path formula (e.g., AG f) is refuted.

Definition 6 (Witness). A witness is a part of the state space that indicates why
an existential quantified path formula (e.g., EF f) is satisfied.

If a universally quantified formula is false, the model checker finds a witness for the
negation of this formula. For instance, if the formula AGf is false, the model checker
returns a witness for the formula EF¬f , which is a counterexample for the formula
AGf . Hence, the terms witness and counterexample can be used alternatively.
Therefore, we only use the term counterexample in this thesis whenever we mean
counterexample or witness.

2.3 Static Analysis

Static analysis, which is also called program analysis, offers techniques to statically
determine at compile time an approximation of the values or behaviors observed
during runtime. In static analysis, the program is not executed, but the analysis are
conducted on the source code of the program. This has the advantage that static
analysis can be applied to very large programs. The disadvantage is that sometimes
the approximation of the values and behaviors calculated by the static analysis can
be too coarse. That is, no definite conclusions can be drawn from the results of the
static analysis. This section, which is mainly based on the book by Nielson et al.
[87], introduces the basic principles of static analysis.

Here, we sketch two different types of static analyses: control flow analysis (CFA)
and data flow analysis (DFA). CFA is used to determine how control evolves from one

11
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program location to another program location. That is, it is used to determine the
control flow graph of a program. The nodes in this graph are program locations, and
the edges connect two program locations if it is possible for the control to get from
one location to the other. In the DFA, this graph is used to determine different data
flow properties. Example for DFAs are: live variables analysis, reaching definitions
analysis, and available expressions analysis.

DFA can be conducted intraprocedural or interprocedural. In an intraprocedural
analysis, the analysis is conducted for each function alone. Interactions between
functions are not accounted. In an interprocedural analysis, the analysis additionally
considers interactions between different functions. That is, it considers the effect of
function calls and interrupts. DFAs can be expressed as so-called data flow equations .
One way to solve these equations is the worklist algorithm [87] (see Sect. 6.3.2).

In abstract interpretation [36] a program is interpreted using an abstract semantics
instead of the concrete semantics of the program. Using a sufficiently abstract seman-
tics enables analyses that are otherwise not computable. In abstract interpretation,
the abstract semantics has to be a superset (over-approximation) of the concrete
semantics. Due to the abstract semantics, the program can exhibit behavior that is
not possible using the concrete semantics. Thus, false alarms are possible, but if
no errors are found in the abstract semantics, it is guaranteed that no errors are
present in the concrete semantics.

12



3 Model Checking Software for
Microcontrollers

This chapter details why we use assembly code instead of C code for model checking
software for microcontrollers. The first section gives an overview of existing C code
model checkers and explains why none of them are currently able to model check
microcontroller C code out-of-the-box. After that, we explain why we decided not
to check C code. The next section presents the advantages and disadvantages of
using assembly code for model checking and evaluates them. The last section gives
a list of requirements that a model checker for microcontroller assembly code has to
fulfill to be applicable. A comparison of existing assembly code model checkers is
given in Sect. 5.8.

3.1 Model Checking C Code

In almost every microcontroller software project there is a development phase in
which the software exists as C code. Hence, one solution to model check software
for microcontrollers is to model check the corresponding C code.
We conducted a case study [101, 104] in which we tried to model check micro-

controller C programs using existing C code model checkers. Table 3.1 gives a
survey of all model checkers considered in the case study. The table presents for
each model checker a short description of the techniques utilized. We composed
the information shown in the table during the case study. Therefore, it is possible
that some techniques may have changed and some newer model checkers are not
mentioned at all. We provide more details about the case study in the corresponding
papers [101, 104].
All model checkers shown in the table except for StEAM are used to verify

hardware-independent ANSI C software such as protocols or high-level drivers. Most
of them check sequential programs, but MAGIC, KISS, and Zing are also able to
handle concurrent programs. StEAM is utilized to check parallel C++ programs.
Some of the model checkers shown in the table support almost full ANSI C and C++
respectively, while others restrict the set of allowed constructs due to the techniques
applied in the model checking process.
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Table 3.1: List of C code model checkers.

Model Checker Institute Model Techniques used

BLAST [59] UC Berkeley C C intermediate language (CIL) [86],
control flow automaton, predicate
abstraction [35, 51],
counterexample-guided abstraction
refinement (CEGAR) [34], theorem
prover

BOOP [127] IST Graz C Boolean program [8], predicate
abstraction, CEGAR, theorem
prover, model checking with
MOPED [110]

CBMC [28] CMU C/C++ bounded model checking using SAT
solver

FeaVer [64] Bell Labs C translation into Promela, model
checking with Spin [62]

FocusCheck [69] Iowa State
University

C CIL, translation into pushdown
system, constraint solver, model
checking of pushdown system

F-Soft [67] NEC C CIL, CFG, predicate abstraction,
SAT solver, model checking with
VeriSol (DiVer) [48]

MAGIC [23, 24] CMU C CIL, modular verification, control
flow automaton, predicate
abstraction, CEGAR, theorem
prover

MOPS [25] UC Davis, UC
Berkeley

C CFG, translation into pushdown
automaton, model checking of
pushdown automaton

SatAbs [29, 30] CMU C/C++ Boolean program, predicate
abstraction, CEGAR, SAT solver,
model checking with SMV [79]

SLAM [9, 10] Microsoft
Research

C Boolean program, predicate
abstraction, CEGAR, theorem
prover, model checking with Bebop
[8]

StEAM
[73, 80, 81]

University
Dortmund

C++ translation into machine code, state
space generation with Internet C++
Virtual Machine

KISS [94] Microsoft
Research

- extension to SLAM to check
concurrent programs

Zing [1, 2] Microsoft
Research

C translation into Zing model, model
checking with Zing model checker
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Model checkers that use theorem provers suffer from three restrictions due to
the underlying general-purpose theorem provers. First, only a limited number of C
constructs are supported. Second, pointer arithmetic is only supported in a restricted
manner. Third, possible arithmetic overflows are neglected. Model checkers utilizing
SAT solvers require the model to be finite. Consequentially, recursion and dynamic
memory allocations are not handled.

Approaches that translate the C code into another model or language have to cope
with two problems. First, the target language has to support all constructs present
in the source language, which is sometimes not possible. Second, the translation
process often leads to growth of the model to be checked and hence, the state spaces
created during model checking tend to be bigger. Besides, the bigger state spaces
lead to longer error traces, which are more complex and hence, more difficult to
understand.
Beside ANSI C language features, microcontroller C programs also comprise

extra language features such as compiler-specific constructs, hardware-dependent
constructs, and embedded assembly language statements. All these features are not
handled by the model checkers shown in Tab. 3.1. Furthermore, microcontroller
C programs often access the memory directly as certain operations of the micro-
controller are controlled by special registers, which are located at fixed memory
addresses (e.g., I/O registers used to read input from the environment). In contrast,
direct memory accesses are reported as errors by most C code model checkers because
direct accesses to memory can lead to errors in an environment where dynamic
linking and loading is supported.
Listing 3.1 shows an example for a microcontroller C program that controls an

automotive window lift. The program is one of the programs used in case studies
described in Chap. 8, which are used to determine the overall performance of [mc]-
square and compare effects of different techniques applied. At first sight, it looks
like an ANSI C program. It contains function calls, assignments, if clauses, and
while loops. Most variables are read and written by the program, while a couple of
the variables, such as TCCR1B, are only written. These variables are used to control
the microcontroller. Some of the model checkers shown in Tab. 3.1 remove or ignore
variables that are only written and thus disregard important parts of microcontroller
C programs.

Listing 3.2 displays the program shown in List. 3.1 after being preprocessed. This
listing evidences that the window lift program is not an ANSI C program, but it is
a typical microcontroller C program. The program contains embedded assembly
language statements, direct memory accesses, and accesses to certain microcontroller
functions. None of the model checkers described above can handle these constructs
out of the box. Some produce warnings, while others just ignore these features.
In case of direct memory accesses, a couple of the C code model checkers throw
error messages because direct memory accesses are considered as errors in ANSI C
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Listing 3.1: Part of window lift program before preprocessing.
. . .
i n t main ( void ) {

i n i t ( ) ; // c a l l i n i t i a l i z a t i o n
s e i ( ) ;

5 whi le (1 ) {
i n p u t s = PINA & 0x0F ;
c l i ( ) ;
i f ( d i r e c t i o n != 5) {

i f ( i n p u t s & (1 << 1) ) {// down
10 i f ( d i r e c t i o n != 1 && d i r e c t i o n != 2) {

TCCR1B = 0x00 ;
TIFR = 0xFF ;
TCNT1 = 0x00 ;
TIMSK = (1<<OCIE1A) ;

15 TCCR1B = 0x05 ;
d i r e c t i o n = 1 ;

}
. . .

programs running on general-purpose computers that support dynamic linking and
loading. Using direct memory accesses in conjunction with dynamic linking and
binding is error-prone because wrong parts of the memory can be accessed, which is
an issue for code and stack safety, for example.
As these C code model checkers only support a subset of the needed constructs,

it is not possible to use them out-of-the-box to model check microcontroller C
programs. We tried to extend one of these C code model checkers to support all
needed constructs, but we found out that the necessary changes were too costly
[101, 104]. Therefore, we propose another solution.

3.2 Model Checking Assembly Code

Since we could not use existing C code model checkers to model check microcontroller
C programs, we decided to use the assembly code for model checking. Assembly
code is the artifact that is deployed to the microcontroller and not an intermediate
representation such as C code. Therefore, model checking of assembly code has
various advantages compared to model checking of C code [6, 73, 80, 82, 102, 105]:

• As the assembly code is the result at the end of the development, all errors
introduced during the complete development process can be found. These
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Listing 3.2: Part of window lift program after preprocessing.
. . .
i n t main ( void ) {

i n i t ( ) ;
__asm__ __volati le__ ( " s e i " : : ) ;

5 whi le (1 ) {
i n p u t s = (∗ ( v o l a t i l e u int8_t ∗) ( (0 x19 ) + 0x20 ) ) & 0x0F ;
__asm__ __volati le__ ( " c l i " : : ) ;
i f ( d i r e c t i o n != 5) {

i f ( i n p u t s & (1 << 1) ) {
10 i f ( d i r e c t i o n != 1 && d i r e c t i o n != 2) {

(∗ ( v o l a t i l e u int8_t ∗) ( (0 x2E ) + 0x20 ) ) = 0x00 ;
(∗ ( v o l a t i l e u int8_t ∗) ( (0 x38 ) + 0x20 ) ) = 0xFF ;
(∗ ( v o l a t i l e u int16_t ∗) ( (0 x2C ) + 0x20 ) ) = 0x00 ;
(∗ ( v o l a t i l e u int8_t ∗) ( (0 x39 ) + 0x20 ) ) = (1<<4) ;

15 (∗ ( v o l a t i l e u int8_t ∗) ( (0 x2E ) + 0x20 ) ) = 0x05 ;
d i r e c t i o n = 1 ;

}
. . .

errors include:

– compiler errors, that is, errors introduced by compiler behavior or opti-
mizations,

– errors introduced during post-compilation steps (e.g., insertion of instru-
mentation code or optimizations),

– errors in microcontroller usage (e.g., write access to reserved registers),

– errors that are not visible in intermediate representations such as C code
(e.g., reentrance problems), and

– hardware-dependent errors such as stack overflows and underflows.

• Programs consisting of components written in different programming languages
can be verified. When model checking the source code, only single components
can be verified, and for each programming language a specific model checker
has to be utilized.

• Source code of the software is not required. Hence, programs that use libraries,
which are not available in source code, can be analyzed.

• The model checker does not need to exploit the compiler and optimizer
behavior.
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• Hardware-dependent constructs can be handled.

• Assembly language statements that are embedded into the source code are
considered appropriately by the model checker (i.e., not ignored as done by
most C code model checkers).

• Assembly language has a clean and well documented semantics. Microcontroller
vendors provide documentations describing the semantics of the different
assembly language constructs.

• Assembly language statements are easier to handle than certain C constructs
(e.g., pointer arithmetic or function calls via pointers).

Beside these various advantages, model checking assembly code has some disad-
vantages:

• A model checker for microcontroller assembly code is hardware dependent.
That is, the model checker has to be adapted for each new microcontroller
that should be supported.

• Since assembly code has more lines of code and involves more details than C
code, the state spaces created during model checking of assembly code tend to
be larger than the state spaces created during model checking of C code. This
growth of the state spaces may also lead to longer counterexamples.

The advantages and disadvantages of model checking assembly code for micro-
controllers lead to requirements that have to be fulfilled by a model checker to be
applicable in industry. To the best of our knowledge, there was no model checker
available that was able to model check microcontroller assembly code without man-
ual preparation when we started the development of our model checker. Section 5.8
gives a detailed description of related work regarding assembly code model checking.

3.3 Requirements for an Assembly Code Model Checker

This section describes the requirements that our model checker for microcontroller
assembly code has to satisfy. Table 3.2 presents the non-functional requirements
(qualities)1, and Tab. 3.3 shows the functional requirements1.

The aim of our development is a model checker that serves two purposes. First,
it is usable by developers working in industry, which are not familiar with the
application of formal methods. Second, the model checker serves as a research tool
that can be utilized to evaluate new algorithms and abstraction techniques. These

1We use the terms functional requirement and quality as defined by Bass et al. [12].
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two purposes are reflected by qualities Q1 and Q2. These two qualities implicate
other qualities and requirements. Extendability (Q3–Q6) in different directions is
an implication of both qualities. The model checker is extendable to support new
microcontrollers to be applicable in industry. Moreover, it is possible to integrate
existing simulators into the model checker. To use the model checker as a research
tool in academia, it is extendable to use other model checking algorithms and
abstraction techniques. Since there are different operating systems used in industry
and academia, the tool is executable on the three major operating systems (Q7).

Table 3.2: List of non-functional requirements.

Number Requirement

Q1 The model checker is usable by developers working in industry, which
are not familiar with formal methods.

Q2 The model checker is usable as a research tool in academia to evaluate
new algorithms in different areas (e.g., model checking, static analysis,
simulation of systems).

Q3 The model checker is extendable to support new microcontrollers.
Q4 It is possible to use external simulators to build the state space.
Q5 The model checker is extendable to support new model checking

algorithms.
Q6 The model checker is extendable to support new abstraction techniques.
Q7 The model checker works on the following operating systems: Microsoft

Windows, Mac OS, and Linux.

Q1 and Q2 are the driving qualities (see Bass et al. [12]) of our model checker’s de-
velopment. These two qualities implicate most of the functional requirements shown
in Tab. 3.3. To support users of the model checker, arbitrary assembly programs (F1)
for certain microcontrollers (F2 and F3) are supported without the need to manually
prepare them. Debug information in Dwarf [40] or Stabs [46] format is used to map
information from assembly code to C code (F4). Specifications are given in CTL
(F5), and it is possible to use atomic propositions about registers, I/O registers, and
variables (F6). For every program under verification, the specifications is stored
in a list (F7). To minimize the size of the state space and to evaluate abstraction
techniques, the model checker implements different abstraction techniques (F8).
The tool provides a GUI (F9). Within this GUI, users are able to choose between
various abstraction techniques, model checking algorithms, and state compression
techniques (F10). Counterexamples are presented in source code (assembly and C),
as a state space graph, and in the CFG of the assembly code (F11). Within all these
representations, users are able to step through the counterexample and to survey in
each state the values of registers, I/O registers, variables, and formulas (F12).
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Table 3.3: List of functional requirements.

Number Requirement

F1 The model checker accepts arbitrary microcontroller assembly code files
given in ELF file format as input.

F2 The model checker first supports the ATMEL ATmega16
microcontroller. Other microcontrollers, such as the ATMEL
ATmega128 and Infineon XC167, are added later.

F3 The model checker supports all constructs found in assembly code for
the supported microcontrollers.

F4 The model checker handles debug information given in Dwarf or Stabs
format to map information between assembly and C code.

F5 The model checker accepts specifications given in CTL.
F6 The model checker allows to use propositions about registers, I/O

registers, and variables within the specification.
F7 For every program under verification, users are able to store a list of

specifications.
F8 The model checker implements different abstraction techniques (e.g.,

dead variable reduction and path reduction).
F9 The model checker provides a GUI.
F10 User are able to choose between different abstraction techniques, model

checking algorithms, and state compression techniques.
F11 Counterexamples (witnesses) are presented in the source code (assembly

and C), as a state space graph, and in the CFG of the assembly code.
F12 Users are able to step through the counterexample and to analyze the

values of registers, I/O registers, variables, and formulas.

The requirements presented in this section are the basis for the development of
our model checker. The next chapter describes the model checker [mc]square,
which is the result of this development.
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[mc]square stands for Model Checking MicroControllers. It is a discrete CTL
model checker for microcontroller assembly code. We have developed [mc]square
at the embedded software laboratory during the last four years. It is written in Java
as one requirement is that the model checker is usable on any of the three major
operating systems. Currently, we are using Java SE 6.

This chapter gives an overview of [mc]square1. Section 4.1 presents the features
of [mc]square. The subsequent section details the architecture of [mc]square. In
the end, we evaluate the chosen architecture in Sect. 4.3.
We published a preliminary version of this architecture in a paper [103].

4.1 Features

[mc]square is a discrete CTL model checker for microcontroller assembly code.
Following, a list of the main features of [mc]square.

• Supported microcontrollers

– ATMEL ATmega16

– ATMEL ATmega128

– Infineon XC167

• Inputs

– Assembly program given as an ELF file

– Specification given as a CTL formula

• Stepwise simulation of the program

• Model checking by means of three different algorithms

– Global

– Local

– Invariant
1We use revision 2233 of [mc]square in this thesis unless otherwise quoted.
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• Abstraction techniques to tackle the state-explosion problem

– Dead variable reduction

– Delayed nondeterminism

– Lazy interrupt evaluation

– Lazy stack evaluation

– Path reduction

• Minimization of memory requirements via

– Compression algorithms such as run-length encoding and ZIP compression

– Storage of states on hard disk

– Incremental storage of states

• Presentation of Counterexamples (witnesses) in

– Assembly code

– Control flow graph of the assembly code

– C code

– State space graph

At present, [mc]square handles assembly code of the following microcontrollers:
ATMEL ATmega16, ATMEL ATmega128 and Infineon XC167. It handles programs
given in Executable and Linking Format (ELF) [116] and the specifications given
as CTL formulas. The specification may contain propositions about registers, I/O
registers, and variables (including C variables). Additionally, [mc]square checks for
stack overflows, stack underflows, and non-intended use of microcontroller features
such as write access to reserved registers. Furthermore, users can use [mc]square
to stepwise simulate the assembly program.
We have implemented three explicit model checking algorithms in [mc]square:

a global CTL model checking algorithm presented by Clarke et al. [33], a local
CTL algorithm first introduced by Vergauwen and Lewi [121] and later adapted
by Heljanko [57], and an algorithm used to verify invariants. Section 7.1 describes
details of the applied model checking algorithms.
During state space creation, [mc]square uses various abstraction techniques to

lower the size of the state space. These abstraction techniques include, for example,
dead variable reduction, path reduction, and delayed nondeterminism. Chapters 5–7
give detailed descriptions of the implemented abstraction techniques.
The users can choose the abstraction techniques that are applied during model

checking. Thereby, they are able to adjust the granularity of the abstraction used
and hence, influence the size of the resulting state space. Furthermore, they can
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select other options to lower memory consumption such as different compression
levels and storage of states on hard disk.

[mc]square presents counterexamples, which are created during model checking,
in the assembly code, in the control flow graph of the assembly code, in the C code,
and as a state space graph. Hence, users can pick the representation that suites
their needs best. In each of these representations, they can analyze the values of
registers, I/O registers, and variables and the truth values of the formulas.

4.2 Architecture

This section describes the current architecture of [mc]square, which was developed
to reflect the requirements shown in Sect. 3.3. Figure 4.1 shows the layered archi-
tecture of [mc]square as a UML package diagram [12, 17, 61, 113, 119] consisting
of the six basic packages: Parser, Static Analyzer, Model Checker, State Space,
Simulator, and Graphical User Interface (GUI). For clarity, we left out support
packages such as Util, Error, and Exception, which execute miscellaneous supporting
functions such as array operations, compression algorithms, or hard disk operations.
The relations between the packages shown in the figure are access relations. In
the implementation, the packages shown in Fig. 4.1 are directly mapped to Java
packages.
Every step of the model checking process is implemented in a separate package.

Additionally, the Simulator and the State Space are separated into single pack-
ages. The communication between packages is conducted by means of well-defined
interfaces. Therefore, single parts of the process can be exchanged independently.
By separating the Model Checker and the Simulator, model checking is conducted
independently from the underlying microcontroller.

In the following, a short description of each of the six packages is given. Chapters 5–
7 detail the three important packages: Simulator, Static Analyzer, and Model
Checker.

GUI The GUI serves two purposes. First, it handles the interaction with the user.
That is, it presents data to the user and gets input from the user. The user
can, for example, load files, edit formulas, simulate programs, model check
programs, and inspect counterexamples. The second purpose of the GUI
is to control the different processes used in [mc]square. That is, it starts,
for instance, static analysis, simulation, and model checking. The different
processes are implemented as threads within the corresponding packages. The
GUI uses the observer pattern [47] to collect the data that is presented to
the user. Furthermore, we implemented the model-view-controller pattern to
separate the data (model) from its representation (view).
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[mc]square

Model CheckerParser Static Analyzer

State Space

Graphical User Interface

Simulator

fake

Visual Paradigm for UML Standard Edition(RWTH Aachen)

Figure 4.1: The layered architecture of [mc]square.
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Parser The Parser package provides capabilities to parse different file formats, such
as ELF, and logics, such as CTL, and to transfer them into the corresponding
internal representations used throughout [mc]square. It is, for example, used
to process programs and formulas provided by the user.

Static Analyzer The Static Analyzer conducts different static analyses and abstrac-
tion techniques and annotates the program. It is used before model checking.
The Simulator uses the annotations to limit the size of the state space during
creation. Furthermore, the Static Analyzer creates a control flow graph of
the assembly code, which is, for instance, used to present the counterexample.
Chapter 6 details the Static Analyzer.

State Space The State Space package is used to store the states. It uses the
Simulator to create successor states on demand. The State Space contains
different state space implementations. Some use the main memory, whereas
others use the hard disk to store the states. The interface to access the State
Space is independent from the method used to store the states. Hence, model
checking is implemented independent from the method used to store the states.
Chapter 7 describes details of the State Space.

Simulator The Simulator package serves different purposes. First, it is used by
the State Space package to create successors of given states. When creating
successor states, the Simulator natively handles nondeterminism and creates
an over-approximation of the behavior exhibited by the corresponding micro-
controller. This is important to preserve the validity of the formulas checked.
Most of the abstraction techniques, which are used to limit the size of the
state space, are implemented within the Simulator. The second purpose of
the Simulator is to allow other packages to get information about the mi-
crocontroller and the program without the need to implement specifics of
the different microcontrollers and programs. We implemented three different
microcontrollers within the Simulator. Chapter 5 presents the internals of the
Simulator.

Model Checker The Model Checker conducts the actual model checking. In this
package, the different model checking algorithms are implemented. Currently,
it includes a global and a local model checking algorithm and an algorithm to
check invariants. Depending on the chosen algorithm, states are created before
model checking or on-the-fly during model checking. The Model Checker does
not manage the creation of states. It only requests states from the State Space,
which creates states using the Simulator if required. Moreover, the Model
Checker is responsible for the creation and processing of counterexamples.
Chapter 7 details the Model Checker.
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4.3 Evaluation

Extendability and maintainability are the requirements that notably influenced
the architecture. These two requirements are achieved by the chosen division of
packages. Each step of the model checking process, that is, parsing, static analysis,
state space building, and model checking, is conducted within a single package.
Communication between these packages is conducted by means of well-defined
interfaces. Thereby, parts of these processes can be exchanged without the need
to change the complete application. For example, model checking is conducted
independently of the microcontroller used, and hence, adding new microcontrollers
can be done without changing the model checking.
To show that [mc]square is extendable, we already extended it in several

directions. The first version of [mc]square used a patched version of a simulator
called Avrora [117, 118] to build the state space. Avrora is a cycle-accurate
simulator for microcontroller assembly programs written for the ATMEL ATmega16,
32, and 128. We had to change Avrora because it is cycle-accurate and does not
natively support nondeterminism. Preserving cycle-accuracy would lead to real-
time model checking [14, 71, 72], which suffers even more from the state-explosion
problem.

Using the patched version of Avrora, we found out that [mc]square spent 85%
to 95% of the processing time building the state space. Therefore, we decided to
concentrate on improving the creation of state spaces instead of the model checking.
Changing Avrora was rather involved because it was built for cycle-accurate
simulation of microcontroller programs and not for the creation of state spaces for
model checking. Many parts of Avrora were automatically created and not written
by hand and thus, these parts were not easy to understand and difficult to change.
Every time a new version of Avrora was published, we had to apply the same

changes. In the second version of [mc]square, we exchanged Avrora by our
own simulator, which adopted some parts of Avrora, to avoid these changes and
to ease the adaption of the state space creation. Our simulator natively handles
nondeterminism and builds a safe over-approximation of the behavior shown by the
microcontroller. The simulator is implemented within the Simulator package.

Later, we added an additional ATMEL ATmega microcontroller and the Infineon
XC167 microcontroller to the Simulator package [100, 103]. In the Model Checker
package, we added a local model checking algorithm and an algorithm used to check
invariants [103]. The State Space package was extended to store states on hard disk
[103, 106]. Furthermore, we added the capability to conduct different static analyses
to [mc]square [107]. This was obtained by adding the Static Analyzer package
and adapting the procedures using the static analyses. During these extensions,
we adapted the architecture of [mc]square to better reflect the requirements of
extendability and maintainability. This makes it easier to extend [mc]square in
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the future.
However, extendability has its limits. At present, based on the classification given

by Visser [123], all model checking algorithms implemented within [mc]square
are explicit, graph-based, structural model checking algorithms. Changing to an
automata-based algorithm or to symbolic model checking algorithms is more involved
than just changing single parts of a procedure. Schommer [109] tried to extend
[mc]square to support symbolic model checking. This try was very involved,
but it was not successful in the end. We finally removed it from [mc]square.
It failed because known abstractions, such as modulo and interval abstractions,
did not work as expected, and no abstractions that solve this problem could be
found within this work. It did not fail due to the architecture of [mc]square.
Schommer [109] gives details in his thesis. Although we were not successful in
adding symbolic model checking to [mc]square, we combined explicit and symbolic
model checking techniques within [mc]square. Chapter 5 explains the details about
the combination of explicit and symbolic techniques.
Our aim is to use [mc]square as a research platform and as a tool that can

be applied in industry. Extendability is important because new model checking
algorithms, new microcontrollers, and new abstraction techniques have to be added
to [mc]square. As described above, [mc]square satisfies the requirement of
extendability and maintainability. Additionally, the modular structure enables
students to work on parts of [mc]square that they are specialized and interested
in. For example, a student interested in static analysis does not have to bother
with model checking. Beside extendability, usability is also important for our aim.
The architecture supports usability by hiding all internals except for the CTL
specifications from the user via the GUI .
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It turned out that the main focus of this thesis is the domain-specific creation of
state spaces for model checking microcontroller assembly code. This includes the
application of domain-specific abstraction techniques. In [mc]square, the Simulator
package builds the state space. It uses a similar process to build the state space as is
used in typical simulators, which simulate the behavior of microcontroller programs.
That is, it simulates the effect of instructions on the model of the microcontroller.
Our Simulator differs in two important respects from other simulators. First, it
natively supports nondeterminism and second, it creates an over-approximation of
the real behavior of the microcontroller to preserve validity of the model checking
results. We integrated abstraction techniques into the Simulator to limit the size of
the state space already during creation.
Another purpose of the Simulator is to hide microcontroller peculiarities from

the other packages of [mc]square. Thus, the other packages can access the micro-
controller or the states of the microcontroller without considering the peculiarities
of the respective microcontroller. Hence, the other packages of [mc]square are
implemented hardware independently.
This chapter describes the modeling of the ATMEL ATmega16 microcontroller

within the Simulator. The general structure and functionality of the Simulator
is similar for all microcontrollers. Different microcontroller models only vary in
hardware-dependent details such as memory, external devices, instructions, and
interrupts.

The first section gives an overview of the Simulator package. Section 5.2 describes
the states that are used within the Simulator. The subsequent sections detail the four
important parts of the Simulator package. First, the model of the microcontroller
(Sect. 5.3) and the model of the program (Sect. 5.4) are described. These two are the
representation of the real microcontroller and the real program within [mc]square.
Then, the creation of successor states, which is done by the InstructionSimulator, is
explained in detail in Sect. 5.5. Section 5.6 details the Determinizer, which handles
nondeterminism within the Simulator. Section 5.7 describes the formal model of
the Simulator. Then, this formal model is used to establish the correctness of the
delayed nondeterminism abstraction technique. Section 5.8 presents related work
regarding model checking of assembly code and delayed nondeterminism.
We published the general idea of using a simulator to build a state space in

several papers [102, 103]. Furthermore, we outlined the ideas presented in Sect. 5.6
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Figure 5.1: Classes of the Simulator package related to the ATMEL ATmega16
microcontroller.

in another paper [60] and published a summary of the formal model described in
Sect. 5.7 elsewhere [60, 88].

5.1 Simulator Overview

The Simulator package generates states for model checking by simulating the effects
of instruction executions on the model of the microcontroller. Additionally, the
Simulator package provides facilities for the other packages to access the microcon-
troller model through well-defined interfaces. Thus, other packages do not have to
deal with the peculiarities of the different microcontrollers.

Figure 5.1 gives an overview of the Simulator package. It is a UML class diagram
[12, 17, 61, 113, 119] depicting the topmost classes of the Simulator package. Minor
classes are omitted for clarity. On the left side of the figure, the superclasses are
shown, and on the right side of the figure, the specialized subclasses are shown. We
follow this guideline in all UML class diagrams shown in this chapter.

The Microcontroller class and its subclasses represent microcontrollers and their
different features within [mc]square. In these classes, for instance, the memory,
the registers, and the external devices are modeled. Section 5.3 provides details on
the modeling of these different features. The program run on the microcontroller is
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modeled within the Program class and its subclasses. Details are given in Sect. 5.4.
The InstructionSimulator class and its subclasses control the generation of states.

The semantics of the different instructions are modeled within these classes. They
use the Microcontroller and Determinizer classes to execute the instructions and to
simulate their effects on the microcontroller model. Classes outside the Simulator
package use the InstructionSimulator class to create states and access the micro-
controller. The InstructionSimulator uses states of type SimulatorState to pass the
created states to the other packages such as the State Space. Section 5.2 describes
the SimulatorState class, and Sect. 5.5 details the InstructionSimulator.
The Determinizer class is used to handle and hence resolve the nondeterminism.

The Determinizer and its subclasses are described in Sect. 5.6. The handling
of nondeterminism is also detailed in conjunction with the formal model of our
Simulator in Sect. 5.7.

In this chapter, we are especially interested in all ATMega16 classes as we focus on
the modeling of the ATmega16, but we explain features modeled in the superclasses
whenever they are not refined in the ATMega16 classes. Some of the following
sections refine the Simulator UML class diagram shown in Fig. 5.1.

5.2 Simulator State

The SimulatorState class, which represents the state of the simulator, is used by
the InstructionSimulator to exchange states with other packages such as the State
Space. It consists of three parts:

• the name of the state,

• the truth values of the atomic propositions used within the formula, and

• data representing the state of the microcontroller (microcontroller state).

The name of a state is determined by a hash function applied to the microcontroller
state. If a hash collision occurs, it is resolved via a quadratic probing algorithm. As
names map one-to-one to states, they are also used for states stored in the State
Space.

The truth values of the atomic propositions are evaluated by the InstructionSimula-
tor, which is located within the Simulator package, and stored in the SimulatorState.
The Model Checker uses these pre-evaluated atomic propositions during model
checking. Thus, it does not have to handle the peculiarities of the microcontroller.
The microcontroller state comprises all details representing the state of the

microcontroller. It contains the complete memory of the microcontroller including
general-purpose registers, I/O registers, SRAM, flash memory, and EEPROM.
Additionally, it stores fields that are not stored in the memory of the microcontroller
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such as the program counter, sleep mode bits, and boot lock bits. Microcontroller
states are stored as a byte array. As they are rather big, up to 2 kB in case of
the ATmega16, and not all parts are necessarily used, they are compressed using
techniques such as run-length encoding and ZIP compression. This considerably
reduces the size of the microcontroller states.
A microcontroller state can contain nondeterministic values. Nondeterministic

values are introduced by certain I/O registers or by specific abstraction techniques
such as lazy stack evaluation (see Sect. 5.3.3) or delayed nondeterminism (see
Sect. 5.6.3). Through nondeterministic values, the state does not only represent a
single state but a set of states. The state representation thus contains both explicit
and symbolic parts. The simulator only works on the explicit parts. Whenever
the Simulator accesses a symbolic part, that is, a nondeterministic value, the
nondeterminism of this value is resolved lazily. Therefore, we call such a state a
lazy state. The resolution of nondeterminism is detailed in Sect. 5.6. Using this
technique, we have combined explicit and symbolic techniques within [mc]square.
To implement lazy states, the model of the microcontroller memory has to store
nondeterministic values. Section 5.3.2 describes the modeling of the microcontroller
memory and the way nondeterministic values are stored within it.

5.3 Microcontroller

We have modeled different microcontrollers within the Simulator package. This
section presents the ATmega16 microcontroller model, which is the focus of this
chapter. The technical information about the ATmega16, given in this section, is
taken from the ATMEL documentation [3, 4].
We had to model the microcontroller as accurately as needed to verify the

properties we were interested in. Modeling the microcontroller too accurately
contributes to the state-explosion problem during model checking. We had to find
the right level of abstraction. Our central idea was to abstract from time and to
sacrifice cycle-accuracy because we observed the state-explosion problem when using
the cycle-accurate simulator Avrora. That is, we do not simulate the number of
clock cycles, but we do simulate whether the timer is running or not.
The ATmega16 is an 8 bit microcontroller featuring:

• 32 general-purpose working registers,

• 32 general-purpose I/O lines,

• 1 kB SRAM,

• 512 byte EEPROM,
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• 16 kB in-system programmable flash memory,

• a JTAG interface,

• three timer/counters (8 and 16 bit),

• 21 internal and external interrupts,

• a two-wire serial interface,

• 10 bit analog to digital converter (ADC),

• a watchdog timer,

• a Serial Peripheral Interface (SPI) serial port, and

• six power saving modes.

A complete list of all features of the ATmega16 can be found in the ATMEL
documentation [3, 4]. We have modeled the ATmega16 within the ATMega16 class,
which extends the ATMega class (see Fig. 5.1). The features that are present on all
ATmega microcontrollers such as the registers are modeled within the ATMega. The
features that are specific to the ATmega16 such as the I/O registers are modeled in
the ATMega16 class. There are other features that are modeled in their own classes,
for example, I/O ports and timers.
In the following, we explain the modeling of some of these features. A detailed

description precedes the modeling of each feature. Some of the ATmega16 features
such as the core, the registers, and the memory exhibit a deterministic behavior.
Other features introduce nondeterminism due to their nature, for example the I/O
ports and ADC, or their modeling, for instance timers. This section first describes
the modeling of some deterministic features of the ATmega16, namely, the core,
the memories, and the stack. After that, three Atmega16 features that introduce
nondeterminism are detailed, namely, interrupts, I/O ports, and timers.

5.3.1 Core

The core of the ATmega16 features 131 different instructions. 32 general-purpose
working registers are directly connected to the arithmetic logic unit, allowing two
registers to be accessed within a single instruction. Six of the registers can be used
as 16 bit indirect address register pointers. The core is responsible for fetching the
next instruction, executing instructions, setting bits in the status register, etc. These
tasks are not modeled within the Microcontroller, but they are modeled within the
InstructionSimulator, which is described in Sect. 5.5.
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The core has some own state variables, such as the program counter (PC ),
which are not stored in the SRAM data memory. To store these values within the
microcontroller state, we added an extra array to the model of the ATmega16.

5.3.2 Memories

The ATmega16 uses a Harvard architecture as every AVR microcontroller. In a
Harvard architecture, the memories and buses for program and data are separated.
Hence, the memory of the ATmega16 microcontroller is divided into three memory
spaces:

• data memory space,

• EEPROM memory space, and

• program memory space.

The ATmega16 SRAM memory comprises 1120 bytes. Figure 5.2 shows the
SRAM data memory space of the ATmega16. The first 96 bytes contain the register
file and the I/O registers. The registers are used by the core to conduct calculations
and to store values. The I/O registers are used to access certain features and devices
of the ATmega16 microcontroller such as timers, I/O ports, or interrupts. The
internal data SRAM is accessed through the last 1024 bytes. It is used to store
variable values and the stack.

The EEPROM memory is nonvolatile and can be used by the developer to store
values permanently. Its size is 512 bytes, and it is 8 bit wide.

The program memory stores the program. Its size is 16 kB, and it is 16 bit wide.

SRAM Data Memory

The SRAM data memory space is modeled as two byte arrays, each 8 bit wide. The
first array stores the actual value of each memory location, for example, register,
I/O register, or variable. The second array records whether a memory location
contains a deterministic or a nondeterministic value. It is used to realize lazy states
(see also Sect. 5.2). A byte in the second array is called the to be determinized mask
(TBDM ) of a memory location. It records that nondeterminism, introduced by
abstraction techniques, has to be resolved for the corresponding memory location.
The TBDM is not used to model the nondeterminism generated by the I/O registers.
Whether an I/O register generates a nondeterministic value or not is implemented
within special Register classes (see Sect. 5.3.5 and 5.3.6).

The TBDM records whether each bit is nondeterministic or not. Some bits of a
memory location can be nondeterministic while others are deterministic. When a
bit in the TBDM is zero, its value is deterministic, and hence, the corresponding
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Figure 5.2: ATMEL ATmega16 data memory map [4].
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Figure 5.3: Different accesses to the SRAM data memory.

value stored within the first array is used. When a bit is one in the TBDM, it is
nondeterministic. Its value in the first array is not used and is set to zero. Therefore,
large parts of both arrays hold zeros. In fact, some parts of the second array are
zero all the time. This seems to double the memory consumption to 2 kB for the
data memory space, but these two arrays can be compressed very efficiently via one
of the compression methods implemented within [mc]square.

As described before, the SRAM data memory space contains three memory regions
(see Fig. 5.2):

• register file,

• I/O memory (I/O registers), and

• internal data SRAM.

Accesses to these three memory regions are handled differently. Figure 5.3 shows
the different accesses to the SRAM data memory space. The parts representing
the internal data SRAM are accessed directly because they do not require special
treatment. The parts storing the values of registers and I/O registers are accessed
through specific Register classes. These classes are needed because some registers
have access restrictions, involve side-effects, or generate nondeterminism. An
example for registers with access restrictions are reserved registers. I/O registers
often involve side-effects, for instance, activation of interrupts or timers. This may
lead to nondeterminism in other I/O registers. The special Register classes are
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used to observe restrictions, to conduct changes including side-effects, and to handle
nondeterminism.
There are different types of registers. There are Register classes representing

general-purpose working registers, registers that cannot store nondeterministic
values, registers having reserved bits, and special purpose I/O registers. These
different classes encapsulate the logic behind the respective registers. That is, if a
write access to a register occurs, the corresponding handles the memory addresses
that have to be written and the side-effects that have to be executed. The same
is done when registers are read. For instance, certain I/O registers can return
nondeterministic values depending on the values of other I/O registers. We describe
details of I/O registers representing I/O ports in Sect. 5.3.5 and timers in Sect. 5.3.6.
These special Register classes do not store values. They are only used to access
the arrays storing the values. Microcontroller states can be saved and restored by
copying the underlying byte arrays.

EEPROM Data Memory

We have modeled the EEPROM data memory as a byte array that cannot be
accessed directly. All accesses to it are made through certain I/O registers. These
I/O registers are modeled by special classes, which effect the actual changes. The
EEPROM data memory does not store nondeterministic values. Hence, a second
array is not needed. As the EEPROM does not usually change much during runtime,
only changes made relative to its initial values are stored in the microcontroller
state.

Flash Program Memory

The flash program memory is modeled as a 16 bit array because ATmega instructions
are 16 or 32 bits wide. The flash memory can be read directly, but when writing to
it, certain I/O registers are used to determine what is to be done, for example, delete
page, write page, or write into temporary buffer. The flash memory does not store
nondeterministic values because it contains the program. As it can be written during
runtime, the program may change itself. Hence, we had to implement an on-the-fly
disassembler. Since an on-the-fly disassembler is rather slow, we implemented a
two-staged approach. When the state space creation is started, the initial flash
memory is disassembled into an assembly program (see Sect. 5.4). The instructions
of this assembly program are used in all states where the page in program memory
holding the current instruction was not changed. Whenever an instruction is to be
executed that resides in a page in program memory that is changed, the on-the-fly
disassembler is used to disassemble the current instruction. This combines the
performance of a static approach with the ability to handle self-modifying code.
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Like the EEPROM data memory, the program memory is not stored in every single
microcontroller state completely, but it is stored as differences to the initial flash
memory.

5.3.3 Stack

The stack of the ATmega16 is located within the internal data SRAM of the
microcontroller. It starts at the end of the internal data SRAM and grows towards
the start, that is, newer values are written to lower memory addresses. The
maximum size of the stack is equal to the size of the internal data SRAM. Due to
this configuration, it is possible that the stack overflows and collides with values
stored within the internal data SRAM. [mc]square checks for such stack overflows
and returns warnings if a stack overflow is found. The stack pointer is implemented
as two registers in the I/O space: Stack Pointer Low and Stack Pointer High.
To model the behavior of the stack, we only had to model the stack operations

PUSH and POP because the contents of the stack and the stack pointer are already
stored due to the fact that [mc]square stores the complete memory of the ATmega16.
We have modeled the two operations the same way as they are executed on the
microcontroller. The PUSH operation first pushes the value onto the stack and then
decrements the stack pointer. The POP operation first increments the stack pointer
and then returns the value. The value returned remains within the internal data
SRAM, it is not reset to 0. Hence, after control returns from a function, the data
that was pushed and popped by the function is still in place. Thereby, functions that
are originally independent become dependent because they share their temporary
stack contents. Each function influences parts of the microcontroller state, that is,
the memory region where the stack is located, which are also accessed by the other
functions.
Initially, we modeled the stack exactly, but we observed that the resulting state

spaces sometimes became too large. One possible idea for a solution is to reset
values to zero after they have been popped. However, because functions can access
these memory locations directly, this can lead to wrong results. Instead, we have
implemented an abstraction technique we call lazy stack evaluation, which sets
values to nondeterministic using the TBDM after they have been popped, that is,
the actual value is reset and the TBDM is set. In the rare case a memory location
that was part of the stack is read, all 256 possible values are returned.

As the memory locations residing in the internal data SRAM are initialized to zero,
resetting the value of a memory location to zero and marking it as nondeterministic
creates additional states. To avoid these additional states, [mc]square initializes the
internal data SRAM to nondeterministic when using lazy stack evaluation. That is, it
sets the value to zero and marks the memory locations as nondeterministic. This is a
valid over-approximation and usually, all memory locations are initialized or written
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before they are read. Using lazy stack evaluation produces an over-approximation
and reduces the size of the state space significantly.

Usually, lazy stack evaluation does not add behavior because a program typically
does not read parts of the stack after use, and values are written or initialized before
they are accessed. However, as the validity of a formula can depend on the real
behavior exhibited by the microcontroller, the user can deactivate this option in
[mc]square. Without using this option, many programs cannot be model checked
as the resulting state spaces become too large.

5.3.4 Interrupts

The ATmega16 has 21 different interrupts. The interrupt vectors are located in the
program memory space. The lowest address is occupied by the Reset Vector. The
other interrupt vectors are located at higher addresses. All interrupts have fixed
priorities: the lower the address, the higher the priority. Thus, the Reset Vector
has the highest priority. The other interrupts include external interrupts, timer
interrupts, and ADC interrupts.
There are two kinds of interrupts. The first type is triggered by an event that

sets the corresponding flag. It is handled whenever the corresponding flag is set
and the interrupt is enabled. If an event occurs and the corresponding interrupt
is not enabled, it will be handled when the interrupt is enabled later. That is,
flags are remembered until they are manually reset or until the related interrupt is
enabled and hence, can be handled. Examples of this type of interrupt are: timer
interrupts, external interrupts, and ADC interrupts. The second type of interrupt is
only triggered as long as the interrupt condition is present. If an event occurs and
the respective interrupt is not enabled, this event is not remembered. This type of
interrupt does not necessarily have an interrupt flag. External interrupts used in
level mode and EEPROM interrupts are examples for this type.
Every interrupt has its own interrupt enable bit. This bit has to be set together

with the Global Interrupt (I) Enable bit, which is located in the Status Register
(SREG), in order to enable the corresponding interrupt. Interrupts are handled
before each instruction is executed. They are checked one-by-one from highest
priority to lowest. When an interrupt is found that is enabled and has occurred,
checking is aborted and the corresponding interrupt handler (IH) is called by first
pushing the current PC onto the stack and then setting the PC to the address of
the IH. When an IH is called, the I bit is cleared and all interrupts are deactivated.
To use nested interrupts, users have to manually activate interrupts within IHs. At
the end of the IH, the RETI instruction is executed. It changes the PC to the return
address located on top of the stack and sets the I bit to enable interrupts. After an
interrupt handler is left, at least one normal instruction is executed.

We have modeled the handling of the interrupts in the same way. The method that
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checks whether an interrupt is both enabled and triggered is located in the ATMega16
class because the interrupt priorities differ for the different microcontrollers of the
ATmega family. If an enabled and triggered interrupt is found, the ATMega16 calls
the corresponding IH as described above. If no interrupt is enabled and triggered,
the method simply returns.

The method that checks for the occurrence of interrupts is called by the Instruc-
tionSimulator class. This class, which is described in Sect. 5.5, controls the creation
of states. The triggering of nondeterministic interrupts is done by the Determinizer,
which is described in Sect. 5.6.

The execution of at least one instruction after an IH is left negatively influences
the size of the state space because it introduces a new state variable. This variable is
of type Boolean and stores whether an IH has just been left or not. In the worst case,
this variable leads to a doubling of the number of states and thus to a doubling of
the state space size. To ease this problem, we have added an abstraction technique
that removes this restriction. After an IH is finished, the next IH can be called
without the need to execute a normal instruction in between. This option is called
lazy interrupt evaluation. It is an over-approximation that may lead to behavior
not observed on the real microcontroller, but it helps to significantly reduce the size
of the state space.

Nested interrupts are disabled by default on the ATmega16 microcontroller, but
users can activate them in IHs. When model checking, nested interrupts are a
problem as they can cause stack overflows because every time an IH is entered,
another interrupt can occur. The new interrupt is handled immediately, and thus,
the stack holding the return addresses grows until a stack overflow occurs. As a
model checker has to visit all possible states, it detects this case even though it
might not be possible in a real system where interrupts can occur less frequently.
A model checker cannot exclude occurrences of interrupts as this can cause an
under-approximation and hence unsound results. To help users in case nested
interrupts are enabled in the program, we added a feature allowing users to limit
the number of simultaneous interrupt occurrences. However, the user has to keep in
mind that this could mask possible errors. Gückel [49] provides details in his thesis.

5.3.5 I/O Ports

The ATmega16 features four I/O ports. Each of these ports has three distinct
I/O memory address locations: one for the data register PORTx, one for the data
direction register DDRx, and a third for the port input pins PINx. The lowercase
x can be replaced with A to D representing Port A to Port D. Beside the general
digital I/O functionality, each port has alternate functions, which interfere with the
general digital I/O functionality.

Figure 5.4 is a UML class diagram depicting the classes of the Simulator package
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Figure 5.4: Classes of the Simulator package related to I/O ports.
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that model the I/O ports of the ATmega16. The ATmega16 is represented by the
ATMega16 class. The four I/O ports are represented by the four Port classes: PortA,
PortB, PortC, and PortD. The three I/O registers used to operate the ports are
modeled by the three Register classes: PortRegister, DataDirectionRegister, and
PinRegister. The alternate port functions of the specific ports are modeled within
the specialized Port classes or in external devices, which are represented by classes
of type Device. These external devices use the Register classes to communicate
with the corresponding Port. The properties of the I/O ports are modeled within
the refined Port classes. Each Port has specific methods and fields to model the
behavior of the corresponding port. The I/O registers are modeled in the same
way. They have, for example, an address and a value. The addresses of the I/O
registers are stored within the corresponding Register classes, but the values of the
I/O registers are not stored within the Register classes. These values are stored in
the array representing the SRAM. The Register classes are used by other classes
such as the Port to access this array (see also Sect. 5.3.2).
In the following, we first detail the modeling of the three I/O registers used to

operate the I/O ports. Afterwards, we explain the modeling of an alternate port
function represented within a Port.

Port x Data Direction Register (DDRx) selects the direction of the pins of an I/O
port. If a bit of this register is set to one, the corresponding pin is used as an
output pin. If a bit of this register is set to zero, the respective pin is used as
an input pin. That is, it determines which pins of this port are used for output
and which pins are used for input. This register influences the behavior of the
other two registers of this port.

The DataDirectionRegister class models the DDRx registers. The value of the
DataDirectionRegister is deterministic. It always returns the value assigned
to it. The DataDirectionRegister influences the value of the PinRegister and
the function of the PortRegister.

Port x Data Register (PORTx) serves two purposes. If the port is used as an input
port, PORTx activates and deactivates the pull-up resistors of the pins. A
one activates the pull-up resistors. A zero deactivates them. When the port is
used as an output port, the value of PORTx is used as the output. Writing a
one drives the pin high. Writing a zero drives it low.

The PortRegister class models the PORTx registers. Like the DataDirection-
Register, it is deterministic and always returns the value assigned to it. We
did not model the pull-up resistors because our simulation does not involve
real hardware. If the Port is used for output, which is determined by the
DataDirectionRegister, the value of PortRegister is used as output.
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Port x Input Pins Address(PINx) is used to read the actual value of the port. If a
pin is used as an input pin, the value externally applied to the pin is read. If
a pin is used as output, the value written to the corresponding bit in PORTx
is read.

The PinRegister class models the PINx registers. The value of the PinRegister
is dependent on the value of the DataDirectionRegister and the PortRegister.
The bits set to one in the DataDirectionRegister are deterministic and return
the value of the PortRegister because they are used for output. The bits set
to zero in the DataDirectionRegister are nondeterministic as they are used as
input. For example, if the DataDirectionRegister is set to 0xff, the PinRegister
returns the value of the PortRegister. If the DataDirectionRegister is set to
0x00, reading the PinRegister returns all 256 possible values. If the DataDi-
rectionRegister is set to 0x0f, the four topmost bits are nondeterministic and
the four lower bits are deterministic. In this case, reading the PinRegister
returns 16 different values.

We did not use the TBDM for the values of these three Register classes because
abstraction techniques are not used for Register classes representing I/O ports,
and hence, nondeterministic values are not assigned to them. The value of the
PinRegister is only nondeterministic if the corresponding DataDirectionRegister is
configured as input.

Beside this general I/O functionality, every port has alternate functions. Port A
is used as the analog input for the ADC. Port B is used as input and output for the
SPI, as input for the analog comparator, to connect External Interrupt 2, as input
for Timer/Counter0 and 1, and to connect the external clock for USART. Port C is
used for connecting external timer oscillators, as input and output for the JTAG
interface, and as input and output for the two-wire serial interface. Port D is used
for input and output of Timer/Counter1 and Timer/Counter2, as input and output
for USART, and to connect External Interrupt 0 and External Interrupt 1.
As an example for the modeling of an alternate port function, we explain the

modeling of External Interrupt 0. Pin 2 of Port D is used as the input for External
Interrupt 0. If External Interrupt 0 is enabled, this pin triggers the interrupt
independently of the mode of the pin. If the pin is used for input, the interrupt is
triggered from outside. If the pin is used for output, the interrupt is triggered by the
program. That is, it is triggered when a one is written to PORTx. The flag in the
General Interrupt Flag Register (GIFR) is set even if the interrupt is not enabled.
External Interrupt 0 is modeled within PortD. If this alternate port function is

enabled, PortD triggers the corresponding bit in the representation of the GIFR. It
triggers this bit nondeterministically if the DataDirectionRegister is configured as
input (see also Sect. 5.6). If the DataDirectionRegister is configured as output, PortD
triggers the bit deterministically whenever values are written to the PortRegister.
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Modeling the devices accurately helps to minimize the size of the state space and
to reflect the behavior of the microcontroller. If the I/O ports are not modeled
accurately, reading a PINx register always returns all 256 possible values even if the
port is used for output. This is an over-approximation of the behavior of the port
that is too coarse to verify interesting properties involving the port. Hence, it is
important to accurately model the devices of the microcontroller as far as possible.

5.3.6 Timers

The ATmega16 has three timers: two 8 bit timers (Timer/Counter0 and 2) and one
16 bit timer (Timer/Counter1). In [mc]square, we abstract from time because its
accurate modeling would, in our approach, lead to state spaces that are too large
to be handled. Model checking of real-time models is, for example, described by
Bengtsson et al. [14] and Larsen et al. [71, 72]. The model of a timer used within
[mc]square over-approximates the real behavior of a timer. We only distinguish
two timer states: the timer is running or not running. Depending on whether a
timer is running or not, the registers accessing the timer have different values. This
section describes the modeling of Timer/Counter0 within [mc]square.
Figure 5.5 shows the UML class diagram depicting the classes that model the

timers of the ATmega16. Timer/Counter0, which is represented by Timer0, is
controlled by five I/O registers. The values of these I/O registers are stored within
the array representing the SRAM data memory and not in the Register classes. The
Register classes only store the addresses of the corresponding I/O registers (see also
Sect. 5.3.2). In the following, these five registers and their modeling in [mc]square
are described:

Timer/Counter Control Register 0 (TCCR0) is utilized to control Timer/Coun-
ter0. It is used to select the clock source, to choose the output compare mode,
to choose the waveform generation mode, and to trigger the output compare
event. Possible clock sources are, for example, none, internal, and external.

The instance of the ControlRegister in Timer0 models the TCCR0 register. Its
value is deterministic and independent of the state of Timer0. This instance
controls Timer0 determining whether it is running or not. If a clock source
is selected, Timer0 is running. If no clock source is selected, Timer0 is not
running. Depending on the ControlRegister, the values of certain register
representations are nondeterministic in [mc]square because we abstract from
time.

Timer/Counter Register 0 (TCNT0) is the register that stores the current value
of Timer/Counter0. It can be read and written, that is, users can read and
change the current timer/counter value. Doing so can introduce side-effects,
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Figure 5.5: Classes of the Simulator package related to timers.
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for example, events can be missed. In case the register overflows, an overflow
event is raised by setting the corresponding bit in the TIFR register. If the
overflow interrupt is enabled, it is triggered by the overflow event.

The instance of the CounterRegister in Timer0 models the TCNT0 in [mc]-
square. The value of the CounterRegister depends on the state of Timer0,
that is, whether it is running or not, which is determined by the Control-
Register. If Timer0 is not running and was not running before, the value
of the CounterRegister is deterministic. If Timer0 is running, the value
of the CounterRegister is nondeterministic. If Timer0 was running before
and is now deactivated, the value of this Register is nondeterministic too.
This is remembered within the TBDM of the CounterRegister. After the
nondeterminism of the value is resolved, the value is deterministic again
because the TBDM is reset.

Output Compare Register 0 (OCR0) stores the output compare value for Timer-
/Counter0, which is continuously compared with the TCNT0 register. Every
time both values are equal, a compare match is signaled by setting the
corresponding bit within the TIFR. If the compare match interrupt is enabled,
it is triggered.

The instance of CompareRegister in Timer0 models the OCR0 register. As it
stores the compare value, it is completely deterministic regardless of the state
of Timer0.

Timer Interrupt Flag Register (TIFR) is used by all three timers. Each of the
timers has its own bits inside the TIFR. Timer/Counter0 uses two bits of this
register: Output Compare Flag 0 and Timer/Counter0 Overflow Flag. The
former is utilized to store whether an output compare event occurred and the
latter is used to store whether an overflow event occurred. This register is set
by the hardware and can be read by the program. Bits of this register are
reset when either a one is written to them, or the associated interrupt handler
is entered. These flags can be used in two different ways. First, they can be
used by utilizing the corresponding interrupts. Second, users can poll these
flags in their programs and reset them manually after handling the events.

TimerFlagRegister models the TIFR register. As this register is used by all
timers, it is not modeled in the Timer classes but rather in the ATMega16
class. Timer0 uses two bits of the TimerFlagRegister. The values of these bits
are dependent on the state of Timer0. If Timer0 is running, the values of these
two bits are nondeterministic, but this nondeterminism can be restricted. If the
nondeterminism of the value of one of these bits was resolved and instantiated
to one due to an access by the Simulator, it remains one until it is reset.
Otherwise, if it was instantiated to zero, the value remains nondeterministic
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in the next state. If Timer0 is not running and was not running before, the
values of both bits are zero. If Timer0 is not running, but was running before,
the values of these two bits are nondeterministic and have to be instantiated
once to become deterministic again. This is recorded in the TBDM of the
TimerFlagRegister because the actual source of the nondeterminism, that is,
timer is running, is no longer enabled. The resolution of the nondeterminism
is not done within this class but rather within the Determinizer.

Timer Interrupt Mask Register (TIMSK) determines which timer/counter inter-
rupts are enabled. This register is used by all three timers. Timer/Counter0
uses two bits of this register: Timer/Counter0 Output Compare Match Inter-
rupt Enable and Timer/Counter0 Overflow Interrupt Enable. The first bit
determines whether the compare match interrupt is enabled and the second
bit determines whether the overflow interrupt is enabled. Writing a one to a
bit activates the respective interrupt. Writing a zero to a bit deactivates the
interrupt. The interrupts are only enabled if the I bit in the SREG is also set.

The TIMSK register is modeled by the TimerMaskRegister. It is implemented
within the ATMega16 class because it is used by all three timers. The value
of this register in deterministic and independent of the state of Timer0. It is,
for example, used by the Determinizer to decide which timer interrupts are
enabled.

Modeling the devices accurately helps to minimize the size of the state space.
Without modeling the dependencies between the different timer registers, the values
of both the TCNTx and the TIFR would be nondeterministic regardless of the
state of the timer. Timer interrupts could then occur at every program location.
Another reduction of nondeterminism that could not be used without modeling the
dependencies of the timers is the abstraction we implemented for the TIFR, which
avoids paths where the values of the interrupt flags are first one and then, in the
next state, zero without being reset. On the real microcontroller such paths are not
possible, but if these dependencies were not modeled, the value of the TIFR would
always be nondeterministic making such paths possible. This would increase the
size of the state space and lead to more false alarms.
The modeling of Timer/Counter2 is similar to the modeling of Timer/Counter0.

As Timer/Counter1 is a 16 bit timer, its modeling is more complex. Timer/Coun-
ter1 has eleven registers in contrast to the five registers of Timer/Counter0 and
Timer/Counter2. Additionally, Timer/Counter1 has features that are not present
in either Timer/Counter0 and Timer/Counter2.
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5.4 Program

Before a program can be executed on the ATmega16, it has to be deployed to the
microcontroller. The program that is deployed to the microcontroller is usually
given as an ELF file. In the deployment process, this ELF file is written to the flash
program memory of the ATmega16.

[mc]square uses the same ELF file as input for model checking. Before the
program can be used within [mc]square, is has to be parsed and transformed
into the internal program representation, which is modeled in the Program class.
This is done by an ELF parser implemented within the Parser package. The parser
disassembles and transforms the ELF file into an instance of the Program class. As
the program can change the flash program memory during execution, the program
can change itself. Hence, whenever an instruction is executed that resides in a page
of the flash program memory that was changed by the program, [mc]square has to
disassemble the instruction on-the-fly (see also Sect. 5.3.2). In this case, [mc]square
cannot execute the instruction located in the static Program representation. The
on-the-fly disassembler is only used for instructions that reside on altered pages
in the flash memory. All other instructions are taken from the static Program
representation because it is faster. Abstraction techniques that are based on static
analysis can only be applied to the static Program, that is, results of the static
analysis are only used if the program does not change itself.
Figure 5.6 shows a UML class diagram of the classes related to the Program

representation. The ATMegaProgram consists of ATMegaInstructions. There are
different types of ATMegaInstructions such as None, which means no operands,
Reg, which means one operand is a register, and Imm, which means one operand
is immediate. In this figure three different instructions are shown: ADC, ADD,
and BRCC. ADC and ADD are of type RegReg, which means that they have two
operands of type register. The instruction BRCC is of type Imm. These are only
three of the 131 instructions present on ATmega microcontrollers.
The semantics of the instructions are not implemented within the Instruction

classes, but separately within the InstructionSimulator and the Static Analyzer
classes because each uses different semantics. Section 5.5 presents the semantics
used within the InstructionSimulator, and Chap. 6 details the semantics used
within the different static analyses. The Instruction classes store the properties
of the different instructions and provide methods that, for example, support the
resolution of nondeterminism for the instructions. These methods define whether
the nondeterminism of values accessed by the corresponding instruction has to be
resolved or can be copied (see also 5.6).
The ATMegaProgram stores debug information collected from the C code by

the compiler, which is used to map features from the assembly code to the C code.
[mc]square uses the debug information, for example, to present the counterexample
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Figure 5.6: Classes of the Simulator package related to the program representation.
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Figure 5.7: Classes of the Simulator package related to the InstructionSimulator.

in the C code. The debug information can be given in Stabs [46] or Dwarf [40] format.
The Program has a textual representation that is human-readable in contrast to the
ELF file, which is not human-readable. This textual representation is, for instance,
used for the presentation of counterexamples and for user-controlled simulations.

5.5 Instruction Simulator

The InstructionSimulator, which is, for example, used by the State Space package,
controls the creation of successor states within the Simulator package. Figure 5.7
shows a UML class diagram depicting the classes of the Simulator package related
to the InstructionSimulator. As mentioned before, the semantics of the instructions
are not defined within the Instruction classes because the Simulator and the Static
Analyzer use different semantics. To make the handling of the different semantics
easier, we use the visitor design pattern [47] in [mc]square as it is used in Avrora.
The ATMegaInstructionVisitor interface represents the set of 131 instructions

supported by the ATmega microcontrollers. Every implementation of the ATMegaIn-
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structionVisitor has to implement a visit() method for each of the instructions. The
visit() method implements the semantics of the respective instruction inside the
current context, that is, simulation or static analysis.
The ATMegaInstructionSimulator realizes the ATMegaInstructionVisitor inter-

face. It implements the semantics of the instructions used for simulation, that is,
state space building. The ATMega16InstructionSimulator extends the ATMegaIn-
structionSimulator and adds the specifics of the ATMega16.
In the following, we detail the process that is used for the creation of successor

states. Figure 5.8 shows a UML activity diagram [12, 17, 61, 113, 119] representing
this process. The creation of successor states is initiated by the State Space package.
The State Space calls the InstructionSimulator, here the ATMega16InstructionSi-
mulator, and passes the microcontroller state for which all successor states should
be created. Then, the ATMega16InstructionSimulator loads the microcontroller
state into the Microcontroller, in this case, the ATMega16. After that, it retrieves
the next instruction, which is represented by the ATMegaInstruction class, from
the ATMega16 and creates an ATMega16Determinizer, which is used to resolve
possibly existing nondeterminism. The next computation steps, required to build
the successors, are executed inside a loop. In each loop cycle, one successor state is
created.
Within this loop, the following tasks are accomplished. First, the ATMega16-

Determinizer resolves the nondeterminism by adapting the ATMega16 if required.
This is done by setting bits or bytes of certain memory locations. This can cause the
triggering of interrupts or the assignment of values to memory locations addressed
within the current instruction. Section 5.6 gives details about the resolution of
nondeterminism.

The ATMega16InstructionSimulator then calls a method located in the ATMega16
class to check whether an interrupt has been triggered. In this case, the ATMega16
calls the corresponding interrupt handler. The calling of an IH is explained in
Sect. 5.3.4. If no interrupt has been triggered, the ATMega16InstructionSimu-
lator executes the actual instruction by calling the corresponding visit() method
implemented within the ATMega16InstructionSimulator. In this visit() method, the
effect of the instruction, which is represented by the ATMegaInstruction class, on
the ATMega16 is simulated. That is, the PC is incremented, bits within the SREG
are set if needed, and involved memory locations are changed.
Then, the atomic propositions are checked by the InstructionSimulator because

the Model Checker cannot test them as they are hardware independent. Atomic
propositions are hardware dependent because they contain statements about the
different microcontroller features such as registers, I/O registers, and variables.
In the last step of the loop, the resulting microcontroller state is read from

the ATMega16 and, together with the truth values of the atomic propositions,
written into the array of successor states, which are represented by instances of the

51



5 State Space Building in [mc]square

Creation of Successor States

Load State into Microcontroller

Get Instruction

Create Determinizer

Resolve Nondeterminism

Call Interrupt Handler

Execute Instruction

Check Atomic Propositions

Readout State from Microcontroller

Return Successor States

Fake

[interrupt occured]

[no interrupt]

[all successors created]

[next successor]

Visual Paradigm for UML Standard Edition(RWTH Aachen)

Figure 5.8: Process used to create successor states.
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SimulaterState class. Then, the source state is loaded back into the ATMega16
and the next loop cycle is executed. This loop continues until all possible successor
states of the source state have been created. Finally, when all successor states have
been created, the array of successor states, including the truth values of the atomic
propositions, is returned by the ATMega16InstructionSimulator to the State Space.
As an example, consider the instruction ADD R1 R2. An ADD instruction adds

the values of two general-purpose working registers, in this case R1 and R2. Here, it
is assumed that nondeterminism is not involved. To execute the instruction, first
the PC is incremented by two (size of the ADD instruction). Then, the registers
R1 and R2 are read and some calculations are executed. After that, the bits in
the SREG are set accordingly and the result of the operation is written into R1.
Examples for instructions with nondeterminism are given in Sect. 5.6.

5.6 Determinizer

The Determinizer resolves nondeterminism, which is incorporated in many classes
described in the preceding sections. It is introduced by the environment or the
modeling of devices of the microcontroller including abstractions. In the previous
sections, examples of both sources of nondeterminism are presented. I/O ports, for
instance, introduce nondeterminism as they can be used to read input from the
environment. Timers, on the other hand, introduce nondeterminism due to their
modeling in [mc]square.

To close the system under verification [70], [mc]square has to resolve the nonde-
terminism. I/O registers can continuously generate nondeterministic values while
the nondeterminism of other memory locations, which is induced by abstraction
techniques and not by the nature of the memory locations, has to be resolved only
once. After the resolution, the values of these memory locations are deterministic
again. As mentioned before, this kind of nondeterminism is stored within the TBDM
of the memory locations. Whether the value of an I/O register is nondeterministic
or not is usually not stored within the TBDM, but determined by the corresponding
Register class.

The Determinizer resolves the nondeterminism by instantiating the nondetermin-
istic values in a process called instantiation. Section 5.6.1 gives an overview of the
instantiation process applied in [mc]square. The subsequent two sections describe
the two different instantiations implemented within [mc]square. The first is called
immediate instantiation and the second delayed nondeterminism.

5.6.1 Determinizer Overview

The Determinizer controls the instantiation of nondeterminism, which is done by
replacing abstract, nondeterministic values by all possible, concrete values. It is
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Figure 5.9: Classes of the Simulator package related to the Determinizer.

used by the InstructionSimulator to resolve the nondeterminism if required. In
the instantiation process, we distinguish two cases, namely, the instantiation of
interrupts and the instantiation of values used within the current instruction.
Figure 5.9 shows the UML class diagram of classes related to the Determinizer,

for clarity, we omitted some details. The instantiation is conducted within the loop
of the InstructionSimulator, in which successor states are created. The Instruc-
tionSimulator uses the Determinizer at the beginning of each loop cycle before
a new successor state is created to adapt the Microcontroller accordingly. Each
time the Determinizer is called, it writes a different combination of values. First,
it instantiates possible interrupts and afterwards, it instantiates the values used
within the current instruction.

Here, we detail this process for the ATmega16. The ATMega16Determinizer is
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used by the ATMega16InstructionSimulator to instantiate nondeterministic values
within the ATMega16.

Instantiation of interrupts works as follows. The ATMega16Determinizer first
checks which interrupts are nondeterministic. To do so, it checks which of the
enabled interrupts have an active source and which of the enabled interrupts are
marked via the TBDM to be instantiated. Depending on the way instantiation is
done, the number of possible interrupts differs. [mc]square currently supports
immediate instantiation (see Sect. 5.6.2) and delayed instantiation, which is called
delayed nondeterminism (see Sect. 5.6.3).

After that, the ATMega16Determinizer determines whether a deterministic inter-
rupt, that is, a software interrupt, occurred. If so, only nondeterministic interrupts
that have a higher priority than the deterministic interrupt can occur. If no deter-
ministic interrupt occurred, all possible nondeterministic interrupts are triggered.

Every time the ATMega16Determinizer is called, it triggers another interrupt by
setting the corresponding interrupt flag. To set an interrupt flag, the ATMega16De-
terminizer not only sets a single bit but a value combination, which ensures that no
other interrupt is triggered. After one interrupt is triggered, the ATMega16Instruc-
tionSimulator executes the rest of the loop to create the state and then calls the
ATMega16Determinizer again, which triggers the next interrupt. This continues
until all nondeterministic interrupts are triggered.

After the instantiation of interrupts, if there is no deterministic interrupt, the AT-
Mega16Determinizer starts instantiating the values used within the actual instruction.
If there is a deterministic interrupt, the instruction is not executed in the current
state, and so, the ATMega16Determinizer exits without instantiating the values
used within the instruction.

To instantiate the values used within the actual instruction, the ATMega16Deter-
minizer calls a method located in the ATMegaInstruction class to determine whether
nondeterminism has to be resolved or not, which depends on the instruction and the
kind of instantiation used. If nondeterministic values need to be instantiated, the AT-
Mega16Determinizer gets an ATMegaSplitter instance from the ATMegaInstruction.
The ATMegaSplitter is used to instantiate the values of the affected memory
locations. The ATMegaInstruction passes the memory locations and their bits
to the ATMegaSplitter for instantiation. Depending on this information, one of
the different types of ATMegaSplitters is chosen, either, ATMegaSplitterSingle,
ATMegaSplitterMultiple, or ATMegaSplitterAddress. The chosen ATMegaSplitter
is used to assign all possible value combinations to the involved memory locations.
Each time the ATMega16Determinizer is called by the ATMega16InstructionSi-
mulator, it assigns another value combination until all possible combinations are
assigned. If no values need to be instantiated, the InstructionSimulator just executes
the current instruction once.
In the following two sections, we detail the two different ways to instantiate
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Table 5.1: Four interrupts exemplifying instantiation of nondeterminism.

i0 i1 i2 i3

source active + + + +
interrupt enabled + + - +
interrupt flag ∗ ∗ ∗ ∗

nondeterminism in [mc]square, that is, immediate instantiation and delayed
nondeterminism.

5.6.2 Immediate Instantiation

When using immediate instantiation, instantiation is conducted whenever a memory
location holding a nondeterministic value is accessed, for example, by reading an I/O
port or during handling of interrupts. During immediate instantiation all possible
values are assigned to a memory location even if the value of the memory location is
not used afterwards. The TBDM of memory locations is never written when using
immediate instantiation because nondeterminism has to be resolved immediately,
and the TBDM is solely used to delay instantiation. In the following, we first
explain the immediate instantiation of interrupts, and then, we detail the immediate
instantiation of values.

Immediate Instantiation of Interrupts

The Determinizer checks which sources of interrupts are active. If a source of an
interrupt is active, the corresponding flag is nondeterministic. During the handling
of interrupts, all flags belonging to an active interrupt source are instantiated.
That is, all possible combinations of values for these flags are assigned. Thus, the
nondeterminism involved in handling interrupts is resolved completely.

However, there are many value combinations that are not needed because in some
value combinations lower-priority interrupts are blocked by higher-priority interrupts,
and some interrupts may not be enabled at all. Thus, this kind of instantiation
creates many unnecessary successor states, in fact, it creates 2s different states,
where s is the number of active interrupt sources.

Table 5.1 shows an example with four interrupts (i0–i3). The sources of all four
interrupts are active, but only three of these interrupts are enabled. As the sources
of all four interrupts are active, the flags of all interrupts are nondeterministic, which
is encoded as ∗. Thus, immediate instantiation creates all 16 possible combinations
as shown in Tab. 5.2. The value of the flag register is different in all cases, but
in many cases the same interrupt handler is called. That is, when handling the
interrupts by calling the IH of the highest-priority interrupt, only the following four
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Table 5.2: Immediate instantiation of four interrupts (see also Tab. 5.1).

i0 i1 i2 i3

0 0 0 0 → no interrupt
0 0 0 1 → interrupt 3
0 0 1 0 → no interrupt
0 0 1 1 → interrupt 3
0 1 0 0 → interrupt 1
0 1 0 1 → interrupt 1
0 1 1 0 → interrupt 1
. . . . . . . . . . . . . . .
1 1 1 0 → interrupt 0
1 1 1 1 → interrupt 0

cases are distinguishable: either interrupt 0, interrupt 1, interrupt 3, or no interrupt
occurs.

Immediate Instantiation of Values

Values of memory locations are instantiated similarly. Whenever a memory location
holding a nondeterministic value is accessed, this value is directly instantiated. If
a nondeterministic value is read from an I/O port and written to a register, 256
different states are created. This is done even if the value is not required, or only
parts of the value are needed.

The program shown in List. 5.1 reads two values from PINA and PINB. Both ports
are nondeterministic in this example. It then tests whether bit 2 in R18 is cleared.
If the bit is cleared, the next instruction is skipped. Otherwise, the program resets
the Watchdog Timer via WDR. Then it checks whether bit 3 in R19 is cleared. If the
bit is cleared, it skips the next instruction and resets the Watchdog Timer. Using
immediate instantiation, 256 different successor states are created at line 2. At line
3, these 256 different states give rise to 65,536 successors, which advance through
the rest of the program. Only 4 of these 65,536 traces are relevant for this program
fragment because only bit 2 of R18 and bit 3 of R19 are used. All other bits are
unused and hence are not relevant for this program fragment assuming that R18
and R19 are not utilized in a formula provided by the user.

The example shows that immediate instantiation can cause an exponential blowup
of the state space. Instantiating an eight bit value yields 256 successors states. If
this is done in two consecutive lines, already 65,536 different states are created.
The instantiation of interrupts causes a similar overhead. Our aim is to avoid the
overhead created by immediate instantiation. That is, instantiation should only be
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Listing 5.1: Example program for instantiation of values.
1 . . .
2 IN R18 PINA
3 IN R19 PINB
4 SBRC R18 2
5 WDR
6 SBRC R19 3
7 WDR
8 . . .

executed if and when the concrete value is required.

5.6.3 Delayed Nondeterminism

Delayed nondeterminism (DND) is an abstraction technique that tries to avoid
the overhead caused by immediate instantiation by delaying the instantiation of
nondeterministic values. Delayed nondeterminism tries to delay instantiation of
nondeterministic values for as long as possible and to instantiate only the required
parts. Hence, this abstraction technique has two aspects. First, it instantiates
only those bits (bytes) that are needed by the current computation and hence, all
other bits (bytes) remain nondeterministic. Second, it defers the instantiation of
nondeterministic values until they are really needed, and thus, successor states are
created at a later moment. Both aspects help to lower the size of the resulting state
space. To implement this abstraction technique, [mc]square uses the TBDM to
record which parts of a memory location need to be instantiated.

DND introduces lazy states into [mc]square, that is, a state no longer represents
a single state but a set of states. Some parts of a lazy state are explicit, other
parts are symbolic. The symbolic parts, which are induced by nondeterministic
values, are instantiated lazily, that is, whenever they are accessed by the Simulator.
Model checking is still conducted using explicit algorithms. Each time a concrete
value is needed by the Simulator for simulation or evaluation of atomic propositions,
nondeterministic values are instantiated. The Model Checker only accesses the
atomic propositions, which are evaluated by the Simulator. Section 5.7 describes
the formal model of the simulator implemented in [mc]square and uses it to
prove correctness of this abstraction technique. In the following, we detail delayed
nondeterminism for interrupts first and for values afterwards.
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Delayed Nondeterminism of Interrupts

When using immediate instantiation, all bits (flags) used for triggering interrupts
are instantiated the moment interrupt handling is performed. This is even done
when the corresponding interrupts are not enabled because the nondeterminism is
resolved for the flag registers, and the flag registers only depend on the sources of
the respective interrupts.

In delayed instantiation, a bit triggering an interrupt is only instantiated if both
the interrupt and its source are enabled, or if the interrupt is enabled and marked to
be nondeterministic by means of the TBDM. Additionally, it is checked whether the
corresponding interrupt is not blocked by higher-priority interrupts. If the interrupt
is not enabled or a low-priority interrupt is blocked by a high-priority interrupt, the
bits of this interrupt are not instantiated and remain nondeterministic. That is,
DND for interrupts only instantiates flags of interrupts that are actually handled.
Thus, in contrast to 2s, where s is the number of active interrupt sources, only a+1,
where a ≤ s is the number of active interrupts, different states are created.

DND for interrupts is possible because handling of interrupts is done in the same
way on the real microcontroller (see also Sect. 5.3.4). The bits that stay nondeter-
ministic when using DND for interrupts are not considered by the microcontroller
either. Handling of interrupts is done by the microcontroller as follows. Starting
with the highest-priority interrupt, the handler checks whether this interrupt has
been triggered and is enabled. If it has been triggered, the test is aborted, and the
flag values of the lower-priority interrupts are not of interest and can remain nonde-
terministic in our model, denoted by ∗. If it has not been triggered, an interrupt
with a lower priority is checked. This continues until either a triggered interrupt is
found, or it is detected that no interrupt has occurred. The Determinizer applies
the same procedure when instantiating interrupts using delayed instantiation.
Whenever a source of nondeterminism is deactivated, the respective registers

have to record that their values are still nondeterministic because they usually
determine this by querying their source, which is now deactivated. Hence, they need
to remember that their values have to be instantiated once. Each register has a
TBDM, which is used to record whether its value is nondeterministic and has to be
instantiated. When a source of nondeterminism is deactivated, the Microcontroller
sets the corresponding flags in the TBDMs of the respective registers.
For example, if interrupt 0 and interrupt 1 occur at the same time, the flag of

interrupt 0 is instantiated first in delayed instantiation. If the IH of interrupt 0 now
deactivates the source of interrupt 1, occurrence of interrupt 1 would no longer be
possible. This would be erroneous. To handle this situation correctly, the flag of
interrupt 1 is marked in the TBDM of the corresponding interrupt flag register when
its source is deactivated. Thus, it is guaranteed that this value will be instantiated
later. After the IH of interrupt 0 is left, interrupt 1 can occur once more. If the IH
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Table 5.3: Delayed instantiation of four interrupts (see also Tab. 5.1).

i0 i1 i2 i3

1 ∗ ∗ ∗ → interrupt 0
0 1 ∗ ∗ → interrupt 1
0 0 ∗ 1 → interrupt 3
0 0 ∗ 0 → no interrupt

of interrupt 0 deactivates interrupt 1 and not its source, interrupt 1 cannot occur
afterwards. This is identical to the behavior observed on the microcontroller.

[mc]square cannot handle nondeterminism in registers that are used within the
formula because it uses explicit model checking algorithms. Therefore, DND is
forbidden for registers contained within the formula being checked. As DND for
interrupts cannot be deactivated in contrast to DND for values, propositions about
interrupt flag registers are not allowed within formulas.
Given the interrupt configuration shown in Tab. 5.1, the Determinizer only

creates the four combinations shown in Tab. 5.3 when using delayed instantiation.
Compared with immediate instantiation, the same IHs are called when using delayed
instantiation of interrupts. However, the values of the flag registers are different as
in immediate instantiation all combinations are created, and in delayed instantiation
some values remain nondeterministic.

Summarizing, DND for interrupts handles interrupts as the microcontroller does.
Nondeterministic interrupts are only instantiated if the corresponding interrupt is
enabled and can be triggered. Hence, the overhead of unneeded instantiations is
avoided. In Sect. 5.7, we prove that DND preserves a simulation relation using a
formal model of the simulator. Section 7.3 details, for each abstraction technique,
which logic remains valid.

Delayed Nondeterminism of Values

In immediate instantiation, all nondeterministic values are instantiated immediately
the moment they are accessed. When using delayed nondeterminism, instantiation
is delayed until the values are actually needed for a computation, and instantiation
is only performed for the required parts of the values. That is, the complete byte, a
single bit, or nothing is instantiated as needed. The Instruction class determines
whether values have to be instantiated and which parts of the values have to be
instantiated.
Whether values have to be instantiated and which parts of the values have to

be instantiated depends on the respective instruction and the memory locations
accessed by the instruction. There are instructions for which nondeterministic
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values may be instantiated such as IN, LD, or MOV and instructions for which
nondeterministic values must be instantiated, for example, ADD, SUB, or SBIS.
In the may case, instantiation is only performed if nondeterminism is copied

into memory locations where it is not allowed, such as I/O registers. Otherwise,
instantiation is not performed. When DND copies nondeterminism into a memory
location, it sets the value of the memory location to zero and adapts the TBDM of
the memory location accordingly. In this way the memory location records that its
value is nondeterministic.

In the must case, nondeterministic values are always instantiated because they are
needed for the execution of the instruction. For example, an ADD instruction adds
up the values of two registers and writes the result to one of the involved registers.
During this operation, it sets the bits of the SREG, for which nondeterministic
values are forbidden, accordingly. These bits can only be set if the result of the
operation is explicit. When such an instruction is executed, the nondeterminism in
affected memory locations is instantiated by creating all required combinations of
values.

Delayed instantiation is forbidden for some memory locations. It is not allowed
for I/O registers because these registers control the behavior of the Microcontroller.
A nondeterministic value in an I/O registers could introduce nondeterminism in the
control flow. Some I/O registers contain nondeterministic values or are the source
of nondeterminism in other I/O registers, but writing nondeterministic values into
these registers is not allowed. Furthermore, DND is forbidden for memory locations
used within formulas because [mc]square uses explicit model checking algorithms,
and these algorithms cannot handle nondeterministic values.
As for DND for interrupts, if a source for nondeterminism is deactivated, some

registers have to record that their value is nondeterministic. This is done in DND
for values as it is done in DND for interrupts. The TBDM of the respective memory
location is set accordingly. For example, flag registers record the nondeterminism
because the values of these registers are remembered on the real microcontroller
too. On the other hand, PINx registers do not record the nondeterminism because
they only hold nondeterministic values while the corresponding ports are used for
input. Once an I/O port is changed to output, the value of PINx is no longer
nondeterministic.
The program shown in List. 5.1 reads two input values, and depending on these

input values, it resets the Watchdog Timer. When using immediate instantiation,
65,536 different traces leave this program fragment, when only one trace enters it.
We mentioned in the previous section that only four of these traces are relevant
for this program fragment. Delayed instantiation only creates these four traces. It
works as follows. In line 2, input from PINA is read. As the concrete value is not
needed yet, the nondeterminism is copied from PINA to R18. In the next line, the
same is done with PINB and R19. After line 3, just one trace exists. In line 4, the
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concrete value of bit 2 of R18 is needed. Hence, before executing this statement,
[mc]square instantiates this bit. This results in two successor states. One state in
which bit 2 is zero, and the other state where bit 2 is one. In line 6, the same is
done with bit 3 of R19. As this line is entered by two traces, it is left by four traces.
That is, using DND only 4 traces leave the program fragment instead of 65,536.

The results are different if one of the registers is used within the formula. If,
for example, R18 is used within the formula, 256 successor states are created in
line 2. These 256 traces then run through the rest of the program. The delayed
instantiation of R19 is not influenced in this case.
In delayed instantiation of interrupts, the instantiation is delayed and only per-

formed for required parts. It has an important effect on the size of the state space.
The user cannot deactivate it as the state space of most programs using more than
one interrupt would be too large to be handled by [mc]square.
In delayed instantiation of values, the instantiation is delayed, only performed

for required parts, and additionally, nondeterminism is copied into other locations.
That is, it is delayed even longer. Therefore, it also has a significant effect on the
size of the state space, but it can introduce extra behavior through the copying
of nondeterminism into other memory locations. Hence, we implemented it as an
option that can be deactivated by the user if the over-approximation is too coarse.
A coarser over-approximation increases the probability of false alarms.

Section 5.7 sketches a proof that shows that DND preserves a simulation rela-
tion. Section 7.3 details, for each abstraction technique, which logic remains valid.
Chapter 8 demonstrates the effect of DND via two case studies.

5.7 Formal Model of the Simulator

This section introduces our formal modeling approach for microcontroller systems,
consisting of hardware, software, and environment. The motivation of this devel-
opment is twofold. First, it enables us to formally establish the correctness of
our abstraction techniques. In this section, we prove that delayed nondeterminism
preserves a simulation relation (see Sect. 5.7.4). That is, delayed nondeterminism
yields an over-approximation: every possible behavior of the original system is also
represented in the abstract system (the abstract system simulates the concrete
system).
Second, the formal model allows us to formalize a large number of existing

microcontroller system. Thus, it can be used as a kind of intermediate specification,
supporting the rapid development of model checking tools for embedded systems.
We published the formal model elsewhere [60, 88].
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5.7.1 Handlers and Guarded Assignments

In our approach, the state of a (microcontroller) system is decomposed into a control
state and a data state. We assume that the data space is organized as a global
memory with linear byte addresses. The latter are denoted by A and are assumed to
have a length of m bytes (in our application, m = 2). Thus, A ∆= Cm where C ∆= B8

and B ∆= {0, 1}. Here, the bth bit of a byte c ∈ C is denoted by c[b].
In order to incorporate nondeterminism, we extend this definition by introducing

a nondeterministic bit value ∗, and let B∗
∆= B ∪ {∗} and C∗

∆= B8
∗. Moreover we

distinguish a set of deterministic addresses D ⊆ A in which only deterministic values
are allowed to be stored. These will later be used for certain I/O registers and for
the (symbolic) addresses occurring in the formula to be verified. Thus, memory
states can be represented by mappings from the set V := {v | v : A→ C∗} where
v(a) ∈ C for every a ∈ D.
The behavior of a system is determined by its current control location, which is

the program counter in our case. It is represented by a finite set Q. Thus, the set of
(system) states is given by S ∆= Q×V . State changes are specified by three so-called
handlers:

• a nondeterminism handler of the form g1; . . . ; gk where k ≥ 0, which introduces
nondeterministic values where necessary,

• an interrupt handler of the form h1 : q1 > . . . > hl : ql where l ≥ 0 and
q1, . . . , ql ∈ Q, which specifies the system’s reaction to events such as interrupts,
and

• for each control location q ∈ Q, an instruction handler of the form q : h′1 :
q′1 > . . . > h′m : q′m where m ≥ 1 and q′1, . . . , q

′
m ∈ Q, which defines the normal

execution of machine instructions.

Each gi, hi, h
′
i is a guarded assignment of the form e0 → x1 := e1, . . . , xn := en

where n ≥ 0, e0, . . . , en are value expressions, and x1, . . . , xn are (disjoint) address
expressions (see below). A guarded assignment is called enabled if its guard e0

evaluates to 1 in the current memory state. Its execution yields a new memory state
in which, for every 1 ≤ i ≤ n, the value stored at xi is determined by ei. The guard
e0 can be omitted if it is the constant 1.
Given a current state (q, v) ∈ S, the next state is determined by

1. executing every enabled guarded assignment gi in the nondeterminism handler
in the given order, followed by

2. an application of the first enabled guarded assignment hi in the interrupt han-
dler, stopping at the corresponding control location qi. If no such assignment
exists, then
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3. again the complete nondeterminism handler is executed, and finally,

4. the first enabled guarded assignment h′j in the instruction handler for q is
applied, stopping at q′j .

Formally, given handlers of the above form, the successor state (q′, v′) ∈ S is
defined as follows:

(q′, v′) ∆=


(qi, JhiK(v1)) if I 6= ∅ and i = min I
(q′j , Jh

′
jK(v2)) if I = ∅, J 6= ∅, and j = min J

(q, v2) if I = J = ∅
where

v1
∆= JgkK(. . . (Jg1K(v)) . . .),

v2
∆= JgkK(. . . (Jg1K(v1)) . . .),

I
∆= {i ∈ {1, . . . , l} | hi enabled in v1}, and

J
∆= {j ∈ {1, . . . ,m} | h′j enabled in v2}.

Here, JgK : V → V denotes the meaning of a guarded assignment g as a mapping on
memory states; it will be defined in Section 5.7.3.
In our application, the nondeterminism handler is employed to deal with non-

determinism: it checks which I/O registers or which parts of I/O registers are
nondeterministic and writes ∗ values into the corresponding nondeterministic I/O
registers. These I/O registers include, for example, input registers and interrupt
flag registers. The interrupt handler conducts the actual processing of interrupts.
It first tests, in the order of descending interrupt priority, whether an interrupt
is raised, and if so jumps to the corresponding interrupt handler. If no interrupt
was handled (i.e., I = ∅), the nondeterminism handler is run again and finally,
the actual machine instruction at the current location is executed by applying the
corresponding instruction handler.
Here, the repeated call of the nondeterminism handler is required since after

the interrupt handler has ignored a cleared interrupt flag, the latter could be set
by an external event before the machine instruction is executed. For example, if
during the handling of interrupts the flag storing a timer overflow was not set,
it can still be set before the execution of the actual instruction as time elapses
during the handling of interrupts. Moreover, it is important to observe that the
nondeterminism handler performs every enabled guarded assignment while the
execution of the interrupt and the instruction handler stops after applying the first
enabled guarded assignment. Instantiation of nondeterministic values is conducted
during the handling of interrupts and the executing of instructions. Section 5.7.3
provides details on the instantiation of nondeterministic values.
As mentioned earlier, each guarded assignment is of the form e0 → x1 :=

e1, . . . , xn := en with value expressions ei and address expressions xj . Address
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expressions are of the form a or a↓+d or a[b] where a ∈ A, b ∈ {0, . . . , 7}, and d ∈ Z.
The first two are byte addresses, either given directly or indirectly by dereferencing
the address stored at a and adding displacement d. The expression a[b] refers to the
bth bit of the byte which is stored at a.
Value expressions are of the form op(y1, . . . , yk) where op is an operation of type

op : T1 × . . .× Tk → T0 such that, for every 1 ≤ j ≤ k, Tj ∈ {C,C∗,B,B∗} and yj

is an address expression. Here, we always assume that operations respect memory
sizes, that is, that Tj ∈ {C,C∗} (Tj ∈ {B,B∗}) whenever yj denotes a byte (bit)
address. A similar restriction applies to the result type T0 and to the corresponding
left-hand side address xi. We require the result type of the guard e0 to be B.

The semantics of an address expression α depends on the current memory state
v ∈ V , and is denoted by JαKv. For byte address expressions, we let JaKv

∆= a ∈ A
and Ja↓+ dKv

∆= a′ + d ∈ A if a′ = v(a) . . . v(a+m− 1) ∈ A. Thus, in the second
case, the result is the address a′ which is stored at a, adding displacement d. The
semantics is undefined if a′ is not a valid address, that is, contains a nondeterministic
bit value ∗. For bit address expressions, we let Ja[b]Kv

∆= (a, b) ∈ A× {0, . . . , 7}.
To determine the semantics of a value expression, we have to apply the corre-

sponding operation to the argument values: if op : T1× . . .×Tk → T0 and JyjKv ∈ Tj

for every 1 ≤ j ≤ k, then Jop(y1, . . . , yn)Kv
∆= op(Jy1Kv, . . . , JykKv). Otherwise, the

result is undefined.
Note that the admissible types of operations in value expressions support non-

deterministic bit values as both arguments and results. Thus, it is possible, for
example, to describe a simple copy instruction by choosing the identity on C∗ or B∗
as the operation. On the other hand, nondeterministic values in argument addresses
can be excluded by choosing the argument type C or B. In such cases, access to an
address containing a nondeterministic values requires instantiation; see Sect. 5.7.3
for details. Moreover, it is possible to mix deterministic and nondeterministic values;
if, for example, a ∗ bit is multiplied by 0, the operation can still be evaluated as 0.
The next section shows how the microcontroller system under consideration can

be represented by our formal model. Afterwards, we continue with formally defining
the meaning of guarded assignments.

5.7.2 Modeling the ATMEL ATmega16

In order to model the execution of machine code on the ATMEL ATmega16 micro-
controller, the general framework developed in the previous section is instantiated
as follows:

• Since the machine code is stored in flash memory, control locations in Q
correspond to flash memory addresses.
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• Each address comprises m ∆= 2 bytes.

• The following distinguished addresses are denoted by symbolic names:

– general-purpose registers R0, . . . , R31

– indirect addressing registers X = R27:R26, Y = R29:R28, Z = R31:R30

– I/O registers such as

∗ status register SREG with flag bits C (= 0), Z (= 1), N (= 2), . . . , I
(= 7)

∗ timer registers such as TIMSK, TIFR and TCCR0,

∗ interrupt registers such as GICR and GIFR,

∗ stack pointers (SPL, SPH),

∗ data direction registers (DDRA, . . . ),

∗ port registers (PORTA, . . . ) and

∗ port input registers (PINA, . . . ),

and single bit positions within these (CS00, . . . ),

– C variables used in the application program.

• The deterministic addresses in D comprise the addresses which are referenced
in the formula to be verified and certain I/O registers such as the DDR, PORT,
and TCCR registers.

• The nondeterminism handler, which is repeatedly executed before the inter-
rupt and the instruction handler, writes ∗ values (nondeterminism) into the
nondeterministic I/O registers. This is done, for example, for input registers
and interrupt flag registers. Here, we consider an input register and two inter-
rupt flag registers (timer and external interrupt); other registers are handled
similarly:

PINA := (DDRA ∧ PORTA) ∨ (¬DDRA ∧ ∗8);
TCCR0[CS02] = 1 ∨ TCCR0[CS01] = 1 ∨ TCCR0[CS00] = 1
→ TIFR[TOV0] := nd(TIFR[TOV0]);
DDRB[DDB2] = 0→ GIFR[INTF2] := nd(GIFR[INTF2]); . . .

where nd : B∗ → B∗ is defined by nd(∗) := ∗, nd(0) := ∗, and nd(1) := 1. This
function is used for interrupt flags because a 1 in an interrupt flag remains
unchanged even if the source of the interrupt is enabled. A one is never set to
∗.
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• The interrupt handler is specified as follows (again considering timer and
external interrupts):

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1→: 18↓ >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1→: 36↓ > . . .

• Every machine instruction, which is stored at some location q ∈ Q, gives rise
to an instruction handler. Some exemplary instructions:

– ADD Ri,Rj:
q : Ri := Ri+ Rj, SREG[Z] := (Ri+ Rj = 0), SREG[C] := . . . , . . . : q + 2

– RJMP k: q :: q + k + 1

– IJMP: q :: Z↓
– JMP k: q :: k

– SBRC Ri,b: q : Ri[b] = 0→: q + 2 > Ri[b] = 1→: q + 3

– BREQ k: q : SREG[Z] = 1→: q + k + 1 > SREG[Z] = 0→: q + 2

– MOV Ri,Rj: q : Ri := Rj : q + 2

– LD Ri,X+: q : Ri := X↓,X := X + 1 : q + 2

– LD Ri,-X: q : Ri := X↓ − 1,X := X− 1 : q + 2

– LDD Ri,X+d: q : Ri := X↓+ d : q + 2

– IN Ri,A: q : Ri := PINA : q + 2

5.7.3 Coping with Nondeterminism

In our formal model, nondeterministic bit values can arise due to the application
of an operation op : T1 × . . . × Tk → T0 with result type T0 ∈ {C∗,B∗}. In the
simplest case, op is just the identity, that is, the assignment is of the form x

∆= y
with JyKv = a ∈ A \ D and v(a) /∈ C ∪ B. An example is the IN instruction.
The IN instruction reads input from an I/O port, and hence, it may introduce
nondeterministic values.

In the standard implementation, this situation is handled by immediate instantia-
tion (see Sect. 5.6.2), meaning that each assignment of nondeterministic bit values
is resolved by considering all possible assignments of concrete values. It is clear that
this involves an exponential blowup, for example the assignment of byte value ∗8
gives rise to 256 different successor states.
Our goal is to avoid this overhead by delaying nondeterminism (see Sect. 5.6.3),

that is, by replacing nondeterministic by concrete values only if and when it is
required by the following computation. As mentioned before, “if” and “when” refer
to two different aspects of this optimization, which both lead to a reduction of the
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number of states created. First, delayed nondeterminism only instantiates those
bits (bytes) that are used by some instruction, and hence, all other bits (bytes) may
remain nondeterministic. This lowers the number of successors which have to be
created. Second, delayed nondeterminism defers the splitting of nondeterministic
values until they are really needed. Hence, successors are created at a later point
in time. Both aspects help to minimize the number of created states, while still
preserving a safe over-approximation (shown in Sect. 5.7.4).
In order to formally develop this abstraction technique, we introduce a partial

order v ⊆ B∗ × B∗, given by 0 v ∗ and 1 v ∗, and lift it to bytes and memory
states by pointwise extension: c[7] . . . c[0] v c′[7] . . . c′[0] iff c[b] v c′[b] for every
b ∈ {0, . . . , 7}, and v v v′ iff v(a) v v′(a) for every a ∈ A. Thus v v v′ if v′ is “more
general” than v.

Immediate Instantiation

Immediate instantiation is explained in Sect. 5.6.2. It follows the principle that in the
course of the computation only deterministic values may be stored. (Nevertheless,
it is still possible, due to the initial choice of the memory state, that v(a) ∈ C∗ \ C
for specific addresses a ∈ A \D, such as a = PINA.)
We say that a guarded assignment of the form e0 → x1 := e1, . . . , xn := en is

enabled in memory state v ∈ V if Je0Kv = 1. Its execution nondeterministically yields
every v′ ∈ V , which is obtained by first evaluating every right-hand side expression
ei, by taking every possible instantiation of nondeterministic bit values, and by
updating v accordingly. Formally, v′ ∆= v[JxiKv 7→ ci; 1 ≤ i ≤ n] such that ci ∈ C∪B
with ci v JeiKv for every 1 ≤ i ≤ n. Here v[a 7→ c] denotes the modification of v at
address a by storing the new value c.
Composing the effects of the nondeterminism handler, interrupt handler, and

instruction handler for the current control location q ∈ Q as described in Section 5.7.1,
we obtain a concrete transition (q, v) h−→ (q′, v′) where h is the first enabled guarded
assignment of the interrupt or the instruction handler, and q′ is the corresponding
successor location. Given an initial system state s0 ∈ S, this yields a concrete
transition system T c = (S,

⋃
h∈G

h−→, s0) where the set G collects all guarded
assignments in the interrupt and instruction handlers.

Delayed Nondeterminism

As described in Sect. 5.6.3, the goal of delayed nondeterminism is to instantiate
nondeterministic bit values as late as possible, that is, not necessarily when they are
computed, but only if and when they are required by a subsequent computation step
(i.e., during handling of interrupts or execution of instructions). More concretely, the
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instantiation of bit address (a, b) ∈ A×{0, . . . , 7} with v(a)[b] = ∗ in state (q, v) ∈ S
is required for a guarded assignment g of the form e0 → x1 := e1, . . . , xn := en if

• (a, b) is referred by the guard e0 (guard case), or

• g is enabled and some ei refers to (a, b) in an operation argument position
which does not allow nondeterministic bit values (argument), or

• g is enabled and some xi dereferences a (indirection), or

• g is enabled and for some 1 ≤ i ≤ n, the evaluation of ei yields a nondeter-
ministic value which cannot be stored at address xi since it is in D (target).

We say that a bit address (a, b) is referred to by a value expression op(y1, . . . , yk) if
it is referred to by some address expression yj , which is the case if yj = a[b], yj = a,
yj = a↓+ d, or yj = a′↓+ d for some a′ ∈ A such that Ja′↓+ dKv = a.
We can formalize the above distinction of cases by the following incremental

instantiation procedure: a guarded assignment g of the form e0 → x1 := e1, . . . , xn :=
en yields v′ ∈ V if there exist intermediate memory states v1, v2, v3, v4 ∈ V such
that

1. v1 v v with v1(a, b) 6= v(a, b) iff v(a, b) = ∗ and (a, b) is referred by e0 (guard),
and

2. g is enabled in (q, v1), i.e., Je0Kv1 = 1, and

3. v2 v v1 with v2(a, b) 6= v1(a, b) iff v1(a, b) = ∗, some ei is of the form
op(y1, . . . , yn) with op : T1 × . . .× Tn → T0, and (a, b) is referred by some yj

where Tj ∈ {C,B} (argument), and

4. v3 v v2 with v3(a, b) 6= v2(a, b) iff v2(a, b) = ∗, some xi is of the form a↓+ d,
and b ∈ {0, . . . , 7} (indirection), and

5. v4
∆= v3[JxiKv3 7→ JeiKv3 ; 1 ≤ i ≤ n], and

6. v′ ≤ v4 with v′(a, b) 6= v4(a, b) iff v4(a, b) = ∗, JxiKv4 ∈ {a, (a, b)} for some
1 ≤ i ≤ n, and a ∈ D (target).

Similarly to the previous section, the composition of the nondeterminism handler,
interrupt handler, and instruction handler yields abstract transitions of the form
(q, v) h=⇒ (q′, v′) where h and q′ are again determined by the first enabled guard in
the interrupt handler or the instruction handler for q. Together with an initial system
state s0 ∈ S, this induces an abstract transition system T a = (S,

⋃
h∈G

h=⇒, s0).
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5.7.4 Establishing Correctness

Our goal is to verify the correctness of the program under consideration by model
checking it with respect to a specification. The latter is given by a temporal formula
over a set P of bit value expressions, which act as the atomic propositions. These
propositions yield an extension of both the concrete and the abstract transition
systems to labeled transition systems (LTSs). The concrete LTS is of the form
Lc = (S,

⋃
h∈G

h−→, s0, λ) where λ : S → 2P : (q, v) 7→ {p ∈ P | JpKv = 1} labels
each state by the set of all propositions valid in that state. As all addresses in
the formula belong, by definition, to the set of deterministic addresses D, it is
guaranteed that JpKv is always defined. Analogously, La = (S,

⋃
h∈G

h=⇒, s0, λ) is
obtained in the abstract case.
The idea is to model check the abstract LTS rather than the concrete one. As

we now show, every computation in Lc corresponds to a computation in La. This
excludes false positives: whenever every abstract computation satisfies the given
specification, this also applies to every concrete computation. The converse, however,
is not true: copying nondeterministic bit values may have the effect that the same
nondeterministic value is replaced by different concrete values. Thus, La is an over-
approximation of Lc. This may lead to false negatives, that is, spurious computations
in La that violate the specification.

Formally the connection between Lc and La is given by a simulation [84], which
is a binary relation ρ ⊆ S × S such that s0ρs0 and, whenever s1ρs2,

• λ(s1) = λ(s2) and

• for every transition s1
h−→ s′1, there exists s′2 ∈ S such that s2

h=⇒ s′2 and
s′1ρs

′
2.

Indeed, it can be shown that La simulates Lc, that is, that every sequence of
guarded assignments with immediate instantiation can be reproduced using delayed
instantiation. More concretely, the simulation relation is given by the partial order
on bit values: (q1, v1)ρ(q2, v2) iff q1 = q2 and v1 v v2. In summary, this means that
our delayed nondeterminism abstraction is sound with respect to path-universal
logics such as ACTL and LTL.

5.8 Related Work

This section presents related work regarding assembly code model checking, focusing
on state space construction, and related work regarding the delayed nondeterminism
abstraction technique. We present related work in this section because the model
checkers mentioned mostly differ in the way they build the state space and the way
they apply abstraction techniques.
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5.8.1 Model Checking Machine Code

Other model checkers that model check machine code or code similar to machine
code are: CodeSurfer/x86 and WPDS++ [7], Estes [82], Java PathFinder
[122], MCESS [98, 105], and StEAM [73, 80, 81]. All these model checkers, except
the tool set CodeSurfer/x86 and WPDS++, are explicit model checkers like
[mc]square.

The model checking tool set consisting of CodeSurfer/x86, Path Inspector,
and WPDS++ uses a translation approach to model check x86 executables. The
translation process is different from the other model checkers described in this
section. CodeSurfer/x86 extracts a model in the form of a weighted pushdown
automaton from the x86 executable. This model is the intraprocedural CFG of
the x86 executable. Then, the WPDS++ library performs the model checking. It
implements a symbolic reachability algorithm. The Path Inspector serves as a
user interface for automating certain safety queries. The properties that are checked
with this tool set are intraprocedural data flow properties. These properties are
usually checked by static analyzers. Another tool that conducts static analyses with
the help of model checking is Goanna [44, 45]. Goanna checks C and C++ code
rather than machine code.
The approach used in [mc]square is different. [mc]square creates the state

space directly from the machine code and does not use a translation. Furthermore,
the semantic model used by [mc]square is richer. The CodeSurfer/x86 tool set
only checks the CFG of the program, which is a compile time model. In contrast,
[mc]square creates a runtime model of the program. Therefore, the state spaces
created by [mc]square are generally larger, but contain more information. Hence,
[mc]square can be used to verify arbitrary properties of the program (runtime) and
not just properties of the CFG of the program (compile time). The advantage of the
CodeSurfer/x86 tool set and Goanna is that they can check larger programs.
The Estes model checker checks code written for the Motorola 68hc11 and the

Hitachi H8/300 processors. The state space is built using the real hardware or a
back-end simulator through the GNU debugger. The advantage of using the GNU
debugger is that Estes does not have to deal with the semantics of the instructions.
The disadvantage is that the creation of the state space cannot be influenced by, for
example, different abstraction techniques or variable modelings. To model check a
program, users have to provide an environment written in C++. This environment
is primarily a set of locations (instruction addresses) where an environment response
is needed or where property invariants need to be checked. Users have to compile
the environment together with the source code of the model checker. Additionally,
users have to specify the parts of the memory to be stored in the states, which is the
memory abstraction. Estes can check for invariants, stack overflows, and read-only
violations. Since Estes uses a notion of discrete time the state space explosion is
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bigger than when model checking without time.
Despite the different processors used, [mc]square and Estes differ in other

ways. [mc]square abstracts from time, preserving an over-approximation, and
therefore, the generated state spaces tend to be smaller than in Estes. Model
checking with time leads to real-time model checking [14, 71, 72]. The properties
that can be checked with [mc]square are not restricted to invariants but can be
arbitrary CTL formulas (for restrictions see Sect. 7.3). Furthermore, [mc]square
conducts the same checks as Estes does, for example, checks for stack overflows and
unintended uses of microcontroller features. Moreover, users do not have to provide
an environment that deals with nondeterminism. In our approach, we concentrate on
the creation of the state space, that is, we focus on the domain-specific abstractions
implemented within the simulator. We do not want to use existing simulators as
we think that significant savings in space and time can be achieved by a tailored
implementation.

Java PathFinder accepts Java bytecode and employs collapsing techniques for
efficiently storing states. Our experiments have shown that such methods do not pay
off in the case of [mc]square since its states are less complex. Another difference
is that Java PathFinder has to deal with parallel processes and therefore applies
abstraction techniques such as partial order reduction, which cannot be applied in
[mc]square. Moreover, the memory model used within Java PathFinder makes
it possible to apply symmetry reduction techniques. Again, this is not possible in
[mc]square because the order of data within memory is important.

MCESS was developed in a diploma thesis in cooperation between the CWI
and our institute. It works on assembly code for the ATMEL ATmega16 like
[mc]square. MCESS does not model check the assembly code, but translates
it into the bytecode used in the NIPS virtual machine (VM) [125, 126], which is
used to build the state space and to perform model checking. Besides the different
approach, MCESS model checks LTL formulas and [mc]square model checks CTL
formulas. As MCESS uses a translation process, it cannot handle some constructs
such as recursion and other constructs such as Two Wire Serial Interface not handled
accurately enough.

StEAM model checks machine code for the Internet C Virtual Machine (ICVM).
The machine code is compiled from C++ source code. StEAM focuses on model
checking parallel and hardware-independent C++ programs. It builds the state
space by monitoring a modified version of the ICVM, which simulates the program
at the assembly code level. StEAM uses a modified version of the GNU C Compiler
(GCC) to compile C++ code to the assembly code that is used within ICVM.
If a new version of GCC is used, the ICVM has to be readapted. In contrast to
StEAM, our approach aims at the verification of assembly code written for a specific
microcontroller. As mentioned before, our main focus is the customization of the
simulator used to build the state space. Thereby, we can influence the building of
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the state space and adapt the degree of over-approximation with various abstraction
techniques.
There are other approaches to the verification of machine or object code than

model checking. Peleska and Haxthausen [89] describe an approach that checks
whether an assembly program is a correct implementation of a SystemC model. The
assembly program and the SystemC model are mapped to behavioral models. Then,
it is proven that the behavioral models are equivalent by applying transformations.
This approach works for certain SystemC models that are automatically generated
from higher-level models.
Subramanian and Cook [114] detail a different approach that uses the theorem

prover Nqthm to automatically verify a small subset of MC68020 object code
against C code. Wahab [124] presents an approach that verifies whether a program
given in object code satisfies its specification. The object code of the program
is translated into an abstract language. Then, an abstraction of the program is
constructed, and it is proven that the abstraction establishes all properties required
by the specification.

5.8.2 Delayed Nondeterminism

The abstraction technique delayed nondeterminism is dynamically applied at runtime.
It introduces lazy states into [mc]square. Lazy states are states containing explicit
and symbolic parts. Thus, a lazy state no longer represents a single state, but
a set of states. As [mc]square uses an explicit model checking algorithm, the
symbolic parts of the state have to be instantiated whenever they are accessed.
Thus, this method combines explicit and symbolic methods. To the best of our
knowledge, no comparable approach has been developed so far to control the effect
of nondeterminism in modeling embedded systems.
In X-valued simulation [19], beside the usual Boolean values zero and one, a

third value called X is used. X represents the unknown value, which is similar
to our ∗ value. This value is used whenever the exact value is not known. Some
Boolean functions can still be decided on X values. In other cases, a complete new
simulation with more details has to be started. In [mc]square, we dynamically
refine (instantiate) in cases where we need more details. Bingham and Hu [16] and
Regehr and Reid [97] also use an abstraction similar to the X-valued abstraction.
Symbolic simulation [20, 21] is similar to the technique applied in [mc]square.

In symbolic simulation, symbolic variables are used in place of explicit ones. These
symbolic variables can have the values zero, one, and X as in X-valued simulation.
Whenever more information is needed due to an X, the simulation is started again
with more symbolic variables. In our approach parts of the states can be symbolic,
but whenever the simulator or the model checker needs to access symbolic parts of a
state, these parts are instantiated, and hence, become explicit. All parts of a state
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that are not accessed remain symbolic. These refinements are done dynamically,
and hence, our approach avoids the overhead of a completely new simulation. There
are some approaches combining explicit and symbolic executions [50, 111], but they
do explicit and symbolic execution in parallel.
Another verification method for concurrent systems, which is based on a similar

idea, is called narrowing [83]. Here, the states and transitions of the system are
symbolically represented respectively by terms and rewriting steps. Terms can
contain variables that abstract from details of the system state which are currently
not interesting, but which can later be expanded by substitution steps if necessary.
Thus, in some sense, variables correspond to the nondeterministic values in our
approach.
Another direction of work, which is worth mentioning, is the consideration of

nondeterminism in connection with functional programming languages. The paper
by Clark [27] studies the implementation of nondeterministic choice in this setting
and refers to the problem of copying nondeterministic values, which is also the
reason for over-approximation in our model.

74



6 Static Analysis in [mc]square

This chapter describes the static analyses that are implemented in [mc]square.
[mc]square uses static analysis to support the application of abstraction techniques
during model checking. Other tools such as Astree [37], CodeSurfer/x86 and
WPDS++ [7], Coverity Prevent, FlexeLint, Goanna [44, 45], Klocwork
K7, Metal [54], PolySpace Verifier, PREfix/PREfast [22], and RT-Tester
[90, 91] use static analysis itself to analyze programs. As static analysis can be
applied to very large programs in contrast to model checking, we can use static
analysis to annotate the program with information that is used during state space
creation to limit the size of the resulting state spaces.

Static analysis is conducted by the Static Analyzer package. The static analysis is
not only used to support the application of abstraction techniques, but also to create
the control flow graph, which is, for example, used to present the counterexample
to the user.
The first section presents the challenges of applying static analysis to microcon-

troller assembly code. Section 6.2 gives an overview of the Static Analyzer package.
The next section describes the different static analyses used in [mc]square. These
analyses include control flow analysis, live variables analysis, reaching definitions
analysis, global interrupt flag analysis, and stack analysis. These static analyses
are used by the abstraction techniques utilized in [mc]square. Section 6.4 details
two of these abstraction techniques, namely dead variable reduction and path reduc-
tion. In the end, we present related work regarding static analyses and the applied
abstraction techniques.
We summarized parts of this chapter in a paper [107]. Löll [77] presents more

details about some of the abstraction techniques.

6.1 Challenges in Static Analysis of Assembly Code

Different challenges arise when abstraction techniques that use static analysis are
applied to microcontroller assembly code. The abstraction techniques presented in
this chapter are already implemented in other model checkers (see Sect. 6.5) using
intraprocedural static analysis. We could not transfer these techniques one-to-one to
[mc]square because the assembly code found on microcontrollers contains features
that cannot be handled using intraprocedural static analysis. Furthermore, the other
model checkers obtain the information needed to apply the abstraction techniques
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completely statically. In contrast, [mc]square obtains some information statically
and others dynamically because some constructs present in microcontroller assembly
code cannot be handled statically.
In the following, we describe features that make the static analysis of microcon-

troller assembly code more difficult. Microcontroller assembly code is hardware
dependent, that is, every microcontroller has its own instruction set and its own
semantics. Moreover, microcontrollers have registers such as I/O registers influenc-
ing the behavior of the microcontroller. Writing such a register can, for example,
activate an interrupt, deactivate a timer, or output a value to the environment. This
behavior has to be considered inside the static analysis. Another challenge is the
handling of nondeterminism, which cannot be handled completely statically as it is
dependent on the values of I/O registers.
In the microcontroller assembly code, functions are not explicitly declared in

header files. Every location of an assembly program can be reached via a call
statement. All program fragments reachable by a call statement are defined to be
functions. As recursion is used in microcontroller assembly programs, functions
could not be handled by inline expansion (copy body of a function to every place
where it is called) or bounded call-strings [87]. Handling functions by assuming that
they change all variables is also not appropriate as this over-approximation would
be too coarse to obtain usable results. Additionally, all memory locations (e.g.,
registers, I/O registers, and variables) in the assembly code are globally accessible at
every program location. Hence, interprocedural analyses have to be used to preserve
soundness of the results obtained.
The microcontroller assembly code does not contain parallel processes, but it

contains interrupts. Interrupts can intercept the main process at any location
whenever they are enabled. The main process is only continued when control is
returned from the interrupt handler. Thereby, interrupts can communicate with
the main process at every program location and change all memory locations. This
makes static analysis even more difficult. Interrupts are handled the same way as
functions in [mc]square, but an additional analysis using abstract interpretation is
applied to obtain a more accurate set of locations where interrupts are enabled.

Furthermore, the assembly code contains pointer operations such as indirect loads,
stores, calls, and jumps. Whenever a pointer is used, it is assumed that the pointer
can access all memory locations in case of a load or store instruction and all program
locations in case of a call or jump instruction. This is done because the value of
the pointer is not statically known. Handling indirect loads and stores this way is
not a problem. Handling indirect calls and jumps like this is a problem because the
control flow graph would be useless. To avoid this, [mc]square does not add call
edges in this case, and hence, the control flow graph created is incomplete. If the
control flow graph is incomplete, the results from data flow analyses are not valid
over-approximations. Therefore, [mc]square does not use abstraction techniques
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that rely on data flow analyses if an indirect call or an indirect jump is found in the
program. Dead variable reduction is an abstraction technique that relies on data
flow analyses and hence, cannot be used in this case. Path reduction does not rely on
these analyses, and therefore, it can be used even if indirect control is present within
the program. As indirect control is not often used in microcontroller assembly code
but sometimes found in library functions, these abstraction techniques can be used
for most programs. Indirect loads and stores do not have such a negative influence.
They make the results less accurate as they increase the degree of over-approximation,
but the results of the analyses are still valid.

6.2 Static Analyzer Overview

The Static Analyzer package implements static analyses and abstraction techniques
that use static analyses. Figure 6.1 shows the UML class diagram of important
classes of the Static Analyzer package. For clarity, we omit some details.

The StaticAnalyzerController controls the different static analyses and abstraction
techniques. It implements the workflows needed to conduct the different abstraction
techniques. The CFGBuilder creates the StaticAnalyzerProgram, which is the
program representation used within the Static Analyzer, from the microcontroller
program, which is implemented by the Program class. The other analyses and
abstraction techniques all work on the StaticAnalyzerProgram. The live variables
analysis, for example, is implemented within the LVABuilder. The ATMegaLV-
ABuilder implements the parts that are specific to the ATmega microcontroller.
All ATmega-specific classes shown in the diagram implement the ATMegaInstruc-
tionVisitor. That is, they implement the semantics of the instructions used within
the different static analyses and abstraction techniques. The next sections describe
these static analyses and abstraction techniques in detail.

The model of the microcontroller used within the Static Analyzer is implemented
within the ATMegaDependencyMap. This model is used by all static analyses to
observe the dependencies between different memory locations. For example, writing
an I/O register can read or write another I/O register. Without these dependencies,
the results of the static analysis would be wrong. It is important to model these
dependencies as accurate as possible for the static analysis. Some dependencies are
dynamic and hence these dependencies have to be over-approximated. The model
of the microcontroller used in the Static Analyzer is simpler than the model used
within the Simulator, but the structure is similar. Therefore, we do not detail the
model here.

The StaticAnalyzerController executes the different static analyses and abstraction
techniques in a specific sequence because they depend on each other. Figure 6.2
shows a UML activity diagram depicting the sequence of the static analyses and
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StaticAnalyzerController

Fake

CFGBuilder ATMegaCFGBuilder

LVABuilder ATMegaLVABuilder

RDABuilder ATMegaRDABuilder

Program

StaticAnalyzerProgram

StackAnalyzer ATMegaStackAnalyzer

InterruptChecker ATMegaInterruptChecker

DependencyMap

ATMegaDependencyMap

Resetter ATMegaResetter

PathReducer ATMegaPathReducer

Visual Paradigm for UML Standard Edition(RWTH Aachen)

Figure 6.1: The Static Analyzer package.

78



6.3 Static Analyses

abstraction techniques. Whenever a step of this sequence is successfully executed,
the next step is conducted. If one of the analyses fails, the StaticAnalyzerController
jumps to the last step of the sequence. In the sequence, the control flow graph,
which is used by all other analyses, is built first. Afterwards, the stack analysis
and the first step of the reaching definitions analysis are conducted. The results of
these two analyses are used by the global interrupt flag analysis, which is conducted
subsequently. Then, the live variables analysis and the remaining steps of the
reaching definitions analysis are carried out. In the end, the specific analysis for
the corresponding abstraction technique and the abstraction technique itself are
executed.

6.3 Static Analyses

This section details the five static analyses, which are used by the abstraction
techniques presented at the end of this chapter. The static analyses described
include one control flow analysis and four data flow analyses, namely: live variables
analysis, reaching definitions analysis, stack analysis, and global interrupt flag
analysis.

6.3.1 Control Flow Analysis

The goal of the control flow analysis is the creation of the control flow graph
(CFG). The algorithm used to create the CFG visits each location of the program
once. For each location, it executes a method that adds the according vertices
and edges to the CFG. The algorithm uses the visitor design pattern introduced
in Sect. 5.5. The InstructionVisitor class defines the set of instructions. The
CFGBuilder implements this visitor. For each of the instructions defined in the
InstructionVisitor, it implements the visit() method. Within the visit() methods the
algorithm creates the corresponding vertices and edges.
When visiting a certain location, depending on the kind of the instruction, a

vertex and one or more edges are created. For arithmetic, logic, data transfer, bit,
and bit-test instructions the algorithm adds a new vertex with the address of the
instruction and an edge to the successor location. For branch instructions it depends
on the kind of the branch instruction. For generic branches a vertex and two edges
are added, that is, one edge to each of the possible successors. For jump instructions
the algorithm adds one vertex and one edge. For call instructions, the algorithm
adds one vertex and two edges. One of the edges is a usual edge pointing to the
direct successor of the location, and the second edge is a call edge that points to
the start of the function. Additionally, the target of the call edge is added to the
list of function headers. Interrupts are handled similarly, but no edges are added
for interrupts. If the algorithm encounters an indirect jump or an indirect call,
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Build Control Flow Graph
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Visual Paradigm for UML Standard Edition(RWTH Aachen)

Figure 6.2: Sequence of the static analyses and abstraction techniques.
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the algorithm aborts because the CFG cannot be created in this case as the target
addresses are not known at compile time.

There are two kinds of CFGs: the CFG of the complete program and the CFGs of
the single functions. To generate the CFG of the complete program, the algorithm
starts from the first location and traverses all vertices by following all edges including
call edges. To create a CFG of a single function, the algorithm starts traversing
from the head of the function and follows all edges except for call edges.

6.3.2 Live Variables Analysis

Live variables analysis (LVA) is a data flow analysis that determines for each
program location the set of variables alive at that location. As defined by Nielson
et al. [87], a variable v is alive at the exit of a program location l if there exists a
path π from l to a location l′ where v is used, and if π does not contain a location
l′′ where v is redefined. That is, a variable is alive if it is potentially read before
it is written again. In our setup, we do not do this for variables but for general
memory locations. Variables are contained in these memory locations. The LVA is
a backward analysis. That is, it processes the CFG backwards.

The data flow equations for a live variable analysis can be solved by the worklist
algorithm [87]. Nielson et al. [87] use this worklist algorithm for an intraprocedural
data flow analysis. Due to the presence of function calls and interrupts in the
microcontroller assembly code, this intraprocedural algorithm has to be enhanced
to deal with function calls and interrupts. As explained earlier, the standard
approaches, such as expanding, call-strings, and assuming that all variables are
manipulated by a function, are not appropriate in our context. Here, we describe
how we transformed the intraprocedural data flow analysis into an interprocedural
analysis using the worklist algorithm.

As aforementioned, functions are all program fragments which can be reached via
call statements. Additionally, all interrupt handlers are also handled like functions.
In the assembly language used, functions do not have formal parameter values.
Communication between functions is done via global variables, registers, the stack,
or memory locations indicated by pointers. The latter case is seldom used and
leads to an over-approximation in our approach as indirect loads and stores possibly
access all memory locations. The most common case is the use of global variables
and registers.
To handle functions and interrupt handlers, [mc]square determines the static

behavior of the functions (context insensitive). The static behavior of a function
f regarding the LVA, denoted by BehaviorLV(f), is a set containing all memory
locations that are read by f . In the worst case, this approach leads to an over-
approximation of the behavior of a function assuming that all memory locations are
read, but in most cases just a few memory locations are accessed. The LVA benefits
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from the stack analysis and the global interrupt flag analysis, which are described
later. Without theses analyses the results obtained during the LVA would be too
inaccurate.

The LVA works using three steps. In each of the three steps the worklist algorithm
is applied. The three steps are as follows:

1. Analyze each function alone to determine its static behavior. (intraprocedural)

2. Analyze each function, this time, using the static behavior of called functions
at call sites. If the static behavior of a function is changed, these changes are
propagated. (interprocedural)

3. Propagate information from call sites to called functions. This does not change
the static behavior of functions, and hence, functions are not analyzed again.

In the following, we explain these three steps in detail.

Step 1

In the first step, every function including the main function and all interrupt
handlers are analyzed alone and call instructions including occurrences of interrupts
are ignored within the functions. That is, the worklist algorithm is executed
intraprocedurally for each function and each interrupt handler alone.
The worklist algorithm for the LVA works in reverse order. That is, the edges

are processed from their target to the source. First, all edges of the CFG of the
function are added to the worklist. The entry set and the exit set of each location
are empty in the beginning. The entry set is the set of information that is given by
the predecessor location. The exit set is the set of information that is given to the
successor location. Our notation is similar to the notation used by Nielson et al.
[87]. The only difference is that Nielson et al. [87] define that a labeled location can
contain more than one instruction. In the assembly code every labeled location only
contains a single instruction. The two sets are defined as follows for the LVA:

LVexit(l) =

{
∅ l has no successor,⋃{LVentry(l′)|l′ successor of l} otherwise.

LVentry(l) = (LVexit(l) \ killLV(l)) ∪ genLV(l)

The functions for the entry set and the exit set are dependent on the analysis
applied. The functions killLV(l) and genLV(l) are dependent on the instruction
utilized in the corresponding location l. To create the entry set of a location for the
LVA, the algorithm takes the first edge from the worklist and applies the respective
function LVentry(l).
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The function killLV(l) determines for each location the set of memory locations
defined at this location. The function genLV(l) computes for each location the set
of memory locations read at this location. Here are some examples for possible
killLV(l) and genLV(l) functions of instructions used on the ATMEL ATmega16:

• An arithmetic instruction such as ADC Rd Rr reads both registers and writes
Rd. Therefore, it yields the following functions:

killLV(l) = {Rd},
genLV(l) = {Rd,Rr}.

• An I/O instruction such as IN Rd A writes Rd and reads the I/O register
addressed by A. This yields the following functions:

killLV(l) = {Rd},
genLV(l) = {A}.

• A load instruction such as LDI Rd K writes constant K into register Rd. Hence,
it yields the following functions:

killLV(l) = {Rd},
genLV(l) = ∅.

Additionally, most of these functions also influence the SREG and dependent I/O
register. For the sake of brevity, we left out these definitions in this overview.

After the application of the function LVentry(l) on the exit set of l, the algorithm
checks whether the exit set of l′, which is the entry set of l, has changed. If this
is the case, it adds all edges pointing to l′ to the worklist. That is, all edges from
locations l′′, which are predecessors of l′, are added. This algorithms continues
until the worklist is empty and no set is further changed. Now, the set of memory
locations read is known for each location. The initial static behavior of a function
is given by the behavior of the start location of the function. From this set, we
can remove the memory locations that are identified as local variables by the stack
analysis (see 6.3.4). The result of this step is for every function the set of memory
locations read by the function or the interrupt handler.

Step 2

In the first step of the algorithm, we ignored function calls and interrupts. They are
handled within the second step of our algorithm. If a function f calls a function g,
the behavior of function g is added to the behavior of the call sites within function
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f . This may change the behavior of function f . If the behavior of f is changed,
all functions which call f are analyzed again to propagate the behavior. This is
done via the worklist algorithm used in step 1 of our algorithm until a fixed point
is reached. The worklist algorithm is again executed for each function and each
interrupt handler, but this time function calls and occurrences of interrupts are not
ignored. The following functions are used to propagate the behavior for locations l
where a function g is called or an interrupt occurs:

killLV(l) = ∅,
genLV(l) = BehaviorLV(p).

This is an over-approximation because the called function could also write and hence
kill some variables. We have to do this because interrupts can occur but do not have
to occur. Therefore, the algorithm cannot be sure that the variables are written.
If after the termination of the worklist algorithm the behavior of a function f has
changed, our algorithm reruns the worklist algorithm for all functions g that call
f . This is done until the behavior of no function changes, that is, a fixed point is
reached. The worst case is that all functions access all memory locations.
During the second step, results obtained from the global interrupt flag analysis

(described in 6.3.5) are used to properly identify program locations where interrupts
can occur. At all these locations, interrupts are handled as calls to the corresponding
interrupt handler, that is, behavior is added at these locations. At locations where
the global interrupt flag analysis determined that interrupts are globally deactivated,
the algorithm does not add the behavior obtained from interrupt handlers.

Step 3

In the last step, our algorithm propagates the set of memory locations alive at the
call site of a function g to all locations in g to set them alive for complete g. This is
needed because these memory locations have to be alive after g is handled. That
is, function g is not allowed to reset these memory locations that are possible read
afterwards. In this step, we again use the worklist algorithm described before. This
last step does not change the behavior of a function and therefore, in this step,
the algorithm does not propagate changes to calling functions. The result of this
analysis is for each program location a set of memory locations alive at that location.

6.3.3 Reaching Definitions Analysis

The reaching definitions analysis (RDA) is another data flow analysis. It determines
for each program location and all variables in which program location each of the
variables was possibly written the last time. Again, we work with general memory
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locations instead of variables. RDA is a forward data flow analysis that works in
the usual order on the CFG.
The data flow equations for a reaching definitions analysis can also be solved

by the worklist algorithm [87]. We use the same algorithm to lift the worklist
algorithm to an interprocedural algorithm as we did for the LVA (see Sect. 6.3.2).
This algorithm uses the same three steps. It only differs in the definition of the
behavior, the function that is applied on the entry set to get the exit set, and the
way the behavior is propagated in the second step of the algorithm.

The static behavior of a function f in the context of the RDA, denoted by
BehaviorRD(f), is the set of memory locations that are written by the function
and the program locations where they were written. The behavior of a function
is determined by the exit set of the last location of the function. In contrast, the
behavior of a function regarding the LVA is determined by the first location of the
function.
The entry set and the exit set of a location l in the RDA are determined by the

following functions:

RDentry(l) =

{
∅ l has no predecessor,⋃{RDexit(l′)| l′ predecessor of l} otherwise.

RDexit(l)) = (RDentry(l) \ killRD(l)) ∪ genRD(l)

Here are some examples for killRD(l) and genRD(l) functions used in the RDA
for the ATMEL ATmega16:

• An arithmetic instruction such as ADC Rd Rr reads both registers and writes
Rd. Therefore, it yields the following functions:

killRD(l) = {Rd},
genRD(l) = {Rd}.

• An I/O instruction such as IN Rd A writes Rd and reads the I/O register
addressed by A. This yields the following functions:

killRD(l) = {Rd},
genRD(l) = {Rd}.

• A load instruction such as LDI Rd K writes the constant into the register.
Hence, it generates the following functions:

killRD(l) = {Rd},
genRD(l) = {Rd}.
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Listing 6.1: Use of a working register.
1 PUSH R1
2 . . .
3 IN R1 PINA
4 OUT PORTB R1
5 . . .
6 POP R1

Additionally, each of these functions changes the program location associated with
the definition, that is, the program location where the memory location was written
last. Most of these functions also influence the SREG and dependent I/O register.
For brevity reasons, we omit these definitions in this overview.

The algorithm determines the static behavior for each function and the interrupt
handlers as in the LVA (step 1) using the function for the exit sets of the locations
given above. In step 2 this behavior is propagated to other functions and interrupt
handlers. The only difference in the propagation is that the behavior of the function
is not given to the predecessor of the call as in the LVA but to the successor of a
call. In the last step (step 3) the behavior from the call location is propagated into
the function as it is done in the LVA. The result of the RDA is for each program
location an over-approximation of the definitions reaching this location. That is, a
mapping that describes for each variable where it was possibly written the last time.

During the RDA, our algorithm does not only determine the locations where the
variables were written last, but it also determines the set of possible values of these
variables. These values are used within other analyses such as the global interrupt
flag analysis.

6.3.4 Stack Analysis

In assembly code, the stack is used to temporarily save the contents of working
registers used within a function. At the beginning of a function, the contents of the
working registers are put onto the stack, and at the end of the function, the contents
of these registers are taken back from stack and written into the corresponding
registers. Hence, for a data flow analysis it looks as if the function reads and writes
the corresponding registers, although the function does not use the values of these
registers. Listing 6.1 shows an example. R1 is used as a working register within the
shown function. A general static dataflow analysis determines that this function
reads and writes R1.

[mc]square uses the stack analysis algorithm to find out whether registers are
actually read or written by a function. This check supports the data flow analysis,
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for example, to identify working registers. It also supports the global interrupt flag
analysis described in the next section.

To find out which variables are actually read and written, we have to identify the
contents of the stack. Due to the dynamic nature of the stack, the size and contents
of the stack at a specific program location can only be determined during runtime.
To solve this problem, and hence, to get a more accurate data flow analysis, we use
an abstract interpretation to determine for each program location the static stack
contents.

This abstract interpretation observes all accesses to the stack by means of PUSH
and POP operations, changes of the stack pointer, and write accesses to the memory
area of the stack. This analysis is carried out in a depth first search (DFS) manner
starting at the first location of the function. For every location where the stack
is accessed the corresponding action is executed on the stack. For example, if
in a location a value is pushed onto the stack, the algorithm adds an entry to
the representation of the stack contents that this value was pushed in the current
location. When the algorithms reaches the last location of the function, it checks
whether the size of the stack is zero. If the size of the stack is zero, the stack analysis
is successful. If the size of the stack in the last location is not zero, the stack analysis
of this function fails because the function exchanges data with other functions via
the stack.
If during the algorithm a location is visited a second time (e.g., due to a loop),

the algorithms checks if the new stack contents for this location is the same as the
old stack contents. If this is not the case, the stack was changed (e.g., in a loop) and
hence, we no longer know the static contents of the stack. Thus, the stack analysis
of this function fails too. That is, the algorithm cannot determine the working
registers of this function.

If the stack analysis fails for a function, the algorithm assumes that the function
uses all registers that are accessed inside the function including the working registers.
If the stack analysis is successful, the algorithms checks whether the values are
written into the original registers when popped. That is, that, for example, the
value of register 1 is written back into register 1. If this check is successful, we know
the set of working registers of this function.
The stack analysis is done for all functions including interrupt handlers. If the

analysis of a function f fails, the analysis of every function g calling f also fails.
This is the same for interrupts. As [mc]square does not yet know where interrupts
are active or inactive during this analysis, the stack analysis of all functions fails if
the analysis of an interrupt fails.
The stack analysis algorithm of [mc]square correctly recognizes that in the

example shown in List. 6.1 the original value of R1 is restored at location POP R1.
This result is then used within the data flow analyses to remove R1 from the reading
and writing behavior of this function.
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6.3.5 Global Interrupt Flag Analysis

The global interrupt flag analysis (GIFA) determines for each program location the
status of the Global Interrupt Enable bit, which is located in the SREG (see also
Sect. 5.3.4). The I bit defines whether interrupts are enabled or not. Without an
analysis that determines the value of the I bit, [mc]square has to assume that
interrupts are active at every program location. This would make the results of the
other data flow analyses very inaccurate. For example, if an interrupt handler reads
a certain register and the corresponding interrupt is active at any program location,
this register can never be reset by the dead variable reduction. To improve the
precision of the results, we implemented a dataflow analysis that tries to determine
the status of the global interrupt flag for each program location.

The GIFA is a forward data flow analysis. The data flow equations for the GIFA
are solved using the worklist algorithm presented in Sect. 6.3.2 and Sect. 6.3.3. It
uses the same three steps and only differs in the definition of the behavior of a
function and the way the entry and the exit sets are defined. The static behavior
of a function f regarding the GIFA, denoted by BehaviorGIF(f), is the status of
the global interrupt flag of the last location of the function. That is, the behavior
determines whether the function enables, disables, or does not change the state of
the interrupts.

The entry set and the exit set of a location l in the GIFA are determined by the
following functions:

GIFentry(l) =

{
{ir_enabled} ∃l′predecessor of l.GIFexit(l′) 6= ∅
∅ otherwise

GIFexit(l)) = (GIFentry(l) \ killGIF(l)) ∪ genGIF(l)

Here are some examples for possible killGIF(l) and genGIF(l) functions for the
ATmega16:

• An usual arithmetic instruction such as ADC Rd Rr does not influence the
global interrupt flag. Hence, killGIF(l) and genGIF(l) do not change anything.

killGIF(l) = ∅,
genGIF(l) = ∅.

• The instruction SEI enables interrupts by setting the global interrupt flag.
Thus, it does not kill, but it generates ir_enabled:

killGIF(l) = ∅,
genGIF(l) = {ir_enabled}.
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• The instruction CLI does the opposite of SEI. It disables interrupts by clearing
the global interrupt flag:

killGIF(l) = {ir_enabled},
genGIF(l) = ∅.

• The instruction OUT A Rr is more complex. Depending on the register
addressed by A, it influences or does not influence the global interrupt flag. If
A is the address of the SREG (I bit is located within the SREG), the value of
Rr determines whether interrupts are enabled or disabled. The address A is a
constant, but the value of Rr is not a constant. The value of Rr is determined
by the RDA before the GIFA is executed. If the RDA fails, the algorithm has
to assume that interrupts are enabled to ensure a safe over-approximation.
This leads to the following functions:

killGIF(l) =


{ir_enabled} A address of SREG∧

8th bit of Rr = 0
∅ otherwise

genGIF(l) =


{ir_enabled} A address of SREG∧

(8th bit of Rr = 1∨
value of Rr = unknown)

∅ otherwise

The algorithm is executed in the same way as for the LVA and the RDA. The
result of the algorithm is an over-approximation of the value of the global interrupt
flag for every program location. That is, interrupts are disabled if the algorithm is
sure that the interrupts are disabled and otherwise, interrupts are enabled. This
analysis is important for the other data flow analyses and abstraction techniques as it
improves the accuracy of the analyses and hence the effectiveness of the abstraction
techniques. The GIFA depends on results of other analyses.

The example shown in List. 6.2 demonstrates the way the contents of the SREG
is saved in the beginning of an interrupt handler and restored in the end of the
interrupt handler. Without the information from the RDA and the stack analysis,
the GIFA could not determine the value that is assigned to the SREG in the last
line. Hence, the algorithm would assume that interrupts are enabled in the last
line. This would allow cascading interrupts in this interrupt handler and lead to
unlimited recursion.
For the shown interrupt handler, the stack analysis correctly determines that,

at the end, the contents of R0 is taken from the stack. The algorithm also knows
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Listing 6.2: Restoring the value of the status register.
1 IN R0 SREG
2 PUSH R0
3 . . .
4 POP R0
5 OUT SREG R0

that R0 holds the contents of SREG saved in the beginning of the interrupt handler.
Hence, the analysis finds out that the I bit has the same value in the end as in the
beginning. That is, interrupts are not enabled in the interrupt handler. Similar
patterns are not only used in interrupt handlers, but also in usual functions.

6.4 Abstraction Techniques

This section describes two abstraction techniques implemented in [mc]square,
which use the static analyses that were described in the previous sections. The
results that can be obtained by applying these abstraction techniques are detailed
in Chap. 8. In the following, we first describe dead variable reduction and then we
describe path reduction.

6.4.1 Dead Variable Reduction

Dead variable reduction (DVR) [62, 63, 129] is an abstraction technique that copes
with the state-explosion problem. It tries to reduce the number of states generated
during state space construction. The idea behind dead variable reduction is that
states only differing in dead variables are equivalent and hence can be merged into
a single state. A dead variable is a variable that is not in the set of live variables
(see Sect. 6.3.2). In the microcontroller assembly code, memory locations are the
variables we are interested in.

To apply DVR, [mc]square first uses the LVA to determine for each location
the set of live variables. After it determines the sets of live variables, it identifies
the set D of dying variables for each program location. To do this, the algorithm
successively compares the sets of live variables of two consecutive program locations
l and l′. The variables that are alive at l and are no longer alive at l′, die after the
execution of the statement in l. After that, the variables contained within the CTL
formula are removed from each set D. Then, every program location is annotated
with its corresponding set D indicating the variables which can be reset by the
Simulator. [mc]square assigns 0 to a variable when it dies. Hence, states which
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differ only in the value of a dead variable are automatically merged. To preserve
the validity of the model checking results, variables used within the CTL formula
(specification) and the values of I/O registers are not reset. The I/O registers are
not reset because they induce side-effects in the microcontroller.
DVR reduces the size of the state space created by resetting dead variables. In

our case studies, we found out that this especially helps in presence of functions. In
functions, local variables are used. These local variables are represented by general-
purpose registers in the assembly code. In two different functions, different local
variables may be represented by the same register due to compiler optimizations.
Thus, these two functions usually being independent are now dependent on each
other. That is, the interleaving between the functions is now accounted by the
model checker. This drastically increases the size of the state space. DVR is able to
find the local variables and to reset them in the end of the function. Thereby, the
two functions stay independent. Chapter 8 gives details about the effect of DVR.

6.4.2 Path Reduction

Path reduction (PR) [129] is an abstraction technique that is used to compress single
successor paths, which are computational paths consisting of states having only a
single successor, into a single step. That is, only the first and the last state of these
paths are stored to reduce memory consumption. The disadvantage of PR is that
it only preserves CTL*-X. That is, validity of the next operator is not preserved.
We give details about the logics preserved by the different abstraction techniques in
Sect. 7.3.
Path reduction does not rely on other data flow analysis such as dead variable

reduction. Hence, PR can be used even if LVA and RDA fail. Thus, PR can be
applied to all possible assembly programs including programs that feature indirect
control. PR works as follows.
The PR algorithm determines so-called breaking points (BPs) [129]. BPs are

locations that have to be stored. During the creation of the state space only states
generated from breaking points are stored. States generated from non-breaking points
are not stored. In the original approach, all breaking points can be determined
statically. In our environment, this is not possible due to the microcontroller
assembly code (e.g., indirect control, indirect data accesses, and nondeterminism).
[mc]square determines some of the breaking points statically, others are determined
dynamically during state space creation.

Yorav and Grumberg [129] define the following locations l to be breaking for the
While language:

1. l is the initial or terminating program location,
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2. l is associated with the program location of an assignment changing a variable
used within the formula,

3. l i associated with the program location of a non-deterministic assignment,

4. l is the head of a while statement,

5. l is labeled by a procedure call, or is the statement immediately following a
procedure call and

6. l is labeled by a communication statement (send or receive), or is the statement
following a communication.

All these BPs are determined statically for the While language. This is different
for microcontroller assembly code. Some of the conditions for BPs are different, and
some of the conditions cannot be checked statically. In the following, we explain for
each of the aforementioned BPs how they are handled in [mc]square.

[mc]square checks the first and the second condition statically, too. However,
the third condition cannot be checked statically because in contrast to the While
language, nondeterminism is not indicated by statements in the assembly code.
Varying memory locations can introduce nondeterminism and are accessed via
different statements. A memory location can change back and forth between
nondeterministic and deterministic behavior (e.g., input port is switched to output
or a timer is activated). Hence, the over-approximation of a static approach is too
coarse. Therefore, [mc]square checks the third condition dynamically during state
space creation. That is, every state having more than one successor is stored.
The fourth condition needs some special treatment because in the assembly

language used there exists no while statements, but there exist loops. The fourth
condition is needed to guarantee termination during state space building. If there is
a loop only consisting of single successors, the PR algorithm cannot detect revisits
without this condition, and hence, the state space creation does not terminate. To
avoid this, one location of each loop has to be breaking. In [mc]square all locations
are defined to be breaking that have more than one predecessor in the CFG because
a location that closes a loop has more than one predecessor and all loops have at
least one such location. A location has more than one successor in the CFG if it
is the target of a jump or branch instruction. The algorithm finds most of these
targets statically. Only the targets of indirect jumps cannot be found statically, and
thus, [mc]square identifies them dynamically during state space creation. Thus, in
every loop there is at least one location that is breaking. As not every one of these
target locations is part of a loop, some locations are unnecessarily breaking, but the
runtime overhead needed to detect only real loops would be considerably higher.

[mc]square checks the fifth condition statically as in the original approach. It
marks all locations containing a call or an indirect call statement and the succeeding
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locations to be breaking. The sixth condition is not directly applicable to the
assembly language used because it does not contain parallel processes but interrupts,
which show a similar behavior (described in Sect.5.3.4). There are no statements used
for communication controlling the communication between the main process and the
interrupt handlers. Whenever an interrupt is active and enabled, it can interrupt
the main process and change all memory locations. Thereby, it can communicate
with the main process. To represent this behavior in this analysis, each location
where interrupts may be enabled has to be breaking. [mc]square checks the sixth
condition not statically, but dynamically because whether an interrupt is active or
not is not only determined by the global interrupt flag. Each interrupts has its own
flags that determine whether it is active or not. Discovering all these bits statically
leads to an over-approximation that is too coarse. Many locations would needlessly
be labeled breaking.

After [mc]square has statically determined some of the breaking points, it starts
creation of the state space. During the creation of the state space, the algorithm
dynamically checks for the other breaking points and only stores states created from
breaking points. The dynamic examination of breaking points increases the runtime,
but it also increases the accuracy. We decided to check all conditions statically
that did not yield too coarse over-approximations, all others conditions are checked
dynamically.
Most microcontroller programs use interrupts extensively. As all states have to

be stored that are created from breaking points and all program locations where
interrupts are active are breaking points, PR seems to be inefficient when model
checking microcontroller programs. But in these programs interrupts are not active
at every program location and during the execution of interrupt handlers other
interrupts are usually deactivated. Thus, interrupt handlers are generally long single
successor chains and hence, can be compressed efficiently using PR. Chapter 8
details the effects of PR on the size of the state space.

6.5 Related Work

Motivated by the observation that usually memory is the limiting factor in the
application of model checking, many approaches have been developed to combat
the state-explosion problem (see Clarke et al. [33] for an overview). We adapted
two static analysis methods, namely path reduction and dead variable reduction,
which were first described by Yorav and Grumberg [129]. They describe DVR and
PR for a parallel version of the While language. This approach is implemented in
the Murphi model checker. The language used in Murphi is similar to the parallel
While language. In the language used, every process has its own local variables.
Global variables are not used. Communication is done by means of send and receive
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statements. The language does not contain indirect control. Murphi handles
functions by inline expansion (also called inlining) and hence, it uses intraprocedural
static analysis. It determines the breaking points used for PR statically.
In his master’s thesis, Quirós [96] adapts the approach described by Yorav and

Grumberg [129] to a bytecode language used in the NIPS VM [125, 126], which is
a virtual machine for state space generation. This bytecode language is similar to
the parallel While language as it has no indirect control and the communication
between processes is conducted by fixed instructions. The only important difference
for static analysis is that the bytecode language exhibits local and global variables.
Local and global variables are easily distinguishable in this language as different
instructions are used to access global and local variables respectively. DVR is only
applied to local variables because intraprocedural static analysis is conducted in
this approach as it is done by Yorav and Grumberg [129]. The breaking points used
for PR are determined statically, too.

Spin [63] uses both DVR and PR. It works on a language called Promela, which
is similar to the two languages described before regarding these two reduction
techniques. That means method calls are handled by inlining, communication is
conducted by certain instructions, and indirect control is not present. Both analyses
are done statically via an intraprocedural approach before model checking.
In contrast, [mc]square works on assembly code including indirect control,

indirect data access, recursion, interrupts, and globally accessible memory. This
makes intraprocedural approaches and inlining infeasible. Restricting DVR to
local variables is not possible as all memory locations are globally accessible and
communication can occur at every program location (due to interrupts). [mc]square
cannot determine the breaking points completely statically as some constructs can
only be handled dynamically during runtime (e.g., nondeterminism, indirect control,
and interrupts).

Lewis and Jones [74] describe a different approach for DVR, which is used in the
model checking tool Estes. PR is not used in the Estes model checker. DVR
is done dynamically during state space creation to exploit runtime information.
Due to the dynamic nature of the approach, the results are in certain situations
more accurate, but increase the runtime. The user has to provide some information
to use DVR (e.g., description of the behavior of the environment, addresses of
main function, and interrupt handler start and end address). This is not needed in
[mc]square as the user does not have to provide any information. [mc]square
avoids some runtime overhead by conducting parts of the analysis statically.
Another abstraction technique implemented in many model checkers is partial

order reduction [62], which is used to limit the number of different interleavings
between parallel processes. This abstraction technique is not implemented in [mc]-
square because there are no parallel processes in microcontroller assembly code.
There exists only a pseudo-parallelism introduced by interrupts, but this parallelism
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cannot be handled by static analyses.
Static slicing is implemented in some model checkers. It can be used to statically

remove locations, which do not influence the formula checked, from the program
under verification. Currently, this method cannot be used in [mc]square as the
microcontroller assembly code includes constructs such as indirect memory access,
recursion, and indirect control flow. These constructs preclude the creation of a
complete CFG of the assembly program, which is needed to apply slicing.
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The actual model checking in [mc]square is conducted by the Model Checker. This
chapter details the Model Checker and the State Space package. For the Model
Checker package, we describe the implemented model checking algorithms and an
algorithm for the creation of counterexamples. Currently, there are three different
algorithms implemented: a local CTL model checking algorithm, a global CTL
model checking algorithm, and an algorithm for checking invariants.
For the State Space package, we describe details of the different state space

implementations. The common implementation stores states in main memory
whereas another one stores states on hard disk. The different abstraction techniques
utilized in [mc]square influence the state space and hence the validity of model
checking results. Some of them preserve the validity CTL while others only preserve
the validity of sublogics of CTL, such as CTL-X or ACTL. We specify which
abstraction technique preserves validity of which logic.
The first section details the Model Checker. The second section explains the

State Space. After that, Sect. 7.3 lists for each implemented abstraction technique
the logic that is preserved. In the end, we present related work regarding model
checking.

7.1 Model Checker

The Model Checker package conducts the actual model checking and creates the
counterexample and the witness respectively. [mc]square uses three different model
checking algorithms: a local model checking algorithm, which was first described
by Vergauwen and Lewi [121] and later adapted by Heljanko [57], a global model
checking algorithm presented by Clarke et al. [33], and an algorithm to verify
invariants. For all these three model checking algorithms, [mc]square has a specific
algorithm to create corresponding counterexamples.

Figure 7.1 shows a UML class diagram of theModel Checker package. [mc]square
conducts model checking within a thread. There is a thread for the global and another
thread for the local model checking algorithm. The GlobalModelCheckerThread
uses the GlobalCTLModelChecker and the corresponding counterexample generator.
The LocalModelCheckerThread uses the LocalCTLModelChecker and the respective
counterexample generator. Additionally, the LocalModelCheckerThread can use the
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Fake

ModelCheckerThread

GlobalModelCheckerThread LocalModelCheckerThread

SimpleBuilder LocalCTLModelCheckerInvariantCheckerGlobalCTLModelChecker
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Visual Paradigm for UML Standard Edition(RWTH Aachen)

Figure 7.1: The Model Checker package.
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SimpleBuilder, which only builds the state space, and the InvariantChecker, which
checks for the validity of invariants.
The Model Checker does not create and manage states. States are managed

and created by the State Space and the Simulator. The Model Checker just
requests states from the State Space and changes truth values of states. The State
Space stores the states and uses the Simulator to create successor states. As the
atomic propositions of the formulas contain hardware-dependent statements, these
propositions are already evaluated by the Simulator. Thus, the Model Checker
conducts model checking hardware independently, and hence, we do not have to adapt
the model checking algorithms to the peculiarities of the different microcontrollers.

This section first describes the three different model checking algorithms in detail.
Then, the algorithm to create a counterexample that is used when conducting local
model checking is detailed exemplarily.

7.1.1 Local Model Checking

A local model checking algorithm checks whether in a model M a given state
s satisfies a given formula f (M, s |= f). In contrast to global model checking
algorithms, a local model checking algorithm only needs to evaluate the subformulas
and visit the states that are needed to evaluate the truth value of the formula in
the given state s, which is in most cases the initial state of the model. Therefore, it
is possible generate the state space on-the-fly during model checking when using a
local model checking algorithm. A global model checking algorithm evaluates truth
values of all subformulas in all states (see also Sect. 2.2.2). In the following, we first
describe the process applied when using the local model checking algorithm. Then,
we detail the local model checking algorithm.

Process

Figure 7.2 shows a UML activity diagram depicting the process that is used when
conducting local model checking. First, the ELF file is loaded and transformed into
a human-readable assembly program. Then, the provided CTL formula is parsed
and transformed into a formula object. Thereafter, static analysis is conducted and
the assembly program is annotated. This step is only accomplished if the user has
chosen to use abstraction techniques requiring static analyses. Afterwards, model
checking is started on the annotated program. States are created on-the-fly by means
of the State Space and the Simulator. As aforementioned, the Simulator creates an
over-approximation of the behavior shown by the microcontroller. Depending on
the formula, [mc]square checks whether certain states satisfy specific formulas or
subformulas respectively. After model checking is conducted, a counterexample is
created if the user has chosen to create one. The process that is applied when using

99



7 Model Checking in [mc]square

Local Model Checking

Load ELF File

Parse Formula

Execute Static Analysis

Conduct Model Checking

Create Counterexample or Witness

Conduct Model Checking

Check State

Get State

Create Successors

Fake

[create counterexample]

[do not create counterexample]

[State does not exist]

[Current State]

[State exists][Other State needed]

[use static analysis]

[do not use static analysis]

Visual Paradigm for UML Standard Edition(RWTH Aachen)

Figure 7.2: The Local model checking process.
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the invariant checking algorithm (see Sect. 7.1.3) is similar to this process.

Algorithm

The local model checking algorithm implemented in [mc]square is an adaption of
the ALMC algorithm, which was first presented by Vergauwen and Lewi [121] and
later adapted by Heljanko [57]. The original ALMC algorithm uses very high-level
data types and operations which are difficult to implement [57]. The algorithm
presented by Heljanko [57] is easier to implement as it uses simple data types and
operations. However, we had to change the algorithm to use stacks instead of
recursive method calls because of the limited recursion depth of Java.

The ALMC algorithm handles atomic propositions p and the following operators:
¬, ∧, AX, AU, and EU. All other operators (e.g., EG, EF, and AF) can be
expressed in terms of these operators. The Parser converts formulas given by the
user into the format needed by the local model checking algorithm. The user does
not have to bother with these details.
Beside the data used within the Simulator, a state utilized for model checking

needs to store the array of successor states and the truth values of all subformulas.
The states used for model checking are represented by the ModelCheckerState class
(see Sect. 7.2). The truth values of the subformulas are not stored as just true and
false, but as unknown, marked, true, and false. Since in the ALMC algorithms no
state is marked and the truth value of the corresponding subformula is known at
the same time, this information can be stored in a single field, which saves memory.

The ALMC algorithm works goal-oriented in a top-down manner on the structure
of the formula [121]. That is, it starts with evaluating the topmost formula in the
given state. For evaluating this formula, truth values of formulas or subformulas
in the current state or in successor states may be needed. Therefore, the original
algorithm tests whether the required truth values are already known. If not, it
recursively calls a method to evaluate the needed truth values. As we cannot use
recursive method calls due to the limited recursion depth, we had to change this
part of the algorithm to work with stacks.

In our version of the ALMC algorithm, we added a stack called global stack , which
stores verification jobs. A verification job is a mapping between a state s and a
formula f , where f has to be evaluated in s. Whenever a new truth value is needed,
a new verification job with the corresponding mapping between the state and the
formula is created and added to the global stack. Then, the algorithm returns form
the current verification job and executes the new one. When all needed truth values
are evaluated, the algorithm returns to the original verification job and evaluates it.
Then, it removes it from the global stack.

In case of an AU or EU formula a verification job additionally contains the
current maximum DFS number, a hash map, which maps states to DFS numbers,
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and two local stacks. One of these local stacks is used to store names of successor
states in which the current formula has to be checked before it can be evaluated
in the current state. We call theses verification jobs dependent verification jobs.
They are only used for dependent AU and EU verification jobs. They share the
DFS numbers and the second local stack called counterexample stack , which is used
to store potential counterexample and witness states respectively. However, new
verification jobs for nested subformulas are put on the global stack as these jobs do
not share data with the current verification job.
The main loop of the adapted algorithm works as follows. First, the algorithm

initializes the global stack and pushes a new verification job containing the initial
state and the topmost formula on the global stack. Then, in the main loop, it peeks
at the verification job located on top of the global stack, takes the state and the
formula referenced in this verification job, and calls the method used to check the
operator employed within the formula. When checking an AU or EU formula, the
corresponding method takes the state to be checked from the local stack, which is
contained within the verification job taken from the global stack. Where required,
new verification jobs are created and put on the respective stack. If a verification
job is finished, it is removed from the stack. The main loop is executed until the
global stack is empty, or a goal state is found.

In the following, it is sketched how the algorithm handles the different operators.
Atomic propositions are already checked within the Simulator because they are
hardware dependent and we implemented the Model Checker package hardware
independently. Examples for atomic propositions are: PORTA = 0x55, R1 ≤ 0xaf ,
and button_pressed = 1. These atomic propositions may include features, which are
hardware dependent such as PORTA or R1.
Checking ¬, ∧, and AX is intuitive. When checking ¬f1, the algorithm tests

whether f1 is satisfied or not. If f1 is satisfied, ¬f1 is not satisfied and the other
way round. To check for the validity of f1 ∧ f2, the algorithms tests whether f1

and f2 are satisfied. If they are both satisfied, f1 ∧ f2 is also satisfied. If one of
the subformulas is not satisfied, f1 ∧ f2 is not satisfied. To check for the validity
of AXf1, the algorithm tests whether f1 is satisfied in all successors of the current
state. If it is the case, AXf1 is true. In other cases, AXf1 is not satisfied in the
current state.
To check whether the current state s satisfies the formula of the form f =

A[f1 U f2], the algorithm first checks whether s satisfies f2. If it does, s satisfies f .
If s does not satisfy f2, the algorithm checks whether it satisfies f1. If s does not
saturate f1, f is not satisfied in s either. If s saturates f1, all successors of s have
to be checked whether they satisfy f or not. If a loop is found, on which all states
satisfy f1, but no state saturates f2, these states do not satisfy f .

The structure of the algorithm for checking a formula of the form f = E[f1 U f2]
is similar, but the algorithm is more involved. To check whether the current state s
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saturates f , the algorithm first checks whether s satisfies f2. If this is the case, s
saturates f and hence it is a so-called goal state. When a goal state is found, the
algorithm has to label all states that can reach this goal state via states satisfying
f1. This is done using a DFS, which is described later. If s does not saturate f2, the
algorithm checks whether it satisfies f1. If f1 is not satisfied, s can not saturate f .
In case f1 is satisfied, the algorithm checks whether one of the successors satisfies f .
If a loop is found consisting of states all satisfying f1, but none satisfying f2, the
algorithm cannot conclude that all these states do not saturate f (when checking
A[f1 U f2] this can be done). All these state remain on the counterexample stack.

When a goal state is found, a search for maximal strongly connected components
(SCCs) using a modified version of the algorithm by Tarjan [115] is started. This
algorithm starts in the initial state and conducts a DFS using only states that were
visited before and satisfy f1. In case a maximal SCC is found before the goal state
is reached, this maximal SCC is removed from the witness stack because it can
not reach the goal state. Hence, all states of this maximal SCC do not saturate f .
Then, the search in continued until the goal state is reached. When the goal state
is reached, all states that are still on the counterexample stack satisfy f and are
labeled accordingly.

The algorithm for checking EU described by Heljanko [57] contains an error.
In case a goal state is found, the algorithm forgets to mark this goal state. This
leads to omission of labeling of states saturating the EU formula. To correct this
error, we added instructions marking the found goal states. More details of this
algorithm such as algorithms in pseudo code are presented in the corresponding
papers [57, 121].

7.1.2 Global Model Checking

A global model checking algorithm determines for a modelM and the set of all states
S the set of states that satisfy the formula f ({s ∈ S |M, s |= f}). In contrast to a
local model checking algorithm, a global model checking algorithms determines the
truth values of the formula in all states while the local model checking algorithm only
checks whether a given state satisfies the formula. Therefore, a local model checking
algorithm is able to build the state space on-the-fly during model checking while a
global model checking algorithm has to build the state space before model checking.
In case the state space is too big to fit into memory, the global algorithm cannot
determine anything whereas the local algorithm can still find counterexamples or
witnesses in the part of the state space that fits into memory.
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Figure 7.3: The global model checking process.

104



7.1 Model Checker

Process

Figure 7.3 shows an UML activity diagram of the process that is used when conduct-
ing global model checking. The first steps, that is, load ELF file, parse CTL formula,
and conduct static analyses are the same as when doing local model checking (see
also Sect. 7.1.1). After these steps, the complete state space is built using the State
Space and the Simulator. After the state space is built, model checking is conducted
by the Model Checker. In the end, a counterexample or a witness is created.

Algorithm

The global model checking algorithm implemented in [mc]square is taken from
Clarke et al. [33]. Beside atomic propositions, this algorithms handles the operators
¬, ∨, EX, EU, and EG. All other operators can be expressed in terms of these five
operators [33]. The Parser converts formulas using other operators into equivalent
formulas using only these five operators.
Beside the fields used within the Simulator, a state contains the following fields:

array of successors, array of predecessors, array of formula truth values (true and
false), and a visited flag. Temporarily, the DFS number and the number of the SCC
that contains this state are stored within the state.
This algorithm works bottom-up on the structure of the formula in contrast

to the ALMC algorithms, which works top-down on the structure of the formula.
Bottom-up means that it starts with evaluating the leafs of the subformulas’ tree
and works its way up to the topmost subformula, which is the complete formula.
Since in [mc]square the atomic propositions, which are the leafs of the subformulas
tree, are already evaluated within the Simulator, the algorithms starts evaluating
the subformulas just above the atomic propositions. The order in which subformulas
are evaluated is described by Def. 4 on page 9, which describes a partial order over
the subformulas. The global algorithm starts with the bottom element and works
its way up. That is, during the ith stage, subformulas with i− 1 nested subformulas
are processed.

In the main loop this algorithm picks a subformula to be checked and then starts
checking it for all states s ∈ S. This algorithm does not have to bother with
unevaluated subformulas of the current formula because it is known that these
subformulas were evaluated before. When this subformula is evaluated, the next
subformula is chosen. The algorithm terminates when the topmost formula is
evaluated in all states. In the following it is described how the different operators
are handled.
Checking ¬, ∨, and EX is trivial. When checking ¬f1, all states that do not

satisfy f1 are labeled satisfying ¬f1. Checking f1 ∨ f2 is similar. All states that
satisfy f1, f2, or both satisfy f1 ∨ f2 and are labeled accordingly. The algorithm
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checks EXf1 by checking whether one of the successor states of the current state
satisfies f1. If it is the case, the current state satisfies EXf1.
Checking E[f1 U f2] is more involved. To handle a formula of the form f =

E[f1 U f2], the algorithm first finds all states that satisfy f2. Then starting from
these states, it searches backwards for all states that can reach these states using
only states that satisfy f1. All these states satisfy f and are labeled correspondingly.
Checking a formula of the form f = EGf1 is slightly more complicated. From

the set of states S, the algorithm removes all states that do not satisfy f1. The
resulting set is called S′. The successors and predecessors of each state are adapted
accordingly. Then S′ is partitioned into SCCs using the algorithm by Tarjan [115].
From each state that is part of a SCC, the algorithm searches backwards using only
states satisfying f1. All these states satisfy f . More details about the global model
checking algorithm such as algorithms in pseudo code can be found in the book by
Clarke et al. [33].
This model checking algorithm was the first one implemented in [mc]square.

It is in most cases slower than the local model checking algorithm because the
complete state space has to be built before model checking is started. The local
model checking algorithms builds in many cases only a part of the state space. Even
in the worst case for the local model checking algorithm, in which it has to build
the complete state space, the global model checking algorithm is not faster because,
when model checking programs with [mc]square, most of the time is spent building
the state space, and only a small amount of the time is spent checking the states.
The memory requirements of the global model checking algorithm are significantly
higher because it has to store an array of predecessor states, which is not needed
in the local model checking algorithm. Hence, the user should use the local model
checking algorithm or the algorithm used for checking invariants.

7.1.3 Invariant Checking

Many interesting properties can be expressed as invariants. Checking an invariant
is easier than checking general CTL formulas. An invariant is given by conditions
on a state, which have to hold in all reachable states. That is, given a propositional
logic formula f , an invariant can be written as AGf .
The algorithm used to verify invariants is similar to the local model checking

algorithm described in Sect. 7.1.1. It uses the same process and the same type of
states. The atomic propositions used within the propositional logic formula are
already evaluated in the Simulator package. Therefore, this algorithm only has
to handle two operators: ¬ and ∧. All other propositional logic operators can be
expressed using these two operators. The Parser package converts them.

The algorithms works as follows. It starts checking the invariant in the first state.
Then, using a DFS algorithm the complete state space is built. During the creation
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of the state space, the invariant is checked for each state. If a state is found that
does not satisfy the invariant, this algorithm terminates and returns the error trace
that leads to the state not satisfying the invariant.
For checking the invariant, the algorithms needs to check the two supported

operators. To check for the validity of a formula f = ¬f1, it is checked whether the
state s satisfies f1. If it satisfies f1, s does not satisfy f and the other way round.
The algorithm checks a formula of the form f = f1 ∧ f2 by first checking f1 and f2.
If one of these two subformulas is not satisfied, the formula f is not satisfied. If
both subformulas are saturated, the formula f is also saturated.
In this algorithms, [mc]square uses recursive method calls to check for the

validity of subformulas. It does not use a stack of verification jobs as used in the
two model checking algorithms described before. In this algorithm, recursion can be
used because the maximal occurring recursion depth when checking an invariant is
the number of subformulas. When checking an invariant, no dependent verification
jobs for successor states need to be created.
This algorithm uses less space and is faster than the local and the global model

checking algorithms described before. The counterexample, which is created in case
the invariant is violated, is easier to understand than counterexamples that are
created when checking generic CTL formulas. Therefore, the user should use this
algorithm whenever it is possible to express the desired property as an invariant.

7.1.4 Counterexample Generation

This section describes the way [mc]square creates a counterexample. As intro-
duced in Sect. 2.2.3, we only use the term counterexample and it refers to both
counterexamples and witnesses. Whenever a counterexample has to be generated,
for instance, if a formula of the form AGf is not satisfied, [mc]square starts
the generation of the counterexample. If a formula containing existentially and
universally quantified subformulas is checked, counterexamples are created for each
subformula and combined into one counterexample. This combined counterexample
shows why the complete formula including its subformulas is satisfied or violated.
The counterexample is presented as a graph, in the assembly code, in the CFG of
the assembly code, and in the C code if it is present.
This section describes the generation of counterexamples when using the local

CTL model checking algorithm, which is described in Sect. 7.1.1. The generation of
counterexamples depends on the model checking algorithm used because it has to
handle the same set of operators. The generation of counterexamples is similar in
the invariant checking algorithm and in the local model checking algorithm. The
only difference is that the generation of counterexamples for the invariant checker
does not have to handle the constructs that are only used in the local model checking
algorithm such as EG, AU, and AX. The generation of counterexamples for the
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global model checking algorithms is different. It is based on the same idea, but it
has to handle different operators.
The algorithm that creates the counterexample works in a top-down manner

on the structure of the formula. That is, the algorithm starts with the topmost
formula and works its way down to the leafs of the subformula tree. The leafs
are the atomic propositions of the formula. First, the truth value of the topmost
formula in the initial state is considered, and the initial state is added to the
counterexample, which is represented by the CounterExampleStateSpace class.
Depending on this truth value and the formula, the algorithm has to add other
states to the counterexample. To add other states to the counterexample, the
algorithm uses a stack of counterexample jobs. A counterexample job stores the
name of the current state, the current subformula to be refuted or witnessed, and
the name of the predecessor state. The creation of the counterexample terminates
when the stack of jobs is empty. The result is a counterexample containing all states
needed to indicate the truth values of the formula and its subformulas.
While the local model checking algorithm processes the successor states from

left to right, the algorithm to produce the counterexample handles the successor
states from right to left. In case a state was found indicating that the formula
is not satisfied, the state space was not built completely (the same applies for a
witness). As the model checker builds the state space from left to right, this state is
reached earlier if the algorithm searches from right to left. Using this approach, the
counterexamples tend to be smaller.

In the following, it is described how the algorithms handles the different operators.
If in a state s the truth values of an atomic proposition p affects the counterexample,
s is added to the counterexample. That is, s either proves a formula (witness) or
disproves a formula (counterexample). Whether it proves or disproves a formula
does not depend on this formula but on the enclosing path formula. For instance, in
the formula f = AG p, f determines whether p affects the counterexample or not.
To handle a formula of the form ¬f1, a new counterexample job with the current
state s, the formula f1, and the predecessor of s is created and put on the stack.
When handling a formula of the form f1 ∧ f2, two new counterexample jobs are
created: one for the formula f1 and another one for f2.
Handling a formula of the form f = AXf1 differs from handling the before

described formulas. In case f is true, this counterexample job is ignored because
the current state is not part of a counterexample for f . If f is not satisfied in the
current state, it is added to the counterexample, and a new counterexample job for
the successor state in which f1 does not hold is created and added to the stack. To
find the successor state that does not satisfy f , the algorithm searches the list of
successors from right to left and tests whether the corresponding state saturates f .

A counterexample for a formula f = Af1 U f2 is a path that has a loop consisting
of states all satisfying f1 and none satisfying f2 or a path on which a state exists
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that does not satisfy f1 and f2. To find such a counterexample, the algorithm first
checks whether the current state s satisfies f . If this is the case, the job is ignored
because s does not disprove f and hence, does not belong to the counterexample for
f . If s does not saturate f , it is added to the counterexample and it is tested if a
loop is closed.

In case a loop with the afore described properties is closed, the counterexample is
completed and the current counterexample job is finished. If no loop is closed, the
algorithms checks whether s saturates f1. If f1 is not satisfied, s is the so-called
goal state and hence, a new counterexample job for the subformula f1 is added to
the stack and the current counterexample job is finished. In case f1 is satisfied in s,
the algorithm performs two things. First, it adds a new counterexample job with
formula f2 and s to the stack to show why f2 is not saturated. Second, the current
counterexample job is changed to point to a successor state s′ that does not satisfy
f . To find s′, the list of successor states of s is searched from right to left. Then, s′

is handled. This process continues until a state that does not saturate f1 or a loop
is found.

Generating a witness for a formula of the form f = Ef1 U f2 works as follows. A
witness for f is a path that only contains states saturating f1 and is ended by a state
satisfying f2. To find such a witness, the algorithm first checks whether the current
state s saturates f . If it does not saturate f , this counterexample job is ignored
because s does not witness f . If s saturates f , s is added to the witness, and it is
checked whether s saturates f2. In case it satisfies f2, a new counterexample job
with f2 and s is added to the stack, and the current counterexample job is finished.
In case s does not saturate f2, a new counterexample job with f1 and s is put onto
the stack to show that f1 is satisfied in s, and the current counterexample job is
changed to point to a successor state s′ that saturates f . Then, this s′ is handled. If
the algorithm finds a loop consisting of states satisfying f1 but not f2, it backtracks
and uses the next successor state s′. This process continues until a state satisfying
f2 is found, which is the goal state.

7.2 State Space

The State Space package is used to store and manage the states. The different state
space implementations use different methods to store the states. Some use the main
memory while others use the hard disk. The State Space package also contains
different types of states, which are used for different purposes such as state space
building or model checking.
Figure 7.4 shows a UML class diagram of the State Space package. The Model

Checker uses the AbstractStateSpace interface to access the state space during model
checking. The interface, for example, provides methods to access states, the data
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Figure 7.4: The State Space package.
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of states, and the truth values of subformulas. The Model Checker does not know
which state space implementation it actually uses. That is, it does not know how
the states are stored. The state space implementations use the InstructionSimulator,
which is not part of the State Space package, to create successor states on-the-fly.
To exchange states with the InstructionSimulator, the SimulatorState class is used.

There are two implementations of the AbstractStateSpace: the StateSpace, which
stores the states in main memory, and the HardDiskStateSpace, which stores the
states on hard disk. Both implementations of the AbstractStateSpace use a hash
map. The difference between the two implementations is the contents of the hash
map. The StateSpace stores the complete states in the hash map. As keys, it uses
the names of the states. This can be done because the Simulator ensures that every
name is only assigned once. The HardDiskStateSpace stores only an index to the
file where the corresponding states are stored in the hash map. As keys, it uses
the names of the states as the StateSpace does. We decided to store the hash map
containing the indices in main memory. Storing this hash map on hard disk would
reduce the performance drastically as this hash map is accessed every time a state
is accessed. The disadvantage is that main memory is still the limiting factor for
the the state space size even though the hard disk is used.

The HardDiskStateSpace uses more than one file to store the states on the hard
disk. To determine the file where a state is stored, a modulo function is applied to
the names of the states, which are integer numbers. The process to get a state from
the hard disk works as follows. First, the HardDiskStateSpace looks in the hash
map whether the state exists or not. If the state exists, the HardDiskStateSpace
gets the index of this state from the hash map. Then, the HardDiskStateSpace
applies the modulo function to the name of the state to determine the file that
stores this state. Following, the HardDiskStateSpace reads a byte array from the
file at the given index position and creates the actual state from the contents of the
byte array.
The HardDiskStateSpace does not read a state from disk every time a state is

requested by the Model Checker, and it does not write a state to disk every time a
new state is created or the contents of a state has changed. It uses a read and a
write cache to keep the number of accesses to the hard disk as small as possible to
improve the overall performance. Additionally, as [mc]square is written in Java, it
takes advantage of the hard disk cache operated by the Java Virtual Machine.
Both implementations of the AbstractStateSpace create the proper state from

the SimulatorState, which is the state that they get from the Simulator. To
make it easier to implement new types of states in [mc]square, we decided to
hide the type of the states from the state space implementations. The different
types of states are needed for the different algorithms applied. As the state space
implementations have to create states, we used the factory design pattern [47]
to decouple the creation of the states to a so-called factory . The state space
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implementations use an implementation of the StateFactoryInterface to create the
proper states. There are two implementations of the StateFactoryInterface: the
StateFactory, which creates states of type State and NthSuccessorState, and the
ModelCheckerStateFactory, which creates states of type ModelCheckerState and
NthSuccessorModelCheckerState.

Every state space implementation accesses states via the AbstractState class.
The AbstractState defines the fields and methods a state has to implement. There
are four different implementations of the AbstractState class. The State is a basic
implementation that only stores the name of the state, its data, and the successors
of the state.
The NthSuccessorState is a special kind of a State. It is used to incrementally

store states. An NthSuccessorState does not store the byte array representing the
microcontroller state, but it stores from which state the data of this state can be
created and how many steps have to be executed to create the data of this state.
That is, every nth step a state is stored completely with its data, and from this state
the data of successor states is created by loading the source state and executing a
certain number of steps. This reduces the space needed to store the states. The
performance is not decreased significantly if n is not chosen too large. Whenever
there is a state with more than one successor, the successor states have to be stored
completely including their data.
States of type ModelCheckerState are used when model checking. Beside, the

data that is stored by the State class, the ModelCheckerState class additionally
stores an array of type FormulaStatus. This array stores the status of the different
subformulas in the current state, that is, it stores whether these subformulas are
satisfied or not. An entry in this array can have the value true, false, unknown,
and marked (see also Sect. 7.1). The NthSuccessorModelCheckerState stores the
same information as the ModelCheckerState, but it stores it incrementally like the
NthSuccessorState.

7.3 Influence on Validity of Formulas

We implemented two CTL model checking algorithms in [mc]square. They check
whether a model, in this case the state space of an assembly program, satisfies a
CTL formula. Furthermore, we implemented several abstraction techniques within
[mc]square. These abstraction techniques influence the validity of the formulas.
The abstraction techniques are not implemented within the Model Checker package,
but within the Simulator and Static Analyzer package. The users can enable and
disable most of them, but they have to be aware of the influence on the validity of
the formulas.
In the following, we list for each abstraction technique currently implemented
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in [mc]square whether it preserves CTL, ACTL (universal fragment of CTL), or
another sublogic of CTL (see also Sect. 2.1):

Dead Variable Reduction Dead variable reduction does not influence the validity
of formulas because it is not applied for variables that are used within the
formula (see also Yorav and Grumberg [129]). Hence, it preserves validity of
CTL formulas.

Delayed Nondeterminism Delayed nondeterminism preserves the validity of ACTL
formulas. Section 5.7.4 sketches the proof that shows that DND preserves a
simulation relation between the concrete and the abstract LTS.

Lazy Interrupt Evaluation Lazy interrupt evaluation introduces additional behavior
and hence, yields an over-approximation. Thus, it preserves validity of ACTL
formulas.

Lazy Stack Evaluation Lazy stack evaluation implies an over-approximation as lazy
interrupt evaluation does and thus, it preserves the validity of ACTL formulas.

Path Reduction Path reduction preserves CTL*-X as shown by Yorav and Grum-
berg [129]. That is, it preserves CTL-X formulas in our case. In our opinion,
the loss of the next operator is not critical as we recommend not to use it. We
recommend not to use the X operator because [mc]square conducts model
checking on the assembly program, but the developer usually works on the
C code. Thus, the semantics of the next operator may not be obvious to the
developer.

If users apply all abstraction techniques implemented in [mc]square, [mc]square
preserves the validity of ACTL-X formulas. If they want to use the next operator,
they have to disable path reduction. Preserving ACTL means that if [mc]square
determines that an ACTL formula is true, this is also true for the concrete system.
The same holds if [mc]square finds out that an ECTL formula is false. If [mc]-
square finds out that an ACTL formula is false or than an ECTL formula is true,
the users have to check if this also holds for the concrete system. That is, they have
to check whether the provided counterexample is possible in the concrete system.

7.4 Related Work

[mc]square uses explicit model checking algorithms as, for example, Cospan [56],
EMC, Murphi [39], PROD [120], and Spin [62] do. We took the global model
checking algorithm used in [mc]square from [33] and the local algorithm from
[57, 121]. Beside removing some errors and eliminating recursion from the local
algorithm, we did not change the algorithms as we are mainly interested in the
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domain-dependent generation of state spaces. In contrast to the aforementioned
explicit model checkers, [mc]square does not use a proprietary input language, but
works on assembly code for certain microcontrollers.

Although [mc]square uses states that are partly symbolic, the model checking
algorithms utilized do not have to deal with symbolic states as they are handled
by the Simulator. Symbolic model checking is conducted by, for example, BLAST
[59], BOOP [127], MAGIC [23, 24], NuSMV [26], SLAM [9, 10], and SMV [79].
As aforementioned, we abstract from time as the state explosion observed was

too big when modeling time. Estes [82] preserves discrete time, but it faces the
state-explosion problem when checking bigger programs. There are model checkers
that do real-time model checking such as HyTech [58], KRONOS [130], and
Uppaal [14, 71, 72].

[mc]square is able to use the hard disk for storing states created during model
checking. This is also called hard disk model checking [11, 55, 112]. The algorithms
by Bao and Jones [11], Hammer and Weber [55], and Stern and Dill [112] try to
influence the search order such that hard disk accesses are avoided. These approaches
use the hard disk for state space building and for checking invariants only. As we
use an on-the-fly CTL model checking algorithm, we cannot delay accesses to the
hard disk. Whenever a state is created, the algorithm has to know whether it is new
or not. It cannot delay this decision because it has to check the current subformula
in exactly this state. In contrast to the other approaches, our approach conducts
model checking independent of the method used to store the states. That is, the
model checker is not aware that the states are stored on a hard disk.
We use a hash map similar to the hash map presented by Hammer and Weber

[55] to quickly check whether a state is new or not. If the hash map does not
contain the hash value of the state, the state is new. If the hash map contains the
hash value, a hard disk lookup can no longer be avoided. Hammer and Weber [55]
use an additional data structure that can be used in this case. Only if this data
structure does not give a conclusive answer either, a hard disk lookup is needed.
Unlike them, we implemented an additional write and read cache, and we use the
operating system and the JVM hard disk cache facilities. As in our approach states
may change during model checking due to new successors or new subformula values,
we determine the maximum size of a state beforehand and reserve enough space for
the state on the hard disk. Thus, states do not have to be moved on the hard disk
and hence, files do not get fragmented.
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This chapter describes two case studies conducted with [mc]square. The first
case study shows the effect of abstraction techniques on the sizes of state spaces of
different programs. In this case study, we were only interested in the differences of
the sizes of state spaces that were created using different abstraction techniques.
We were not interested in the results of the model checking.

The second case study details the use of [mc]square checking bigger programs.
In this case study, we were interested in actual formulas, the use of [mc]square,
and the model checking results. We explain how the user can find and identify errors
using [mc]square. We also used the programs utilized in the first case study in
other case studies [60, 88, 101–104, 107]. We published the second case study in a
paper [106].

8.1 Effects of Abstraction Techniques on Different
Programs

In this section, we present a case study that demonstrates the effects of the ab-
straction techniques implemented in [mc]square using five different programs. The
five programs chosen for this case study were all written by students in lab courses,
during diploma theses, or in exercises. None of these programs was intentionally
written to be model checked afterwards. All these programs were used on the
ATMEL ATmega16 microcontroller.

In the following, we first detail the five programs and explain the effects of the
different abstraction techniques. After that, we evaluate the results of this case
study.

8.1.1 Execution

The case study was conducted on a laptop equipped with a Intel Core Duo CPU at
2.33 GHz, 4 GB main memory, and a hard disk with a capacity of 100 GB. We used
revision 2233 of [mc]square for this case study.
Table 8.1 shows the results of the case study. The first column gives the name

of the program. The second column indicates the options that were used while
checking the program. The third column presents the number of states that were
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stored, and the fourth column presents the number of states that were actually
created including revisits. The fifth column gives the size of the state space in main
memory. The sixth column shows the time in seconds needed for model checking
including creation of the state space and all preparatory steps such as preprocessing,
parsing, and static analysis. And the last column shows the reduction of the number
of states stored in percent.
The second column indicates the options that were used for model checking the

program. In this column, there are six lines for each program. Every line represents
another combination of options used for model checking the program. First, every
program was model checked using the standard configuration. That is, no additional
options were used in this configuration. It is important to notice that the standard
configuration already includes some improvements and options that cannot be
disabled. The improvements that are already used in the standard configuration
include, for example, the improved modeling of the microcontroller and delayed
nondeterminism for interrupts. For some programs, we additionally provide the size
of the state space that was created with an old version of [mc]square that did not
include these optimizations.

Second, we checked each program using delayed nondeterminism for values. The
third run for each program was conducted using dead variable reduction. The fourth
line represents the model checking run using path reduction. The fifth run was
conducted using path reduction and dead variable reduction, and for the last run
all three abstraction techniques were used together.
As we were not interested in the result of the model checking, but in the size of

the state space, we used the formula AG true for model checking all programs. This
formula does not influence the effect of the abstraction techniques and therefore,
enables a fair comparison. We present two case studies interested in the outcome
of the model checking result using actual formulas elsewhere [102, 103]. We used
a power window lift program in one of the case studies [103] and a program of a
fictive plant and a light switch in the other case study [102].

Light Switch

The first program is called light switch. It is used to demonstrate basic micro-
controller functions (e.g., input/output from/to the environment). The program
consists of 162 lines of assembly code (72 lines of C code), uses two timers, and does
not employ interrupts. The program reads input from an I/O port (8 bit) and then
checks whether a certain bit within the input is set or not. All other bits of the
input value are not exerted for evaluation.

When using DND, [mc]square only splits up bits that are used by the program.
Whenever input from the port is read in this program, [mc]square creates only
two successors instead of 256 successors. These two successors are not created
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Table 8.1: Effect of the abstraction techniques on different programs.

Options States States Size Time Reduction
used stored created [MB] [s] %

Li
gh

t
Sw

it
ch

standard 6,282 8,979 1.42 0.13 -
DND 352 380 0.08 < 0.01 94.4%
DVR 4,762 6,388 0.76 0.07 24.2%
PR 1,670 18,926 0.43 0.34 73.42%

DVR & PR 960 11,749 0.24 0.27 84.72%
all 45 262 0.07 < 0.01 99.28%

P
la
nt

standard 175,944 183,325 44 2.81 -
DND 175,944 183,325 44 2.81 0%
DVR 175,944 183,325 44 2.83 0%
PR 9,844 218,022 2.47 2.82 94.41%

DVR & PR 9,844 218,022 2.47 2.82 94.41%
all 9,844 218,022 2.47 2.82 94.41%

R
ee
nt
ra
nc
e

standard 107,649 110,961 25 1.68 -
DND 107,649 110,961 25 1.68 0%
DVR 107,649 110,961 25 1.68 0%
PR 6,631 122,999 1.53 1.54 93.84%

DVR & PR 6,631 122,999 1.53 1.54 93.84%
all 6,631 122,999 1.53 1.54 93.84%

T
ra
ffi
c
Li
gh

t standard 9,998 10,514 2.32 0.20 -
DND 9,998 10,514 2.32 0.20 0%
DVR 9,998 10,514 2.32 0.20 0%
PR 522 12,812 0.12 0.20 94.78%

DVR & PR 522 12,812 0.12 0.20 94.78%
all 522 12,812 0.12 0.20 94.78%

W
in
do

w
Li
ft

standard 2,342,564 2,589,665 591 62 -
DND 316,334 442,055 80 6.04 86.5%
DVR 303,148 331,456 75 5.23 87.06%
PR 123,989 3,884,075 32 48 94.71%

DVR & PR 15,687 506,237 3.93 6.23 99.33%
all 5,232 217,577 1.30 2.62 99.78%
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when the port is read, but they are created when the corresponding bit is evaluated
(some instructions later). Hence, delayed nondeterminism influences the size of the
state space of this program via two distinct effects. First, it lowers the number of
successors that are created (two instead of 256), and second, it delays the split up
until it is needed (bit is read for evaluation). It is important to mention that this is
an over-approximation because all bits that are not used still have a nondeterministic
value and could be split up whenever they are read.

The effect delayed nondeterminism had on the state space of this program was
significant. The number of states stored dropped from 6,282 states to 352 states,
which is a reduction by 94.4%. In this program, DVR lowered the size of the state
space by 24.2%. DVR did not have a big influence because this program does not use
many functions. DVR usually helps to reduce the dependencies between functions.
PR lowered the number of states stored by 73.42%, but it significantly increased the
number of states created. The number of states created increased because of revisits.
As only the last state of single successor chain is stored, all states on this chain are
revisited until [mc]square recognizes the revisit. In this small example, this had no
effect on runtime. Using both analyses together, reduced the state space by 84.72%.
The savings of both analyses did not add up completely, but the combination had a
noticeable effect. The saving in number of states stored directly carried over to a
reduction of the size of the state space in main memory.

When using all three options together, [mc]square stored only 45 states, which
is a reduction by 99.28%. The effect of the abstraction techniques did not add up
completely, but they support each other. For example, DVR helps to reduce the
number of states created when using PR.

Plant

Plant is a program that controls a fictive chemical plant. It consists of 225 lines of
assembly code (73 lines of C code) and uses one timer and two interrupts. Using
standard options [mc]square created 175,944 states, which used 44 MB of main
memory. An older version of [mc]square (revision 1582) stored 801,616 states for
this program.
DND did not reduce the size of the state space because this program does not

read values from the environment and hence, only DND for interrupts showed an
effect in this program. As DND for interrupts cannot be deactivated, the effect of
the reduction cannot be seen. The number of states stored by the older version of
[mc]square gives an impression on the effect of DND for interrupts.
DVR did not have any effect on the size of the state space because the program

does not use local variables. PR reduced the size of the state space by 94.41% to
only 9,844 states, which yielded a memory reduction from 44 MB to 2.82 MB. PR
had such a big influence because the program mainly works using interrupts, and
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each interrupt handler is a long single successor chain. Using DVR and PR together
did not change the effect, and using all three techniques together did not change the
effect either. Taken the old value of 801,616 states, all techniques together achieved
a reduction by 98.77%.

Reentrance

The program called reentrance is used to demonstrate the reentrance problem. A
variable i is accessed both in the main process and in the interrupt handler leading
to invalid values of i. It is a small program consisting of only 148 lines of assembly
code (37 lines of C code) and using one interrupt.
Without using options, [mc]square created 107,649 states. As in the previous

described program, DND and DVR had no influence due to the same causes. That
is, the program uses only interrupts and does not read input from the environment.
Again, PR had a significant influence and stinted the state space by 93.84%. The
number of states created was only increased by 12,038 states due to fewer revisits
and shorter single successor chains as in the other programs. Combining the different
techniques did not have an additional effect because only PR influenced the size of
the state space.

Traffic Light

Traffic light is a program which was developed by one of our students in a lab course.
Its purpose is to control a traffic light. The program has 155 lines of assembly code
(85 lines of C code) and uses one timer and two interrupts.

Using standard options, [mc]square created a state space comprising 9,998 states.
Revision 1582 of [mc]square stored 35,613 states for this program. Using DND and
DVR did not have any influence as in the previous two programs. Again, the causes
are that DND for interrupts is already used when using the standard configuration,
the program only works with interrupts, and the program does not read input from
the environment. The effect of DND for interrupts can be estimated by comparing
the 9,998 states created by the new version of [mc]square and the 35,613 states
created by the old version.

Again, PR had a significant effect and reduced the size of the state space to just
522 states, which is a reduction by 94.78%. Compared to the old value of 35,613
states, this is a reduction by 98.53%. Combining the different options did not have
any further effect as PR is the only abstraction technique that influenced the size of
the state space.
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Window Lift

The last program called window lift is an automotive task. Here, a controller for a
power window lift used in a car was implemented. This solution consists of 289 lines
of assembly code (115 lines of C code) and it uses two interrupts and one timer.
Using no options, [mc]square stored 2,342,564 states. Revision 1582 of [mc]-

square stored 10,100,400 states when checking this program. This difference gives
an impression of the effect of DND for interrupts, which is now integrated into the
standard configuration of [mc]square, as it was not fully integrated in revision
1582. DND for values reduced the size of the state space to 316,334 states, which
is a reduction by 86.5%. DVR reduced the state space to 303,148 states, which is
slightly better than DND. The biggest reduction was again caused by PR, which
reduced the state space to 123,989 states. Using DVR and PR reduced the size
of the state space to 15,687 states. In this combination, DVR supported PR by
reducing the number of states created. Combining all three abstraction techniques
reduced the state space to 5,232 states, which is a reduction by 99.78%.

8.1.2 Evaluation

During this case study, we observed no combination of abstraction techniques that
increased the number of states stored. That is, usually the user can activate all
options and model check his programs. As we did not use other formulas than
AG true, it is possible that another formula reduces the effect of some abstraction
techniques because, for example, dead variable reduction cannot be used for variables
utilized within the formula. The effect of the different abstraction techniques varied
depending on the program checked.
Delayed nondeterminism did not show an effect for some of the programs. It

is important to notice that this is the case because only DND for values can be
activated and deactivated. DND for interrupts is activated all the time. The number
of states stored by revision 1582 of [mc]square gives an impression about the
effects of DND for interrupts. But even in this revision a part of DND for interrupts
was already implemented. DND for values only has an influence in programs reading
input from the environment. Two different criteria of DND lead to a reduction of
the number of states created. First, DND only splits up bits that are used within
an instruction, and hence, all other bits may remain nondeterministic. This lowers
the number of successors which have to be created. Second, DND delays the split
up of nondeterministic values until the value is really needed. Hence, successors
are created at a later point in time. Both criteria help to minimize the number of
created states, while still preserving a safe over-approximation. This was proven in
Sect. 5.7.
Dead variable reduction worked for some of the five programs. In general, DVR
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works for programs that contain many functions, use local variables, and do not
use their global variables in all functions (no tight coupling between functions).
Combining DVR and PR helped to decrease the number of states only created due
to the application of PR. In this situation DVR supported PR. A problem of DVR
is that it cannot be used for variables that are utilized within the formula.
Path reduction reduced the number of states stored significantly in all five pro-

grams, especially in the programs using interrupts. In some programs (e.g., window
lift and plant) time needed was not reduced because of revisits. It is a trade-off
between time and space. As space is the limiting factor, PR should be always used.
Using DVR together with PR helped to reduce the number of states created. The
loss of validity of the next operator (see also Yorav and Grumberg [129] and Sect. 7.3)
is not a problem for us as we do not use the next operator in our specifications.
As none of the abstraction techniques shows a negative effect, the user of [mc]-

square always should use them all. In the worst case, they show no improvement.
Usually, they significantly reduce the size of the state space and the time needed for
checking.
Transferring the results to real-world examples, we think that the window lift

program reflects the behavior of real-world programs better than the other programs
because it uses interrupts and it communicates with the environment (reading and
writing to and from the environment) at the same time. Hence, we expect that the
abstraction techniques used in this case study show the same behavior on real-world
examples as they showed for the window lift program. The problem is that we
cannot prove this as we cannot build the state spaces of bigger programs without
using all options. That is, it is not possible to compare the results. Therefore, we
conducted this case study using small programs. The case study described in the
next section used bigger programs and actual formulas.

8.2 An Automotive Microcontroller Application

This section presents a case study about model checking an automotive real-time
problem with [mc]square. In this case study, we checked three different programs
all solving the same problem. The problem that is solved by the programs is the
concurrent speed measurement of four different signals (channels). The solutions
were created by students in a lab course. We provide details about this case study
elsewhere [106].
In the following, we first explain the application. After that, we detail the

execution of the case study. That is, we explain for three programs the way the
specifications were encoded, the results of the model checking process, and the way
errors were located using counterexamples. In the end, we evaluate the results of
this case study.
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8.2.1 Application

As aforementioned, we took the programs used in this case study from a lab course
such as the one presented by Salewski et al. [99]. In this lab course, students had to
solve an automotive real-time problem, namely a four channel speed measurement
with a CAN bus interface (see Fig. 8.1). As the electronic control unit (ECU),
an ATMEL ATmega16 microcontroller1 in combination with a PHILIPS SJA1000
stand alone CAN controller was used. Our intention was to integrate this ECU into
the experimental vehicle developed at our institute for research and educational
purposes2.
The application involves several challenges: Concurrent measurement of four

speed signals (frequency measurement of rectangularly shaped signals), sensor data
processing within the limited resources of the given microcontroller, and interfacing
with the external CAN controller. All these tasks have strong real-time requirements.
Table 8.2 shows the functions used for the calculation of the speed values depending
on the current frequency. Only 8 bit are available to store each speed value making
this conversion necessary. Additionally, there are requirements for accuracy and
response depending on the actual frequency of each individual sensor signal. During
movement of the vehicle at high velocity shorter response times are required than
during movement at low velocity. Accordingly, sensor signals with high frequency
demand short response times (<100ms) while sensor signals with low frequency
demand longer measurement intervals to achieve the required accuracy (maximum
failure 10%).

Each group, which participated in the lab course, developed their own strategy to
achieve an optimized compromise between short response times and high accuracy for
different situations (all signals with high frequency, all with low frequency, different
signal input, changes in signal input, etc.) resulting in different implementations.
Further on, all groups had to pass an elementary acceptance test at the end of the
lab course to obtain a certain level of quality in all versions, as described by Salewski
et al. [99].

8.2.2 Execution

We conducted the case study on a server equipped with an AMD Opteron processor
with 1.8 GHz, 16 GB main memory, and a hard disk with a capacity of 120 GB. In
this case study, we used revision 1583 of [mc]square and applied all abstraction
techniques such as delayed nondeterminism, dead variable reduction, and path
reduction.

1In these lab courses CPLDs/FPGAs were also used, but they are not relevant for this case study.
2see also: http://www-i11.informatik.rwth-aachen.de/modelcar.html
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Figure 8.1: Application: 4-channel speed measurement with CAN bus interface.

Table 8.2: Functions to calculate the speed value.

Signal frequency Speed value s max. max.
f in Hz response in s failure

f < 2 s = 0 2 10%
2 ≤ f < 45 s = f ∗ 0.0436 + 1 1 10%

45 ≤ f < 550 s = f ∗ 0.0436 + 1 0.2 10%
550 ≤ f < 5733 s = f ∗ 0.0436 + 1 0.1 5%

f ≥ 5733 s = 251 0.1 5%

We chose three out of the 23 different programs created in the lab course. [mc]-
square could check some of the programs without any modification, while others
had to be modified. To get consistent results, we decided to modify all programs
in a uniform manner. As our focus was the calculation of the velocity and not
the communication with the CAN bus (CAN bus was not modeled), we removed
the sending of messages. Since the calculation is identical for all four wheels, we
removed three of the four signals.
We checked the following properties on the programs: (see Tab. 8.2):

1. The program does not exhibit stack overflows (non-functional property).

2. The speed value s that is written to the CAN bus is always between 0 and
251 (functional property).

3. If the signal value f is greater than 5733 Hz, 251 is written to the CAN bus
(functional property).

We did not encode the first property as a CTL formula because [mc]square
automatically determines the size of the stack during the creation of the state space.
Whenever a stack overflow occurs, [mc]square returns an error message. To check
this property, we used the formula AG true. Using this formula, [mc]square only
builds the state space and conducts its automatic checks.
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Formula (8.1) represents the encoding of the second property as a CTL formula.

AG (value ≥ 0 ∧ value ≤ 251) (8.1)

This formula is an invariant and therefore, we used a special algorithm that is only
able to check invariants. This algorithm is faster and uses less memory than the
algorithm used for checking general CTL formulas.
We could not encode the third property for all programs using the same CTL

formula because the third property depends on the structure and the data structures
of the program under verification. Formula (8.2) demonstrates the general idea of a
formula encoding the third property.

AG (frequency ≥ 5733⇒ AF velocity = 251) (8.2)

The problem is that not all programs internally measure the frequency in Hz and
therefore, we had to determine the threshold for every single program alone. This
formula is no longer an invariant but a general CTL formula and hence, we used
the general CTL model checking algorithm.

The following sections describe the programs in more detail. Each section briefly
presents the idea and the structure of a program. It describes the required modifi-
cations and the effort needed to change the respective program. Furthermore, it
explains the errors found and presents solutions to these errors. Table 8.3 gives an
overview about the results of this case study.

Program 1

The first program is structured as follows. The main function initializes all values
and devices and then enters the while(1){...} loop. This loop is empty because all
work is done by the different interrupt handlers. Each channel (wheel) has a separate
interrupt assigned and the timer interrupt is used for generating time intervals.
The communication with the CAN bus is done by three functions. To adapt this
program, we deactivated the three interrupts used for the wheels not considered,
and we commented out the contents of the function that sends the messages to the
CAN bus. The time we needed to apply these changes was small.
The first property was not satisfied in this program. After checking 47,440,000

states (stored) [mc]square detected a stack overflow. The interrupt handler shown
in List. 8.1 caused the stack overflow. The coder first deactivated interrupts (line 6)
and at the end of the interrupt handler reactivated interrupts manually (line 34).
This enabled nested interrupts. Thus, new interrupts could occur in the last lines of
the handler and disrupt it. Thus, the stack grew because every time a new interrupt
occurred, the calling context was pushed onto the stack. Eventually, a stack overflow
occurred.
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Listing 8.1: Part of program 1 exhibiting the error.
. . .
i n t f r e q 0 ;
char s0 ;
. . .

5 SIGNAL (SIG_OVERFLOW0) {
c l i ( ) ;
outp (0 x00 ,TCCR0) ;
s t a t u s++;
i f ( s t a t u s >= 8) {

10 // c a l c u l a t e
s0 = f r e q 0 / 2 ;

. . .
e r r o r_by t e = 0 ;
// l i m i t v a l u e

15 i f ( s0 >= 251) {
s0 = 251 ;
e r r o r_by t e = e r r o r_by t e + 1 ;

}
. . .

20 // send va l u e
i f ( ( s0 == 0) )
{

stat_low++;
i f ( s tat_low >= 5) {

25 s tat_low = 0 ;
send ( ) ;

}
}
e l s e send ( ) ;

30 f r e q 0 = 0 ;
. . .

s t a t u s = 0 ;
}

s e i ( ) ;
35 outp (0 x00 ,TCNT0) ;

outp (0 x04 ,TCCR0) ;
}
. . .
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Table 8.3: Results of the case study.

P
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S
at
is
fi
ed

S
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1
1st 47,440,000 - - - no overflow
2nd 8,507,012 192,523,046 13,749,892 4,753 yes* 22
3rd 262,163 3,407,959 327,699 99 no 18

2
1st 85,297,279 936,881,099 115,860,688 29,120 yes 7
2nd 4,070 46,234 4,071 1.7 no 7
3rd 86,787,103 935,871,960 117,349,663 28,717 yes* 7

3
1st 7,012,375 179,830,878 14,024,727 5,067 yes 10
2nd 7,012,375 179,830,878 14,024,727 5,620 yes 10
3rd 7,012,375 179,830,878 14,024,727 5,651 yes 10

* after fixing the preceding error

To fix this error, we removed the call to cli() and sei() in this interrupt handler. We
could do this because interrupts are automatically deactivated before an interrupt
handler is entered and activated after it is handled. It seems that the coder of this
program misunderstood this behavior. It is difficult to find this error by testing
because many interrupts have to occur in a short time period. As it is possible, it is
important to fix such errors. After applying the aforementioned changes, property
one was satisfied. The maximum stack size detected in this program after fixing
this error was 22.
Property two was satisfied in this program without any further modification.

Property three was not satisfied in this program. We had to adapt the formula (see
Form. (8.3)) as the frequency in this program was not measured in Hz.

AG (freq0 ≥ 502⇒ AF s0 = 251) (8.3)

The error, which led to the violation of the third property, occurred in the interrupt
handler that is called periodically. In this interrupt handler, the variable used
to store the value of the velocity overflowed. This interrupt handler is used to
calculate the velocity and to pass the calculated value to the function performing the
communication. The velocity (s0) is calculated by dividing the ticks (freq0) counted
by the corresponding timer by two (see line 11). The coder of this program used
a char (8bit) to represent the velocity and an int (16bit) to represent the number
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of ticks. As the number of ticks can be greater than 512, it can happen that the
variable used for the velocity overflows. Hence, if the number of ticks is greater or
equal to 512, the velocity that is reported is greater or equal to zero instead of 251.
We fixed this error by using an int value for the velocity instead of a char value.

Program 2

Program 2 is not structured at all. It is written in spaghetti code. The main
function first initializes all values and devices, activates all interrupts, and then
loops infinitely often. Each channel has its own interrupt assigned counting the
number of signals. Furthermore, a timer interrupt is used to periodically calculate
the velocity and send it to the CAN bus. The communication with the CAN bus is
distributed over the complete program. The different sequences used to initialize the
CAN bus, to specify the addresses, and to send the data are copied to all locations
where they are needed.

Adapting this program was not as easy as it was for the first program. We
deactivated the interrupts used for the wheels not considered as we did it for the first
program. The removal of the communication with the CAN bus was time-consuming.
We had to search for certain patterns and had to remove these patterns. Some parts
of the communication were not commented out because the coder of this program
conducted some calculation during the sending of the data, and we did not want to
change the semantics of the program.

The first property was satisfied in this program. The maximum stack size measured
for this program was 7. This is the smallest stack size of all programs used in this case
study. This is not surprising because there are no functions calling other functions
and interrupts are deactivated during all interrupt handlers in this program.

Property two was not satisfied in this program. Listing 8.2 shows the part of the
program that caused the error. Line 4 checks whether counter1 is smaller than 251.
After that, counter1 is incremented by one in line 5 and hence, the maximum value
of counter1 is now 251. Before the value of the velocity is sent in line 13, it is again
incremented by 1. Thus, the maximum value of the velocity sent is 252 instead of
251.

It would be easy to find this error by just inspecting the parts of the program that
are shown in List. 8.2, but these parts are spread over the complete program which
consists of 1,348 lines of C code. Therefore, this error was not found by the coder.
To fix this error, we changed the boundary in line 4 from 251 to 250. Property three
was satisfied after fixing the error encountered while checking the second property.
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Listing 8.2: Part of program 2 showing the error.
. . .
SIGNAL (SIG_INTERRUPT0) {

he l p1++;
i f ( he l p1 ==2 && counte r1 < 251) {

5 coun te r1++;
he l p1 = 0 ;

}
}
. . .

10 SIGNAL (SIG_OVERFLOW0) {
. . .

asm v o l a t i l e ( "nop" ) ;
outp ( coun te r1 + 1 ,PORTA) ;
outp ( dat_wr_on ,PORTB) ;

15 outp ( dat_wr_on ,PORTB) ;
. . .
}
. . .

Program 3

Program 3 is structured similar to program 1. The main function first initializes
all values and devices and then calculates the velocity and composes the messages
within the while(1) loop using a state machine. Four interrupts are counting the
signals generated by the different wheels. In contrast to program 1, the timer
interrupt is counting the number of timer overflows that occurred. In program 1
the timer interrupt handler calculates the speed value. This program calculates the
velocity in a separate function, which is called by the main function. The program
handles the communication with the CAN bus by means of two other functions.

Adapting this program was rather easy as we only had to comment out the two
functions dealing with the CAN communication and the three interrupt handlers
counting the signals generated by the wheels not considered. Additionally, we had
to make the variable representing the velocity globally accessible as propositions
about local C variables are currently not possible in [mc]square. Property one was
satisfied in this program. There were no stack overflows possible and the maximal
observed stack size was 10. Both, property two and property three were also satisfied
in this program without any changes.
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8.2.3 Evaluation

In this case study, we analyzed three programs in detail, which we selected from
23 programs created by students in a lab course. The three programs we selected
represent different ways the students solved the given problem. The problem features
some interesting aspects. It is a real-time problem which also occurs this way, for
example, in the automotive industry. Data is collected from sensors, calculations
are conducted, and a result is sent via the CAN bus. It is the first time we used a
data flow oriented program in a case study. The other case studies we did [103, 107]
all concentrated on control flow oriented programs. Data flow oriented programs
tend to have bigger state spaces and are more difficult to check using explicit model
checking as less abstractions can be applied.

Our aim was to model check the given programs without any manual preparation
(e.g., annotations and abstractions) as we did in other case studies [60, 88, 103, 107],
but this was not possible for some of the 23 programs. We could check several
programs without any modification but for others we had to apply modifications (e.g.,
comment out interrupts or remove communication with the CAN bus). Therefore, we
decided to apply the same changes to all programs as we wanted to get comparable
results. We think that these modifications have a scope that is small enough to be
applicable. Programs that are well structured are easier to modify than programs
without a clear structure. When modifying a program it is important to check
whether the applied changes have an influence on the property that is checked. In
this case study, it was easy to see that the applied changes did not influence the
properties checked.
The differences in the sizes of the state spaces were only caused by the different

implementations as all programs had to solve the same problem. Factors that
influenced the sizes of the state spaces include: number of variables, use of global vs.
use of local variables, variables storing the history of other variables, float divisions
(not natively supported by the ATmega16), number of locations where interrupts
are enabled, etc. Program 2 uses many global variables and many variables storing
the history of other variables, and interrupts are enabled in almost all locations of
this program. This resulted in the state space being the largest of all three programs.
Program 1 contains more global variables than program 3, but not as many as
program 2. As a consequence, the state space was smaller than the state space of
program 2. Program 3 contains the least number of global variables. We even had
to make one variable global in program 3 to check the third property. The results
shown in Tab. 8.3 confirm these observations. Program 3 is the longest of the three
programs, but it exhibited the smallest state space.
The size of the state space is not only influenced by data variables, but also by

the values of registers and I/O registers. This influence is even stronger than the
influence by data variables. As the three programs had to solve the same problem,
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they used all the same microcontroller features. Hence, the differences in the sizes
of the state spaces were not caused by the use of different features.
Other factors that usually influence the size of the state space could be auto-

matically removed by the abstraction techniques implemented in [mc]square. For
example, dead variable reduction removed the coupling of data variables between
functions and interrupt handlers in some of the programs. In some programs DVR
could not by used as DVR depends on the CFG, and the CFG could not be created
for some programs due to indirect jumps or indirect calls. Delayed nondeterminism
was used to alleviate the influence of the many different input values encountered in
this application. This reduced, for example, the influence that delay loops have on
the size of the state space.
The times needed for model checking shown in Tab. 8.3 range from 1 second up

to 9 hours. The runs during which an error was found were obviously shorter than
the runs that had to build the complete state space as it is usual for an on-the-fly
model checking algorithms. The times needed for model checking these programs
are that high because we used the hard disk model checking algorithm for all model
checking runs done in this case study. As this algorithm stores parts of the states
on hard disk, it needs more time than a model checking algorithm working in main
memory only. The hard disk model checker was only needed for program 2, while
the other two programs could be model checked without using the hard disk. As
we wanted to get comparable results, we used this option for all programs. The
time needed for model checking program 1 and 3 could be improved by a factor of
approx. 10 by using the model checker that works in main memory only. When
using the hard disk model checker, [mc]square can store up to 680,000,000 states
on our server. When using the algorithm that works in memory only, [mc]square
can store up to 69,000,000 states on our server. In both cases main memory is the
limiting factor. The upper bounds given for the size of the state space refer to our
server, which features 16 GB of main memory.
Summarizing, we think that this case study was successful. We only had to

apply small changes to model check these data flow intensive programs. We could
find some errors well known from real-world examples such as stack overflows and
forgotten interrupt disabling in these implementations. These programs were written
by students in a lab course and it was not planned to model check these programs.
Hence, the students did not follow any guidelines that would make model checking
easier. The length of the programs ranged from 300 to 500 lines of assembly code
reachable during model checking. The original length of the programs varied from
1,000 to 5,000 lines of assembly code (400–1,300 lines of C code). The biggest
resulting state space had 86,787,103 states (stored). As [mc]square can store up
to 680,000,000 states on our server, there is still some performance reserve for more
complex programs.
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This chapter first summarizes the work described in this thesis and draws some
conclusions. After that, we detail directions for future research and possible im-
provements.

9.1 Discussion

This thesis describes a new approach for model checking software for microcontrollers,
which uses assembly code as input. Chapter 3 shows that model checking assembly
code enables us to find errors that cannot be found in an intermediate representations
such as C code. These errors include compiler errors, reentrance problems, stack
overflows, and unintended use of microcontroller features. Model checking the
assembly code has two problems. First, it makes the approach hardware dependent
and second, due to the higher amount of details involved in assembly programs,
the state spaces of assembly programs tend to be larger and thus aggravate the
state-explosion problem. On the other hand, microcontroller programs are smaller
than general-purpose computer programs and only feature a pseudo parallelism
introduced by interrupts.

Chapter 4 describes an architecture that copes with hardware dependencies. Each
step of the model checking process is put into a single package. Only the package
creating the state space is implemented in a hardware dependent way. The state
space is created using a simulator that simulates the effect of instructions on the
microcontroller model. For this purpose, an existing, external simulator can be used,
or a special-purpose simulator can be developed.

The modular architecture aids the management of hardware dependencies. Using
an existing simulator, we observed the state-explosion problem as we could not
influence the simulation, for example, by applying abstraction techniques. There-
fore, we have developed a special-purpose simulator. By extending it to handle
other microcontrollers without changing most packages, we have shown that the
architecture is extendable. New static analyses or model checking algorithms can
also be added without the need to adapt the complete tool. [mc]square is thus
useful as a research tool for trying out new techniques. The GUI of [mc]square,
which is operated like a simulator, enables users not familiar with formal methods
to apply model checking.
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The state-explosion problem is tackled in Chap. 5–7. Chapter 5 details our simula-
tor, which creates the states for model checking. It natively handles nondeterminism
and creates an over-approximation of the behavior of the microcontroller to preserve
the validity of the model checking results. We tackle the state-explosion problem by
accurately modeling important hardware features and abstracting hardware features
that are not required. Furthermore, we apply abstraction techniques such as delayed
nondeterminism, which introduces lazy states into [mc]square. A lazy state is
a symbolic representation of not only a single state but a set of states. Thus, we
have successfully combined explicit and symbolic model checking techniques within
[mc]square. To show the validity of the delayed nondeterminism abstraction tech-
nique, we have developed a formal model of the simulator. Using this formal model,
we have shown that the delayed nondeterminism abstraction technique preserves a
simulation relation between the abstract and the concrete transition systems. That
is, it preserved validity of ACTL and LTL formulas and of invariants.
The right degree of abstraction is mandatory for successfully applying model

checking to microcontroller assembly code. If the abstraction is too coarse, interesting
properties cannot be shown. If no abstractions are used, the state-explosion problem
is likely to occur. Implementing the abstraction techniques within the simulator
allows hardware-specific abstraction techniques to be applied. Combining symbolic
and explicit model checking techniques enables the model checking of microcontroller
programs that are otherwise unmanageable.
Chapter 6 details abstraction techniques that require static analysis. These

abstraction techniques include dead variable reduction and path reduction. We
have adapted these abstraction techniques and the underlying static analyses to be
applicable to microcontroller assembly code. To improve the accuracy of the static
analyses and, hence, to improve the results of these abstraction techniques, we have
developed a model of the microcontroller, and we have implemented static analyses
that determine information that is otherwise unavailable in static analyses such as
the status of the Global Interrupt Enable bit.

Static analyses help to ease the state-explosion problem in many cases. They can be
applied to large programs and still obtain results useful for model checking. However,
microcontroller assembly code contains features that currently cause inaccurate
results, such as indirect stores and loads, and lead to inefficient abstractions.
Chapter 7 presents the model checking algorithms applied, the algorithms em-

ployed to create the counterexamples, and the methods used to store states. The
algorithms that create the counterexamples try to reduce their size. The counterex-
amples are presented in the assembly code, the CFG of the assembly code, the
C code, and as a state space graph. In addition to the usual method of storing
states in main memory, we have implemented a method to store states on hard
disk. Furthermore, we have implemented a method that stores states incrementally.
These techniques support the model checking of larger state spaces.

132



9.2 Future Work

If a formula is not satisfied, a counterexample is very important as it allows users to
locate the error within the program. Different representations of the counterexample
enable users to choose the presentation that suits their needs best. The presentations
within assembly and C code are similar to the traces of a simulator. The state spaces
of real-world programs tend to be large despite the use of abstraction techniques.
Therefore, it is important to store the states as efficiently as possible and to use
techniques that enable the storage of large state spaces such as hard disk model
checking. Whenever possible, time should be traded in for space.
Chapter 8 shows that our approach can successfully be used to model check

microcontroller assembly programs. It describes two case studies that demonstrate
the use of [mc]square on small programs without any manual preparation and on
medium size programs with small manual adaptations. The second of these case
studies shows that it is possible to use [mc]square to find and locate errors in
real-world programs.

Summarizing, we think that applying model checking to microcontroller assembly
code is practical for the programs considered in this thesis. The impact of the
state-explosion problem is not as significant as when model checking personal
computer programs. First, the accurate modeling of the microcontroller within the
simulator and the use of hardware-dependent abstraction techniques such as delayed
nondeterminism, path reduction, and dead variable reduction help to tackle the
state-explosion problem. Second, in microcontroller programs there is no parallelism
besides a pseudo parallelism introduced by interrupts. Furthermore, microcontroller
programs are not as large as the programs that run on personal computers. The
modular architecture makes our approach easy to extend. Using a simulator for the
creation of the state space and hiding the internals behind the GUI enables users to
use the tool like a generic simulator.

[mc]square can already be used in academia and education. It is able to find
errors in real-world programs. To use [mc]square in industry projects, further
research is needed to tackle the state-explosion problem. Moreover, the time to
extend [mc]square to support new microcontrollers has to be further reduced. The
next section discusses future research that helps to steer into this direction.

9.2 Future Work

Currently, there exists ongoing research to tackle the state-explosion problem. The
diploma thesis by Gückel [49] describes applying user-defined models of the environ-
ment of a microcontroller. These environments limit the state space size and can be
used to utilize [mc]square for testing. Furthermore, we are investigating whether
we can extend the delayed nondeterminism abstraction technique to automatically
remove further, unused details and the consequences of this extension on properties.

133



9 Conclusion

This research is focused on the abstraction of timers. Moreover, we are currently
working on an abstraction technique that suppresses the occurrence of interrupts
wherever possible without losing a safe over-approximation of the behavior of the
microcontroller. This technique is related to partial order reduction [62], which is
applied in Spin.
As abstraction techniques are very important to this approach, future research

should focus on the development of new hardware-dependent abstraction techniques
and the adaptation of known abstraction techniques to microcontroller assembly
code. We think that the combination of explicit and symbolic methods is promising.
Therefore, it should be determined whether there are other symbolic techniques
that could be integrated into our approach.

Further research into static analysis should concentrate on increasing the accuracy
of the different static analyses. This can be achieved by, for example, improving
the accuracy of the pointer analyses implemented in [mc]square. Currently, these
analyses are inaccurate. Additionally, the accuracy of the microcontroller description
used in the static analyses could be improved. It could be promising to reuse the
simulator model of the microcontroller in the static analyses. Moreover, static
analyses for finding errors independently of model checking should be added.
Explicit model checking is space- and time-consuming. We already have imple-

mented an algorithm that uses the hard disk to store states. Additionally, the
algorithms for state space building and model checking should be parallelized. Each
single workstation of a cluster could then create states, exchange them over the
network, and store them on the local hard disk.
To ease the creation of new simulators, research has to focus on techniques

for automatically creating them from models given in hardware description lan-
guages. These simulators should natively support nondeterminism and create an
over-approximation of the behavior shown by the corresponding microcontroller.
Additionally, methods have to be developed to automatically generate the imple-
mentation of known abstraction techniques such as delayed nondeterminism.

Furthermore, we think that a transfer of this approach to other domains such as
instruction list (IL) programs run on programmable logic controllers (PLCs) [75, 85]
and abstract state machines [18, 53] would be interesting. Particularly, the transfer
to IL programs on PLCs seems to be promising because IL programs are similar to
assembly programs and PLCs are similar to microcontrollers. As PLCs are easier
to handle than microcontrollers and involve less features, it could be possible to
analyze larger programs.
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