RWTH Aachen

Department of Computer Science
Technical Report

Empirical Studies for the Application of
Agile Methods to Embedded Systems

Dirk Wilking

ISSN 0935-3232 . Aachener Informatik Berichte . AlIB-2008-19

RWTH Aachen . Department of Computer Science . December 2008

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Empirical Studies for the
Application of Agile Methods to
Embedded Systems

Von der Fakultat fur Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Inform. Dirk Wilking
aus Osterholz-Scharmbeck

Berichter: Universitatsprofessor Dr.-Ing. Stefan Kowalewski
Universitatsprofessor Dr.-Ing. Ulrik Schroeder

Tag der mundlichen Prifung: 13.11.2008

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online
verfligbhar.

Dirk Wilking
Lehrstuhl Informatik 11
wilking@informatik.rwth-aachen.de

Aachener Informatik Bericht AIB-2008-19

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract

Agile Methods are a collection of software engineering techniques with specific
differences to traditional software engineering processes. The main differences
consist of rapid, cycle based development phases setting the focus of attention
on feedback of the source code being developed. The results taken from user
feedback, software reviews, or other forms of software evaluation are used as a
basis for changes which comprise for example corrections of the user interface or
the adaption of the software architecture. Based on single techniques taken from
Agile Methods, their application to embedded systems software engineering is
empirically evaluated in this thesis.

The experiments and studies which have been conducted comprise the tech-
niques of refactoring, short releases, and test driven development. The results
hint to inconclusive effects. For example it could be shown that a constant
effort for functional work is achieved by using the short releases technique, but
its impact on the resulting software remains difficult to assess. For refactoring
a reduced consumption of memory was found, but this effect was created by an
overhead for applying the refactoring technique itself.

The effect of agile techniques appears to be inferior to individual software
development ability of participants in terms of factor strength. Consequently,
the second part of the thesis aims at creating variables for the purpose of
experiment control. Variables comprise C' language knowledge and viscosity
measuring a participant’s level of reluctance to change a fragment of source
code.

An additional experiment consists of the replication of the N-version pro-
gramming experiment by Knight and Leveson. The original experiment of
independence between two program failures has been extended by an additional
factor of hardware diversity. By using different hardware platforms, it has
been expected to create mutual independent failures which is not approved by
experimental observations.

i

Acknowledgments

I would like to thank Prof. Dr. Stefan Kowalewski for supporting the overall
and sometimes very ambitious aim of this thesis. Prof. Dr. Ulrik Schroeder
gave kind advice concerning the human centered approach. I would like to
thank Prof. Dr. Dr. Wolfgang Thomas and Prof. Dr. Horst Lichter for
participating in the dissertation committee.

The members of the embedded software chair must be mentioned for all the
fruitfull discussions and great cooperation. Especially the first three Ph.D.
students, namely Dr. Bastian Schlich, Dr. Falk Salewski, and Daniel Kliinder
were a strong point of motivation.

Finally, I would like to thank all my diploma students. Umar Sherwani,
David Schilli, Axel Janflen, Sven Abeln, and Ahmad Afaneh amongst others
had a strong influence on the results and direction of this thesis.

iii

v

Contents

| Introduction
1 Motivation

2 Thesis Synopsis
2.1 Research Question
2.2 Research Methodology
2.3 Thesis Outline
2.4 Bibliographic Notes

Il Experiments on Agile Techniques
3 Overview of Agile Methods related Experiments

4 Planning of Embedded Software Projects
4.1 The Technique of Short Releases
4.2 Design of the Experiment
4.2.1 Variables and Measurement
4.2.2 Hypothesis.
4.2.3 Procedure
4.24 Participants
4.2.5 Threats to Validity
4.3 Analysis
4.3.1 Quality of the Survey Data
4.3.2 Group Differences
4.3.3 Main Hypothesis
4.3.4 Explorative Analysis
4.4 Experiment Results 0.

5 Refactoring

11

13
13
14
14
15
15
16
16
17
17
17
19
19
24

27

Contents

5.1 The Technique of Refactoring
5.2 Design of the Experiment
5.2.1 Variables and Measurement
5.2.2 Hypotheses Lo
5.2.3 Procedure
5.2.4 Participants oo
5.2.5 Threats to Validity
5.3 Analysis
5.3.1 Main Hypothesis
5.3.2 Analysis of Additional Variables
5.3.3 Experiment Power
5.4 Experiment Results

Test Driven Development
6.1 Design of the Experiment
6.2 Reasons for Failure

Summary of Findings
7.1 Problem of the Human Factor
7.2 Results of Experiments

11l Experiments on the Human Factor

8

9

Overview of Human Factor related Experiments

Rasch Models
9.1 The Dichotomous Rasch Model
9.2 The Linear Logistics Test Model

9.3 Logit as Parameter Units
9.4 Benefits and Drawbacks of the Rasch Model

10 C Knowledge

vi

10.1 The Concept of C Knowledge
10.2 Design of the Experiment
10.2.1 Variables and Measurement
10.2.2 Hypothesis.
10.2.3 Procedure
10.2.4 Participants
10.2.5 Threats to Validity

39
39
40

41
41
41

43
45

47
47
48
49
20

Contents

10.3 Analysis 58
10.3.1 Test Revision 60

10.3.2 Assessing Validity 61

10.4 Experiment Resultso 61

11 Viscosity 65
11.1 The Concept of Viscosity 65
11.2 Design of the Experiment 65
11.2.1 Variables and Measurement 66

11.2.2 Hypothesis. 67

11.2.3 Procedure 68

11.2.4 Participants L 70

11.2.5 Threats to Validity 72

11.3 Analysis 73
11.4 Experiment Results L. 75

12 Uncertainty 77
12.1 Uncertainty within Software Engineering 7
12.2 Relation to Agile Methods 78
12.3 Design of the Meta Study 78
12.3.1 Variable and Measurement 79

12.3.2 Procedure 80

12.3.3 Participants 82

12.3.4 Threats to Validity 83

12.4 Analysis 83
12.4.1 Overview o 83

12.4.2 Non-Productive Effort 84

12.5 Results of the Study 87
12.5.1 Uncertainty in Processes 87

12.5.2 Threats to Validity of Variables 88

12.5.3 Relation to Higher Level Software Engineering 89

13 Summary of Findings 91
IV An Experiment on Dependability 93
14 N-Version Programming with Hardware Diversity 95
14.1 N-Version Programming 95
14.2 Design of the Experiment 96

Vil

Contents

\'

15

16

17

Vi
18

19

viii

14.2.1 Variables and Measurement
14.2.2 Hypothesis.o
14.2.3 Procedure oo
14.2.4 Participants
14.2.5 Threats to Validity
14.3 Analysis
14.3.1 Independence of NVP with Forced Diversity
14.3.2 Replication of the NVP Experiment
14.3.3 Assessing the Strength of Factors
14.4 Experiment Results 0oL

Measurement Tools

Code Evolution Framework

15.1 Example of an Analysis
15.2 Code Evolution Data Collector
15.3 Code Evolution Data Analyzer.
15.4 Source Stepper
15.5 Module Interface for Data Analysis

Progress Measurement Environment

Disturber

Conclusion

Lessons Learned

18.1 Lessons Learned for Empirical Work
18.2 Lessons Learned for Software Engineering
18.3 The Black Matter of Software Engineering Experimentation
18.4 Effect Strength

Results

19.1 Agility and Embedded Systems
19.2 Variables
19.3 The Perfect Experiment

Basic Methodical Approach
Al BoxPlots

105

107
107
108
109
111
112

115
119

121

123
123
124

. 125

126

129
129
130
132

135

Contents

A2
A3
A4
A5
A6

Hypothesis Testing, 136
Test Artifacts 136
Resampling 137
T-Test 138
U-Test 138

X

Contents

List of Tables

2.1
3.1

4.1
4.2

5.1

9.1
9.2

10.1
10.2

11.1

11.2
11.3

11.4

19.1

Short summary of experiments 8
Overview of agile experiments 12
U-Test to assess initial differences in performance 19

U-Test concerning the treatment influence on the different variables 19

Power calculation of a difference in means of 12 seconds for

different sample sizes N 37
Coding of correct and incorrect answers 47
Excerpt of a g-matrix for the LLTM 49
[tem parameters and fitness values 58
Item parameters and fitness values for revised test 61

Questions and the according item numbers, resembling n param-

eter used in the result section 67
Different models compared 74
Resulting parameters concerning the twelve questions were put

in order by easiness L 74
Resulting parameters concerning libraries. Parameters are given

relative to first library (MFC) 76
Variable assessment as used within the thesis 131

X1

List of Tables

xii

List of Figures

4.1
4.2
4.3
4.4

4.5
4.6

5.1

5.2

5.3

5.4
5.5

9.1

10.1

10.2
10.3

10.4

11.1
11.2

Accumulated data points per group and date - one data point is

an entry consisting of a specific task, a duration and a type . . . 18
Overall fraction of different types of work in percent 20
Mean and normalized functional part 21
Mean absolute working time in minutes and normalized fraction

of architectural work by treatment. 22
Mean normalized fractions of defect by treatment 23
Mean normalized fractions of change by treatment 24

Box plot of mean fixing time of each participant divided by

treatment group, 6 data points per group 32
Box plots for changed LOC per version categorized by 6 data
points per treatment 33

Box plots for fraction of development time compared to first
version per modification categorized by 6 data points per treatment 34

Bootstrap simulation of mean memory difference 35
Accumulated occurrences of refactoring techniques for 6 partici-
pants 36
Item characteristic curves of items one and eight form the C
knowledge experiment depicting the ogive function 51
Histogram of the number of years the participants were program-
MING . . . v v v e e 56
Frequency of background categories for participants Y
Goodness of fit plot for two separated groups by median of person
parameter 59
Boxplots for parameter estimates of C knowledge versus years of
Programming e e 62
Background of participants 70
Libraries known to participants 71

xiii

List of Figures

Xiv

11.3 Goodness of fit plot for § parameters of the basic Rasch model
based on randomized groups

11.4 Goodness of fit plot for n parameters of the LLTM based on
randomized groups

12.1 Example 1 of changes in lines of code - organizational information
stripped due to length of the line
12.2 Example 2 of changes in lines of code - organizational information
stripped due to length of the line
12.3 Steps to analyse similar linesinafile
12.4 General data for each study
12.5 Percentage of effort deleted in each study
12.6 Events of deleting source code over all studies
12.7 Plot of deleted effort and relative project time
12.8 Comparison of the effort spent on productive (final) and non-
productive (deleted) lines L.

14.1 The simulation process
14.2 Histogram of independent model simulation
14.3 Strength assessment of different factors of influence

15.1 Accumulated complexity/McCabe metric over time taken from
TDD experiment

15.2 Structure of stored experiment data

15.3 Graphical user interface of the source stepper applications

15.4 Effort spent on different aspects in N-version experiment

16.1 Change of functionality by version for two exemplary implemen-
tations L L

16.2 Changes of instructions and branches for two exemplary imple-
mentations L

A.1 Overview of box plot elements

Part |

Introduction

1 Motivation

The principles of the software engineering process are subject to frequent changes
concerning the general paradigm. As pointed out by Boehm [9], the process of
creating software was considered as crafting in the nineteen-sixties, formally
definable in the nineteen-seventies, productivity oriented in the nineteen-eighties,
concurrent vs. sequential in the nineteen-nineties, and agile and value based
since the year 2000. The aim of this thesis is to increase findings for agile
methods in the special area of embedded software engineering and thus follows
the course of current paradigms as defined by Boehm.

Agility in Software Engineering is focussed on a multitude of aspects. Re-
garding embedded systems, continuous feedback of the software product’s
functionality, early testing, and focus on simple design appear as viable ef-
fects for the development process. Especially the design and implementation
of sophisticated architectures like AUTOSAR for the automotive domain or
CORBA for distributed systems might benefit from these effects. In order
to evaluate agile methods for embedded systems, three different techniques
were compared using an experiment for each. The reason for this approach
originated from the internal structure of agile methods being based on single
techniques. The most important representative of agile methods is Extreme
Programming introduced by Beck [7]. It consists of twelve individual and
different techniques. As each technique is of different importance, only tech-
niques relevant to embedded systems were chosen. Thus the techniques of
refactoring, test driven development and short releases were regarded to have a
high relevance as explained in Section 2.1. The benefits of agile methods are
linked to the individual techniques and are rarely subsumed for the entire family
of methods. Refactoring as introduced by Fowler [28] has the aim of increasing
and maintaining a good internal software structure with a simple design. This is
supposed to reduce the effort needed for changes and to increase maintainability
of the software. Test driven development is regarded to increase software design
quality due to usage of structures before they are created. Another benefit is
thought to be an increase in reliability of the resulting software. Especially
the creation of a test collection with a sufficient code coverage is in support
of the embedded systems need to fulfill the quality of reliability for a given
functionality. Short releases are considered to be one of the main differences

1 Motivation

to traditional software development methods. The aim of this technique is
to gather rapidly and continuously feedback from users and stake-holders of
a software project in order to increase overall perceived quality. This might
support the aspect of configurability often found for embedded systems software
development. By identifying solutions dynamically during the project lifetime
their design quality might be reviewed during the course of the project. The
aim would be to find a small software design allowing to implement the required
number of configurations.

Combining all these single effects into one paradigm would result in a rea-
sonable strong software engineering methodology. The required precondition is
that every single technique has the benefits that are propagated. This leads to
an individual assessment of techniques which was done within this thesis.

The execution of single experiments revealed problems in the area of noise-
induced errors. Although experiment control and design became rigid, results
suffered from these disturbance effects. The origin of these effects was supposed
to be generated by specific human traits which were not measured directly.
The definition and measurement of participant related variables lead to a
human centered approach during the second part of the thesis. A general shift
to a human centered paradigm guiding software engineering as proposed by
Cockburn [19] was omitted, but measuring the human factor for the purpose of
control appeared inevitable. Although ”changing” this factor is not possible
for software engineering projects in general, controlling this aspect to reduce
noise-induced errors is regarded critical for experimentation. Finally, when
assessing the effect strength of techniques proposed by software engineering
and the characteristics of experiment participants, the question is raised if the
the former surpasses the later.

2 Thesis Synopsis

2.1

Research Question

Agile methods are a generic term for a collection of software development
methods which focus on short planning and cycle based execution [2]. The
methods are a controversial topic that have been evolved over the last two
decades (cf. Abrahamsson et al. [3] for a short history). Well-known methods
belonging to this family are Extreme Programming [55], Scrum, the Crystal
Family of methodologies and Feature Driven Development. An important agile
method is Extreme Programming consisting of twelve single techniques to be
applied within a project. The techniques are:

On-Site Customer: Collaborative software development with the customer
Planning Game: Repeated planning meetings ”in the large”

Metaphor: List of terms taken from the customer’s domain

Short Releases: Small steps in terms of functional software increase
Testing: Collection of regression tests

Simple Design: Implementation of non-complex software architectures

Refactoring: Continuous structural change to maintain subjectively good
design

Pair Programming: Two programmers work simultaneously on one ma-
chine supervising each other’s works

Collective Ownership: Every developer is responsible for every source
code aspect and no individual responsibilities exist

Continuous Integration: Source code changes are gathered in small itera-
tions in a source code repository

2 Thesis Synopsis

e Coding Standards: Source code layout and naming regulations are gath-
ered and maintained

e 40 Hour Week: This technique tries to enforce productive work by reducing
meetings and controlling overtime

Williams et al. [90] state that empirical evaluation of single techniques is an
acceptable approach to increase overall knowledge of agile methods. According
to this proposal a subset of these techniques is used in this thesis.

In general, agile methods are a rather well covered area concerning empirical
evaluations, although other sources speak of a need for even more experimen-
tation [3]. The technique that received the most research attention is pair
programming as reported by [1]. Because of this attention and a rather small
effect of the pair programming technique as shown by a meta-analysis of Miiller
et al. [64], it was omitted in this thesis. Short releases, refactoring and test
driven development were the techniques I considered to have the strongest effect.
In addition the application of these techniques could be controlled rather easily.
Other techniques like on-site costumer or the planning game were considered
as strong effects, but creating a realistic environment to test them would have
been difficult as they require long projects with bigger project groups. As this
environment was not feasible, the direct programming techniques presented
above were evaluated.

2.2 Research Methodology

The decision to work empirically was mainly influenced by Tichy [82]. In order
to evaluate software engineering process related techniques, a measurement
driven approach appeared as viable. During the second part of the thesis, the
focus on person related measurement made it necessary to ”borrow” methods
and artifacts (as proposed by Singer et al. [79]) from other disciplines which
are mainly human and social sciences. Experiment design, treatment, size of
participant groups, control group, effect strength and so on are all concepts
which were taken from human science and accordingly are rarely found in
computer science. Nevertheless the generic concept of experimentation catches
hold in all sciences and only variable acquisition was directly influenced by
human sciences. The acquisition particularities comprise for example the
Hawthorne effect describing a change in human behavior in an experimental
situation. Human behavior tends to support the experimenter in showing a
significant difference, which in turn makes the study invalid. Other examples
taken from human science experimentation are the use of randomization in

2.3 Thesis Outline

order to factor out individual differences in performance which otherwise might
blur a given treatment effect. Apart from a variety of computer science articles
describing experimentation for software engineering in detail, a good source for
software engineering experimentation is given by Bortz and Doéring [12].

One complaint about software engineering experimentation is that students
are not considered representative for individual software developers. As ex-
plained in [80], this type of participants is sufficient for evaluating basic effects
or an initial hypothesis which was the aim of this thesis. Host et al. [42] state
that at least last-year software engineering students have a similar assessment
ability compared to professional developers. In [15] no general difference could
be found for a different programming expertise between these groups. Accord-
ing to these findings students are considered sufficient for the evaluation of
basic effects. Looking at this from a different point of view, an effect that
only affects the group of professional or expert developers can be regarded as
too specialized for an application in software engineering. Incorporating the
average programmer into software engineering experimentation appears as a
more holistic approach.

2.3 Thesis Qutline

The main aspect of this thesis is divided into three distinct experiment families
which appear as separate parts. Agile methods related experiments are presented
in Part IT of the thesis. It comprises the short releases experiment (Chapter
4), the refactoring experiment (Chapter 5), and the test driven development
related experiment (Chapter 6). Part III presents experiments which are
related to assessing the human factor consisting of the C knowledge experiment
(Chapter 10), the viscosity experiment (Chapter 11) and the uncertainty related
experiment (Chapter 12). Part IV contains the experiment about N-version
programming (Chapter 14). This experiment is not directly related to agile
methods but presents a replicated experiment and is included for the purpose of
reference. For each of these parts an individual summary is given consisting of
a collection of findings and their interpretation. The experiments are presented
in chronological order in Table 2.1 with N being the number of participants.
The domain the experiment belongs to is given, additionally.

A brief overview of the created tools is given in Part V. They are presented
in this thesis because of the tacit knowledge they contain and because of the
additional variables they generate within experiments. The thesis is closed by
Part VI comprising an interpretation of the results for the application of agile
methods in embedded system software engineering, empirical work in general

2 Thesis Synopsis

Name Domain Type N Chapter
Planning Horizon Agile Methods Experiment 28 4
N-version Progr. Dependability Experiment 24 14
Refactoring Agile Methods Experiment 12 5

Test Driven Development Agile Methods Experiment 24 6

C Knowledge Empirical variable Experiment 151 10
Uncertainty Agile Methods Meta study 51 12
Viscosity Empirical variable Experiment 63 11

Table 2.1: Short summary of experiments

and additional observations that are based mainly on experience gathered
within the experiments and lab courses that were executed.

Each experiment is presented using the same template. It consists of a
background description, an experiment design, an analysis, and a section for
result interpretation. The structural presentation of the experiments is loosely
based on the template suggested by Wohlin et al. [91].

2.4 Bibliographic Notes

The experiments presented in this thesis were published on different conferences
and in a journal. The N-version programing experiment was published in [74].
A slightly more detailed description of the refactoring experiment was published
in [88].

Regarding the human factor related experiments, the variable for C knowledge
and more details on the underlying Rasch model are given in [89]. A more
thorough tool description for the code evolution framework described in Chapter
15 can be found in [87].

Part Il

Experiments on Agile Techniques

3 Overview of Agile Methods
related Experiments

The following three experiments are directly related to specific techniques of
the Agile Methodology. Although a considerable number of techniques exist,
the most promising techniques were chosen as described in Chapter 2.1. At
first the technique of short releases was tested as this was thought to be the
main difference between traditional and agile paradigms. The main treatment
of this experiment was to induce frequent planning and result phases compared
to one long phase of planning and development. 28 students participated in
this experiment which was executed during a lab course. This experiment is
described in Chapter 4.

Consequently the presumably second strongest factor i.e. refactoring was
empirically evaluated. For this experiment twelve developers were divided
into two groups with one group having to apply a controlled refactoring to its
program while the second group had to execute a placebo treatment consisting
of an additional documentation. Details and results of this experiment are
presented in Chapter 5.

Finally the test driven development technique was assessed within another
experiment. The aim here was to test if the overall reliability was influenced by
this method. In addition to the twelve student taking part in this experiment,
it was planned to reuse results from earlier experiments in order to identify
a change in reliability. Due to organizational problems concerning the time
frame and place of this experiment, only a few students successfully finished
this course. The resulting number of six measurement points was insufficient to
perform an inference statistical test. Although this experiment failed, details
and problems are described in Chapter 6 in order to enhance quality of further
studies of that technique.

Table 3.1 presents the properties of each experiment which are important
for a statistical assessment. Regarding the size of treatment group Ny, the
refactoring experiment was the only experiment with very few students. The
number of students for the test driven development experiment was higher
because of the existing data being reused. In order to cope with small groups in
experiments, the inference test used during the statistical analysis was changed.

11

3 Overview of Agile Methods related Experiments

Name N; Variable Source Inference test
Planning Horizon 7 Effort Survey U-Test
Refactoring 6 Time Measurement Resampling

Test Driven Development 12 Failures Test environment Resampling

Table 3.1: Overview of agile experiments

Resampling (or bootstrapping) is a method which reuses the observed results
and therefore is able to omit certain assumptions. For example a t-Test has
the precondition that the observed data follows a normal distribution which is
difficult to assure for small experiment sizes. Due to the fact that resampling
easily scales up to bigger sized experiments, this method was used since the
second experiment. Another quality assessment of an experiment is given by
the measurement variable and its source. Again the planning horizon used
a rather rough main variable based on a survey for effort estimation. The
refactoring experiment used a stopwatch time measurement while the test
driven development experiment used a hardware test environment to count the
failures of a system.

12

4 Planning of Embedded Software
Projects

4.1 The Technique of Short Releases

Regarding the different development methods related to Agile Methods [2],
similarities between the approaches can be found. The most important simi-
larity consists of short releases meaning that short implementation phases are
continuously re-iterated by an intermediate organizing phase. A characteri-
zation of this organizing phase leads to a similar significance as the general
planning phase of an arbitrary software development. For Agile Methods the
target time frame and the specification focus has a length of one (the next)
development cycle. The length of these cycles differs strongly between different
types of Agile Methods and ranges from two days (feature driven development)
to approximately four weeks (Extreme Programming) as depicted in [17].

The experiment presented in the following was executed in order to assess
one of the basic differences of agile and traditional methods: short releases of
the agile approach compared to long phases of waterfall based methods. The
waterfall method is taken as a reference because it is considered as the most
prominent representative for traditional methods. The main purpose was to
assess the impact of the different planning approaches on the outcome of a
software project. The underlying reason to start such an experiment was based
on the assumption that errors which were discovered late in a project threaten
the project’s success. But as stated in Lippert et al. [55], this model of rising
costs for changes in a project at a later project stage might be wrong.

The overall aim of the planning phase of a waterfall approach is to build
a software architecture and a schedule for the entire lifetime of the project.
This approach respectively allows to control the time and the programming
tasks for multiple programmers in a project. The Agile Methods’ approach
of planning consists of a reflection of the system created so far and a shorter
planning focused on the next cycle. The intended time frame in conjunction
with the different focus is considered as the difference in project execution and
named planning horizon in the following. This rather informal term comprised

13

4 Planning of Embedded Software Projects

the main differences in the treatment of the experiment.

4.2 Design of the Experiment

In order to run the experiment, a lab course consisting of 28 students was taken
as a platform (cf. [16]). The students were randomly divided into two groups.
The first group used a traditional approach, where the design of the system
architecture and the implementation planning constituted the initial phase.
The second group was asked to deliver a usable and useful system source code
every two weeks. The method for assessing the influence of the design horizon
on the software development was to compare the time expended for the lab
course by the different groups.

4.2.1 Variables and Measurement

Two types of main data collection devices were used. The first one was a log
book which had to be filled out biweekly by the students (cf. [41] and [92] for
similar approaches). Here a rough description of the work was required with a
precision level of minutes. In addition to the general description in a single log
book entry, the task’s type had to be documented. The possible choices were a
functional, a planning, an architectural, a failure removal, or a non-function
oriented change task. The overall development time could be calculated from
these entries.

The controlled variable during this study was the planning time which was
changed in length. The group with a short planning horizon was asked to omit
a long time planning and to provide newly programmed source code every two
weeks. The other group was asked to provide an architectural description of the
system in UML together with a time schedule to program the different modules.
While the first group progress was checked directly every two weeks, the second
group provided UML diagrams and Gantt diagrams only once at the beginning.
After that, no further control of development was made for this group.

Although a multitude of environments and principles for data collection
exists (cf. [6], [18], [26], [90]), the approach taken in this work was different. In
order to show a general influence of the effect, the data collected dealt with the
parameters of the experiment. Therefore this log book oriented data collection
can be regarded as a special measurement tailored for this experiment.

14

4.2 Design of the Experiment

4.2.2 Hypothesis

The early creation of a system architecture and a time schedule in the long
planning horizon group were assumed to lead to an increased development
effort during the late phases of the project. The reason for this assumption
was expected to be the focus on non-critical aspects of the development. The
main functional part of the system was assumed to be done late in the project
and this was thought to impose major changes in architecture, modules and
the system in general. Overall this leads to the more general hypothesis of:

Hy:tp #ts

Here t;, denotes the overall development time of the long planning horizon
group and tg the overall development time of the short planning horizon group.
According to the principal of falsification, the hypothesis used in the inference
test used the counter hypothesis Hy being

HoitL:ts.

4.2.3 Procedure

The system that had to be developed by the students consisted of a digital
signal processor (DSP) and an ultrasonic sensor as used in an automotive
environment. The purpose of the system was to provide pre-crash warning with
automatic breaking. The functionality to be developed included the following
tasks:

e Accessing an ultrasonic range sensor
e Computing the level of danger of collision based on the measured range

e Communicating the range to another DSP using a predefined protocol

The DSP was a C5416 by Texas Instruments. The language used in the
project was C++ and the development environment was the standard IDE
provided by Texas Instruments DSPs (Version 2.2). The location that was
used to develop the software was either the computer pool or the system was
developed at home. In both cases no direct monitoring took place. Because
of an insufficient number of hardware systems and a lack of working space a
simulator was developed and given to the students. This simulator focused
on the communication and sensor aspects of the main task. In conjunction
with the instruction set simulator from Texas Instruments this environment
simulator was able to provide a complete development environment.

15

4 Planning of Embedded Software Projects

4.2.4 Participants

The experiment itself was embedded into a main study period lab course at the
RWTH Aachen University. The project lasted 15 weeks. The participants for
this experiment were composed of 28 main study period students working in
teams of two.

The participation was not controlled directly, instead the students took part
in an election procedure allowing them to choose their favorite course.

Ethical issues, discussed for example in [22] and [76], were countered by using
the data after the lab course had finished!, by keeping the results anonymous
and by voluntary participation?.

4.2.5 Threats to Validity

The communication between students was a clear threat as the groups’ results
could become dependent among each other. This concerns architecture design
as well as the approach chosen to develop the software.

The usage of different practices of software engineering, like test driven
development, pair programming etc. had to be controlled in order to increase
the experiment’s internal validity. Except for UML and Gantt chart based
modeling no special practices were allowed during the development. The usage
of UML and Gantt charts were regarded as a low threat.

The data collection was not controlled directly due to the high number of
participants and the length of the experiment. This threat was encountered
with a detailed introduction to the logbook using an example allowing the
students to use the logbook as it was intended to be used. In addition the
logbook artifact was tested during a preparation phase.

There was a considerable number of students who quit the course. Two long
planning horizon groups stopped working after about three quarters of the lab
course had passed. In addition one long and one short planning horizon group
were reduced to only one programmer and therefore have been removed from
the data analysis as well.

The language C++ is a threat when programming an embedded system. The
reason for that is that C is regarded as the lingua franca for embedded systems.
The language C++ was used during this experiment because object oriented
languages allow a better design representation of the software architecture using
the UML. This was considered an aspect supporting software design in general.
The team size with only two developers is very small which is a threat. The

IThe logbook sheets were collected in an unaccessible box.
20ne group did not join the experiment.

16

4.3 Analysis

advantage on the other hand is having an increased number of measurement
points supporting the conclusion’s validity. Because of this, the team size can
be regarded as a trade off. The experience of the developers is a threat as well,
although the degree of an advantage in experience is unknown.

4.3 Analysis

As a first analysis step the quality of the biweekly provided survey data is
checked. This is followed by tests which are applied on the initial surveys filled
out by the participants. The initial surveys were executed in order to control
equality of previous knowledge of both treatment groups.

The most important hypothesis was that both treatment groups needed the
same effort to finish their project. This is considered the null hypothesis that
must be falsified to show an effect.. In addition the biweekly surveys were used
to identify differences in the type of the work. The different types of work were
regarded as a unique concept. Therefore the final analysis step provides an
explorative assessment of these variables.

4.3.1 Quality of the Survey Data

In order to assess overall measurement quality Figure 4.1 depicts the difference
in the log book collection mechanism using single log book entries as data points.
It presents an overview of the mean data points for each treatment group in a
two weeks time frame. The precision is led by the short planning horizon group
having about twice the number of data points as the long planning horizon
group. This imposes a threat to the internal validity as it is different for the
two treatment groups. The overall precision of the data can be expressed using
the sum of the points divided by the number of the participating groups for
each treatment. It is 88.3 data points per short planning horizon group and
38.8 for the long planning horizon group. Consequently the data collection
itself is difficult to use and must be subject to control.

4.3.2 Group Differences

In order to describe the background concerning programming and software
engineering experience an initial survey was carried out. Table 4.1 shows the
result of a non-parametric U-Test of this survey (cf. Appendix A.6 for details).
The test focuses on the equality of the central tendency (or median) of a sample.
The Mann-Whitney U-Test is used for independent measurements and the

17

4 Planning of Embedded Software Projects

Treatment
15—
Factor
m Short Planning
Horizon
12— = Long Planning
Horizon
i)
£
£ 9
S
<
[a)]
c
3 6
=
3_
0_

Figure 4.1: Accumulated data points per group and date - one data point is an
entry consisting of a specific task, a duration and a type

Wilcoxon W-Test is used if the two measurements are dependent. The values
are based on rank sums were each value is transformed to its position in the
occurrence of values. The lowest value is transformed to a value of one while
the next higher value is transformed to the rank value of two (and so on). By
building the sum of values it is possible to identify significant differences for
example when one group receives too many low ranked values. The z-value
transforms the test statistic to a distribution with a mean of zero and a variance
of one. The significance finally indicates the likelihood of the test statistic with
values less than 0.05 considered as significant. Two tailed tests aim for equality
while one tailed tests aim at directed hypotheses.

The table points to a significant difference (0.04) for the variable ” Number
of Years of Programming Activity”. This indicates an unbalanced general
programming knowledge between both groups although randomization was
used during treatment assignment.

18

4.3 Analysis

Is familiar with | Doesn't know
Extreme how a SW Number of
Project Work Knows many Programming / Project Years of
Good is new to Programming Is not good other Agile should be Programming
Programmer him/her Languages at C++ Methods carried out Activity
Mann-Whitney U 30,000 46,500 44,000 38,000 34,000 25,500 24,000
Wilcoxon W 108,000 82,500 122,000 74,000 112,000 61,500 60,000
z -1,512 -,120 -,388 -,815 -1,110 -1,822 -2,055
Asymp. Sig. (2-tailed) ,131 ,905 ,698 415 ,267 ,068 ,040
Exact Sig. [2*(1-tailed a a a a a a a
Sig.)] ,181 ,910 , 792 473 ,305 ,082 ,069

a. Not corrected for ties.
b. Grouping Variable: Treatment

Table 4.1: U-Test to assess initial differences in performance

4.3.3 Main Hypothesis

The hypothesis of a different overall development time is tested with a U-Test
as shown in Table 4.2. The variable T,,, is used as the sum of development
time for each group. The table shows a non-significant (0.286) difference for
this variable. Therefore hg, which is the hypothesis that both groups needed the
same development time, has to be accepted. Accordingly the main hypothesis
of this experiment could not be shown.

Test Statistics?

NTArchite

Tsum NTFunction NTPlanning cture NTDefect NTChange
Mann-Whitney U 7,000 5,000 10,000 7,000 1,000 4,000
Wilcoxon W 17,000 26,000 20,000 28,000 11,000 14,000
z -1,066 -1,492 -,426 -1,066 -2,352 -1,711
Asymp. Sig. (2-tailed) ,286 ,136 670 ,286 ,019 ,087
Exact Sig. [2*(1-tailed a a a a a a
Sig.)] ,352 171 ,762 ,352 ,019 ,114

a. Not corrected for ties.
b. Grouping Variable: TreatmentFactor

Table 4.2: U-Test concerning the treatment influence on the different variables

Additional work, which was expected to appear in some long planning horizon
groups, did not occur. On the other side an advantage of a long planning phase
did not have an influence on the overall development time either.

4.3.4 Explorative Analysis

Due to the explorative nature of this study, the area of interest was covered
with more variables than actually needed by the main hypothesis. The greater

19

4 Planning of Embedded Software Projects

detail of the time variable is discussed in the following part.

NT Variables
[NTFunction
70,007 B NTPlanning
NTArchitecture
60,00 = NTDefect
[NTChange
50,00
40,00
30,00 §
20,00 T %
10,00
N\
\ B
0,00—

T T
Short Planning Horizon Long Planning Horizon

Figure 4.2: Overall fraction of different types of work in percent

The main variables of the survey based data collection were post processed in
order to focus on the type of work for each treatment. The T in each variable
indicates that the type of work was multiplied by the time needed for the
specified task. The N refers to the normalization step, which computed the
ratio of the given type of work (in percent) for the two weeks time frame. The
result is a fraction describing the effort for each group and type of work. The
meaning of the variables is:

e NTFunction represents the functional fraction of the work like program-
ming algorithms or peripherals. As for the other variables, it represents
the percentual part of work within two weeks.

e NTPlanning is the part of planning time used during a two weeks cycle.
This includes the time needed to read documents.

20

4.3 Analysis

e NTArchitecture is related to a programming task which changes the
general architecture of the system without changing functionality.

e NTDefect comprises the process generally considered as defect removal:
finding the cause of the failure and fixing the fault.

e NTChange indicates the development part of the work that was used
to do non-functional and non-architectural programming. This comprises
commenting, renaming, and general organizational changes.

Analysis of NT-Variables

Treatment
Factor

, Short
50,00 o —— Planning

Horizon

60,00

Long
- Planning
Horizon

Mean NTFunction
N w N
o o o
o o o
T T 7

10,00

0,00

[[[[[[[[
v, & e SO Yo o % O
‘7\{, o e e o Y
0, % G % 0, ‘o ‘% o
B N N
v, B, R, 8, %, %,
20 %, 2, R, %, %,
t4 t4 4 t4 S s

Date

Figure 4.3: Mean and normalized functional part

In order to evaluate the fraction of each work type concerning the overall
development process, Figure 4.2 provides a box plot of the different data points.
The influence of the different treatments reveals a higher maximum planning
fraction for the long planning horizon group which could have been expected.
In addition the architecture is a more important task for the planning group
which again is caused by the treatment of the according group. The variance for
the short planning horizon group seems to be smaller, although the reason for

21

4 Planning of Embedded Software Projects

this might be found in the precision of the data points as discussed in Section
4.3.2.

Treatment
Treatment 40,00
800,00 B
Factor , Factor
. Short
Short
700,00 . _ f
— Planning g, s e Plar_mlng
Horizon 5 30,00 A A Horizon
c 600,00 Long 5 Long
S - - Planning = - - - Planning
|2 500,00 Horizon G Horizon
% 20,00
: <
@ 400,00 zZ
= j
I
800,00 2 10,00}
200,00
100,00 0,00
Y %% % b &b A A A
> >
%, %o, % 2, 2., Yo, "o %, Y, \5.\{, e 2, %, Yo, "o
%, Yo, Yo, Yo, “a, Yo Co o 2. Yo, Yo Yo, <o “o. Yo, “o
K222 A A At A M K225 e A A A -
Vo < b % 9 G R4 <% < % 2 %
o %, < %, %, o o, %, 03 %, %,
Yo Yo So. S0 Yo S0 Yo Yo S0 S0 Yo <o
vy % w % vy % v w T

Date Date

Figure 4.4: Mean absolute working time in minutes and normalized fraction of
architectural work by treatment.

The U-Test on the NT-variables presented in Table 4.2 was chosen because
the assumption of normal distribution could not be met for the given variables.
The table shows a significant difference for the NTDefect-variable. This variable
indicates that the fraction of work used for defect removal was significantly
different for each treatment. One interpretation of this difference is a more
dependable system which is caused by a superior planning and architecture.
The result may have been a reduced number of failures for the system. The
other reason consists of the overall system quality. It is likely that some groups
did a more challenging yet more powerful system than others leading to a
different number of system defects. One last aspect is the lack of precise data as
mentioned in Section 4.3.1 which means that the real fraction of defect related
development is not shown precisely enough for both treatments.

One solution to the problem of precision is a final system quality test. It was
suggested in [64] as a control device to assure equality of programming results.
Coming too late for this experiment, the proposal was included only informal,
but has been established for a different experiment environment as described
in [73].

22

4.3 Analysis

30.00— Treatment
' Factor
Short
25,00 — Planning
Horizon
D 20,00 Long
5 - - - Planning
E Horizon
Z 15,00
C
@
[0}
= 10,00
5,00
0,00

I [I I I I I [
o, Yo e b o % O
o, Ny s Ny s 0, 0, O
G Yo Yo Yo Sp Yo Yo =
.0 7\ 7~ 7« 7‘ ~
, 2 ¥h o O @
7\,\, 6?\,\; e\’e 0.\,\3 "?o\, %,
4 4 4 4

Date

Figure 4.5: Mean normalized fractions of defect by treatment

Analysis of the Development Progress

The mechanism of collecting data regularly over a period of time allows to
investigate general development progresses and differences caused by the two
treatments. One effect which is assumed to be a problem of long planning
horizon approaches is shown in Figure 4.3. A peak of the functional part of the
work becomes evident at the end of the course. This indicates an effect, where
just before the absolute deadline, a major part of the needed functional work is
done using a waterfall method.

An interesting aspect, especially regarding the main hypothesis, is the overall
work that was done by both groups. The difference between the two treatments
is shown on the left in Figure 4.4. It shows that the mean work time in minutes
for the short planning horizon group was much higher in the end than for the
long planning horizon group which is a surprising result. The reason for this
unexpected observation is that the focus on functional work is considered to
reduce unexpected work during the end phase of a project.

In order to obtain a better assessment considering the higher amount of work,
the according fraction of work types is shown on the right in Figure 4.4. The
fraction of the architectural work as shown in this Figure points out greater
effort for the short time planning group. Here the mean value of 20% indicates

23

4 Planning of Embedded Software Projects

40 00— Treatment
' Factor
Short
— Planning
o 30,00 Horizon
g’ Long
© - Planning
= ;
(l;) Horizon
= 20,00
c
]
Q
=
10,00
0,00

I I I I I
0{ s ??9 % <o 97. 0)'

o N, Ny N 0, @ Q
%, Yo, Yo, Yo, <o, Yo Yo “o
Qg w w ® mNS,

B, e R, e, %, %

" Ny o s QO
Yo Yo o S0 Yol =
Q9 “Q, “q Sq, “0 "G

Date

Figure 4.6: Mean normalized fractions of change by treatment

major changes right before the end of the course. The assumption of additional
work is supported by Figures 4.5 and 4.6. The amount of non-architectural
change programming and defect caused programming appears to be much
higher in the short time planning group. Although these effects are an often
reported and well known effect ("embrace change”), this might be a reason for
the additional work for the short time planning group before the deadline of
the lab course.

4.4 Experiment Results

The hypothesis of both groups having a different development effort could not
be shown. Thus, neither a short planning horizon nor a long planning horizon
changes the time needed to develop a system significantly. Concerning the
explorative analysis for this experiment, differences in the types of programming
work were found. Differences in functional or defect related development
appeared. Although not part of the hypothesis, it is very likely that these
differences are imposed by the different methods and that an according effect
could be shown.

Technically this experiment is regarded weak concerning environment and

24

4.4 Experiment Results

control. Especially the underlying assumption, that short and long planning
composed the only factor of influence for the development time is regarded
false in retrospect. Experiment control was low as gathering UML and Gantt
diagrams is not really countable. Differences in quality as well as detail level
could not be controlled. Especially the lack of control of the final version is
critical. As only the functioning sensor was sufficient for a running system,
neither reliability nor other non functional aspects of the source code were
tested. This is regarded highly problematic as differences especially in these
areas were enormous and thus the source code of the different groups was not
really comparable.

Nevertheless the kind of data collected in this experiment is regarded in-
teresting. As types of programming tasks were gathered, their frequency of
occurrence and average length can be considered potentially different for both
kinds of software projects. The final question of the impact of different types
of work regarding project success could not be answered.

25

4 Planning of Embedded Software Projects

26

5 Refactoring

5.1 The Technique of Refactoring

Refactoring first mentioned by Opdyke [65] is an important technique on its
own, although it is considered part of the Extreme Programming methodology.
It can be described as continuous review of the source code with a restructuring
of source code according to implicit design rules. The steps to change source
code are described in Fowler [28]. Another important aspect is when to apply
a refactoring. It is described to be best executed when a developer identifies
a source code fragment which does not follow the implicit design rules. The
discrepancy in design is subjective in nature and described as "smell” by [28].
After identification of the problem the catalog of changes is used to correct the
source code design. The steps to achieve this comprise for example renaming
of variables, extraction of new methods or even extraction of complete classes.

According to Mens and Tourwé [60], refactoring is assumed to affect posi-
tively non-functional aspects, presumably extensibility, modularity, reusability,
complexity, maintainability, and efficiency. Negative effects consist of additional
memory consumption, higher power consumption, longer execution time, and
lower suitability for safety critical applications.

Research on refactoring mostly includes technical aspects like computer aided
application of refactoring. One area of research is refactoring on non object
oriented programming languages ([37, 54]). Another common area of interest is
the computer aided support of design flaw identification ([58, 70, 77, 84]). The
area consists of the actual application of a refactoring step as this is syntactical
non trivial ([30, 59]). Empirical work on this topic is rather uncommon.
One example for an empirical evaluation is the influence of refactoring on
changeability as evaluated in [33] reporting a lower change effort. Other
empirical results provide a taxonomy for bad smells as presented in [58].

The results reported by experience reports provide a mixed picture of refac-
toring. Non-satisfactory results are reported by [67]. The reason for this was
given as bad tool support and in addition to this the size of a legacy system
being refactored. Code evolution analysis [48] investigates code clones (copied
code fragments) as one of the main artifacts minimized by refactoring. For

27

5 Refactoring

some code clones no refactoring was available and additionally it was reported
that not all code clones should be refactored. One successful application of
refactoring is reported in [32]. Here programming performance was increased.
A secondary nevertheless interesting aspect mentioned was the compliance to
the design principle of information hiding after having finished the refactoring.

5.2 Design of the Experiment

For the refactoring experiment, twelve students had to develop a program
based on the same requirements specification. Six students were asked to
apply refactoring to their software. The other six students continuously had
to document their source code. The later step is regarded a placebo effect
treatment to omit the effect that students behave in an experiment conform
way (Hawthorne effect [69]). Additionally the disturbance for a person that
was created by refactoring was also applied to the control group by using this
treatment. Group assignment was done randomly.

Two hypothesis based on non functional aspects were tested. Maintainability
was thought to be higher in refactored source code. This was tested by randomly
inserting errors in the source code and measuring the time a participant needed
to fix the error (thus classified as corrective maintainability [5]). The second
hypothesis was that modifiability was higher in the refactored code due to
its better internal structure. This was tested by adding requirements to the
software and measuring the times and lines of code (LOC) needed to meet
these requirements. For both hypotheses the differences in metrics were not
used within an inference statistical test. Although this is proposed in [46], the
distribution and scale types are regarded as problematic for testing purposes.

5.2.1 Variables and Measurement

The main independent controlled variable was the assignment of a participant
to the refactoring or documentation group. The execution of refactoring as
well as documentation was done with a tool named disturber (cf. Chapter 17).
Using this tool every participant was interrupted every twenty minutes and
reminded to execute the treatment task. In case of refactoring a list of design
flaws (smells) had to be checked. For the documentation treatment it was
needed to document the new software parts.

The dependent variables were lines of code, development time for a new
requirement (modifiability) as well as the time to identify and correct errors in
the source code (maintainability). The two relevant variables for modifiability

28

5.2 Design of the Experiment

could be measured using the code evolution framework as described in Chapter
15. It gathered login and logout information of participants as well as source
code changes written during the time of implementation. For the randomly
induced errors of the maintainability test, a simple tool was written which
randomly removed lines of code. This removal of source code lines resulted in
syntactical or semantical errors. 15 syntactical and 10 semantical errors were
created in each version. The time needed to fix them was measured using a
stopwatch and the measurement was supervised by a member of the chair.

5.2.2 Hypotheses

As maintainability was assumed to be better in the refactoring group, the time
tmain Needed to find and correct errors induced into the source code was thought
to be lower in the group Zqiny,, compared to the documentation group tmain .-
As the opposite had to be rejected, the hypothesis Hy was formalized as

HO : tmainRef Z tmainDoc~

The resulting alternative hypothesis was

Hl : tmainRef < tmainDOC‘

A similar hypothesis was used for modifiability. Only the meaning of ¢ changed,
as tmoq described the mean time to develop additional requirements for the
refactoring group. Consequently, the H, hypothesis for modifiability was

HO : tmodRef Z modpoec*

and H; was given as

Hl : tmodRef < tmodDoc-

5.2.3 Procedure

In this experiment, video tutorials were used to explain details about the envi-
ronment and the microcontroller to the participants. Two different videos were
shown for the treatment consisting of a video about refactoring and documen-
tation. The advantage of using this way of training was that each participant
received the same amount of attention and no person or method was favored.
After this initial tutorial step, a general survey was executed in order to assess
person ability. Questions in this survey were based on experience, language
and microcontroller knowledge. To avoid any motivation effect, refactoring was

29

5 Refactoring

named reorganization during the active experimentation procedure. Based on
a requirement list, programming was done. Each participant had to work in
a separate room. This lead to a non continuous development with students
working during different times a week.

The main task consisted of a reaction and a memory game to be programmed.
The reason for selecting this task was the low domain knowledge required to
start development. Different types of hardware needed to be programmed as
buttons, LCD, LEDs and hardware interrupts were part of the requirements
specification. An acceptance test was executed checking the functionality and
requirements as programmed by the participants. In this early experiment the
test was manual in contrast to the later available automatic tests used in other
experiments as described in Chapter 16.

The refactoring treatment was based on a subset of steps applicable to the
programming language C. This was needed as C is regarded a more common
and realistic language for embedded systems' and C itself has no direct support
for object oriented features needed to apply all steps. Thus only non object
oriented refactoring steps could be chosen for the treatment. As a special
refactoring C macro refactoring was added as discussed in [29] and [30].

The application of refactoring (and the documentation treatment) was con-
trolled by the disturber tool (cf. Chapter 17) which lead to a constant treatment
execution every twenty minutes. The controlled interruption was done to remind,
assure and consequently control treatment execution. Although the periodic
application of refactoring is not natural as refactoring is executed based on a
developer’s decision, the rigid control was needed because participants were
supposed to be new to the technique. As the main reason to start a refactoring
is based on a programmer’s subjective view, this had to be controlled via
checklists based on smells described in [28].

The chair’s standard development environment consisting of an ATMEL
ATmegal6 microcontroller was used for this experiment. The development
environment was WINAVR 2 together with ATMEL AVR Studio 3. As it was
not part of the main experiment, a header and a C file was provided for the
LCD programming.

5.2.4 Participants

Participants of this experiment were twelve computer science students from the
RWTH Aachen University. All of them were in the main study period and their
participation in the experiment was paid on basis of a regular student contract.

! According to a survey on embedded.com over 60 % of embedded developers use C.

30

5.2 Design of the Experiment

The experiment lasted 40 hours and the overall execution of the experiment
took three months. The reason for this time span was the number of rooms
which had to be used exclusively leading to organizational issues. The project
related data were saved on individual network drives and inaccessible for other
participants. Based on the type of room interruption from other members of
the chair occurred but the frequency was acceptable. Questions and feedback
to the participants were handled via e-mail and a specific instant messaging
server. Messages and experiment data were archived which had to be accepted
and signed by the participants.

5.2.5 Threats to Validity

Although the more detailed validity examination proposed by Wohlin et al.
[91] was used in the published experiment description [88], the following text
contains the standard validity description of internal and external validity.

The most important threat to internal validity consists of the checklist which
is used for refactoring. As it is artificial and not based on the developer’s
subjective view, the realistic execution of this technique is threatened. The
same is true for the periodical application every twenty minutes, which does not
resemble a "natural” application. On the other hand a detailed theory regarding
the effects of refactoring does not exist. The main idea of ”"once and only once”
suggested by the inherent term "factor” as explained by Fowler [28] is the
most precise effect description that can be given. Thus it is not known how
unrealistic a checklist is compared to intuition. The usage of maintainability
and modifiability contains additional threats to internal validity. First both non
functional aspects are described as one of a multitude of affected factors. The
modifiability test of adding requirements may be in support of the refactoring
technique thus creating a rather artificial setting. One last problem are the
few participants consisting of six students per group. This low number would
have required an exceptional factor strength of the refactoring treatment. This
aspect is discussed in Section 18.4 in detail and tested in the analysis Section
5.3 of this experiment.

The external validity is lowered by the use of the C language as a major
part of refactoring steps cannot be applied without object orientation. Here a
trade off situation occurred, as the realism of using C for embedded systems is
regarded higher. Additionally the principle of ”"good” micro design is considered
as a language independent aspect. The test of adding requirements is regarded
realistic, as requirements elicitation and requirements stability are problematic
on their own.

31

5 Refactoring

5.3 Analysis

5.3.1 Main Hypothesis
Maintainability

The maintainability test consisted of 15 syntactical and 10 semantical errors
that were induced into the source code of each participant. The time to locate
the error in the source code and to correct it was measured in seconds. Figure
5.1 depicts the mean correction time for each participant of each group as a box
plot. Although the refactoring treatment had a slight advantage concerning
reaction, results were not significant when tested with a bootstrap inference
test for a level of significance of a = 0.05. Thus better maintainability is not
regarded as different between the refactoring and the documentation treatment.

350,00
%)
°
5
S 300,00
O
n
)
g 250,00 | ——— |
=
o |
£
X
=
C 200,00
I
8 _L
=

150,00

I I
Documentation Refactoring
Treatment

Figure 5.1: Box plot of mean fixing time of each participant divided by treatment
group, 6 data points per group

Modifiability

The effect of new requirements to a project was measured using the lines of
code metrics (including comment lines). Three kinds of lines of code were

32

5.3 Analysis

combined: added lines, changed lines and deleted lines. Additionally the time
being measured needed to fulfill each new set of requirements. Due to differences
in participant’s performance, ten completed version were available for the first
requirement addition (version 1.1), while nine participants completed version

1.2 and 1.3.
210
*12
180
—
—
c 150+
Rl
o
[
Z 120
°
0
S 90—
60 —
- 1
Documentation Refactoring

200

2

LOC for version 1

150

100

50—

*8

—

Documentation

120

3
fiy
1S}
IS]

]

80—

LOC for version 1.

T

60—

40— —T—

.

1

T
Documentation

T
Refactoring

T
Refactoring

Figure 5.2: Box plots for changed LOC per version categorized by 6 data points
per treatment

The change of lines of code for the different versions is shown in Figure 5.2.
Obviously the initial hypothesis for modifiability contradicted the observed
results as for two new versions, more lines of code were created for the refactoring

33

5 Refactoring

group. The median of changes of the refactoring group surpassed the median
of changed lines for the control group nearly every time.

0,10 0,07
= 0,06
50,08 o4 5
@ 90,05
(0] (0]
> >
50,06 So,04-]
S S
© ©0,03
20,04+ e
T E
< 0,02
x 4
0,02
010 0,014
0,00 0,00
T LN T T
Documentation Refactoring Documentation Refactoring
0,06
) *2
—
0,05+
o
2]
2 010
>
50,04
S
=
()
20,03
=
ks
]
x]
0,02
012
0,01
T T
Documentation Refactoring

Figure 5.3: Box plots for fraction of development time compared to first version
per modification categorized by 6 data points per treatment

The results found above are supported by the time measurements as shown
in Figure 5.3. Although both measurements naturally correlate (more lines of
code take longer to be programmed), additional effort seemed to be required
when applying the refactoring technique. Regarding the difference of time, all
three additional versions needed more time to be finished by the refactoring

group.

34

5.3 Analysis

Summing up, refactoring does not appear to support maintainability or
modifiability. Apart from an influence on non functional aspects, side effects
regarding development effort seem to occur when refactoring is applied. For a
more detailed interpretation, see Section 5.4.

5.3.2 Analysis of Additional Variables

As additional variables were collected, an analysis of the results was done more
deeply. As hypotheses were not formulated in the beginning, these results had
to be considered indicators of possible effects.

The first observation was that the overall size of the resulting source code
was not influenced by treatment. The size of the projects varied from 745 lines
to 2214 lines of code.

Simulation of mean Flash—-RAM for version 1.0

| observed ! Value

S 1.62% ' 2278
0 7] — 1
— 1
5 8 !
5 S | B
3 1
o 1
Q |
[T '
o |
Q 1
o !
1
|
o - .

I 1 1 1 I
-4000 —-2000 0 2000 4000

Flash memory of documentation group - refactoring group

Figure 5.4: Bootstrap simulation of mean memory difference

One interesting difference was observed in the memory consumption between
both treatment groups. This value was reported after every compilation and
thus could be extracted from the finished versions of each participant. One

35

5 Refactoring

memory type of the microcontroller used was a flash memory. This type of
memory is used to store program code and constants of the program. In
order to compare the differences, a bootstrap simulation [23] was executed (cf.
Appendix A.4 for details). The simulation created random groups based on
the original data and computed statistics for both groups. By doing this, the
likelihood of the observed differences could be assessed comparing this value
with the multiple simulated results. Figure 5.4 displays simulated differences
as a histogram and marks the observed value. As the value of 2278 only occurs
rarely (1.62%), the difference is thought to occur non randomly and accordingly
may be caused by refactoring.

The main reason to use a bootstrap technique was the low number of par-
ticipants and the unknown distribution of the observed values making t-tests
and u-tests invalid. Especially small experiments benefit from this inference
statistical test [83].

Const vs Volatile Variable—|
Replace Temp with Query+
Replace Nested Conditional with Guard .~
Decompose Conditional—|
Add Macro Definition Replacing Values i..—|
Remove Control Flag—
Consolidate Duplicate Conditional ..
Consolidate Conditional Expression—
Inline Method
Adding Parameters to a Function|
Inline Functior
Split Temporary Variables—|
Reverse ConditionaH
Replace Parameter with Explicit Methods
Renaming a Macro—
Rearrange the code—
Replace Assignment with Initializatior
Substitute Algorithm—
Introduce Explaining Variables—
Remove Parameter—
Replace Magic Number with Symbolic .~
Comments—|]
Rename Method|]
Extract MethodH]

L

T T T T
20 30 40

Frequency of use

o
=
o

Figure 5.5: Accumulated occurrences of refactoring techniques for 6 participants

The checklists used for refactoring constitute another interesting source
of data. As each student filled out the type of refactoring being executed,
the frequency of each refactoring could be counted. This is shown in Figure
5.5. Regarding single refactoring techniques, the "extract method” principle

36

5.3 Analysis

appeared to be the most important refactoring technique. Following that, correct
naming of variables as well as adding source code comments were important.
All three refactoring techniques aggressively change semantic aspects of source
code. The technique of changing a number to a symbolic constant may be
important only for embedded systems as single values may be used more often
to represent a certain state of the system. The list is regarded as an initial hint
on the importance of refactoring for embedded systems.

5.3.3 Experiment Power

As the number of experiment participants with n = 6 is regarded very low,
a power analysis as described by Cohen [20] is executed. Experiment power
describes the probability of rejecting the null hypothesis or it describes the
probability of showing an effect at all. The two factors of effect strength and
number of participants influence experiment power as described in detail in
Section 18.4. The importance of experiment power is considered high as pointed
out by [61, 62]. In order to assess power a bootstrap simulation is executed
again. As described by Efron and Tibshirani [24] a bootstrap power calculation
samples (with replacement) a higher number of participants using the original
data of the experiment. The results of a bootstrap are shown in Table 5.1
and present the power p for different sample sizes having a mean fixing time
of twelve seconds or more. The basic idea here is to accept th assumption
that there is a difference and to test when the increase in group size leads to
a significant difference. Starting with 48 participants the experiment power
appears to be appropriate. The other factor to reflect is the effect strength
which is a value of twelve seconds in this case. The relevance of a difference
of twelve seconds is questionable as no other measurements of this type can
be used for comparison and overall relevance of this value cannot be evaluated
properly. Regarding this type of power analysis, a continuous review of power
is proposed in [78] suggesting to stop acquiring new participants when power is
appropriate.

N: 6 12 24 48
p(d >12) 0.68 0.74 0.83 0.91

Table 5.1: Power calculation of a difference in means of 12 seconds for different
sample sizes N

37

5 Refactoring

5.4 Experiment Results

A direct increase of maintainability and modifiability could not be shown
with this experiment. This may have been caused by the rigid control of the
refactoring technique. The enforced application of refactoring every twenty
minutes as well as the definition of the refactoring types using a predefined
list may have been too artificial and restrictive. On the other hand the effect
strength of refactoring is considered to be important. If only applicable in longer
and bigger projects, problems might occur as even within this experiment, a
certain amount of development overhead appeared. Although these tests were
not based on inference tests as no hypothesis was made in the beginning, the
additional amount of work in the refactoring groups can be explained by the
treatment asking for redevelopment in certain situations. The question is if
refactoring pays off at the same amount as it increases development effort. For
embedded system projects, which in general are thought to be short, the payoft
created by refactoring may not occur at all and thus its benefit appears at least
as doubtful.

The only argument in favor of refactoring is the smaller amount of memory
needed to store the program text. In case of limited memory this method
seems to decrease the size of programs due to better micro design. This effect
may become relevant as reducing memory becomes interesting in the area
of mass production. Despite these good aspects an assessment of program
runtime performance cannot be given with this experiment. It is very likely
that increased encapsulation slows down program execution as more function
calls are needed.

One general criticism to this experiment might be the use of refactoring
without unit tests ([31, 63]). This has been discussed with several practitioners
during the planning phase of the experiment. The problem of applying unit
testing is that this method itself is thought to have an effect. Thus evaluating
whether a difference was caused by refactoring alone would not be possible.
Accordingly unit testing was not included in the treatment of this experiment.

38

6 Test Driven Development

The following experiment describes the last experiment of the agile family.
Unfortunately an analysis was not carried out as the number of participants
as well as the internal validity was found out to be insufficient. Consequently
problems and hints to increase quality of future experiments on test driven
development are presented in the following.

6.1 Design of the Experiment

The main idea of this experiment was to reuse results created by the N version
experiment as described in Chapter 14 and to compare these "natural” devel-
oped programs with a group of developers who applied test driven development.
The reason to reuse the programs was that the N version experiment environ-
ment (cf. Chapter 14) allowed to assess program failures with a sophisticated
test environment. In addition the intended number of twelve students could
be directly compared with twelve existing programs developed in the earlier
experiment. This would have lead to 24 participants who compared to the
twelve developers of the refactoring experiment is a considerable number.

The preparation mainly focused on the development of a unit test environment.
Although a multitude of these environments exists, non was suitable for a
memory of only 1 kByte. The reason for this was the internal usage of strings
which were used to identify and explain the results of the unit test environment.
This became problematic as allocation of strings is memory intensive and
technically not feasible for very small systems. Accordingly libraries were
rewritten in order to use single bit flags to indicate success or failure of a single
test.

Other aspects of the experiment were similar to the N version experiment. For
example an initial survey was executed. The planned time for this experiment
was the same as in the N version. The documentation was similar with an
additional chapter explaining the special experiment treatment. Experiment
details mainly resemble those described in Section 14.2.

39

6 Test Driven Development

6.2 Reasons for Failure

Three main reasons for failure were identified:
e Organizational problems
e Technical problems
e Insufficient control of important variables

Organizational problems occurred as this experiment was not executed di-
rectly at the laboratories of the chair, but rather at an external facility. The
problem was that participants had difficulties in reaching that place or, which
was worse, did not appear at all. The initially planned number of twelve
participants was directly reduced to nine. Additionally, participants tended to
give up the course as examinations had to be done. In the end one participant
was not able to finish the experiment task leading to a final number of seven
students producing usable experiment results.

The main technical problem was the unit test environment which required
to supervise a certain memory address (of an array) to check for a test failure.
Although one LED was used to provide a visual clue whether a test problem
happened, the ease of use of the environment was low. In addition the number
of tests was limited by using four bytes of memory for each test (function
pointer and result indication flag). Although this lead to an amount of 80
bytes used up by the environment, this represented nearly ten percent of the
available random access memory (RAM) of the system which can be regarded
a considerable part of the resources.

The last problem was an unpredictable aspect of control. As the students
were asked to write tests before developing production code, this had to be
controlled during the execution of the experiment. Emphasis was laid on the
(technical) environment as well as on a tutorial of how to use it. The actual
control of a correct test driven development procedure was not done. The result
was a low number of tests, culminating in a very low statement coverage of the
unit tests. The statement test coverage was found to be very different between
participants reducing the already low number of results even further. At this
point data analysis was stopped and the experiment regarded as a failure.

40

7 Summary of Findings

7.1 Problem of the Human Factor

Apart from individual experiment’s results which are discussed in the following,
the most important finding was an important but subjective factor. It can
be described best as human factor or, to be more precise, the impact of a
participant’s software development ability on the variables measured in an
experiment. A good example for this is the experiment on refactoring where the
requirements were given and the time to fulfill them was measured. Although it
was natural to measure the time needed for programming the experiment task
(devices for time measurement exist and are simple to utilize), the assumption
of refactoring having a positive influence on development time did not hold
at all. Participants which were perceived as ”"good” needed less time while
developers with a multitude of questions seemed to take longer to finish.

Measurement of the human factor on the other hand was difficult. Perceiving
students as fast or slow was based on the feature completeness of their work or
because they had challenging questions for the tutor. Both aspects are difficult
to measure and although this factor appeared in all experiments, neither it was
thought to measure it nor was it possible to do so. The consequence of these
findings was the focus on measuring human variables for software engineering
as described in Part III.

7.2 Results of Experiments

In retrospect the experiment assessing the impact of a different planning phase
suffered from a low variable quality and a general inexperience with experiment
execution. This is problematic as the agile technique of short releases is thought
to have a strong influence on software projects. Even though experiment quality
might be increased by using better control and more sophisticated variable
design in the future, the question of the area of effect of short releases is
still unclear. Even if development focus is shifted towards functional system
aspects, the resulting difference of that change is not easy to predict in terms of
variables. One good design may be to fix the development time to a constant

41

7 Summary of Findings

value and measure the amount of fulfilled functional aspects while controlling
non functional requirements. This leads to the assumption that failure rates of
agile projects are lower which is difficult to define within experiment variables.
Another aspect is that the control of a project itself is simpler within an agile
project as the project’s status is updated more frequently. The relevance of a
better project control is questionable.

The refactoring experiment reaches a comparatively higher quality regarding
variables and participants. Concerning variables the errors induced in the source
code together with a time measurement are considered as very objective and
precise. Moreover paying participants enhances experiment control making the
results more realistic. The only problem with that experiment is the low number
of participants available. In addition the effect strength of applying refactoring
appears to be low, especially when compared with the overhead generated.
Accordingly refactoring is considered not to be relevant for embedded systems
software development.

Summing up the observed impact of agile techniques is regarded as low.
During the execution of experiments, disturbance variables seemed to have a
greater influence on dependent variables than the controlled variables of the
experiment. Consequently a quantification of disturbance variables was tried
to achieve as described in the experiment family of the next part.

42

Part 11

Experiments on the Human Factor

43

8 Overview of Human Factor
related Experiments

Regarding the influence of the participant’s abilities and knowledge, this aspect
is regarded as a disturbance variable to experiment measurement. Unfortu-
nately the impression is raised that the effect size of a person’s ability is an
order of magnitude higher than the effect of agile techniques themselves. This
observation is supported by Grant and Sackman [35] who describe the human
factor in having a difference around 28:1, although this factor is reduced to
a more trustworthy value of three as reported in a meta analysis executed by
[68]. Consequently controlling the disturbance variables using randomization
during treatment assignment did not prevent measurement inaccuracy. More-
over the small participant size increased the effect of disturbance variables as
randomization may not have lead to equal participant groups in terms of ability.

Regarding the human factor in software engineering, the number of sources
for this topic is scarce. One part of research based on the human factor is
presented in Karn and Cowling [45], where personality types in projects were
identified with a Myers Briggs Type Indicator. A further aspect of human
centered research in software engineering is the cognitive aspect found for
example in numerous works by Wang (cf. [85, 86]). In this area, software
comprehension and reading techniques are important categories. The different
approaches are represented in John et al. [43] again. In general, the human
factor in software engineering is only covered lightly with several directions of
interests. Human-computer interaction (HCI) or education related research,
where the human factor is much more present, are omitted here as they do not
focus on the software engineering process.

As most guidelines for experimentation in software engineering originate from
the domain of social and human sciences, the measurement for the experiments
described in the following was based on the Rasch model [27] taken from
psychometrics. The reason to use this model is its proclaimed psychologic
adequateness as it is based on a probabilistic answer scheme. The probability
of a correct answer is only based on the person ability and the item difficulty.
Other strong reasons to use the Rasch model based measurement are the
good interpretability together with a multitude of sophisticated quality control

45

8 Overview of Human Factor related Experiments

mechanisms. A detailed description of the two Rasch models used within
experiments is given in Chapter 9.

In general, the main problem of determining human related variables does
not consist of the model the variables are based on, but on their meaning for the
software engineering process. The main question is whether language knowledge,
programming experience or general intelligence constitute important person
based variables or not. The first experiment thus tried to define a measurement
for the variable C knowledge as described in the first experiment in Chapter 10.
This was regarded as a conservative decision as domain knowledge to define
such a variable certainly exists within computer science. Following this rather
simple definition the more interesting variable of source code viscosity was
experimentally evaluated. Chapter 11 describes details of this variable, which
was not only aimed to measure a person’s ability, but also allowed to rate and
compare the viscosity of different fragments of source codes.

The last study related to human behavior presents a meta analysis of source
code progress combining the course of all experiments into one analysis. It was
calculated how often lines of code were added and removed later. Lines not
appearing in the final version were considered wasted effort. The overall loss of
programming time could be assessed because the amount of time which was
used to create these wasted lines of code could be estimated. Additionally, the
probability that a line of code appears in a final version and the frequency of
change of a line of code can be calculated, too. This data acquisition is used to
describe the uncertainty which is regarded as an inherent part of a software
engineering process.

46

9 Rasch Models

9.1 The Dichotomous Rasch Model

When working with person based variables one way of variable measurement
consists of creating a question based survey to measure the ability of a person
concerning a specific variable. As human sciences use item as a synonym for
question, this special term is retained in the following. Rasch scaled variables
use the dichotomous values of one and zero to denote correct or incorrect
answers to an item. An excerpt of a raw data answer encoding taken from
the experiment assessing C knowledge is shown in Table 9.1. Rows represent
answers given from one participant while columns represent one item of the
test.

110

-~
—
-~
no
-~
w
.
Ny
-~
ot
-~
(=)
-~
oo
~
NeJ

Participant
71
131
34
114
126
134
9
37
70
84
20

s

—_ OO0 O FFOO
__ 00O, OOk, OO OoOOo
OO R HF OO o oo
—_ = O R RO RO
OO R OO DD o oo
_ O OO OO o oo
OO DD DD OO O o oo
O OO R OO O oo
O OO OO OO oo oo

Table 9.1: Coding of correct and incorrect answers

Under the assumption that the Rasch property holds for the data, the row
sum can be interpreted as the person ability. The reason for this is that a
person with a higher ability in the measured variable will be able to answer
more items correctly. The same is given for the sum of a column indicating the
easiness of an item. The more persons were able to answer correctly, the easier
an item is considered to be.

47

9 Rasch Models

In order to describe the probability of a correct answer py, the item difficulty
o; and person ability ©, are needed. The probability of a correct answer of a
person v and an item i (a specific cell in Table 9.1) thus is calculated with

log& =0, —0;
Po

with pg as probability of a wrong answer. Accordingly p; is given as

_ exp(Oy, —0y)
=TT exp(@, —)

b1

representing the simplest dichotomous Rasch model.

Algorithms and tests based on this model are described by Fischer and
Molenaar [27] and Wright and Masters [93]. As the algorithms themselves
are not in the scope of this thesis, they are not presented here. Only the
applications purpose and outcome are described when used for an experiment.

9.2 The Linear Logistics Test Model

Regarding the families of Rasch models the linear logistics test model (LLTM)
splits the item parameter o into additional, more detailed parameters. For
example in a mathematical test multiplications or additions may be part of
a single item difficulty. An example item might ask for the value of x in
2+ 3%4 =x. The LLTM allows to model the fact that item difficulty is made
up of the difficulty to perform an addition and to perform a multiplication.
The addition and multiplication receive new basic parameters 7; each which
are estimated during the parameter calculation. In general mapping of item
difficulty o; is accomplished by a weighted sum of all basic parameters 7;, which

1S
h

0; = E qiny — C.
j=1

The value of h denotes the number of different basic parameters while ¢ is used
as a standardization constant (the zero sum property). This general mapping
of basic parameters is controlled by the values of g;;. These values are gathered
in a (q) matrix which directly provides the basic parameters influencing a single
item 7. For the viscosity experiment the Table 9.2 shows an excerpt of the
matrix used within the experiment.

Each row contains two parameters of influence. The viscosity experiment
uses parameters to model the difficulty of different source code fragments which

48

9.3 Logit as Parameter Units

g1 42 43 44 S1 S2
1 0 0 0 1 O
O 1 0 0 1 O
0O 0 1 0 1 0
O 0 0 1 1 0
1 0 0 0 0 1
O 1 0 0 0 1
0O 0o 1 0 0 1
0O 0 0 1 0 1

Table 9.2: Excerpt of a g-matrix for the LLTM

are presented during the experiment and its uses parameters to model question
difficulty which are repeated for each source code fragment. First the left part
of the table specifies the used question. The repeated questions are indicated
by a returning parameter of one for the first column. The right part is used to
incorporate the difficulty of the source code. Each question is executed for a
source code fragment only once after which the source code (and its parameter)
are changed. One constraint for the g-matrix is the linear independence of
columns, one question and one source code parameter must be removed.

9.3 Logit as Parameter Units

As the results of the Rasch model based studies are given as parameters based on
the scale of this model, a short explanation is given in the following. Parameters
of a Rasch model based variable are given in the logit unit. This unit is used
to describe the likelihood of a correct answer in the form of

Logit : log ————=
p(Xvi 0)

with p(X,; = 1) representing the probability of a correct answer and p(X,; = 0)
as the probability of an incorrect answer for a given item 7 and person v. The
log function serves as a symmetrical projection as the original values only range
between zero and positive infinity. For example, a probability (of a correct
answer) of 0.25 is represented by the logit value of —1.1, a probability of 0.75
is represented by 1.1 logits while a probability of 0.5 has a logit value of 0.

49

9 Rasch Models

9.4 Benefits and Drawbacks of the Rasch Model

The dichotomous Rasch model has the advantage of a simple principle to create
variables accompanied with a variety of post mortem analysis tests. Creating a
test consists of finding variable related questions of rising difficulty. Tests allow
to check if a given parameter set is sufficient to explain the data or to check if
items have a different difficulty within a group of participants. It is possible to
identify single items which do not have a sufficient model fit to the Rasch model.
By excluding such items the overall model fit can be increased. Examples for
this case would be a difficult item that has been answered correctly too often
by low ability participants. Comparing different models, additional statistics
can be used to assess overall model conformance to the data. One of these
statistics is the Akaike Information Criterion (AIC) given as

AIC = 2(n, — log(Ly))

with Ly being the likelihood of the model and n, as the number of parameters.
This statistic devaluates not only models with a low likelihood but also models
with a high number of parameters.

The Bayes Information Criterium (BIC) is another model statistic which
directly includes the number of participants N with

BIC = —2log L + (log N)n,.

This criterium takes into account that for a high number of possible different
answer sets, additional parameters have a very strong effect on the statistic.
The BIC prevents over parameterization by increasing the influence of having a
higher number of participants. Consequently for a given set of possible models
the best models in terms of precision and parameters can be chosen as described
in Chapter 11.

Another reason for using this model is its psychological adequateness pre-
sented in [72]. Instead of a linear function to describe the likelihood of a correct
answer, the Rasch model is based on an ogive curved function. An example
for this type of function is given in Figure 9.1. The left item is the easiest
item of the C knowledge experiment while the right item characteristics curve
(ICC) shows item eight having a medium difficulty. The reason to use this
type of function is that the person parameter has the most influence on the
correctness of the answer in the middle of the function. For the outer regions
the probability of correct answers converges one and zero respectively. The
reason for the convergence is that even very simple questions can be acciden-
tally answered incorrectly or that very difficult questions by chance may be

20

9.4 Benefits and Drawbacks of the Rasch Model

answered correctly. Thus the Rasch model provides a good representation of
the participants’ underlying answering behavior.

ICC plot for item 1 ICC plot for item 8
o o
— | - |
o X _] o ®_]
= © > O
A A
© (e}
2 5] 8 s
2 2
= < = <
® o]] o]
g g
= = N
o o] o o |
o | S _|
© N I T T \ © 5 I I T \
-4 -2 0 2 4 -4 -2 0 2 4
Latent Dimension Latent Dimension

Figure 9.1: Item characteristic curves of items one and eight form the C knowl-
edge experiment depicting the ogive function

One of the drawbacks of Rasch models is the vast number of derived models.
Although the simple Rasch model is a special case of all other models, they
are regarded as derived as they add additional parameters allowing a more
complex model to be tested against the data. The potential of having more
types of models is problematic as the degrees of freedom increase. This makes
it difficult to assess models with higher degrees of freedom with a better model
fit compared to simpler models with a weaker fit. The different families of
Rasch models allow for example to use ordinal answer categories, integration of
qualitative and quantitative measurement or a three factorial design instead of
two parameters (cf.Rost [72] for an exhaustive discussion of models).

51

9 Rasch Models

02

10 C Knowledge

10.1 The Concept of C Knowledge

Experience is often mentioned as an implicit factor influencing software devel-
opment as noted for example by Broy and Rausch [13]. This rule of thumb
is somewhat problematic as a person might have developed software systems
for a long time while not being really good at it. Even if this rule is true in
general, measuring just the number of years a person has spent on developing
systems is too imprecise for experimentation. Indirectly, this inaccuracy of
the experience variable appeared throughout earlier experiments. As every
experiment participant provided a variable of development experience (e.g.
number of years, programming languages, libraries used), some correlation
regarding development time or other experiment related variables should have
appeared. In fact every plot or inference test yielded no hint on a correlation
between experience based variables and dependent variables. As an increase
in experience is thought to have an effect in general, the quantification of this
variable based on single survey questions is simply regarded insufficient. Thus
a better quantification of person ability was necessary.

As described in the overview chapter, quantification of ”C knowledge” is
regarded a conservative decision. Gathering variable related questions ap-
peared feasible, as relevant questions related to the programming language C
emerged during practical work. Additionally syntactical as well as semantical
particularities of this language are easily found. As the underlying principle
of variable generation was new, this domain represented a trade off between
concept relevance and feasibility.

Other variables to start with comprised general library knowledge or general
programming language knowledge. Both concepts should cover a large area of
knowledge and, although more valuable in the end, their definition appeared
too ambitious as a first experiment. Finally, another question to bear in mind is
which person related variable makes up the most important factor for software
engineering experiments. As this includes abstract concepts about a person like
viscosity (see Chapter 11), ingenuity, or doggedness, these aspects were out of
scope for the first Rasch based experiment.

53

10 C Knowledge

10.2 Design of the Experiment

10.2.1 Variables and Measurement

Measuring C knowledge was based on technical aspects of the programming
language C. For example details of the preprocessor, pointers, the difference
between call by reference and call by value, dynamic memory allocation, function
pointers, operator precedence were part of the experimental survey. All examples
were based on small source code fragments with according questions regarding
the functionality of the code. Answers to these fragments were made in an open
form to reduce the probability of correct guessing and to increase discriminatory
power of single questions. An example for a source code fragment is:

Please write down the output of this program.

int digit = 100;
int *No;

No = &digit;
printf("%d", No);

In this case dereferencing is the main aspect of the medium difficult question
(item 10). The address of variable ”digit” is saved to "No”. Printing the value
of "No” would result in an unknown address as it is not shown in the code
fragment and normally done automatically by the compiler. When this was
mentioned in the answer of a participant the item was considered as correctly
solved. A drawback of this open answering mechanism was that every answer
had to be processed manually as an automation was not feasible. Additionally
some answers were difficult to judge as correct or incorrect which was partly
countered by a strict definition of correct answers.

10.2.2 Hypothesis

As this experiment aimed at creating a variable itself, no real hypothesis could
be given as this would require variables on its own. For variables certain aspects
are of interest and these were tested within this work. The variable properties
of interest were:

e Reliability
e Validity

e Fase of Use

o4

10.2 Design of the Experiment

Variable reliability describes the equality of values when the measurement is
repeated under the exact same circumstances. Validity for variables describes
how well the variable measures the intended concept. Ease of use comprises
length in minutes needed to fill out the survey.

10.2.3 Procedure

The experiment started with a pretest consisting of 40 questions that was
executed with members of the chair. Redundant questions were identified and
removed. As the test was regarded too difficult a subset of rather easy questions
was chosen for the final test consisting of 17 questions.

The final questionnaire was executed as an online survey. It was posted
on different bulletin boards. Apart from the C knowledge related questions,
additional questions were added to assess the background of each participant.
These questions aimed on the external validity of the experiment asking for the
personal background and prepared a correlation test to the years of program-
ming that participants were asked to fill out, too. The survey was executed
anonymously. At the end of the experiment, a prize draw of €50 was done.
This was thought to increase motivation to fill out the questionnaire. Filling
out the survey took 22 minutes on average.

10.2.4 Participants

As the questionnaire was posted on bulletin boards, the composition of par-
ticipants was highly influenced by the choice of bulletin boards. As the Rasch
model directly includes a person parameter to model differences in ability, one
aim was to include professional developers as well as non C programmers. All
boards used the German language. The following boards were used to post the
questionnaire:

e mikrocontroller.net
e c-plusplus.de

e chip.de

e computerbase.de

e informatik-forum.at

e dormitories of the RWTH Aachen University

55

10 C Knowledge

The reason to include a bulletin board was based on the community it
represented. For example ”"mikrocontroller.net” was regarded C language
oriented as most mikrocontrollers are programmed in C. The bulletin board
"informatik-forum.at” is regarded a general technical website consequently
comprising participants of medium ability. The non-technical boards like
the dormitory boards were assumed to be visited by all kinds of students
subsequently providing participants with a low ability in term of C knowledge.

Programming Experience in Years C Programming Experience in Years

30
1

20
|
25
1

20
1

15
L
\

15

Frequency
10
1
Frequency

10

r T T T T T T 1 r T T T T T 1
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30

Years Years

Figure 10.1: Histogram of the number of years the participants were program-
ming

Figure 10.1 provides an impression of the participants’ programming back-
ground. From the 151 persons that were analyzed in the study a considerable
fraction had programming experience of a few years. Compared to general
programming knowledge experience with C appears to be lower.

Another valuable background information is the participants’ occupation
shown in Figure 10.2. As most bulletin boards for this survey were chosen
because of their specific background, the majority of the participants were
students of a technical specialization. Roughly a third had a professional
background increasing the external validity of this study.

10.2.5 Threats to Validity

One problem of internal validity is the lack of control during the execution of
the online experiment. A participant may have used additional sources or help
to fill out the survey. The risk of such behavior was reduced as it was directly
stated that the study needed participants with different ability and thus lack

26

10.2 Design of the Experiment

- Student Computer Science

— Student Physics

— Student Mechanical Engineering

— Student Electrical Engineering

— Student

— Pupil

— Trainee Programming

— Teacher

- Programmer

- M. Comp. Sc.

- Engineer

[T T T T T T T 1
0 5 10 15 20 25 30 35 40

Figure 10.2: Frequency of background categories for participants

of knowledge was not regarded problematic, but beneficial. In order to test
correctness of question results, all examples were tested with a C compiler.

External validity of the study depends on the principle measurement of
the variable C knowledge. If the questions made for this experiment are not
regarded as relevant for C, the variable does not meet its expectations. This is
directly circumvented with using real C source code as part of the test questions.
In addition some well known problems like pointer problems and semantics
issues are used which were thought to be present in everyday problems. Using
frequent problems would have increased the validity of each item, but no data
describing the frequency could be found. The choice of participants might have
been used to influence the overall results, but as described in Section 10.2.4
the resulting background of participants is regarded to cover different levels of
language knowledge. Regarding the actual selection of participants no direct
selection or control could be achieved as a high number of participants appeared
to be preferable.

o7

10 C Knowledge

10.3 Analysis

Parameter estimation was done using the program Multira! and eRm package
[39] of the statistics language R. Regarding the analysis in R, an additional
script for parameter estimation was developed based on the UCON algorithm
[93]. Results of the different programs were equal when comparable algorithms
were used. Results of the MULTIRA program are shown in Table 10.1.

Standard

Item | Difficulty Infit t | Outfit t
Error

Item 1 -2.09 0.298 0.857 | 0.916

Item 2 -2.09 0.298 -0.413 | -0.108

Item 3 -2.001 0.292 -1.152 | -0.470
Item 4 -1.606 0.268 3.065! | 2.277!
Item 5 -0.349 0.218 0.222 0.3

Item 6 -0.302 0.217 -2.009 | -0.709
Item 7 -0.256 0.215 3.130! | 3.279!
Item 8 -0.074 0.211 -0.216 | -0.580

Item 9 0.057 0.208 2.373! | 1.854
Item 10 0.311 0.204 -1.927 | -2.311
Item 11 0.393 0.203 -2.446 | -2.400
Item 12 0.555 0.201 -0.557 | -1.088
Item 13 0.674 0.200 -2.127 | -2.283
Item 14 0.831 0.190 0.797 | 0.210
Item 15 1.649 0.201 -1.530 | -1.608
Item 16 1.729 0.202 -0.604 | -0.645
Item 17 2.57 0.224 -0.858 | -1.015

Table 10.1: Item parameters and fitness values

Infit and outfit statistics in Table 10.1 are used to describe model conformance
of individual items. Both represent chi-square statistics assessing unexpected
patterns of answers and observations respectively (cf. [93]). Fit statistics with
a negative value are accepted in general, as their discriminatory power is better
than required by the Rasch model leading to an item in the direction of a
Guttman scale. According to Bond and Fox [10] only values higher than two
of the t-standardized statistics are problematic. Their misfit to the model is
regarded too low. Problematic values are indicated with an exclamation mark

Yhttp: //www.multira.de

o8

10.3 Analysis

in the according fit statistics column. One way to handle this kind of items is
to simply remove them as presented in the next section.

m —
17
[]
N —
H
) 15
R
© ° ° 1.2
% 7 9 . 13
[]
< O .]_]_ (]
= [] []
i 4 s 10
S o |
e ! [] []
© 1 6
[]
N 3
[]
2
o _]
I
I I I I I I I
-3 -2 -1 0 1 2 3

Group with low ability

Figure 10.3: Goodness of fit plot for two separated groups by median of person
parameter

Another hint on item fitness is provided by a goodness of fit plot as shown
in Figure 10.3. This plot is based on two artificial groups based on the person
parameter. One group is made up of participants with above median values,
while the other group consists of below median participants (median values
itself are assigned to the first). New parameter values are calculated for each
subgroup and both values are used as a coordinate for the original item. Ideally
difficulty is the same for both artificial groups and accordingly points are
expected to be situated on a line. The results of the plot strengthen the findings
of the fitness statistics indicating a misfit of item four and item seven.

99

10 C Knowledge

10.3.1 Test Revision

Three items of the original test were removed in order to increase overall variable
quality. The reason for low item quality can only be guessed. First, some
questions may have been grounded on accurate reading instead of C knowledge.
The rather easy item four is a good evidence for having a bad item fit:

Please compute the variable solution.
In which order was the term computed?

int solution;
solution = 8 / 4 x 2;

As the question aimed at operator precedence, the simple solution of a left to
right execution appeared only loosely linked with overall C knowledge ability.
Consequently, the question had to be removed. A different problem consisted
of a general code interpretation confusion as revealed by item nine:

Please write down the value of v.

void funct(int *x){
*x = b;
x = (int *)malloc(10000);
*x = 10;

MainProgram:
int v = 8;
funct (&v) ;
print-out of v

One of the main problems of this code was the address a value was written to.
Due to the variable x changing its address, the global value is not overwritten
in the last step of the function. As the code is slightly longer, correct solutions
are based on a participants ability to follow and memorize some instructions.
As this may represent a problem (or variable) itself, the question had to be
removed, too.

Table 10.2 shows the results of a parameter estimation with three misfitting
items being removed. The parameters do not indicate a bad item fit and thus
results were accepted. A slight problem with the second parameter estimation
is the lack of easy items. Accordingly parameter values between -1 an -3 should
be added in future revisions of the test.

60

10.4 Experiment Results

Standard
Error
Item 1 -2.542 0.324 1.729 1.354
Item 2 -2.542 0.324 0.312 0.918
Item 3 -2.435 0.316 -0.657 | 0.092
Item 5 -0.517 0.231 1.123 1.648
Item 6 -0.463 0.230 -1.239 | -0.398
Item & -0.206 0.223 0.636 0.85

Item | Difficulty Infit t | Outfit t

Item 10 0.226 0.215 -0.984 | -1.699
Item 11 0.318 0.214 -1.940 | -2.034
Item 12 0.498 0.211 0.004 | -1.156
Item 13 0.630 0.21 -1.241 | -1.993
Item 14 0.805 0.209 1.810 0.678
Item 15 1.709 0.21 -1.272 | -1.423
Item 16 1.797 0.211 -0.071 | -0.102
Item 17 2.722 0.233 0.353 | -0.496

Table 10.2: Item parameters and fitness values for revised test

10.3.2 Assessing Validity

The implicit assumption of an increase in ability with years of development
existed. Therefore it was tested if a participant’s ”years of C programming”
values (as provided by the participant in the survey) influenced the measured
variable of C ability. Figure 10.4 shows boxplots of grouped participants with
respect to the number of years of C programming. The asymptotic curve fits
the psychological assumption of the Rasch model well. Consequently variable
validity is increased by this observation.

10.4 Experiment Results

In general the test is too easy as the person parameter mean value is 0.61. As
extreme values consisting of all correct or all wrong answers are not used for
the parameter estimation, the range from the lower 3 percent to 93 percent
is covered by the test. The final test consists of 14 items and the average
execution time is predicted to be 16 minutes. The variable that can be obtained
by the test is interval scaled. On the ground of 136 persons’ answers values can
be interpreted when compared to other persons and as questions are based on
C language related aspects, the variable value is considered to be meaningful.

61

10 C Knowledge

Ability vs. Experience in C Programming

™ - - o -
| | |
| | |
- ! - L - - - L
N | ! | | | |
| ! —_ 1 | 1 1
| ! . |
| ! | .
o |
|
-) |)
| ! |
. | : ! | :
= © : 1 ! ! I
e T T [})
< | ! - \ !
! ! ! - :
) | |
T' — |) 1 1 ° :
1 : ° 1
|
N ! °
| |
[1
|
|
o _| |
I 1 °
I I I I I I I I I I
0 1 2 3 4 5-6 7 8-9 10-12 13-25

Years of Experience

Figure 10.4: Boxplots for parameter estimates of C knowledge versus years of
programming

The test can be regarded a reliable and comparable way to assess the concept of
the C knowledge ability of experiment participants. One scenario of usage is a
pretest allowing to select participants who meet a minimum level of C language
knowledge. Another way to use this variable is to test for a correlation with
variables like programming performance or software metrics. For example a
hypothesis might test if a high knowledge of the C language allows to create
less complex programs as indicated by a lower cyclomatic complexity of result
programs. The variable can be used for purposes of control as well as an
independent variable for an experiment.

Regarding the process of variable creation and experiment execution the level
of difficulty of the entire process can be regarded low. The reason for this is
that knowledge about the language C is given and that creating tests to assess
that level frequently occur in a university environment. The new aspect that

62

10.4 Experiment Results

a researcher is forced to perform is the test for Rasch model compliance. A
successful test allows to use the resulting variable as interval scaled. Therefore
interpretation of the distance between two variable values is possible leading
to a meaningful interpretation of the ”strength” of a variable value. Finally
the Rasch model compliance test resembles a quality test for the measured
variable.

63

10 C Knowledge

64

11 Viscosity

11.1 The Concept of Viscosity

Viscosity as a conceptual, human related aspect of software engineering is first
mentioned by Green [36] and rediscovered by Rosson [71]. It is described as
the resistance of the programmer to local changes of the source code. As this
definition directly includes the programmer as a main factor, the relation to the
human aspect for software engineering is given. Wikipedia! on the other hand
uses a different definition for the aspect of software engineering viscosity. It is
based on an object oriented source code and describes the ease of adding design
preserving code. The source code which can only be changed by "hacking” is
regarded as having a high viscosity.

The physical definition of viscosity which is the base of the metaphor is the
resistance of a fluid to shear stress. As a matter of coincidence the use of the 7
parameter for fluids is the same as the parameters used for basic parameters of
the LLTM used below.

Another concept mentioned by Green is premature commitment that describes
the situation of a developer taking a decision before the consequences can
be foreseen. A problem caused by premature commitment may arise for
compatibility or software design issues when the developers are forced to make a
decision without a proper technical knowledge base. A different concept is role
expressiveness which represents the ease of discovering program parts, their role
and purpose. These human related variables are normally presented as a whole
theoretic base and while all of them appear as sound entities of a low-level
programming theory, only viscosity is quantified in the following experiment.

11.2 Design of the Experiment

The viscosity variable definition resembles the experimental evaluation presented
in Chapter 10. The study itself is executed as an online survey and only the

Thttp://en.wikipedia.org/wiki/Viscosity_(programming)

65

11 Viscosity

type of model as well as the item definition significantly deviates from the first
experiment.

11.2.1 Variables and Measurement

The basis of the source code of this experiment was made up of popular libraries
like Microsoft Foundation Classes or Trolltech’s Qt. The following libraries
were used:

Microsoft Foundation Classes (MFC)

Windows Forms library of the Microsoft .NET framework (Forms)

Trolltech Qt library (Qt)

CORBA library (CORBA)
e Microsoft COM library (COM)

Initially it was planned to reuse source code fragments that were created in other
experiments. The main problem with this source code was that the meaning
and differences within the fragments were difficult to describe and present.
After that interfaces for open source embedded applications were planned to be
taken, but again their unknown internal nature and rather low relevance did not
seem to support variable assessment. Popular libraries were chosen because of
easy access and, as practical knowledge may exist for a wider audience, because
of a better assessment of variable validity from external reviewers. In general
tutorials from libraries were chosen as the small size was appropriate for an
online survey. This did not allow a general viscosity assessment of the entire
library, but library specific usage and design particularities were included in
the tutorials.

Another decision highly influenced the generic design of the survey. As the
experiment for assessing a C knowledge variable only focused on creating a
person related variable. In the case of viscosity it appeared as a reasonable
alm to create special parameters describing the difference in viscosity for
the different libraries. Accordingly, it was not only intended to create person
parameters that may be used within experiments, but to create generic questions
leading to comparable parameters quantifying the difference in viscosity between
different source code fragments. These parameters thus represent a special,
semantic oriented assessment that is based on human perception and regarded
complementary to software metrics.

66

11.2 Design of the Experiment

The twelve generic questions used in the study are shown in Table 11.1. Each
statement allows a dichotomous answer and was designed with the intention to
cover different levels of viscosity.

1. The code complexity is appropriate for this task.
2. Some aspects are not clear and must be looked up.
3. Very intuitive - it looks like I have written the code.
4. The sequence of actions is confusing.
5. There are unneeded intermediate steps.
6. The code is uncomfortable to use.
7. Names and expressions are self-explanatory.
8. Important aspects can be found fast.
9. The code is not understandable at all.
10. The effort required to work with this code is low.
11. Complex parts are hidden or separated.

12. Some things must be memorized to use this code.

Table 11.1: Questions and the according item numbers, resembling 7 parameter
used in the result section

During the design of questions, the basic idea of viscosity was integrated
into the statements by means of time. Thus, it was assumed that the more
effort was needed to use a library, the more reluctant a person is to use that
code. This culminated in the statement ”"The code is not understandable at
all” describing a perceived infinite effort to use the code fragment. In order to
increase participant attention and positive influence on viscosity, statement 1,
3, 7,8, 10, and 11 were inverted.

11.2.2 Hypothesis

The intention of this experiment was again to create a human based variable
which allowed to assess source code as well. Accordingly no hypothesis in terms

67

11 Viscosity

of variable relation was made. The problem of a Rasch based study is whether
the item of the test is model conform or not. This was tested using individual
item fitness, }? likelihood based model conformance tests, and in case of the
LLTM and under given Rasch model conformance, BIC statistics (cf. Section
9.4) were used for comparison.

11.2.3 Procedure

In order to depict the source code used in the study, the source code fragment
used within the CORBA library is shown below.

#include "baro.h"

int main(int argc, char *argv[])
{

try

{

BARO_ORB_var orb=BARO_ORB_init(argc, argv);

const char* refFile="TestObject.ref";

ifstream in;

in.open(refFile);

if(in.fail())

{
cerr<<argv[0]<<":can’t open’"<<refFile<<"’:"
strerror (errno)<<endl;
return 1;

}

char s[1000];
in>>s;

BARO_Object_var obj=orb->string_to_object(s);
assert (!BARO_is_nil(obj));

TestObject_var testObject=

TestObject: : _narrow(obj) ;
assert (!BARO_is_nil(testObject));

68

11.2 Design of the Experiment

}

testObject->testFunction();

}
catch(BARO_SystemException& ex)

{
OBPrintException(ex);
return 1;

by

return O;

// end of program

This library was regarded problematic as object oriented design and expressive-
ness of certain steps was rather unclear. In addition, the source code shows
that the occurrence of the word CORBA or any hint on the original library
was removed in order to omit motivation effects of participants. A subjectively
better source code in term of viscosity was the FORMS library tutorial as
shown in the following:

using namespace System::NWindow;

{

gc class Hello : public NForm

public:

Hello ()

{
Text="Hello World";
m_p=new Button();
m_p->Text="Click";
m_p->Top=120;
m_p—>Left=100;
m_p->Click += new EventHandler(this, button_click);
this->Controls->Add(m_p) ;

}

void button_click(Object* sender, EventArgs* e)

{
MessageBox: :Show("Hello World!");

}

private:

69

11 Viscosity

Button *m_p;

};

int main()

{
Application: :Run(new Hello);
return O;

}
// end of program

As both example are very short in terms of code, their respective design and
meaning is considered very different. One aim of the study was to quantify
these differences as presented in the results Section 11.3.

11.2.4 Participants

- :|Trainee
— Student
— Pupil
— Professional
— Apprentice
— Academic
- Other
I T T 1
0 5 10 15

Figure 11.1: Background of participants

The same principles of participant selection as presented in Section 11.2.1
were applied in the viscosity experiment. Again a mix between very able and
programming newcomers was tried to achieve by an appropriate selection of
bulletin boards. In order to increase external validity, both English and German
bulletin boards were used for this study. English programming communities
are represented by:

70

11.2 Design of the Experiment

e Codecall
e Codecomments
e Devshed
e Cprogramming
and German programming and technical communities were made up of
e c-plusplus
e pcwelt
e java-forum

63 of the 103 received answers were completed and used within the study.

- Qt

T CORBA

— COM

— Forms

— MFC
I T T T T T 1
0 5 10 15 20 25 30

Figure 11.2: Libraries known to participants

The survey included questions related to the background of a participant
which are shown in Figure 11.1 and 11.2. About a quarter of the participants
were professional programmers in terms of occupation. Similar to the first Rasch
based study, the majority of persons had an educational background which was
expected for this kind of survey. Regarding the library knowledge the previous
knowledge appeared considerable as about half the participants indicated to
have used MFC before. Other libraries like Qt, COM, and Forms were known,

71

11 Viscosity

m_
o
o o

« o
—
o °

o o

o)
(@] — —) g 5
S
o o 0 ° o °
S °o g
= o o o
@© o o o
—_ o o
S
o o o
= o
2 o
Q o o o
. °
© © o)
[
[a

~ o o

N

°)
™ _]
|
I I I I I I I
-3 -2 -1 0 1 2 3

Parameters for random group O

Figure 11.3: Goodness of fit plot for 3 parameters of the basic Rasch model
based on randomized groups

too. Although this is problematic as it may have imposed motivation aspects,
the answers of Figure 11.2 reflect the relevance of the chosen libraries.
Motivation to participate was increased by a € 50 prize draw.

11.2.5 Threats to Validity

One of the main difficulties of internal validity concerns the source code. This
code may have been modified in order to suit the Rasch model requirements or
to artificially create differences in viscosity. This was countered by using the
preexisting source code from tutorial oriented sources. The source code had
to be changed in case of direct references to the original library. These named
references were removed. As the selection process itself may have influenced
the results, it is more difficult to argue for neutrality within this process. The
informal guidelines to select a library were based on the aspects of a tutorial,
that it should present the basic application of a library and that functionality
and size was appropriate for an online survey. As no comparable source code

72

11.3 Analysis

existed beforehand, this was the best way to ensure the equality of source code
fragments.

Regarding external validity the usage of everyday libraries together with
preexisting code was regarded to increase realism. As only a small fraction
of the library source code is covered examples must be considered as hints to
overall viscosity.

11.3 Analysis

The first test was aimed at assuring the Rasch model conformance for all items
that were included in the survey. For twelve questions applied on five source
code fragments, this resulted in 60 parameters with 59 being estimated. The
programs used for calculation comprised Multira? and the Rasch model package
of the R statistics language eRm (cf. [39]). Overall the test was slightly too
easy with a resulting mean person parameter of —0.42. In order to provide a
rough description of the parameters Figure 11.3 displays a goodness of fit plot.
Similar to the C knowledge experiment parameters which are distant from the
middle line are considered problematic as their difficulty is too different within
both groups. For the parameter calculation values do not appear problematic
on first sight. Here must be noted that random groups had to be created as
it was difficult to find groups were all parameters could be estimated. The
reason is that items with all zeros or all ones are removed from the parameter
estimation.

Person homogeneity could be tested by creating two artificial groups and
comparing their likelihoods using a x? test. Groups are created by separating
persons based on the median of the person parameter leading to a low scoring
and a high scoring group. The calculated y? value is significant only when the
difficulty of parameter is really different between both groups. With a p-value of
0.82 no significant difference was found and person homogeneity was considered
given. Individual item fit statistics indicated five items with an overfit which
was accepted as having items with high discriminatory power was desirable.

Subsequently the design of the experiment consisting of twelve questions and
five source code fragments was tested using the LLTM as described in Section
9.2. The basic 59 parameter models were tested against models consisting
of only the questions as parameters, only the different source code fragments
as parameters and both parameters together leading to a 4, an 11 and a 15
parameter models respectively as shown in Table 11.2. The results of the BIC
statistic show that using a model that includes both source code viscosity

http://www.multira.de

73

11 Viscosity

Model # Par. log L AIC BIC
Rasch model 59 -1788.348 3695 3821
Source Code 4 -2087.610 4183 4192
Questions 11 -2033.998 4092 4118
Code/Quest. 15 -1838.728 3707 3739

Table 11.2: Different models compared

difference as well as question difference as a parameter is superior to the other
models. The AIC in this case was slightly inferior, but as a high number of items
and persons were used, the BIC can be regarded as more relevant. Accordingly
the 15 parameters LLTM could be regarded a legal substitution for the basic
Rasch model.

n Expected Logit value Std. Error
9 Very easy -1.75 0.16
4 Very easy -0.75 0.13
5 Easy -0.67 0.13
6 Easy -0.34 0.12
7 Difficult 0.02 0.12
10 Difficult 0.19 0.12
11 Difficult 0.32 0.12
5 Difficult 0.33 0.13
2 Easy 0.78 0.12
3 Very difficult 1.25 0.13
12 Difficult 1.44 0.13

Table 11.3: Resulting parameters concerning the twelve questions were put in
order by easiness

The question based parameters as estimated by the LLTM are shown in Table
11.3. Values are given in logits (cf. Section 9.3). Regarding the range covered
by parameters, the values between 0.3 and 0.8 show a slight redundancy in that
area, while no values can be found between —0.75 and —1.75. Thus this can
be regarded as a certain shortcoming of the test. Note that expected validity
given in the table is discussed in the results’ section.

Similar to the question based parameters the source code fragment based
parameters are shown in Table 11.4. All parameters are given relative to the
difficulty of the MFC library. Given a difference in parameter values from —1.2
to 0.9, the influence of the source code was rather strong. This is regarded a

74

11.4 Experiment Results

Parameters for random group 1

I I I I I I I I
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15

Parameters for random group O

Figure 11.4: Goodness of fit plot for n parameters of the LLTM based on
randomized groups

hint on the relevance of the variable as reluctance to use is obviously different
between the libraries. One problem is that both middleware libraries (COM
and CORBA) have a very high viscosity. Thus it was tried to reduce model
parameters to the only aspect of middleware and user interface library, but this
reduction is worse concerning AIC and BIC.

As the execution of a y? was regarded problematic due to low response
number and high number of possible answers (no x? distribution given, cf. Rost
[72]), a goodness-of-fit plot was made as shown in Figure 11.4. Apparently the
n parameter did not show serious deviation in terms of difficulty differences
between both groups.

11.4 Experiment Results

Regarding the outcome of the experiment a positive result of the study was
that the source code related parameter values met an expected value. This

1)

11 Viscosity

n Library Expected Logit value Std. Error
14 Forms Very easy -1.27 0.13
15 COM Very difficult 0.97 0.12
16 CORBA Very difficult 0.18 0.12
17 Qt Easy -0.72 0.12

Table 11.4: Resulting parameters concerning libraries. Parameters are given
relative to first library (MFC)

can explained by the example of the CORBA and the FORMS source code
as shown in Section 11.2.1. As indicated in Table 11.4 the viscosity value
of both parameters was considered to be antithetic and the results of the
analysis showed a parameter value supporting the expectation. While this is
not considered to reflect the quality of an inference statistical test, the extreme
logit difference of 2.3 between the two parameter values gives a strong hint
on its applicability as a variable for software engineering in general. Together
with the property of absolute scale of an LLLTM parameter variable quality is
strengthened. Another benefit of the given test is the data base of parameters
which may be used to compare newly gathered data. As in addition person
parameters can be used to predict experiment outcomes or to test correlation
with other variables the test is regarded successful in creating the intended
variable.

76

12 Uncertainty

During the execution of all software experiments involving actual programming
of source code, all increments made between two compilation steps were gathered
by a tool running in the background (see Chapter 15). The aim was to execute
a meta study loosely based on the principle ideas of code evolution (cf. [34],
[47], [53]).

12.1 Uncertainty within Software Engineering

While executing several software engineering experiments and lab courses, the
task of implementation appeared as a rather chaotic element. Especially the
time needed to finish requirements appeared as probabilistic in nature. It was
not possible to find a related variable allowing to predict development times at
all.

In order to analyze the course of these software projects in detail, two different
approaches have been taken. First the principle of software evolution and its
analysis methods as described in [38, 50, 51, 94] have been applied on the level
of implementation. It was done by collecting every source code change between
two compile steps as presented in [87]. As a difference to the results in Lehman
[51] the laws that have been identified could not be applied directly on the data
collected during implementation. The main reason is that the laws of software
evolution focus on the entire life cycle of software, while the collected data only
represent the implementation phase.

As a second approach the focus was laid on the source code in detail. One
technique on this level is the source code analysis as summarized in [8]. Using
this kind of analysis the syntactical parts of a programming language such as
the control-flow graph, the call graph or the abstract syntax tree are described.
This analysis is static in nature e.g. compared to software evolution the time
aspect is missing. In addition the interpretation of results is rather difficult.
Therefore a simple quantification regarding lines of code and effort based on
measured time was used in the meta-study.

In general, the relevance of the implementation phase often is regarded as low.
For example [9] gives a summary of different high level aims during the decades

7

12 Uncertainty

of software research which comprise formal methods, software reuse, and time-
to-market amongst others. Implementation is rarely used as foundation for
evaluation. Often the task of implementation is presented as deterministic and
linear as indicated by the waterfall model (cf. [81]).

Uncertainty is identified in [75] as part of an estimation, but research on
that topic is described as scarce. It is normally linked to a pre-implementation
phase as assumptions play an important role [44]. In [52], Lehman argues that
program behavior might be inadmissible during future execution, even when
admissible behavior has been observed. In other words a one-time satisfactory
execution does not imply anything on future execution. As one source of
uncertainty the given effort to maintain assumptions might not be invested
by an organization. A solution to cope with uncertainty consists of the use of
probabilistic Bayesian networks as provided for effort estimation in [66] and for
defect estimation in [25].

12.2 Relation to Agile Methods

Although being part of the human factor family of experiments, the relevance
of uncertainty for Agile Methods is given indirectly. When executing short
development iterations, rapid feedback of development decisions can be obtained.
Thus decisions which are based on uncertain knowledge or assumptions can be
tested rapidly. In other words short releases as a development technique may
cope with uncertainty much better than traditional planning based waterfall
models. The question is whether uncertainty exists within software engineering
and if the effect of uncertainty is important enough to justify its incorporating
in software development methods.

12.3 Design of the Meta Study

The underlying data in this study originates from a collection of source code
executed during six experiments and lab courses. This collection of atomic
changes for each executed compilation normally was an analyzed version by
version with the aim of gathering variables like cyclomatic complexity, lines of
code or number of functions. This step based view was changed to a line based
view: how long does a line of code exist, how often is it changed and how much
time is spent on the changes? The resulting analysis focuses on the lowest level
of programming and highlights the process of implementation.

78

12.3 Design of the Meta Study

12.3.1 Variable and Measurement

Figures 12.1 and 12.2 present examples of sequential changes to source code.
Each line shows the file and its line number together with the changed line.
After that the collection index is given in round brackets followed by the
weighted effort, which normally is increased in very small amounts. The first
example shown in Figure 12.1 illustrates one aspect observed often for changed
lines. It consists of trying out different values for variables. Here the variable
soll (”desired value” in English) is tested using different values. The effort for
each change is rather small and the cumulative effort for the line is given as 5.7
minutes. One interesting aspect here is the variable vorzeichen (”leading sign”
in English) and the change of the leading sign for index 139, giving a hint on a
problem the group might have had. Another problem of detecting similar lines
is shown in the first to second line, where the variable UpFast was found to be
similar with DownSlow, although the former line of code continued to exist. In
fact in this case lines were swapped at this index due to higher similarity of the
following characters. Because of the high similarity it is difficult to rate this as
a measurement error or not. Finally the changes for the index time 86 to 93
consist of changed white spaces which are accounted as changes, too.

uebung.c:128:case UpFast: soll = 4000; break;(55)|1.5

uebung.c:131:case DownSlow: soll = -2000; vorzeichen = -1; break;(77)]2.5
uebung.c:131:case DownSlow: soll = -1000; vorzeichen = -1; break;(81)]3.0
uebung.c:132:case DownSlow: soll = -1000; break;(86)13.0
uebung.c:164:case DownSlow: soll = -1000; break;(88)13.0
uebung.c:132:case DownSlow: soll = -1000; break;(92)(3.3
uebung.c:168:case DownSlow: soll = -1000; break;(93)[3.3
uebung.c:168:case DownSlow: soll = -2000; break; (98) 3.6
uebung.c:168:case DownSlow: soll = -1250; break;(115)|3.8
uebung.c:168:case DownSlow: soll = -2000; break;(119) 4.2
uebung.c:141:case DownSlow: soll = -1500; break;(129) (4.4
uebung.c:177:case DownSlow: soll = -1400; break;(137)]5.0
uebung.c:178:case DownSlow: soll = 1400; break;(139)|5.3
uebung.c:178:case DownSlow: soll = -1400; break;(140)[5.7

Figure 12.1: Example 1 of changes in lines of code - organizational information
stripped due to length of the line

In Figure 12.2 another type of change is shown. Here syntactical errors might
be the problem which is indicated by the cast operator in the second line. In
addition a change of a variable name is shown. Assumptions about the reasons
of change are difficult, but it is assumed that each change at least had a reason
to be executed.

79

12 Uncertainty

task2_12.c:57:new_speed = new_speed * (1 - err_ratio);|0
task2_12.c:57:new_speed = (int)new_speed * (1 - err_ratio);|1
task2_12.c:57:_speed = (int)new_speed * (1 - err_ratio);|1
task2_12.c:57:_speed = (int)_speed * (1 - err_ratio);|1.5
task2_12.c:57: _speed = _speed * (1 - err_ratio);|[1.8

Figure 12.2: Example 2 of changes in lines of code - organizational information
stripped due to length of the line

12.3.2 Procedure

Regarding the execution of the meta-study an analysis tool had to be developed
in order to identify changed lines of code. The procedure of identification
started with a comparison of two successive files that were saved as consecutive
versions during the data collection. Two tasks had to be performed then: first
corresponding lines of code had to be detected in both versions. The second
task was to detect changes on a code line. This mainly comprised a comparison
of the first version’s code line to all lines of code of the following version. Based
on a similarity metric the best line was identified. As the detection of the same
line and the detection of change to a line cannot be solved unambiguously,
heuristics were used on both tasks.

Having detected a change to a code line the effort was computed. This was
done based on the difference in time between the two consecutive versions.
Thus if the difference between both versions was five minutes the overall effort
applied on the changes was assumed to be five minutes. Furthermore this was
weighted based on the length of a single line of code compared to the overall
number of changed characters. Thus each line only received a fraction of the
effort based on its new line length.

Additional data could be extracted like the number of changes for each line
or points of time with a high amount of changes. In addition lines which could
not be found were regarded as deleted. Together with the effort spent on these
lines the lost effort can be quantified and is regarded as non-productive effort.

Algorithmic Approach

As the main course of the analysis has been outlined in 12.3.2 this section gives
a short view on the main algorithms used. Before the actual analysis for a file
can be made, some initial steps must be checked. First the addition, removal,
and renaming of files must be detected. Especially the renaming of a file is
important, otherwise a new file would be detected while the old file and its

80

12.3 Design of the Meta Study

Process Mark Update Compute Update

comments

commented unchanged changed weighted
lines lines lines effort

Figure 12.3: Steps to analyse similar lines in a file

lines will be considered deleted lines. This would result in serious measurement
errors later on. Another primary step is the computation of overall effort spent
on the new version and the filtering of unneeded project and header files.

As depicted in the sequence of Figure 12.3 the first step to analyze a file is
to mark the commented lines in a file. This step is necessary as commented
lines in the final version which did not start as a comment are considered as
unproductive lines. As well it was interesting to find out how often commenting
took place. The marking of unchanged lines is mainly used to speed up
later steps and to prevent the usage of similar lines which actually represent
unchanged lines to be processed later. The update of changed lines is executed
on the remaining lines which could not be located directly (e.g. unchanged) in
the corresponding versions. Lines are compared and the most similar line is
considered to be the changed line. If the line is not found, it is automatically
marked as ceased to exist at the date index. If it is a new line it is added to the
pool of lines. The following step of computing the weighted effort increases the
effort applied to a line based on the overall effort and its length in characters.
Finally newly commented lines have their comment counter increased.

In order to forecast the line position of unchanged lines which appear after a
changed section of lines, an external algorithm library for the longest common
subsequence problem (cf. [40]) was used. This algorithm was used again to
detect renamed files based on the fraction of changed lines. Regarding similarity
metrics a multitude of algorithms exists. As their precision does not depend on
their approach but rather on parameterization of the results, the Levenshtein
(edit-distance like functions in [21]) algorithm was used as basis.

Problems and Measurement Error

The problem to identify added, deleted and changed lines is important as a
correct solution does not exist. The underlying reason is that lines may be
ambiguous. For example, a developer might decide to remove some lines of
code as their solution quality was low. While starting from scratch certain
variables get the same, generic name as before, for example the name ”index”.
The analysis would find corresponding lines, although the developer removed all
lines and added new ones. Another example can be constructed based on the

81

12 Uncertainty

execution of the similarity metric. A line might have been changed drastically
by exchanging one short named variable with a new longer named one. This
would result in a serious increase of the metric. If a completely different line
would have changed its variable to the initial name, this variable would be
taken as similar based on the comparison of the raw similarity value. Thus the
true changes with the intention of the developer cannot be restored perfectly.

The detection of similar lines was especially error prone for very short lines.
Here even one changed character leads to very different meaning and totally
different lines which were often undetected. Thus only lines with a minimum
length of five characters were included in the analysis.

It is rather difficult to give a quantitative description of the error in the
measurement. The reason is that the correct solution can only be guessed by
observation.

12.3.3 Participants

Except for the refactoring experiment all studies were executed during a lab
course where all groups developed at the same time. All projects were executed
using an ATMEL ATmegal6 microcontroller. The programming language
was C and no external libraries were used. The sources of data used in this
meta-study are:

e cpld This lab course data was gathered from eight groups and taken from
the N-version experiment described in Chapter 14.

e fpga As a successor of the cpld experiment the seven projects contained
in this study developed the same task.

e refactoring The ten participants were taken from the experiment described
in Chapter 5.

e safety The nine groups included in this lab course consisted of two students
each. They developed a crane controller and had to apply additional
techniques to increase safety.

e tdd This study consisted of seven developers which used the technique
of test driven development throughout the project. The implementation
task was the same as in the N-version experiment.

e (607 In this study nine groups of two participants replicated the task of
Jpga.

82

12.4 Analysis

12.3.4 Threats to Validity

The most important threat to the internal validity consisted of the automated
analysis. Here simple errors like off by one index errors had an enormous
effect on data precision. The main reason for this threat was the length and
complexity of the analysis program. Additionally heuristic values for similarity
of lines were found by comparing several parameter values. The problem with
this value was that lax values detected similar lines which were obviously not
related to each other, but sharp values on the other hand tended to miss several
changes. Thus intermediate values were taken. In order to control the detection
of similar lines log files were created. These files indicated the time of the
change, the new line and the effort spent on that line. This data was used
to ensure a sufficient similarity detection. Nevertheless precision was lost due
to the implementation of heuristics to detect corresponding lines and their
changes. Additionally this meta-study did not execute an actual hypothesis
test, but post-hoc observations within the data. The main reason was that
data collection was done to follow the course of an implementation in general.
Thus no real factors could be checked within the collected data. Accordingly
results should be considered as starting point for a hypothesis test.

Regarding the external validity the environment of a lab course was problem-
atic. Lab courses were a learning situation and major problems regarding the
programming had to be solved with the tutor. Thus the implementation was
not free, but comparing this to real life development, the use of feedback either
from internet sources or from colleagues might be seen as similar behavior.

12.4 Analysis

12.4.1 Overview

The general project duration for the studies is shown as boxplots in Figure
12.4. Especially the data collection in 0607, cpld, and fpga shows a rather short
programming phase of around ten hours. The studies of refactoring, safety, and
tdd with raw development times of 30 hours are more representative concerning
realistic development times. A notable difference is the variance in working
time. The rule of thumb of a factor of three as mentioned in [68] appears as
a very good factor to describe differences between development performance.
The right diagram of the figure depicts the percentage of lines that was created
and could be found in the final version. Only about 60 percent of the created
lines of code are taken over to the final version.

On of the most problematic issues of the implementation phase is shown

83

12 Uncertainty

Working time in hours Percentage of lines in final version
s
F2s
B g S -
= R ! = o Bl —_
2 S 8- -
£ 3+ —_ £ : ‘
[} o _|
g o gr
5 o 5
[- © —
a Q . N '
2 - : gl - -
= o —_ ? o : ;
ER : £ = :
c — = - —
g4 3 © - 5 S =
s ; o o
; 4; % o
o _| o — T S B
— — c [©)
L I o
T T T T T T 3 \ T T T T T
o

0607 cpld fpga refact. safety tdd 0607 cpld fpga refact. safety tdd

Experiment Experiment

Figure 12.4: General data for each study

in Figure 12.5. Here, the percentage of time not appearing in the lines of
code of the final version is shown for all studies. Around 40 to 50 percent
of the time spent in the implementation phase of a project is lost during
development. This certainly does not mean that all lines deleted that way
are wrong approaches and just wasted. Especially for embedded systems, a
certain part of the development is likely to be spent on aspects which need
some exploration. Most often participants tried to use a part of the hardware
which had to be derived from a static description of hardware units. Thus these
lines represent the learning of programming an aspect. Direct productivity in
terms of writing down the correct and complete functional source code does
not occur.

12.4.2 Non-Productive Effort

The loss of effort was assumed to be linked to single events where a part of
the code was removed at once. Figure 12.6 presents these events from all
studies accumulated in two diagrams. The loss events are measured between
two consecutive compile steps as provided by the analysis. They are given as
relative percentage of the entire project time (left diagram) and as relative
percentage of the project time until that time index (right diagram). The
later view was selected to reflect that the decision of removing the lines of
code was done during the running implementation. Thus the relative effort
deleted was considerably higher than the comparison with the entire project
effort. All groups were integrated in the diagrams as the studies themselves

84

12.4 Analysis

o _|
@ —_
1
:
o _]
N~
(%]
Q
= -
= X)
o 3
o © \ :
L
Q - - !
(] |
© o : : ! |
£ O T ' ' X
1 1
Q : : |
E | .
h o _| !
o < !
) 1
()] ! T
g ! . :
c o _| ! I ! \
3 @ | | | |
o | | — | |
o ! | . 1
o _| —_ | \ [E—
N : l
! —_
1
o _| —_
i
I I I I I I
0607 cpld fpga refactoring safety tdd
Experiment

Figure 12.5: Percentage of effort deleted in each study

are not regarded as a factor. Single measurement points in which deleted lines
were detected are depicted as loss events in the diagrams. When compared
to the entire project, about five percent appear as a normal value for deleting
effort. Unsurprisingly values are much higher when compared to the effort done
until that index of time. Developers seem to accept losses of 20 to 60 percent.
Regarding the maximum values the point in time causing that removal was
important. For example when done during the initial state of a development,
bigger changes were simpler to achieve due to the low absolute number of lines
in the project.

Regarding the losses one observation in the data was that apart from peak
values of removal, in general losses did not appear in consecutive points of time.
Rather, a certain distance between indices can be found. Thus deleted lines
were regarded as unique events in the analysis above.

The general loss of lines was tested for an influence on project time. In order
to do this, the project time of each study was normalized. The group with
the longest development time was assigned the value one and the group with

85

12 Uncertainty

Loss events with absolute effort Loss events relative to project time

100
|

15 20
|
80
|

10
40

I]] I
0 1000 2000 3000 0 1000 2000 3000

Single events with losses Single events with losses

Lost programming effort in percent, entire project
o
Lost programming effort in percent, relative

Figure 12.6: Events of deleting source code over all studies

the lowest effort was assigned a value of zero. Other groups were arranged
based on the relative project time compared to these two groups. This is
depicted in Figure 12.7 in the abscissa. The ordinate presents the overall loss of
development time in percent of the entire project effort. One point represents
one development team of the experiments included in the study. No relation
among these variables can be found, so in particular losses are not an inherent
part of long projects.

One last aspect to be tested was the relation of productive versus non-
productive effort. Here the mean effort per productive line was plotted against
the mean effort per deleted line for each experiment team as shown in Figure 12.8.
The line represents equal mean effort between productive and non productive
lines. The diagram indicates that the mean effort for a deleted line generally is
higher when compared to productive lines. As most points are near the line,
the difference is not regarded serious. Nevertheless the assumption that work
on productive lines was more thorough could not be shown. Rather it appears
that unproductive lines demand more attention. Because of missing variables
it could not be checked if experienced users spent less time on unproductive
lines than unexperienced developers.

86

12.5 Results of the Study

o _
(¢} o
o _| o o
~
g ° . ;
o _| o
g 8 8
Y— ° (o]
o o °
8 o
o o o
[—] o o
= 0 ° o o © o
k= o °
—))
S o °
302) < | o o o
o ° o °
© o o
7 o o
o o o o
o | ° o °
N
)
3 | o
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of normalized development time

Figure 12.7: Plot of deleted effort and relative project time

12.5 Results of the Study

12.5.1 Uncertainty in Processes

One of the main aspects mentioned by [75] as uncertainty formulated as trial
and error hypothesis in [87] is supported by this meta-study. Development
effort which does not appear in the final version is not an exception, but part
of the majority of implementation procedures. One interesting point is that
the overall development time is not influenced by the degree of non-productive
effort. Even fast projects had a considerable amount of deleted effort as shown
in Figure 12.7.

The effort spent on deleted lines appears as static value when counted after
a project has been finished. Problems only arise when a project is not finished
yet but is in the state of execution. The reason is that no line of code can
be regarded as final and thus, even completed modules may not be regarded
as finished. Accordingly the main goals are not to reduce the lost effort to a
low value and increase productivity in general. For purposes of control and

87

12 Uncertainty

Mean effort per final line

I I I I
1 2 3 4

Mean effort per lost line

Figure 12.8: Comparison of the effort spent on productive (final) and non-
productive (deleted) lines

measurement the most important aspect is to identify areas which are likely to
change. This can be named as maturity of regions of code.

Another observation is that the removal of lines may occur in the form of
peaks. These peaks of losses, which may be reported as anomalies [14], represent
major changes in the source code. Based on the data of this meta study, the
frequency of peaks is considerable as shown in Figure 12.6.

12.5.2 Threats to Validity of Variables

Regarding a project’s state of completeness, uncertainty is a major problem
because functions or modules which have been regarded as finished may be
changed or even deleted later during a project. This is a special threat to the
LOC metric. As it is not certain that a line of code is in the final version of a
program, this metric is assumed imprecise when used for forecasting during the
lifetime of a project. Another aspect related to uncertainty is the measurement

88

12.5 Results of the Study

of progress of a project. The problem was that even though lines of code
were added and projects became large, features were not fulfilled. A good
hint on this problem can be observed in the data provided by the Progress
Measurement Environment in described Chapter 16. For example Figure
16.2 indicates that the participant on the right side added a huge amount of
instructions while overall functionality was unchanged. This can be considered
as a horizontal implementation finishing an architectural framework before
executing the program even once. As this horizontal development is difficult
to quantize, the aspect of uncertainty imposes an additional threat on top of
this. Even when measurable features are finished, future versions might remove
lines leading to the feature being removed. Thus when lines of code are added,
something is done, but it is difficult to assess its direct value for the system.

One last point is that uncertainty in implementation may be used to inten-
tionally blur a project’s current status. An example of this is when participants
finish a programming experiment early, the true status may be hidden easily
within the code. This makes progress determination very difficult as a variable
as the intention of participants must be considered carefully.

12.5.3 Relation to Higher Level Software Engineering

The most important aspect regarding uncertainty in the implementation phase
is whether the problem of lost effort is transferable to higher level software
engineering or not. One assumption is that a project schedule is threatened as
some estimation for tasks may be incorrect. Tasks can be longer than expected,
but the opposite of an oversize estimation must be considered, too. Accordingly
the degree of precision of software engineering process planning is influenced
by the implementation. For programming problems which cannot be solved
at all, the relation is obvious, as an assumption of the original planning is
broken. The emerging thought is whether the relation is unidirectional, e. g.
high level software engineering only influences implementation, or bidirectional.
The observed uncertainty in implementation may not be covered well by a
linear project schedule with absolute timings (as given by Gantt charts).
Regarding the collection and analysis of single lines of code, a data collection
on this low level may be seen as a microscope view on the software engineering
processes. Thus the aim is to increase knowledge about each line like how often
it is called in a program (static analysis), how old it is, how well it is covered by
tests, and so on. The aim then is to find factors influencing the probability that
this line is changed or deleted. In addition factors from higher level software
engineering must be attached to each line. This includes the part of the project
schedule being executed as well as the part of the architectural design that is

89

12 Uncertainty

developed. Information like this allows to map lines of code, implementation
effort, and the amount of unproductive lines to aspects of higher level artifacts.
It might be possible to observe dependencies among different architectural parts
and among scheduled tasks which were thought to be finished or scheduled
for later execution. When regarding software engineering experimentation, a
difficulty exists in gathering this kind of project data, as techniques to reliably
identify the architectural part or the part of the schedule a participant works
on are not known to me.

90

13 Summary of Findings

The result of human factor related experiments are two variables which are
regarded as relevant concepts of embedded systems software engineering: the
variable of C knowledge as a main language of this domain and the variable of
viscosity describing the resistance of a developer to change code. Both variables
can be measured very economically as they are based on a few dichotomous
questions which can be created as part of the preparation for an experiment.
Additionally both variables were measured and the results were gathered. This
allows an interpretation of new values as average, uncommon or even extreme.
Moreover the variables are at least interval scaled allowing to evaluate differences
among persons. Regarding validity the C knowledge variable has an asymptotic
behavior over time which is considered adequate for this type of variable. For
the viscosity variable validity is strengthened by expected differences in viscosity
for known libraries. Both variables are expected to measure their conceptual
idea as questions for variables are based on variable related concepts. For
example the meaning of viscosity is based on questions of effort to work with a
given source code. In the case of high effort, viscosity of change is considered
to be high, too. Consequently these variables excel when compared to ordinary
survey variables devoid of any additional background.

The application of the viscosity variable might suffer from a need for an
additional layer of human interaction in order to gather variables. The reason
is that in order to assess source code viscosity, no automated test environment
can be used, but an additional test with participants must be executed. This is
regarded a considerable overhead. This intermediate layer of human related
measurement to create a software engineering variable might be relevant, as
automatic methods do fail on the level of semantic interpretation. An experiment
that utilizes this variables and shows their relevance is to be executed, though.

The meta-analysis concerning uncertainty in the implementation phase is
considered as a small hint on a control problem for software engineering experi-
ments. The correct assessment of progress is considered problematic in itself
leading to a need for new variables as introduced in Chapter 16.

91

13 Summary of Findings

92

Part IV

An Experiment on Dependability

93

14 N-Version Programming with
Hardware Diversity

14.1 N-Version Programming

One of the first experiments executed examined the effect of N-Version Pro-
gramming (NVP) with an additional factor of diverse hardware platforms.
NVP describes a general technique of failure reduction by developing multiple
program versions for the same requirements. By gaining mutual independence
of software failures, the overall failure rate is thought to be reduced as single
incorrect program results can be identified directly when compared to the
results of other programs. Using voter mechanisms the correct program results
can be detected and overall program execution may continue without producing
a failure. Redundant software structures of NVP are recommended by TEC
61508 pointing out the importance of this safety related mechanism.

One of the problems of NVP is the assumption of statistical independence
from failure occurrence. The property of independence must be given as the
identification and correction of single versions failing does not work when
version fail dependently. As experimentally shown by Knight and Leveson
[49], independence of failures in software programs is not given. One way to
cope with this finding is a method called ”forced diversity” as introduced by
Littlewood and Miller [56]. The main idea is to create additional constraints
among software programs in order to diversify results. As for embedded systems
a multitude of platforms and development environments exist, an experiment
was executed using the different platforms of a microcontrollers(MCU) and
a complex programmable logic device(CPLD). The difference between both
platforms is enormous, as MCUs are imperatively programmed, sequential
executed systems while CPLDs are parallel systems programmed on hardware
level. Using both systems the question of dependent failures was evaluated.

95

14 N-Version Programming with Hardware Diversity

14.2 Design of the Experiment

The experimental principle is based on an experiment by Knight and Leveson
[49] who executed the first experiment on N-Version Programming. The main
difference in design is that an additional factor for the two hardware platforms
had to be included.

14.2.1 Variables and Measurement

The basic variable used within the inference statistical tests were failure rates.
Failures were defined as the manifestation of a fault will produce errors in the
state of the system, which could lead to a failure as proposed by Anderson and
Lee [4]. These rates were estimated by a test environment which tested whether
certain functional requirements were met. The main functional requirement
consisted of a frequency measurement with sending the results over a CAN bus
interface. Details about the environment can be found in the published paper
[74] and in a technical report hosted at the chair.

The independent variable controlled in the experiment was the assignment
of a participant group to one of the two hardware platforms and assignment
was done randomly.

14.2.2 Hypothesis

Although not directly visible independent N-Version Programming represents
a considerable effect. For N independent failure rates pi, ps, ..., py the
probability of no failure F, is given as

Po=(1—=p)(I—=p2)--- (1 —pn).

Each new independent version would considerably reduce the probability of
having no failure. In the case of dependent failures P actually is higher, though
this is gained by sacrificing independence which is needed for NVP. A single
failure probability P; can be calculated by summing up all single failures:

Bypl P P,
op i 0pP2 T 0PN

Pl —
Il=p1 1—po 1 —pn
Each summand represents other versions having no failure (f ” for a given
version ¢) with the according version failing (thus fﬂ—?). Accordingly the overall

probability of a combined software failure of two ore more versions failing at
the same input can be calculated as

Prore =1 — Py — Pr.

96

14.2 Design of the Experiment

This basic modelling of independence for multiple errors is broadened by adding
repeated tests. The aim is to assess the likelihood of a certain number of
observed multiple failures with respect to the independent model presented
above. In order to assess the likelihood of k£ observed the observed value is
compared with simultaneous failures (two or more versions exhibiting a failure
for the same input) for n test cases executed. As alternative events are used in
this case (Ppore and 1 — Pype), @ binomial distribution must be used with

P =) = () (Phel1 = Pron)™).

T

Since n is sufficiently large in the experiment a normal approximation is used for
the binomial distribution. The aim of this replacement is to use z values which
allow to compare event occurrences using a standardized normal distribution.
The z value is used as a generic representation of a normal distributed value and
is calculated by dividing the difference to the mean by the standard deviation.
Thus z is calculated by

K — anore
Zz =
\/anore<1 - Pmm"e)

and has a mean of zero and a standard deviation of one. The resulting z value
can be used to assess the likelihood of the observed event for the given model by
using standard statistics tables. The results of this original experiment design
are presented in Section 14.3.2.

In addition to the independence based test for a homogeneous group, the
independence between two groups had to be tested. The hypothesis was that
making independent failures on both platforms was calculated by the product
of single failure probabilities p(Fycr) and p(Feprp) with F' being a failure
event of the according platform. Thus, the property

Hy : p(Fyvicu N Feprp) = p(Evcu) - p(Feprp)

had to be tested. The procedure and results of the resampling approach are
presented in Section 14.3.1.

14.2.3 Procedure

The experimental task consisted of a speed measurement for an automotive
prototype vehicle. Four different input signals had to be processed and sent
via CAN bus. The frequency measurement on one hand needed to measure the

97

14 N-Version Programming with Hardware Diversity

rectangular shaped frequency signals and on the other hand required a special
calculation in order to transform the measurement results into a comparable
format. Additional requirements comprised safety and time delay aspects.

The development for the MCU group was done using ATMEL ATmegal6
microcontrollers clocked with 6 MHz was programmed with ATMEL AVR
Studio. The CPLD group used Xilinx Coolrunnerll CPLDs clocked with 1,8
MHz and the Xilinx ISE as development environment. All groups were issued
the according development boards which contained buttons and LEDs for
additional testing purposes.

The experiment was executed within a lab course which took 13 weeks with a
three hours weekly appointment. The average development time was 19.5 hours.
In the end an acceptance test was executed in order to assure functionality and
comparability of versions.

14.2.4 Participants

The lab course consisted of 26 students. Participants were not chosen randomly
but were assigned to the course by a university course selection system. Working
in groups was necessary as the number of participants exceeded the number
of development boards. Consequently twelve groups with a minimum of two
and a maximum of three students were formed. Ten groups passed the final
acceptance test for both platforms leading to 20 versions available for analysis.

14.2.5 Threats to Validity

Internal validity suffered the most from the setting of the lab course. The room
was very small for 26 students, so communication between groups could not
be prevented. Slower groups might have copied ideas from faster, and more
successful groups. Another problem was the involvement of the experimenter as
a teacher. As certain solutions and development programs had to be found, the
experimenter was responsible to help students. Thus a certain level of depen-
dence might have been induced by that way. Regarding the test environment,
dependences might have been exploited by choosing certain frequencies with the
test environment. This was partly circumvented by using random frequencies.

One of the main drawbacks when using students as participants in software
engineering experiments is the lower external validity. As having a sufficient
number of persons in an experiment is another challenge, students as participants
had to be accepted. The general task together with the tools can be described
as realistic. One of the reasons for a realistic setting was a list of written

98

14.3 Analysis

requirements which had to be analyzed and a defined software quality which
was made up by the acceptance test.

14.3 Analysis

The following sections present the analysis of the results taken from the test
environment made for this experiment. At first the effect of an additional factor
for NVP is tested. After that the original analytic approach is replicated.

14.3.1 Independence of NVP with Forced Diversity

Due to the analytic approach of Knight and Leveson being factor-less, a
different approach was chosen. In order to test independence between two
groups the method of resampling (cf. [24]) was used. Basically resampling
(or bootstrapping) is a simulation that reuses the observed data in order to
assess the likelihood of a given statistic. As an example an observed difference
in treatment group median values can be compared to 1000 simulation based
medians. If the difference is sufficiently unlikely (e.g. less then 5% of the
simulated values are as high as the observed value) a random generation of
median difference can be ruled out and treatment is regarded as having caused
the difference.

The simulation process used for assessing dependence within groups is in-
formally sketched in Figure 14.1. It starts by randomly selecting one version
of the MCU group M, and one version of the CPLD group C;. By selecting
only one version from a group, the dependence that exists within one group is
circumvented. Having created randomly selected pairs for each of the 15000
input frequencies of the test environment, the number of simultaneous failures
can be counted which is considered to be the observed value. Based on the
known overall failure rate of each version M; and C; the observation of failure
is replaced by a probabilistic simulation step. This simulation step only uses
the failure rates and thus is considered independent. An error for both versions
thus is created independently and again this value is counted. By comparing
the observed and the simulated simultaneous failures, it is possible to assess
whether independent occurrence of failures happens or not. If the number of
observed failures is not significantly higher or lower than the simulated error
independence will be given. In case of dependence failures more often occur for
both versions simultaneously. Accordingly the single simulation step consisting
of 15000 pairs is repeated multiple times. As the number of simulated failures
was often lower than the observed failures, a very high number of repetitions was

99

14 N-Version Programming with Hardware Diversity

,—b‘ 100.000x \
SEm——

Create random
frequency
CPLD

selection for each test
versions

A 4

Count
simultaneous
errors observed

Simulation of
selection

~———o—

y

S Observed —
simulated errors

~——

Figure 14.1: The simulation process

necessary finally leading to utilization of the RWTH cluster. Using the cluster
for the resampling calculation was possible because simulations themselves are
independent and can be executed on multiple machines at once.

Each single simulation step described above resulted in a difference of observed
and simulated errors. These results were accumulated in a histogram as shown
in Figure 14.2. The abscissa shows the differences of observed and simulated
failures. Obviously a positive value indicates that more simultaneous failures
were observed than simulated. The case of having more observed failures than
simulated errors rarely appeared. In fact only 127 of 100000 simulations resulted
in the same number or more observed failures. Accordingly the independence
property can be regarded as an inappropriate model for describing the data.
Finally the hypothesis of an independent model must be given up.

14.3.2 Replication of the NVP Experiment

The original experiment of Knight and Leveson compared the observed failures to
an analytic, independence based model as described in Section 14.2.2. Rejection
of independence basically is the same as presented above, with the only difference

100

14.3 Analysis

99.99873% —

8000 10000 12000
l

Frequency
4000 6000

2000

0
I

[I I I I I
0 10 20 30 40 50

Observed - simulated simultaneous failures

Figure 14.2: Histogram of independent model simulation

that instead of creating a population based on resampling, the observed value
is calculated as a z value allowing to directly assess probability of occurrence.
Thus by counting the k cases with more than one failing version and calculating
P,.ore based on single failure properties, z can be calculated. The values for k in
this experiment were kMCU = 1673 and kchD = 294 with PmoreMCU = 0.086
and P,,orecprp = 0.012. Thus z-values are 11.141 for the MCU group and 8.295
for the CPLD group. The z value for 99 percent is only 2.33 and accordingly
the observed value for k with the respective probability P,,... are very unlikely.
Finally the independence property does not hold and results support the findings
of Knight and Leveson.

101

14 N-Version Programming with Hardware Diversity

14.3.3 Assessing the Strength of Factors

Different platforms can be regarded at least as a factor influencing dependency
and, when multiple versions are developed and a voting mechanism is available,
overall safety. Using the principle of resampling presented above, the frequency
of two versions failing simultaneously can be described for different constellations
of pairs. First the best performance is considered to be given for the independent
model. Three other pairs are possible: one version taken from the MCU group,
the next version taken from the CPLD group and a pair consisting of one of
each group. Each pair configuration is repeated 10000 times for the 15000 test
inputs. The results are gathered in a histogram as shown in Figure 14.3.

—— Simulated independent pair
—— Observed MCU/CPLD pair
--- Observed MCU pair
g | --- Observed CPLD pair
© == Observed same team
(%]
[}
=
8
§— o
o o —
> <
(8]
c N
[} PR
=] ! \
(on 1
o : \
LL ! \
o ! \
o i \
N ! \
o - . =’ -

Simultaneous failures

Figure 14.3: Strength assessment of different factors of influence

This simulation shows that the performance of taking one version from each
group is slightly below the theoretic, independent model. As can be seen
simultaneous failures for the diverse group occur less frequently than failures
made in each homogeneous group. Thus a certain benefit of diversity can
be expected, though independence may still not be given for it. Another

102

14.4 Experiment Results

interesting result is that versions taken from the same team appear to increase
independence of the results, too.

14.4 Experiment Results

Inducing independence into NVP appears as problematic and within this
experiment, even the usage of different platforms, languages and development
environments does not seem to assure independence. The main reason is that
independence of failure events as given in

p(Fyov N Feprp) = p(Fycev) - p(Foprp)

is a very strong property. Independent events lower the probability of coincident
events by the product of single properties which is difficult to assure as a property
for NVP. Instead a factor based strength difference of simultaneous failures
could be shown. Regarding the effect strength of diversity used within this
experiment it appears to be superior to have development groups with different
platforms compared to homogeneous groups. Other treatments like using certain
numbers of groups or certain configurations of groups can be compared with
the strength assessment resampling in order to find other viable factors.

103

14 N-Version Programming with Hardware Diversity

104

Part V

Measurement Tools

105

15 Code Evolution Framework

During the execution of the experiments several tools were created for measure-
ment and control purposes. The most important tool was the Code Evolution
Framework. The aim was to gather data during the programming phase of an
experiment. The main functionality was to copy the source code of a participant
every time the compiler was used. The result was a huge data collection of
different states of the created software. Consequently a second tool for data
analyzing purposes was created. Based on this tool changes in metrics could be
extracted. Using a test environment like the one presented in Chapter 16, an
assessment of the increase of functionality as well as reliability over time was
possible.

15.1 Example of an Analysis

In order to explain the principle of data collection and analysis, a data based
example is depicted in Figure 15.1. The diagram presents an accumulated
complexity metric over all functions and files of a participant’s project. The
underlying data is provided by the experiment of test driven development.
Seven participants finished the task (1, 7 -12) and the successful persons with
their respective number are shown in the diagram. As multiple versions were
collected the course of the variable over time can be shown. In oder to make
the results comparable the time had to be normalized. The reason is that the
overall time needed by a participant and the frequency of individual compilation
steps was not constant.

The main aspect introduced by this data collection is a very atomic measure-
ment concerning points of time. General code evolution analysis takes place on
source code repository commits. Thus intermediate steps are not present. The
idea regarding experiments is that these intermediate steps include hints to
problems and how these problems are solved. Other examples of data analysis
with this tool can be found in the uncertainty related meta analysis described
in Chapter 12.

107

15 Code Evolution Framework

200
|

150
|

Vg
100
|

Data points, normalized

Figure 15.1: Accumulated complexity /McCabe metric over time taken from
TDD experiment

15.2 Code Evolution Data Collector

The main program used for data collection was simply called ”data collector”
and works like a computer virus. It replaces the original compiler based on
its name and every time this compiler is called, it executes a copy task before
calling the real compiler. Using this design an integration into all development
environments is possible, as nearly all of them are based on command line
compilers.

One downside of using this design is that the path to the source code must be
provided. The reason is that it is very difficult to extract the source code path
from the command line for all compilers. In addition some programs implicitly
used a compiler with the path of the source code given as a parameter making it
difficult to determine the correct path. Therefore a user based configuration was
provided allowing to specify the correct path. It was found out that reducing
the number of files being copied was resourceful as the data repositories grew
very large.

108

15.3 Code Evolution Data Analyzer

15.3 Code Evolution Data Analyzer

Regarding the data analyzing capabilities a graphical tool was developed which
on one hand controlled data selection and on the other gathered and configured
a variety of modules created for analysis purposes. The data was stored in a
standard file system and had a tree like structure as shown in Figure 15.2.

¥ i11CodeEvolutionFramework # Repository Browser, # 0712006

Repository: [T:\CodeE volutionCleaned S afety BuldTree |

Repasiary Data | Metwark Cantial | LSI |

=- [make.exe A
+-[] expl Q
+-[] exp10 Analyze Ermoidnalyse
+-[] exp11 LOC.LOConFilestnalyse
+- [expl2 LOC.LOConFunctionstnalyze
+-] exp2 Analyze Surveptnalyze
+- [exp3 Analyze FileCountdnalyz e
- O exph An 2. FileE stentionCountdnalyze
2 [ety Analyze ModifiedFilesdnaly s e
o et Anal_l,%e.CSynta:-:.-’-‘mglyzer
%[Safety v| Analyze A5TAnalyss
Analyze. LS1Analysis
-0 65385 - LOCLife. LOCLifeAnalysiz
+ afety
=[] expd
- Safety
2006.04.03 18-03-40-6544879
2006.04.03 158-05-04-5477504
2006.04.03 158-05-29-2940741
2006.04.03 158-06-06-4586258
2006.04.03 18-06-17-0341490 |
M1 2006.04.03 18-06-29-2821271 ™ !

Figure 15.2: Structure of stored experiment data

As the change over time in source code may be analyzed in different ways a
module based approach was taken. The interface for creating new modules is
described in Section 15.5.

The following analysis modules were implemented:

e Error Analysis: This analysis detects whether a compilation step was
successful or not. It allows to quantify the number of compilations which
contained a syntactical or linker error.

e LOC on Files: This module performs a file based lines of code analysis.
Results are subsumed for all project files.

109

15 Code Evolution Framework

110

LOC on Functions: This analysis provides lines of code for single
functions. File names are added to function names in order to preserve
unambiguousness.

Survey Analysis: As it is possible to link a survey dialog to the source
code compilation, this module gathers the results from each executed
survey. Due to compilations appearing in rapid succession, the validity of
the surveys is regarded rather low.

File Count Analysis: This module counts the files in the project. It
allows a rough interpretation of the overall design when the overall lines
of code of the project are used for comparison.

Modified Files Analysis: The analysis marks files that have been
changed between two successive steps. It is thought to describe the
extend of change between steps.

C Syntax Analysis: Within this module, syntactical information of a
project was thought to be measured. As the embedded source contained
numerous assembler instructions, the module could not be completed
in a reasonable amount of time and was replaced by the AST Analysis
module.

AST Analysis: In this module, the external library DevCodeMetrics is
used to compute metrics like lines of code and McCabe (or cyclomatic)
complexity. Results are given function wise. The main reason to use the
external module was its speed as well as the ability to store the results in
xml files.

LSI Analysis: A special form of analysis is the latent semantic indexing
[57]. Its aim is to identify similar functions based on the text of these
methods. Using the data of single steps it was thought to identify semantic
changes like single refactorings over time. This module suffered from
noise making it difficult to interpret changing cluster structure over time.

LOC Life Analysis: One of the main views of the code evolution is its
time information which can be used together with metrics calculations.
The LOC Life Analysis focuses on single lines of code and calculates the
number of changes, the fraction of removed lines with respect to the final
version and so on. It allows to rate underlying behavior of the developer.
This can by explained by the module’s main benefit being the calculation
of changed lines and removed lines which can be interpreted as unwanted,

15.4 Source Stepper

time consuming aspects of a software development. Details of this analysis
type are presented in the uncertainty experiment presented in Chapter
12.

e Command Line Analysis: This extension allows to execute batch files
on the gathered data. This is regarded a simple interface compared to
the more sophisticated programming interface of Section 15.5.

15.4 Source Stepper

In order to validate analysis steps in terms of correctness a calculation by
hand had to be done. Visualizing changes between two consecutive program
versions for result validation was an important need which was fulfilled by the
Source Stepper application. It was developed as a web based tool developed
using the programming language flash. It allowed to browse through the data
structure. Comparison of two successive file versions was done with a diff
algorithm and additions, deletions and changes were marked with different
colors. The graphical user interface is shown in Figure 15.3. The upper line of
the application allows to select the experiment, participant, date and file which
should be shown. The main text area shows the actual selected version (on the
right) and its predecessor. The lower part is made up of buttons to step through
versions and individual changes. In addition lines of code as well as compilation
success and the time in minutes between both versions are presented.

A special way of evaluating changes in the application is given by the fields
of "type of change”, ”quality of change”, and ”"semantics”. These three fields
represent a qualitative assessment of the change which needs a continuous review
of each change. The type can be specified as "initial coding” for new code,
"make working” for general changes, "test step” for adding debugging related
output, "architecture outline” for creating a program skeleton, and refactoring.
Although the expression "make working” seems to be very informal, this type
of change was by far the most important one and no better explanation can be
found to describe this type of change. The field quality of change comprises
"worse”, "unchanged”, and "better” and aims at describing how the quality of
code was altered by a change. As changes within steps usually are quite small,
this information almost always contained "unchanged” and thus a description
of this aspect was found to be difficult. Finally, the semantics field allowed to
give an open answer and was used to describe the technical aspect that the
group worked on. Results gained from this field are shown in Figure 15.4. The
experimental data was gathered during the N-version programming experiment.

111

15 Code Evolution Framework

Experiment: |_CF'LD v | Paricipant: [expg |*| Date:|2005.05.0817-43-15-5356754 |vJ File: | main.c [AJ]
write CAN{CAN_TRAMN_DATA_BYTEZ,0:02);, fiDatenbyte 2 E write CAN(CAMN_TRAMN_DATA_BYTEZ,0x02);, fiDatenbyte 2 E
write CAN{CAN_TRAMN_DATA_BYTEZ,0x03);, fiDatenbyte 3 write CAN(CAMN_TRAMN_DATA_BYTESZ,0x03);, fiDatenbyte 3
wiite CAN(CAN_TRAN_DATA_BYTE4,0x04); fDatenbyte 4 write CAN(CAN_TRAN_DATA_BYTE4,0x04); #Datenbyte 4
wirite CAM{CAN_TRAM_DATA_BYTES 0x08), fiDatenbyte 5 wirite CAMICAN_TRAMN_DATA_BYTES,0x08), fiDatenbyte &
wirite CAM{CAN_TRAMN_DATA_BYTES 0x06), #Datenbyte 6 wirite CAMICAN_TRAN_DATA_BYTESR,0x06), #ADatenbyte &
wite CAM{CAN_TRAMN_DATA_BYTET 0x07), fiDatenbyte 7 wte CAMICAN_TRAN_DATA_BYTET 0x07), fiDatenbyte 7
wite CAM{CAN_TRAMN_DATA_BYTES, 0:08); /iDatenbyvie 8 wite CAM{ICAN_TRAN_DATA_BYTES,0:08);, /iDatenbvte 8
byte woarkbyte = read CANICARN_COMMARDY; byte workbyte = read CANICAN_CORMMARNDY,
workbyte = warkhyte | 0x01, workbyte = warkhbyte | 0x01;
wirite CAN{CAN_COMMAND warkbyte); wirite CANCAMN_COMMAND warkhbyte);

displayStatus();
))

int mainfvoid) int mainfvoidy

i i

tFL=0; =|| tFL=0, =
tFR=0; ? tFR=0; 1
tRR=0, tRR=0,

tRL=0; tRL=0;

sFL=0; sFL=0;

sFR=0; sFR=0;

sRR=0; sRR=0;

sRL=0; E sRL=0; E

[FPrevious I Mext

-O—

| Test step v | LOC added: |1

I

Type of Change: Changes:

Quality of Change: |_Unchanged v | LOC deleted: IU

[prev.]main.c:2?1 [next]

Semantics: CAN bus |LOCchanged:|:| #files:

Figure 15.3: Graphical user interface of the source stepper applications

Apart from the overall development time which was different by a factor of two,
single technical aspects show a proportional difference in time.

15.5 Module Interface for Data Analysis

The data collection mechanism of having a background application copying a
source code folder can be regarded as a functional complete tool. The analysis
on the other hand can be expanded by new modules. In order to encourage
reuse the interface for writing new .Net modules is described in the following.

Two types of analysis modules can be created. The first module type
"ITableAnalysis” creates table based data which can be directly used in statistics
programs. It gathers data on basis of one row per version in the experiment.
Accordingly, each column of the resulting table provides information of one
variable that is calculated by the module. The basic interface is the abstract class
"ITableAnalysis” which must be used as a super class for the new module. Two

112

15.5 Module Interface for Data Analysis

Refactoring

Multi

Integration
Debugging
Measurement
Interrupts
Timing with nops
1/0 Ports

CAN bus

600
|

EEEONOOOOO

Minutes
400
|

200
|

expl exp9 exp2 expl2 expd exp7 exp8 expl0 expll

Experiment participants

Figure 15.4: Effort spent on different aspects in N-version experiment

main methods must be implemented: ”getReportHeader” which is supposed to
return the comma separated header line of the analysis and ”getReportResult”
which returns the results for one single repository entry. The later function
has a second signature with a flag indicating to use numeric (70”,71”) of
textual ("false”, ”true”) boolean results. All three methods are given an
"IRepositoryEntry” object which allows to list and access all files of this point
of time as a stream.

public __gc __abstract class ITableAnalysis : public IAnalysis

{

public:

ITableAnalysis(void);

virtual “ITableAnalysis(void);

/** This method returns the header for a comma separated value file.*/
virtual System::String * getReportHeader (IRepositoryEntry * entry) = O;
/** This method returns the data for a comma separated value file.x*/
virtual System::String * getReportResult(IRepositoryEntry * entry) = O;
/** This method returns the data for a comma separated value file.x*/
virtual System::String * getReportResult(IRepositoryEntry * entry,
System: :Boolean useBoolean) = 0;

protected:

113

15 Code Evolution Framework

TableReport* report;
};

The second interface is used for more sophisticated analysis modules which
may contain complicated data structures. An example for this are abstract
syntax trees which can be extracted from the project. As the data is a tree like
in nature, its storage as a sequential list is rather cumbersome. Accordingly a
tree like data structure leading to an output of an xml file was developed. The
resulting interface is:

public __gc __abstract class IXMLAnalysis : public IAnalysis

{

public:

IXMLAnalysis(void);

virtual ~“IXMLAnalysis(void);

virtual XmlElement * getReportResult(IRepositoryEntry * entry)=0;
protected:

XmlDataDocument * xmldoc;

};

The main method that must be overwritten is again the ”"getReportResult”
which is given the current repository entry as a parameter. The main difference
to the table based approach is the return value consisting of a system defined
xml element. Its internal structure must be supervised by the analysis object.

114

16 Progress Measurement
Environment

In order to control the resulting source code of experiments, a measurement
environment was developed. Miiller et al. [64] points out to either control the
complexity of the task and to measure the time needed, or to do the opposite
and control the time (making it constant) and measure the progress. During
the experiments that were executed, it was found to be very difficult to have a
variable time. The reason is that some experiment participants were very fast
and thus spent time on details, while other hardly finished the main experiment
task. Obviously a constant time with a variable degree of software functionality
appears to be a superior experimental design.

JIT functionality participant 1 JIT functionality participant 2

o
8] o Q | ey
® @
o
o o —
0 | fand o
S g o
= ° c O | © @0 omm @ coam
g‘ S o > o o® 0o
= o = o
g o@p 0° g o
@o
2 o] ® a S
o ¥ 2% S o
g o % <
o
L T ——— me & & L
8 — 0 o S ®o 8
g & - o
amy o
6’ @® ° o
o — wiinit B o N Q OG%wm®
I I I I I I I I I I I I
0 50 100 150 200 250 300 0 50 100 150 200
Version Version

Figure 16.1: Change of functionality by version for two exemplary implementa-
tions

In order to measure progress in terms of functional additions to a software,
the domain of Just-In-Time (JIT) compilers was selected. This kind of compiler
receives a precompiled byte code and translates it during runtime to its own
machine code. Subsequently the byte code program is executed by the machine.
The resulting execution is considered to be as fast as machine code is used.

115

16 Progress Measurement Environment

This is especially different to virtual machines or interpreters which execute an
intermediate step to run a given program.

The underlying idea to work on this domain is the increasing amount of
single byte code commands that are correctly translated by a JIT. Accordingly
counting the number of correctly translated byte codes is used as a measure for
project progress or functional completeness. Figure 16.1 depicts data taken from
two exemplary implementations based on the JIT environment requirements.
The left diagram is taken from a test participant with long planning horizon
while the right participant followed a short planning principle. The abscissa
shows the different versions collected while the mantissa displays the completed
functionality in percent.

One of the early problems discovered by this tool is that progress is not a
monotonic function at least in terms of translated byte code commands. One
side effect of software development is that small changes may remove a major
part of functionality which may occur intentional or unintentional as can be
seen in Figure 16.1. For example functions that might work correctly may by
removed by a comment in order to test a different function. The resulting
overall progress might be blurred up to the point that the complete functionality
only appears near completion of an experiment.

Using this environment influences software development on its own. As a
subset of tests is used for acceptance testing, using it early during development
leads to a different course of the variable as using it right before the end of the
experiment. Accordingly availability of the environment is a design question of
an experiment that must be answered in the beginning.

Additional information provided by the Progress Measurement Environment
is the change in overall instructions and the change in branches which is shown
in Figure 16.2 (sides resembling to the data above). As noted above monotonic
increase in size (instructions) and complexity (branches) may not be given
naturally all over the time, as severe shifts in these variables can be seen.
This leads to the problem of assessing project completion, because measuring
the variables presented here during an ongoing project might not indicate the
maturation of a project. For planning software engineering processes measuring
of the variable of progress might be a problem.

In addition to measuring the internal variable of progress, the environment
allows to dynamically define an acceptance test. It is possible to define a
minimum set of byte code commands that must be developed in order to
successfully develop the compiler. The advantage in this case is that the
number of features may by selected based on the average development speed.
In addition to the dynamic definition of development success this design omits
the problems when creating one complex functionality as an experiment task.

116

Instructions

4000

Branches
50 100 150 200 250 300 350

8000

6000

2000

Instructions participant 1

50 100 150 200 250 300
Version

Branches participant 1

OF‘._ ° k2
$
T,
-
I I I I I I I
0 50 100 150 200 250 300

Version

Instructions

4000

Branches

6000

5000

3000

100 150 200 250

50

Instructions participant 2

D
I g
m@
@
I I I I
50 100 150 200
Version
Branches participant 2
\ \ \ \
50 100 150 200
Version

Figure 16.2: Changes of instructions and branches for two exemplary imple-

mentations

The later design might not allow to finish only fractions of a requirements
specification. For an experiment with a fixed time frame this inability might
lead to a high amount of missing data due to unfinished software versions.
Summing up advantages of the Progress Measurement Environment comprise
additional internal variables as well as benefits for general experiment design.

117

16 Progress Measurement Environment

118

17 Disturber

The disturber is a .Net based tool that was developed for the purpose of
treatment execution control. Its main application is that it opens a dialog after
a certain time has elapsed. The dialog contains experiment specific information.
This information may range from a survey used for data collection or a reminder
to execute a certain treatment.

As an example the disturber was used within the refactoring experiment
described in Chapter 5. It controlled the execution of a refactoring (and the
control groups treatment) by showing a full screen dialog box asking to execute
the according treatment. The dialog could not be hidden and it took five
seconds to be allowed to close the window. This was made to assure that the
current work was interrupted in order to ease switching to the treatment task.

Although the tool itself is very simple in nature the control enhancement of
an experiment is enormous. Especially software engineering techniques with a
recurrent type of work may be supervised by the tool. In terms of analysis the
tool directly collects time based data from participants. The reason is that an
interrupt leads to an application of a treatment which results in a difference in
experiment data. By using a survey within the dialog box variable values may
be gathered directly. Other measurement variables like executing refactoring
or a documentation of the source code imposes differences in the data, too.
Changes in the case of technique application were rather indirectly and had to
be measured by comparing source code changes.

Another data source of this tool is the logging of user events. This data
comprise events like login and logout tasks of a user as well as locking the
screen which is regarded as a break. Thus development times can be gathered
easily by calculating the time between login and logout.

One way to refine this simple tool would be to check whether a treatment
task was executed or not. For example for refactoring, a check list of single
refactoring steps can be provided which the user has to complete. Another way
would be to check if a certain variable (lines of code) has changed. Thus using
additional interaction and post processing of variables the tool might enhance
control even more which is regarded to benefit the resulting data’s validity.

119

17 Disturber

120

Part VI

Conclusion

121

18 Lessons Learned

This chapter presents impressions and tacit knowledge regarding experiments’
and the thesis’” main work. Although this collection is regarded as informal
in nature, the future direction of research as influenced by the thesis’ main
outcome is made up of the sections presented herein.

18.1 Lessons Learned for Empirical Work

Empirical work has a very negative nature. This appears in three different
manifestations: first, in order to show an effect the absence of the opposite must
be shown [11]. If that intended outcome of a result does not occur, this result
is regarded frustrating and negative. Finally showing a result that may be
unpleasant and thus is not published is regarded negative, too. These aspects
are problematic because due to software engineering experimentation being
uncommon and the execution being somewhat unrestricted design wise, criticism
of certain experiment aspects is too simple. Consequently the "mechanical”
execution of experiments is uninviting leading to exploratory studies. In fact
simple collection of data without specifying a concrete hypothesis but with rigid
control of variable quality is much more appealing. Although results cannot be
considered as significant as they might occur due to mere chance, the results of
such an approach may be used as a basis for a subsequent "real” experiment.
Following the correct way ([12]) of having an assumption, creating variables and
measuring for significance appears as an inferior approach with a low chance of
success especially when variables have never been measured before.

Software engineering experiments must be done without the boundaries of
technology. The reason is that most technical aspects change and are merely
created due to a trend. Thus proving the effectiveness of a technique has a
short time of relevance. As most technologies or process related techniques are
based on implicit assumptions, it is considered more valuable to elaborate these
implicit assumptions.

Funding of experiments is considered critical. The reason for this is that
participant intention changes dramatically. One of the most important changes
is the quality of the software itself, which is aimed to be complete and reliable

123

18 Lessons Learned

by paid participants. For lab course based experiments software quality is
threatened as a student might only aim at a quality sufficient to receive a
certificate. Further questions of reliability are dropped and testing in order
to detect failures are omitted as these would lead to additional effort. Thus
quality of experiments is considered to be higher when participants are paid.

One aspect of experiment design is the usage of a cross design. By using this
design type each participant has to do both (or all) treatments that are part of
the experiment procedure. The aim is to reduce effects of previous knowledge
that might create unwanted differences in the independent variables being
measured. While cross design allows to reduce effects imposed for example by
the human factor, two disadvantages have to be mentioned. First a general
history effect might seriously affect software engineering experiments. If a task
has been developed successfully, the general approach to finish it might be
memorized easily. Following this path to success with another treatment leads to
shorter development time ignoring any treatment effects. The second problem
using cross design is considered to be created by embedded systems. The
underlying problem is the technical difference in the hardware platforms as well
as the development environments being used. Productive (and realistic) software
development requires a considerable amount of preparation regarding the
hardware specific aspects of embedded systems. Summing up, the application
of a cross design for embedded systems software engineering experimentation
requires a well thought preparation.

18.2 Lessons Learned for Software Engineering

Interestingly the lessons learned for software engineering are based on obser-
vations of negative participant behavior during execution of experiments and
lab courses. Consequently the first thing to be mentioned is that software
engineering must be able to handle mediocre developers. The demand to have
experts cannot be fulfilled for every project. Thus techniques and methods to
support developers who tend to work rather unreflected or unambitious are
considered important. Even when techniques are given, it must be made sure
that these are applied. This is a matter of control for experimentation, but for
an actual project sustainability of technique application becomes a problem.
It depends on the individual developer if he is able to adopt a technique or if
programming itself imposes such a difficulty that no other techniques can be
executed by that person.

One of the most challenging aspects for embedded systems consists of pro-
gramming peripheral hardware. Accordingly solving the basic handling of

124

18.3 The Black Matter of Software Engineering Experimentation

sensors and actuators should have been the first step. This was not done by
all participants and the focus of their work differed. Sometimes details were
worked out like button and LED based user interaction, although this had to
be considered secondary compared to the main functional task of the lab course.
Another problematic focus appeared once as one participant used a complete
object oriented design within an embedded, C language based programming
task. Although the participant was successful, the resulting code size, code
design and development time deviated considerably from the result of other
participants. This cannot be simple considered as bad, but the impression
remains that this capable programmer would have needed a fraction of time
for the task if he used traditional procedural development. Another rather
common behavior was a trial and error approach in which a complex code
fragment or a peripheral aspect of the microcontroler was not programmed in
a controlled, thoughtful way, but variable manipulation was rather random.
Understanding of the problem or situation was not an aim of the participants
resulting in an absence of testing. This behavior appeared as trial and is
considered harmful for software engineering, too. Summing up a multitude of
good and bad development "habits” were encountered. Controlling or rating
them was not directly possible, but they seemed to have an impact on software
engineering.

18.3 The Black Matter of Software Engineering
Experimentation

The measurement of development progress of a project revealed a serious
problem. It occurred clearly during the pretest group of the second planning
horizon experiment. The counting of successfully compiled byte code commands
of the JIT compiler was used to assess the project’s progress. To allow the
participants to get feedback of their JIT compiler’s status, a test environment
was given to them. Both participants applied the test environment during a
different point of time of their project. While one used it very early during
the project, the other developer used it very late. The problem is that for
the second developer, although he developed a usable and meaningful source
code, the progress is not measurable externally for most of the time. After
that most functionality was coming at once as depicted in Figure 16.1 on the
right side. The work in the background with lines of code that are added or
changed is regarded as black matter, because even without measurable increase
in functionality or lines of code, progress might be made. It can be considered

125

18 Lessons Learned

as cognitive effort which is used to debug or understand a problem. Although
time is consumed by this task quantification is very difficult. Especially the
side effect of suddenly non working programs is unacceptable, as this does not
reflect the effort or extend that resides in the source code, but is not measurable
temporary.

The only hint on progress might be given by lines of code, which increase
during that time. The quality of this variable is regarded at least uncertain, as
code might not be used by the program or it might be removed during a later
stage as presented in Chapter 12.

Being unable to measure a project’s status that is having no hint on func-
tionality, it is not only unacceptable from an empirical standpoint. Meaningful
progress must be the base of a reliable project planning. Thus if functionality
is removed, the duration of it missing, its permanence and probability of future
occurrence must be accountable. One weak solution to assess the project status
might be task based software planning as used in Extreme Programming. The
basic principle is to estimate effort for tasks with a duration of only a few days.
Tasks include development of functionality, tests, debugging tasks and so on.
Accordingly a project status may be represented and measured in a better way
using this kind of information. The only drawback is that the data source is
human related and thus, validity is regarded not too high.

18.4 Effect Strength

A very important concept is termed effect strength. In computer science it
appears for example as the term ”silver bullet” which is used to denote strong
factors. Regarding software engineering experimentation, effect strength is
directly related to the number of participants needed within an experiment.
The result of such an analysis is a probability value describing the likelihood of
an experiment to show successfully a given effect strength for a given number
of participants. This analysis which should be part of an experiment as first
described by Miller et al. [62] and refined later by Miller [61], is called power
analysis.

One source for estimating the required number is given by the works of Cohen
[20] for statistical tests like t-tests, x*-tests, or correlation analysis (amongst
others). Cohen presents power tables which for a given number of participants
n and an effect strength d present the likelihood of an experiment to positively
show a given effect strength. Effect strength is defined based on the type of

126

18.4 Effect Strength

test, and for the t-test the effect strength d is given as

d — Mg — Myp
o

with m, and m; being the population means (of the original measurement) and
o as the standard deviation. For example a medium effect strength of 0.5 would
have a probability of 0.8 to be shown by an experiment when 80 participants
took part. For a weak effect strength of 0.2 to have the same probability, 500
participants would be needed, while a strong effect of 1.0 would need only 21
participants. Another origin of power estimation is given by [12] in the form of
a table for multiple tests which can be used as a rule of thumb, too.

Only for the refactoring experiment a power analysis was executed. As for this
experiment bootstrap methods were used, the power analysis was executed using
a resampling based approach. In order to calculate the probability experiments
are simulated based on the original data. The resulting data is compared to
the observed difference in means and the fraction of experiment with a same
or higher difference is used to estimate the power of an experiment. By using
more participants within the simulation, power estimates for higher values of
n can be calculated. An example of this post analysis process is presented in
Section 5.3.3.

The relationship of effect strength, number of participants and likelihood
to show a difference within an experiment is important especially during the
design phase of an experiment. Numbers of 30 participants or more, which are
proposed for human sciences, appear as a stable value at least for medium to
strong effects. Regarding the ability to estimate the power during execution,
an experiment may be tested for power during its actual execution. Thus one
rather uncommon way would be to start an experiment and execute it over
time. In contrast most experiments are executed only for a certain, short period
of time. Regarding this execution, apart from higher power values, funding
may be a bit easier as it may be spread over a longer period of time.

127

18 Lessons Learned

128

19 Results

The last chapter presents the main contribution of this thesis to embedded
software engineering and software engineering experimentation. The chapter
is closed by intentions for future work consisting of a perfectly predictable
software engineering experiment.

19.1 Agility and Embedded Systems

Although a direct positive effect of a single agile technique could not be found,
some hints on the benefits of agility were found. Regarding refactoring a reduced
memory consumption for the program text of the resulting program was found.
Although not part of a major hypothesis, differences were found to be unlikely
caused by randomness. The reason for this reduced memory assumption lies in
the aggregation of code into single functions, or in a more general sense in the
design principle of ”once and only once”. As memory consumption is important
for embedded systems, application of refactoring might help to stay resourceful
in this regard.

The analysis of types of work as presented in Chapter 4 revealed that most
of the function related code is developed constantly throughout a project using
the technique of short releases. In contrast initial planning appears to lead
to architecture related development in the beginning and functional work in
the end. A rather interesting result is that a higher fraction of work in short
releases is spent on defect related development and general change of software.
Two interpretations of this could be given: either short iterations lead to a
higher amount of failures and change, or due to early functional development,
problems are found earlier. Long planning projects appears to have long phases
were no defect or change related work is done. Only at the very end the fraction
of work for these issues increases.

The final indirect result concerning agility is that the basic work style of
programming is rather based on randomness (cf. Chapter 12). The randomness
can be observed in form of lines of code that are created but are later deleted
and thus do not appear in the final version of the program. In addition the
module that is worked on does not follow a straight sequence. Changes may

129

19 Results

occur during later stages of a software development task. This observation
leads to an indirect justification of using Agile Methods, as the ability to cope
with change is said to be one major property of Agile Methods [7].

Negative aspects of Agile Methods can be measured for refactoring where
an overhead for this technique can be shown. The reason for this clearly
originates from the added changes enforced by this technique. Due to the
absence of structural improvement the observation is considered problematic.
Regarding the analysis of work types presented in Chapter 4, one unexpected
observation was a peak in absolute development time for the short iteration
based development right before the end of the project. As agility was assumed
to circumvent such effects due to constant addition of functionality and defect
reduction, results appear to support longer planning phases which provide a
fixed development sequence. The last problem of Agile Methods is that their
effect strength may not be sufficient to justify their application. Even though it
might be possible that their effect strength is high and just by chance did not
occur in the experiments carried out, their effect strength appears to be too
low to be in the area of a "silver bullet”. Especially when compared to the tool
chain that was used, the subjective impression is that better tools (external
test environments, extensive peripheral libraries, faster compile and debug
cycle) would have improved the development more than an agile technique.
The benefit of using superior tool chains might be caused by the software
structure of embedded systems. The special aspect of the embedded software
structure is made up of realtime requirements and hardware dependence which
are technical problems. Solving these technical problems might only be possible
for development methods directly designed for the need of embedded software
engineering.

19.2 Variables

Another type of result developed within this thesis concerns the variables used
in software engineering experiments. The reliability of variables describes the
equality of repeated measurements using this variable. This can be simply
tested using repeated measurements. It is influenced for example by noise
from uncontrolled variables. Thus it is desirable to have dependent variables
which are not influenced by the experiment setting itself. Validity of a variable
describes if the intended concept really is measured by a variable. This can be
checked by testing expected differences to occur within the variable measured.
An example for this was made in the viscosity experiment, where CORBA
based source code was correctly assumed to have a lower value than most other

130

19.2 Variables

parameters.

Other properties of variables are the scale types that are used. For example
interpreting differences between two variables requires an interval scaled variable.
Thus the allowed mathematical operations may be reduced up to the point
that interpretation becomes meaningless. An example for this is the functional
progress variable of the progress measurement environment. While a difference
of implemented functionality in terms of compiled byte code commands may be
calculated easily, interpreting this difference might be meaningless. The reason
is that effort and complexity might be different for byte code commands. One
very complex command may need a higher programming performance than two
easy byte codes. The underlying assumption of that variable ”who programmed
more” accordingly might not be answered correctly.

Finally relevance of a variable must be considered, too. This is based on the
usefulness for current theories and practicability.

In order to provide an overview of the variables used within the experiments,
Table 19.1 provides an overview of variables along with a subjective assessment
of usefulness (given as low, medium, high) that were used in the experiments
of this thesis.

Variable Reliability Validity Scale Relevance
Time Medium High Ratio High
Progress Medium Low Ordinal Medium
Experience Low Low Ordinal High

C Knowledge High High Interval Low
Viscosity High High Ratio Medium
Lines of Code Medium Medium Ordinal High

Cyclomatic Complexity Medium Medium Ordinal High

Table 19.1: Variable assessment as used within the thesis

Variable reliability is considered high for the human based variables created
in this thesis because the creation is based on a high number of questions and
participants together with tests that assure linearity and Rasch conformance.
When doing repeated measurements values are expected to be the same under
the same conditions. This is not true for a survey based experience variable,
as it was normally based on single survey entries like ”How long have you
programed in C?”. FKEntries for this field are considered not to be precise
and mood dependent. Validity is considered again high for viscosity and C
knowledge, because perceived difficulties were met by the tests. Problems with
validity occur for example for the variables progress and lines of code. Both

131

19 Results

alm at measuring an increase in work that was done, but both fail to give
an accountable value for cognitive work that was applied to the code. Scale
indirectly gives an assessment of variable precision. For example using ordinal
scaled variables, parameterized statistics test are not feasible. In addition
ordinal variables only allow rough models to be created because of a lack of
mathematical operations.

Other survey based variables were used in the experiments, but their quality
was regarded too low to be mentioned here. The reason is that Lickert (cf.
[12]) scales with for example values like "low”, "medium”, and ”high” are
imprecise and subjective and the mere selection of a question concept normally
is considered to have a low relevance. Examples for questions are ” Are you
used to Agile Methods?”. Although the experimental intention is clear, its
interpretation is only of local interest and its resulting values are rough.

The final question generated by this variable assessment is how precise a
software project can be measured. This comprises not only an individual view
on each variable but a holistic approach to the problem — are all relevant
variables available for measurement. The question of variable quality has an
influence on the goodness of underlying models and their expressiveness.

19.3 The Perfect Experiment

The term perfect experiment originates from one idea: having a variable that
plotted against the time needed to fulfill the programming task results in an
obvious correlation. Regarding the execution of further experiments with small
numbers, it is important to work with effects of an appropriate strength. Agile
techniques like refactoring or short releases may not excel at their effect strength
on a software engineering experiment. The human factor and even some basic
working styles are assumed to have stronger effects. An example for this are
participants which tend to write the complete source code without even one
intermediate compiling step. Although this occurred rarely, the impact on the
software being developed was catastrophic. Another misbehavior encountered
was one of the worst assumptions of embedded software engineering consisting
of the principle idea that the machine being programmed was indeterministic
in nature. This lead to very slow progress for the effected groups. Finding
variables with strong effects which are based on human ability and human
behavior is supposed to yield stronger effect strengths than testing individual
software engineering techniques.

Adopting non trend related experimentation might lead to more subtle side
effects of indirect observations. For example when not using tests throughout

132

19.3 The Perfect Experiment

the development, it might be difficult to reach a certain level of software
reliability which would be reached otherwise. Accordingly instead of creating
experiments which plainly include test driven development, one might prohibit
testing for one group and enforce it in a second group. From the point of view
of experimentation the later design would not allow to draw the conclusion
that test driven development would work. A generic effect of continuous testing
might be shown. The same indirect observations might be made for refactoring.
It could be accomplished by showing that initial design decisions might be
unreflected, inadequate, or based on incorrect assumptions. One might argue
than that refactoring of software is necessary. This appears a more viable
approach than ”mechanical” experiment design based on software engineering
techniques. An experiment design like comparing similar methods (e.g. test
first versus test last development [63]) is assumed to test for smaller effects
which accordingly needs a higher number of participants and must be regarded
impractical.

Finally the identification and quantification of habits and person abilities
appears as a viable approach to determine relevant factors for software engi-
neering experimentation. On basis of the strongest factors, it might be possible
to successfully predict development times. The Rasch model and the other
measurement procedures presented in this thesis will certainly help to discover
new variable relations in this direction of computer science research.

133

19 Results

134

A Basic Methodical Approach

A.1 Box Plots

Box plots are used to describe data in a generic way to give an overview of
the it as depicted in Figure A.1. They describe the median value, indicates
outliers, dispersion and skewness in the data. The box presents the centered
half of the data starting with the first quartile (0.25), passing the median (0.5)
to the third quartile (0.75). This range is referenced as the interquartile range
(IQR). The whiskers indicate data below the first and above the third quartile.

Lower quartile Upper
Outlier whisker
_. . Median
é }7 | | 41
-1 0 1 2

Figure A.1: Overview of box plot elements

Mild outliers are defined as values 1.5 x IQR lower than the first or greater
than the third quartile. Extreme outliers are considered to be more than three
IQR away from their according quartile.

Skewness can be observed by the relative position of the quartiles to each
other. Note that box plots normally are vertical.

135

A Basic Methodical Approach

A.2 Hypothesis Testing

In order to explain the principle of hypothesis testing, let us first have a look at
the basic problem. Imagine two groups of four pigs with the measured weights:

e 6,4,7,5 3
© 86,5097

The question that must be answered is if these two groups were created by
chance. In other words, one must be able to judge how likely the group
differences were created by a certain driving factor or just based on randomness.
This is only necessary for groups were the difference is not that obvious. If the
example above would contain lots of measurements and one group would have
values being an order of magnitude greater than the other group, no special
test would be needed. Accordingly only ”close” groups must be tested.

To help answering the question of chance as the underlying factor three dif-
ferent approaches are presented in the following. First resampling is introduced
together with an algorithmic presentation. After that the difference of a T-Test
with its resulting values is depicted. Finally, a u-test which is used for ordinal
scales, is shown.

A.3 Test Artifacts

Two important concepts of hypothesis testing must be explained here (although
it must be admitted that there are more). First two sided (or two tailed) and
one sided (or one tailed) tests describe the overall aim of testing non equality
or directed (greater than) hypotheses. A hypothesis H; of a two sided test asks
whether the two pig groups above have different mean weights:

Hy :po #

with o being the mean weight of a group. The only way to show that the
hypothesis is true is to falsify the opposite hypothesis:

Ho : pio = 1n

The reason for this approach of falsification is the ”positive” way of showing
the correctness of a hypothesis being unfeasible. To inductively show that every
experiment with pigs always results in different mean values leads to an infinite
high number if experiments and only one unsuccessful experiment would make
the hypothesis illegal. As a consequence, falsification of the opposite is used.

136

A.4 Resampling

The second important aspect of hypothesis testing is the p-value describing
the probability of finding a result like the observed value. In the example above,
a p-value of only a few percent for Hy means that equal mean weights are
observed rarely for the two groups. Thus, Hy can be rejected leading to an
acceptance of H;. Four misinterpretations of the p-value must be mentioned:

e The p-value does not describe the probability of the observation, e. g. it
is not p(observation).

e It does not describe the probability of the null hypothesis p(H,).
e It is not the probability of the alternative hypothesis 1 — p(H).

e The p-value does not represent the probability of Hy with the assumption
that the observed results hold (p(Hy|observation).

The p-value is the most important value that must be interpreted after running
a test. If it is very small, it indicates a low likelihood for the Hy hypothesis
leading to an acceptance of the alternative (main) hypothesis. In general it is
accepted to reject a hypothesis when it is below five percent. This acceptance
criterion is called the level of significance or alpha error.

A.4 Resampling

The idea of resampling can be shown using an algorithmic description typical
for resampling. The aim of the algorithm would be to recreate the observed
situation using the assumption of randomness as driving factor. The pig weight
example above would be:

1. Combine both groups into one data vector.

2. Repeat 1000 times:

a) Sample with replacement five pig weights for the first group.
b

) Sample with replacement five pig weights for the second group.
c¢) Calculate the mean for both groups.
)

d) Record the difference between the two sample means.
3. Count how often the resampled differences exceed the observed difference.

4. Divide the result by 1000 to calculate the probability.

137

A Basic Methodical Approach

The observed mean values for the pig weight example are five for group one
and seven four group two. In consequence it must be calculated how often
the sampled mean values have a difference of two or more for a two sided
(undirected) test. If the hypothesis was that group two had a greater mean,
only the cases with group two having a difference of two or more would have to
be counted.

A simulation based on the example pig weights results in 73 values having an
(absolute) difference in means of two or more. Thus, the p-value is 0.073 which
is more than the generally accepted level of significance of 0.05. Accordingly
we cannot reject the null hypothesis that there is no difference in mean weight.

A.5 T-Test

The result of a T-Test is the same as above, namely a p-value describing the
probability of observing an extreme result like the measured value. For the pig
weight example the p-value for the T-Test is 0.0852. This is insignificant again.

The major difference between the T-Test and resampling is the technical
approach to calculate the p-value. While resampling calculates the p-value
reusing the observed values, the T-Test transforms the observed group mean
values together with the variance of mean differences into t-values. For group
sizes of ny+mny > 50, the resulting t-values are normal distributed and for smaller
groups the values are t-distributed. Consequently the values are interpreted
based on the probability of occurrence for a "normalized” normal or t-distributed
data. Thus the T-Test circumvents the computer based calculation of the
distribution (coining the term bootstrap).

The special aspect of this approach is that certain demands must be fulfilled.
First the observed data must be normal distributed in order to allow the
transformation. Additionally the variances of both groups must be equal.
Finally the statistics used in this test is the mean not being robust against
extreme outliers.

A.6 U-Test

Ordinal variables can only be interpreted based on the order relation. This
makes the mean statistic unusable for ordinal scaled variables. In order to test
significant differences between groups the Mann-Whitney U-Test can be used.
This test first converts the observed data into rank sums. Each value is replaced
by its occurrence number for both groups. For group one of the pig weight

138

A.6 U-Test

example above the ranks are 1, 2, 3, and 4 summing up to 10. The rank sum
is 27 for group two. This calculation is a simplification as normally a special
treatment is used for equal ranks (ties). The test now allows to interpret the
observed differences based on precalculated probability tables for the observed
rank sums leading to a final p-value.

The approach of the test can be best described by an extreme example. If
one group is made up of values one to four and the second group has rank
values five to eight it is very unlikely that this outcome is based on chance.
The U-Test now helps to assess the case with ranks being mixed within groups
and accordingly more equal rank sums for both groups. As this test is rather
beautiful it must be pointed out that it uses the central tendency (or median)
to assess group differences.

The p-value for the pig example above based on the U-Test is 0.11 being
insignificant again.

139

A Basic Methodical Approach

140

Bibliography

1]

P. Abrahamsson and J. Koskela. Extreme programming: A survey of
empirical data from a controlled case study. In Proceedings of the 2004
International Symposium on Empirical Software Engineering (ISESE0/),
2004.

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software
development methods. Review and analysis. VT'T Publications, 2002.

P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New
directions on agile methods: a comparative analysis. ICSE '03: Proceedings
of the 25th International Conference on Software Engineering, pages 244—
254, 2003.

T. Anderson and P. A. Lee. Fault tolerance terminology proposals. In
Proceedings of the 12th IEEE International Symposium on Fault Tolerant
Computing, 1982.

V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo, and J. D.
Valett. Understanding and predicting the process of software maintenance
releases. In Proceedings of the 18th International Conference on Software
Engineering, 1996.

V. Basili, R. Tesoriero, P. Costa, M. Lindvall, I. Rus, F. Shull, and
M. Zelkowitz. Building an experience base for software engineering: A
report on the first CeBASE eWorkshop. In Product Focused Software
Process Improvement : Third International Conference, PROFES, 2001.

K. Beck. Ezxtreme Programming. Das Manifest. Addison-Wesley, 2. auflage
edition, 2000.

D. Binkley. Source code analysis: A road map. In FOSE "07: 2007 Future

of Software Engineering, pages 104-119, Washington, DC, USA, 2007.
IEEE Computer Society.

141

Bibliography

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

142

B. Boehm. A view of 20th and 21st century software engineering. In
ICSE °06: Proceedings of the 28th international conference on Software
engineering, pages 12-29, New York, NY, USA, 2006. ACM.

T. G. Bond and C. M. Fox. Applying the Rasch Model. TEA, 2001.

J. Bortz and N. Déring. Forschungsmethoden und Fvaluation. Springer, 3.
edition, 2003.

J. Bortz and N. Déring. Forschungsmethoden und Fvaluation. Springer, 4.
edition, 2006.

M. Broy and A. Rausch. Das neue V-Modell XT. Informatik Spektrum, 28
(3):220-229, June 2005.

L. Burd and S. Rank. Using automated source code analysis for software
evolution. In SCAM, pages 206-212, 2001.

J.-M. Burkhardt, F. Deétienne, and S. Wiedenbeck. Object-oriented
program comprehension: Effect of expertise, task and phase. Empirical
Software Engineering, 7:115-156, 2002.

J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Using empirical studies
during software courses. ESERNET 2001-2003, LNCS 2765, pages 81-103,
2003.

T. Chau, F. Maurer, and G. Melnik. Knowledge sharing: Agile methods
vs. tayloristic methods. In WETICE Twelfth International Workshop on
Enabling Technologies Infrastructure for Collaborative Enterprises. IEEE,
2003.

S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical soft-
ware engineering cost models. IEEFE Transactions on Software Engineering,

25(4):573-583, 1999.

A. Cockburn. The end of software engineering and the start of economic-
cooperative gaming. Computer Science and Information Systems, 1(1):
1-32, 2004.

J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, 1988.

W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance
metrics for name-matching tasks. In Proceedings of the IJCAI-2003, 2003.

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]
28]

[29]

[30]

[33]

M. Davis. When is a volunteer not a volunteer? FEmpirical Software
Engineering, 6:349-352, 2001.

A. C. Davison. Bootstrap Methods and their Application. Cambridge
University Press, 1997.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman
& Hall / CRC, 1998.

N. Fenton, P. Krause, and M. Neil. Probabilistic modelling for software
quality control. In S. Benferhat and P. Besnard, editors, Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, LNCS 2143, pages
444-453, 2001.

N. E. Fenton and M. Neil. Software metrics: roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering,
pages 357 — 370. ACM Press, 2000.

G. H. Fischer and I. W. Molenaar, editors. Rasch Models. Springer, 1995.

M. Fowler. Refactoring. Improving the Design of Existing Code. Addison
Wesley, 1999.

A. Garrido and R. Johnson. Challenges of refactoring ¢ programs. IWPSE:
International Workshop on Principles of Software Evolution, 2002.

A. Garrido and R. Johnson. Refactoring ¢ with conditional compilation. In
18th IEEFE International Conference on Automated Software Engineering
(ASE 2003), Montreal, Canada, 2003.

B. Georgea and L. Williams. A structured experiment of test-driven
development. Information and Software Technology, 46:337-342, 2004.

B. Geppert and F. Rosler. Effects of refactoring legacy protocol imple-
mentations: A case study. In METRICS ’0/: Proceedings of the Software
Metrics, 10th International Symposium on (METRICS’04), pages 14-25,
Washington, DC, USA, 2004. IEEE Computer Society.

B. Geppert, A. Mockus, and F. Rofller. Refactoring for changeability:

A way to go? In 11th IEEFE International Software Metrics Symposium
(METRICS 2005).

143

Bibliography

[34]

[35]

[43]

[44]

144

D. M. German. An empirical study of fine-grained software modifications.
In 20th IEEFE International Conference on Software Maintenance, 2004,
2004.

E. Grant and H. Sackman. An exploratory investigation of programmer
performance under on-line and off-line conditions. Human Factors in
FElectronics, IEEE Transactions on, HFE-8(1):33-48, March 1967. ISSN
0096-249X.

T. R. G. Green. Programming languages as information structures. In
R. S. J. M. Hoc, T. R. G. Green and D. J. Gilmore, editors, Psychology of
Programming, pages 117 — 137, San Diego, 1994. Academic Press.

S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-
oriented software. In jth Annual International Conference on Object-

Oriented and Internet-based Technologies, Concepts, and Applications for
a Networked World (Net.ObjectDays), 2004.

A. E. Hassan and R. C. Holt. Studying the evolution of software sys-
tems using evolutionary code extractors. Proceedings of IWPSE 2004:
International Workshop on Principles of Software Fvolution, 2004.

R. Hatzinger and P. Mair. Extended rasch modeling: The erm package for
the application of irt models in r. Journal of Statistical Software, 20(9):
1-20, 2007.

D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Commun. ACM, 18(6):341-343, 1975.

W. Humphrey. A Discipline for Software Engineering. Addison-Wesley,
Reading, MA, 1995.

M. Host, B. Regnell, and C. Wohlin. Using students as subjects - a compar-
ative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering, 5:201-214, 2000.

M. John, F. Maurer, and B. Tessem. Human and social factors of software
engineering: workshop summary. SIGSOFT Softw. Eng. Notes, 30(4):1-6,
2005.

M. Jorgensen and K. J. Molgkken-@stvold. Eliminating over-confidence in
software development effort estimates. In Conference on Product Focused
Software Process Improvement, Lecture Notes in Computer Science, pages
174-184, Japan, 2004. Springer-Verlag.

Bibliography

[45]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

J. Karn and T. Cowling. A follow up study of the effect of personality on the
performance of software engineering teams. In ISESE ’06: Proceedings of
the 2006 ACM/IEEE international symposium on International symposium
on empirical software engineering, pages 232—241, New York, NY, USA,
2006. ACM Press.

Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation
of maintainability enhancement by refactoring. In Proceedings of the
International Conference on Software Maintenance (ICSM02), 2002.

M. Kim and D. Notkin. Using a clone genealogy extractor for understanding
and supporting evolution of code clones. In MSR °05: Proceedings of the
2005 international workshop on Mining software repositories, pages 1-5,

New York, NY, USA, 2005. ACM Press.

M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of
code clone genealogies. In ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, pages

187-196, New York, NY, USA, 2005. ACM Press.

J. C. Knight and N. G. Leveson. An experimental evaluation of the assump-
tion of independence in multiversion programming. I[EEE Transactions on
Software Engineering, 12(1), 1986.

M. M. Lehman. Programs, life cycles, and laws of software evolution. In
Proc. IEEE 68, number 9, pages 1060-1076, September 1980.

M. M. Lehman. Laws of software evolution revisited. In Furopean Workshop
on Software Process Technology, pages 108-124, 1996.

M. M. Lehman and J. F. Ramil. Software uncertainty. In D. Bustard,
W. Liu, and R. Sterritt, editors, Soft-Ware 2002: Computing in an Imper-
fect World, LNCS 2311, pages 174-190, 2002.

R. Leitch and E. Stroulia. Understanding the economics of refactoring. In
The Tth International Workshop on Economics-Driven Software Engineer-
ing Research, 2005.

H. Li, C. Reinke, and S. Thompson. Tool support for refactoring func-
tional programs. In Haskell '03: Proceedings of the 2003 ACM SIGPLAN
workshop on Haskell, pages 27-38, New York, NY, USA, 2003. ACM Press.

145

Bibliography

[55]

[56]

[60]

[61]

[62]

[63]

[64]

146

M. Lippert, S. Roock, and H. Wolf. Software entwickeln mit eXtreme
Programming. dpunkt, 2002.

B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures
in multiversion software. [EEE Trans. Softw. Eng., 15(12):1596-1614,
1989.

J. 1. Maletic and A. Marcus. Using latent semantic analysis to identify
similarities in source code to support program understanding. In ICTAI
00: Proceedings of the 12th IEEE International Conference on Tools
with Artificial Intelligence, page 46, Washington, DC, USA, 2000. IEEE
Computer Society.

M. Maéntyla, J. Vanhanen, and C. Lassenius. A taxonomy and an initial
empirical study of bad smells in code. In Proceedings of the International
Conference on Software Maintenance (ICSM03), 2003.

B. McCloskey and E. Brewer. Astec: a new approach to refactoring c.
In ESEC/FSE-13: Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 21-30, New York, NY, USA,
2005. ACM Press.

T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transac-
tions on Software Engineering, 30(2), 2004.

J. Miller. Statistical significance testing - a panacea for software technology
experiments 7 The Journal of Systems and Software, 73:183 — 192, 2004.

J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks. Statistical power
and its subcomponents - missing and misunderstood concepts in empiri-

cal software engineering research. Journal of Information and Software
Technology, 1997.

M. Miiller and O. Hagner. Experiment about test-first programming. IEFF
Proceedings Software, 149(5):131-136, Oct. 2002.

M. M. Miiller, F. Padberg, and W. F. Tichy. Ist XP etwas fiir mich?
empirische Studien zur Einschatzung von XP. In P. Liggesmeyer, K. Pohl,
and M. Goedicke, editors, Software Engineering 05, 2005.

W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
Urbana-Champaign, 1L, USA, 1992.

Bibliography

[66]

[69]

[70]

[74]

[75]

[76]

P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger. A probabilistic
model for predicting software development effort. In V. Kumar, M. L.

Gavrilova, C. J. K. Tan, and P. L’Ecuyer, editors, Computational Science
and Its Applications - ICSSA 2003, LNCS 2668, pages 581-588, 2003.

M. Pizka. Straightening spaghetti code with refactoring? Software Engi-
neering Research and Practice, 2004.

L. Prechelt. The 28:1 grant/sackman legend is misleading, or: How large is
interpersonal variation really? Internal Report 18, Universitat Karlsruhe,
Fakultét fiir Informatik, 1999.

L. Prechelt. Kontrollierte Experimente in der Softwaretechnik. Springer,
2001.

J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through
refactoring. In MSR °05: Proceedings of the 2005 international workshop
on Mining software repositories, New York, NY, USA, 2005. ACM Press.

M. B. Rosson. Human factors in programming and software development.
ACM Comput. Surv., 28:193-195, 1996.

J. Rost. Testtheorie - Testkonstruktion. Verlag Hans Huber, 2004.

F. Salewski, D. Wilking, and S. Kowalewski. Diverse hardware platforms in
embedded systems lab courses: A way to teach the differences. In Special
Issue: The First Workshop on Embedded System Education (WESE),
volume 2, pages 70-74. SIGBED Review, ACM, Oct. 2005.

F. Salewski, D. Wilking, and S. Kowalewski. The effect of diverse hardware
platforms on N-version programming in embedded systems - an empirical
evaluation. In Proc. of the 3rd. Workshop on Dependable Embedded Sytems
(WDES’06), volume TR 105/2006, pages 61-66. Vienna University of
Technology, Nov. 2006.

M. Shepperd. Software project economics: a roadmap. In FOSE '07: 2007
Future of Software Engineering, pages 304-315, Washington, DC, USA,
2007. IEEE Computer Society.

J. E. Sieber. Protecting research subjects, employees and researchers:
Implications for software engineering. Empirical Software Engineering, 6:
329-341, 2001.

147

Bibliography

[77] F. Simon, F. Steinbriickner, and C. Lewerentz. Metrics based refactoring.
In Proceedings of the Fifth European Conference on Software Maintenance
and Reengineering, 2001.

[78] J. L. Simon. Resampling: The New Statistics. Resampling Stats, 1999.

[79] J. Singer, M.-A. D. Storey, and S. E. Sim. Beg, borrow, or steal (work-
shop session): using multidisciplinary approaches in empirical software
engineering research. In ICSE, pages 799-800, 2000.

[80] D. I. K. Sjgberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen, A. Kara-
hasanovi¢, and M. Vokac. Challenges and recommendations when increas-
ing the realism of controlled software engineering experiments. FSERNET
2001-2003, LNCS 2765, pages 24-38, 2003.

[81] I. Sommverville. Software Engineering. Addison-Wesly, 2001.

[82] W. F. Tichy. Should computer scientists experiment more? IEEE Com-
puter, 31(5):32-40, 1998.

[83] J. B. Todman and P. Dugard. Single-Case and Small-N Ezperimental
Designs: A Practical Guide to Randomization Tests. Lawrence Erlbaum
Associates, 2000.

[84] B. Walter and B. Pietrzak. Multi-criteria detection of bad smells in code
with UTA method. In H. Baumeister, M. Marchesi, and M. Holcombe,

editors, Extreme Programming and Agile Processes in Software Engineering,
XP 2005, Sheffield, UK, 2005. Springer.

[85] Y. Wang. On the cognitive informatics foundations of software engineering.
In Proceedings of the Third IEEE International Cognitive Informatics,
2004, 2004.

[86] Y. Wang. On cognitive properties of human factors in engineering. In
Fourth IEEE Conference on Cognitive Informatics, 2005. (ICCI 2005),
2005.

[87] D. Wilking and S. Kowalewski. Analyzing software engineering processes on
source code level. In In the Proceedings of the The 6th International Con-
ference on Software Methodologies, Tools and Techniques, SOMET 2007
(in print), 2007.

148

Bibliography

[38]

[89]

[90]

[91]

[92]

[93]
[94]

D. Wilking, U. F. Khan, and S. Kowalewski. An empirical evaluation of
refactoring. e-Informatica - Software Development Theory, Practice and
Ezperimentation, 1(1):28-44, February 2007.

D. Wilking, D. Schili, and S. Kowalewski. Measuring the human factor
with the rasch model. In In the proceedings of the 2nd IFIP Central and
East European Conference on Software Engineering Techniques, CEE-SET
2007 (in print), 2007.

L. Williams, W. Krebs, L. Layman, A. Antéon, and P. Abrahamsson. Toward
a framework for evaluating extreme programming. Empirical Assessment
in Software Eng. (FASE), pages 11-20, 2004.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. An Introduction. Kluwer Aca-
demic Publishers, 2000.

A. L. Wolf and D. S. Rosenblum. A study in software process data capture
and analysis. In Second International Conference on the Software Process
(ICSP2), pages 115-124, 1993.

B. D. Wright and G. N. Masters. Rating Scale Analysis. Mesa Press, 1982.

A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting
source code changes by mining change history. IEEE Trans. Softw. Eng.,
30(9):574-586, 2004. Member-Gail C. Murphy.

149

Bibliography

150

Bibliography

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.
A complete list of reports dating back to 1987 is available from http://aib.
informatik.rwth-aachen.de/. To obtain copies consult the above URL or
send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,
52056 Aachen, Email: biblioQinformatik.rwth-aachen.de

2003-01 *
2003-02

2003-03
2003-04

2003-05

2003-06

2003-07

2003-08

2004-01 *
2004-02

2004-03

2004-04

2004-05

2004-06

2004-07

2004-08

2004-09

Jahresbericht 2002

Jirgen Giesl, René Thiemann: Size-Change Termination for Term
Rewriting

Jirgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Improving Dependency Pairs

Christof Loding, Philipp Rohde: Solving the Sabotage Game is
PSPACE-hard

Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

Horst Lichter, Thomas von der Maflen, Alexander Nyflen, Thomas
Weiler: Vergleich von Anséitzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

Fachgruppe Informatik: Jahresbericht 2003

Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-
sively equivalent to EMSO logic

Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 — 2nd
International Workshop on Higher-Order Rewriting

Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 — Fifth In-
ternational Workshop on Rule-Based Programming

Herbert Kuchen (ed.): WFLP 04 — 13th International Workshop on
Functional and (Constraint) Logic Programming

Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 — 4th International
Workshop on Reduction Strategies in Rewriting and Programming
Michael Codish, Aart Middeldorp (eds.): WST 04 — 7th International
Workshop on Termination

Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-
piling Recursive Function Definitions with Strictness Information
Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

151

http://aib.informatik.rwth-aachen.de/
http://aib.informatik.rwth-aachen.de/

Bibliography

2004-10

2005-01 *

2005-02

2005-03

2005-04

2005-05

2005-06

2005-07

2005-08

2005-09

2005-10
2005-11

2005-12

2005-13
2005-14
2005-15
2005-16

2005-17

2005-18

152

Zinaida Benenson, Felix C. Géartner, Dogan Kesdogan: Secure Multi-
Party Computation with Security Modules

Fachgruppe Informatik: Jahresbericht 2004

Maximillian Dornseif, Felix C. Gartner, Thorsten Holz, Martin Mink: An
Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

Jurgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

Daniel Mélle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

Simon Fischer, Berthold Voécking: Adaptive Routing with Stale Infor-
mation

Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:
Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

Benedikt Bollig: Automata and Logics for Message Sequence Charts
Simon Fischer, Berthold Vocking: A Counterexample to the Fully Mixed
Nash Equilibrium Conjecture

Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-
ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments
Felix C. Freiling, Sukumar Ghosh: Code Stabilization

Uwe Naumann: The Complexity of Derivative Computation

Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-
Linear Code)

Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-
dural Adjoint Code)

Thomas von der Maflen, Klaus Miller, John MacGregor, Eva Geis-
berger, Jorg Dorr, Frank Houdek, Harbhajan Singh, Holger Wuflmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlufibericht des GI-Arbeitskreises “Features”

Bibliography

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht iiber den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Koln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Roglin, Berthold Vocking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 * Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated
by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,
Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Loding: Transforming structures by set
interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Giines, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

153

Bibliography

2006-13

2006-14

2006-15

2006-16

2006-17

2007-01 *

2007-02

2007-03

2007-04

2007-05
2007-06

2007-07

2007-08

2007-09

2007-10
2007-11

2007-12
2007-13

154

Wong Karianto, Christof Loding: Unranked Tree Automata with Sibling
Equalities and Disequalities

Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maflen, Andreas Wolfram: Report of the
GI Work Group “Requirements Management Tools for Product Line
Engineering”

Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines
Fachgruppe Informatik: Jahresbericht 2006

Carsten Fuhs, Jiirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

Jurgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

Uwe Naumann: On Optimal DAG Reversal

Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-
current List-Manipulating Programs by LTL Model Checking
Alexander Nyflen, Horst Lichter: MeDUSA - MethoD for UML2-based
Design of Embedded Software Applications

Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-
bedded Software: An empirical evaluation of different approaches

Tina Kraufler, Heiko Mantel, and Henning Sudbrock: A Probabilistic
Justification of the Combining Calculus under the Uniform Scheduler
Assumption

Martin NeuhauBler, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

Klaus Wehrle (editor): 6. Fachgespriach Sensornetzwerke

Uwe Naumann: An L-Attributed Grammar for Adjoint Code

Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:
Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

Bibliography

2007-14

2007-15

2007-16

2007-17

2007-18
2007-19

2007-20

2007-21

2007-22

2008-01

2008-02

2008-03

2008-04

2008-05

2008-06

2008-07

2008-08

2008-09

2008-10

Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modu-
lar, Open-Source Tool for Automatic Differentiation of Fortran Codes
Volker Stolz: Temporal assertions for sequential and concurrent pro-
grams

Sadeq Ali Makram, Mesut Giine¢, Martin Wenig, Alexander Zimmer-
mann: Adaptive Channel Assignment to Support QoS and Load Bal-
ancing for Wireless Mesh Networks

René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

Uwe Naumann: Call Tree Reversal is NP-Complete

Jan Riehme, Andrea Walther, Jorg Stiller, Uwe Naumann: Adjoints for
Time-Dependent Optimal Control

Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:
Three-Valued Abstraction for Probabilistic Systems

Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Com-
positional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Roglin,
and Berthold Vocking: Uncoordinated Two-Sided Markets

Fachgruppe Informatik: Jahresbericht 2007

Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

Carsten Fuhs, Jirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René :Thiemann, Harald Zankl: Maximal Termination

Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the
AD-Enabled NAGWare Fortran Compiler

Frank G. Radmacher: An Automata Theoretic Approach to the Theory
of Rational Tree Relations

Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,
Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

Alexander Ny8en, Horst Lichter:: The MeDUSA Reference Manual, Sec-
ond Edition

George B. Mertzios, Stavros D. Nikolopoulos: The A-cluster Problem on
Parameterized Interval Graphs

George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

155

Bibliography

2008-11

2008-12

2008-13

2008-14

2008-15

2008-16

2008-17

2008-18

George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

Beatriz Alarcén, Fabian Emmes, Carsten Fuhs, Jiirgen Giesl, Rail
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

Bastian Schlich: Model Checking of Software for Microcontrollers
Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm
for Finding Trees with Many Leaves

Hendrik vom Lehn, Elias Weingartner and Klaus Wehrle: Comparing
recent network simulators: A performance evaluation study

Peter Schneider-Kamp: Static Termination Analysis for Prolog using
Term Rewriting and SAT Solving

Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

156

Curriculum Vitae

Name Dirk Wilking
Day of birth ~ 30.03.1978

Place of birth Osterholz-Scharmbeck

2004 — Wissenschaftlicher Angestellter am Lehrstuhl Informatik 11 an der
RWTH Aachen University

1998 — 2004 Studium der Informatik an der Universitat Bremen

1997 — 1998 Grundwehrdienst

1984 — 1997 Grundschule, Orientierungsstufe und Gymnasium in Osterholz-
Scharmbeck

157

	Introduction
	Motivation
	Thesis Synopsis
	Research Question
	Research Methodology
	Thesis Outline
	Bibliographic Notes

	Experiments on Agile Techniques
	Overview of Agile Methods related Experiments
	Planning of Embedded Software Projects
	The Technique of Short Releases
	Design of the Experiment
	Variables and Measurement
	Hypothesis
	Procedure
	Participants
	Threats to Validity

	Analysis
	Quality of the Survey Data
	Group Differences
	Main Hypothesis
	Explorative Analysis

	Experiment Results

	Refactoring
	The Technique of Refactoring
	Design of the Experiment
	Variables and Measurement
	Hypotheses
	Procedure
	Participants
	Threats to Validity

	Analysis
	Main Hypothesis
	Analysis of Additional Variables
	Experiment Power

	Experiment Results

	Test Driven Development
	Design of the Experiment
	Reasons for Failure

	Summary of Findings
	Problem of the Human Factor
	Results of Experiments

	Experiments on the Human Factor
	Overview of Human Factor related Experiments
	Rasch Models
	The Dichotomous Rasch Model
	The Linear Logistics Test Model
	Logit as Parameter Units
	Benefits and Drawbacks of the Rasch Model

	C Knowledge
	The Concept of C Knowledge
	Design of the Experiment
	Variables and Measurement
	Hypothesis
	Procedure
	Participants
	Threats to Validity

	Analysis
	Test Revision
	Assessing Validity

	Experiment Results

	Viscosity
	The Concept of Viscosity
	Design of the Experiment
	Variables and Measurement
	Hypothesis
	Procedure
	Participants
	Threats to Validity

	Analysis
	Experiment Results

	Uncertainty
	Uncertainty within Software Engineering
	Relation to Agile Methods
	Design of the Meta Study
	Variable and Measurement
	Procedure
	Participants
	Threats to Validity

	Analysis
	Overview
	Non-Productive Effort

	Results of the Study
	Uncertainty in Processes
	Threats to Validity of Variables
	Relation to Higher Level Software Engineering

	Summary of Findings

	An Experiment on Dependability
	N-Version Programming with Hardware Diversity
	N-Version Programming
	Design of the Experiment
	Variables and Measurement
	Hypothesis
	Procedure
	Participants
	Threats to Validity

	Analysis
	Independence of NVP with Forced Diversity
	Replication of the NVP Experiment
	Assessing the Strength of Factors

	Experiment Results

	Measurement Tools
	Code Evolution Framework
	Example of an Analysis
	Code Evolution Data Collector
	Code Evolution Data Analyzer
	Source Stepper
	Module Interface for Data Analysis

	Progress Measurement Environment
	Disturber

	Conclusion
	Lessons Learned
	Lessons Learned for Empirical Work
	Lessons Learned for Software Engineering
	The Black Matter of Software Engineering Experimentation
	Effect Strength

	Results
	Agility and Embedded Systems
	Variables
	The Perfect Experiment

	Basic Methodical Approach
	Box Plots
	Hypothesis Testing
	Test Artifacts
	Resampling
	T-Test
	U-Test

