
Aachen
Department of Computer Science

Technical Report

Model-Based Construction of
Embedded & Real-Time Software -
A Methodology for Small Devices

Alexander Nyßen

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-03

RWTH Aachen · Department of Computer Science · February 2009

The publications of the Department of Computer Science of RWTH Aachen (Aachen
University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Model-Based Construction of Embedded
& Real-Time Software -

A Methodology for Small Devices

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Inform. Alexander Nyßen
aus Heinsberg (Rhld.)

Berichter: Prof. Dr. rer. nat. Horst Lichter
Prof. Dr.-Ing. Stefan Kowalewski

Tag der mündlichen Prüfung: 28. Januar 2009

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Alexander Nyßen
Research Group Software Construction
any@swc.rwth-aachen.de

Aachener Informatik Bericht AIB-2009-03

Editor: Department of Computer Science
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract

While model-based software engineering - due to its increased abstraction and its ad-
vantages in terms of traceability and analyzability - seems to be the adequate means to
deal with the increased complexity of software that one faces today, it does not seem
to have penetrated all domains yet, in particular not the one of small embedded & real-
time systems. Seeing this problem caused by the fact that current model-based ap-
proaches do not pay sufficient attention to the rather special technical, organizational,
and economical constraints in the respective domain, this work presents an approach
that explicitly takes these constraints into account.

MeDUSA, a model-based software construction method for small embedded & real-
time systems, is a principal item of the presented solution. To face the strong technical
constraints it was especially designed as an instance-driven method, not incorporating
any object-oriented concepts, but forcing a class-based design that can be seamlessly
transferred into a procedural implementation, which is still state-of-the-art in the re-
garded domain. To guarantee such a seamless transition MeDUSA was furthermore
designed to be a software construction rather than a mere design method, explicitly also
addressing the implementation activities, and especially the transition from detailed
design into source code. Being organized around the use case concept, the method
excels at being very systematic and - inter alia by facilitating a continuous real-time
analysis - also at being especially aware about the stringent real-time constraints that
have to be faced in the domain of embedded & real-time systems.

ViPER, the supporting tool prototype, forms the second essential part of the solution.
It offers generic support for MeDUSA’s modeling activities by providing a graphi-
cal UML modeling environment, as well as special support for the specification and
simulation of narrative, textual use case details. It furthermore demonstrates dedicated
methodical support by embedding a hypertext documentation of MeDUSA’s definition,
by providing implementations of the MeDUSA UML profiles and model constraints,
and by offering dedicated wizards to support the execution of certain MeDUSA tasks.

Together with their underlying languages, the Unified Modeling Language as well as
the ANSI-C programming language, MeDUSA and ViPER thus form an integrated
methodology, which is founded on shared concepts and principles. Especially devel-
oped to address above quoted constraints, the methodology is applicable to a domain,
which has pretty much been elided so far.

Kurzfassung

Obwohl die modellbasierte Erstellung von Software - aufgrund ihrer höheren Abstrak-
tion und ihrer Vorzüge in Bezug auf Nachverfolgbarkeit und Analysierbarkeit - ein
adäquates Mittel zu sein scheint, um die heutige Komplexität von Software zu be-
herrschen, hat sie bislang nicht alle Anwendungsdomänen durchdrungen, insbeson-
dere nicht die kleiner eingebetteter Echtzeitsysteme. Dies zurückführend auf die Tat-
sache, dass heutige modellbasierte Ansätze den besonderen technologischen, organ-
isatorischen und ökonomischen Rahmenbedingungen dieser Domäne nicht in ausrei-
chendem Maße Beachtung schenken, stellt diese Arbeit einen Ansatz vor, der diese
Rahmenbedingungen explizit berücksichtigt.

MeDUSA, eine modellbasierte Software-Konstruktionsmethode für kleine eingebet-
tete Echtzeitsysteme, bildet den ersten zentralen Bestandteil der vorgestellten Lösung.
Um den starken technologischen Einschränkungen gerecht zu werden, wurde sie als
instanzgetriebene Methode konzipiert, die keine objektorientierten Konzepte einsetzt
und so einen klassenbasierten Entwurf forciert, der nahtlos in eine prozedurale Imple-
mentierung, welche in der betrachteten Domäne nach wie vor den Stand der Technik
repräsentiert, überführt werden kann. Um einen solch nahtlosen Übergang gewährleis-
ten zu können wurde MeDUSA als Software-Konstruktionsmethode und nicht als
bloße Designmethode konzipiert, so dass sie auch die Implementierungstätigkeiten
explizit adressiert, und hierbei insbesondere den Übergang vom Entwurf in den Quell-
code. Orientiert am Use Case-Konzept zeichnet sich die Methode durch ihre System-
atik und durch eine stetig durchgeführte Echtzeitanalyse aus, um die harten Echtzeitan-
forderungen, denen die Software-Entwicklung in der Anwendungsdomäne Rechnung
zu tragen hat, explizit zu berücksichtigen.

ViPER, der unterstützende Werkzeugprototyp, bildet den zweiten wesentlichen Be-
standteil der Lösung. Das Werkzeug bietet generische Unterstützung für die Model-
lierungsaktivitäten der MeDUSA-Methode in Form einer graphischen UML-Model-
lierungsumgebung sowie einer spezifischen Unterstützung zur Spezifikation und Sim-
ulation natürlichsprachiger Anwendungsfallbeschreibungen. ViPER beinhaltet zudem
eine spezifische methodische Unterstützung für MeDUSA, in dem es sowohl eine elek-
tronische Dokumentation der Methode zur Verfügung stellt, als auch Implementierun-
gen der von MeDUSA eingesetzten UML-Profile, Prüfungsmöglichkeiten für die im
Rahmen der Methode eingesetzten UML-Modelle, sowie spezifische Assistenten für
bestimmte, im Rahmen der Methode definierte Aufgaben.

Zusammen mit den zugrunde liegenden Sprachen, der Unified Modeling Language
sowie der ANSI-C Programmiersprache, bilden MeDUSA und ViPER somit eine in-
tegrierte Methodologie, die auf gemeinsamen Konzepten und Prinzipien begründet ist.
Ausdrücklich entworfen um den oben genannten Rahmenbedingungen gerecht zu wer-
den, ist diese Methodologie damit in einer Domäne einsetzbar, für die bislang weitge-
hend methodische Ansätze fehlten.

Acknowledgments

While its cover sheets only depicts a single author’s name, this thesis is the result of a
process, in which several persons were involved, who should not remain unmentioned.

First and foremost Professor Lichter has to be named, who has given me the chance to
prepare this thesis at the Research Group Software Construction. He has always been
a benevolent adviser and has pretty much contributed to this work with his comments
and thought-provoking impulses. I want to take the opportunity to express my explicit
thanks for that, as well as for his ongoing support and encouragement. I also want to
thank Professor Kowalewski for taking the role of the secondary adviser.

I further want to express my thanks to all involved current and former employees of
the German ABB Corporate Research Center in Ladenburg, our cooperation partner.
First and foremost Jan Suchotzki has to be named in this context, who - as a com-
mitted discussion partner and active contributor - has supported me very much in the
conception of the initial MeDUSA method. I also want to thank Peter Müller, Lukas
Kurmann, Dr. Dirk John and Dr. Detlef Streitferdt for their professional contributions
and the always uncomplicated and friendly collaboration. My thanks are also dedi-
cated to Tilo Merlin and Klaus Pose from the ABB Automation Products GmbH, who
have delivered valuable input for the evaluation of the MeDUSA method.

For their participation in the development of the ViPER tool I also want to thank my
colleagues Veit Hoffmann and Holger Schackmann, as well as all involved student
workers and diploma and master thesis students. Mathias Funk, Andreas Walter, Zahid
Sadal, Tauseef Ikram, Özgür Kevinç, Marcel Hermanns, Lars Grammel, Supaporn
Simcharoen, Huy Do, Philip Ritzkopf, Mark Lehmacher, and Daniel Watermeyer have
to be named in this context. They all have - through their dedication - strongly pushed
the development of the tool.

I also want to explicitly thank my current and former colleagues Dr. Moritz Schnizler,
Dr. Thomas von der Maßen, Thomas Weiler, Holger Schackmann, Veit Hoffmann,
Andreas Ganser, and Malek Obaid for the always very cooperative and friendly atmo-
sphere at the research group. Also Bärbel Kronewetter may not be left unmentioned.
She has not only carried out a lot of organizational work for me in the last years, but
has always also pampered me with cake and candy of all kind.

Last, I want to emphatically thank my parents, who have always and to every extent
supported and encouraged me, and whom I have actually thanked far to seldom for
that. I know, I have to count myself lucky.

Danksagungen

Wenngleich auf ihrem Deckblatt nur ein einzelner Autor vermerkt ist, so waren in den
Entstehungsprozess dieser Arbeit doch eine ganze Reihe von Personen involviert, die
nicht unerwähnt bleiben sollen.

Zu allererst sei hier Professor Lichter genannt, der mir die Möglichkeit gegeben hat,
diese Arbeit am Lehr- und Forschungsgebiet Software-Konstruktion anzufertigen. Er
war ein immer wohlwollender Betreuer und hat durch seine Anmerkungen und Denk-
anstöße zum Gelingen dieser Arbeit entscheidend beigetragen. Hierfür und für seine
Unterstützung und Förderung möchte ich mich an dieser Stelle einmal ausdrücklich
bedanken. Ebenfalls danken möchte ich Professor Kowalewski für die Übernahme des
Zweitgutachtens dieser Arbeit.

Mein Dank gilt insbesondere auch den involvierten aktiven und ehemaligen Mitarbeit-
ern des deutschen ABB Forschungszentrums in Ladenburg, unseres Kooperationspart-
ners. Namentlich erwähnt sei hier - allen voran - Jan Suchotzki, der mich als en-
gagierter Diskussionspartner und aktiver Mitgestalter bei der Konzeption der initialen
MeDUSA Methode sehr unterstützt hat. Auch Peter Müller, Lukas Kurmann, Dr. Dirk
John und Dr. Detlef Streitferdt möchte ich danken, für ihre fachlichen Eingaben und
für die immer sehr unkomplizierte und freundschaftliche Art der Zusammenarbeit.
Ebenso gilt mein Dank Tilo Merlin und Klaus Pose von der ABB Automation Prod-
ucts GmbH, die wichtigen Input für die Evaluierung der MeDUSA Methode geliefert
haben.

Für ihr Mitwirken an der Entwicklung des ViPER Werkzeugs möchte ich zudem mei-
nen Kollegen Veit Hoffmann und Holger Schackmann sowie den beteiligten studenti-
schen Hilfskräften, Diplomanden und Master-Studenten ausdrücklich danken. Mathias
Funk, Andreas Walter, Zahid Sadal, Tauseef Ikram, Özgür Kevinç, Marcel Hermanns,
Lars Grammel, Supaporn Simcharoen, Huy Do, Philip Ritzkopf, Mark Lehmacher
und Daniel Watermeyer sind hier zu nennen. Sie alle haben durch ihr Engagement die
Entwicklung des Werkzeugs stark vorangetrieben.

Bei meinen jetzigen und ehemaligen Kollegen Dr. Moritz Schnizler, Dr. Thomas von
der Maßen, Thomas Weiler, Holger Schackmann, Veit Hoffmann, Andreas Ganser
und Malek Obaid möchte ich mich zudem für die immer angenehme und kollegiale
Atmosphäre am Lehr- und Forschungsgebiet bedanken. Auch Bärbel Kronewetter darf
in diesem Zusammenhang nicht unerwähnt bleiben. Sie hat mir im Laufe der Jahre
nicht nur viele organisatorische Arbeiten abgenommen, sondern mich auch stets mit
Kuchen und diversen anderen Süßigkeiten verwöhnt.

Schließlich gilt mein ganz besonderer Dank meinen Eltern, die mich immer und in
jeder Hinsicht unterstützt und gefördert haben, und denen ich dafür eigentlich viel zu
selten gedankt habe. Ich weiß, ich kann mich glücklich schätzen.

Contents

I Foundations 1

1 Introduction 3

1.1 Context . 3

1.2 Outline . 5

2 Terms & Definitions 7

2.1 Embedded & Real-Time Computer Systems 7

2.1.1 Disambiguation . 7

2.1.2 Classification . 9

2.2 Embedded & Real-Time Software 11

2.3 Engineering Embedded & Real-Time Software 12

2.3.1 Software Engineering, Construction, and Development 12

2.3.2 Process, Method, and Methodology 14

2.3.3 Model, Modeling Language, Meta-Model 15

2.3.4 Model-Based and Model-Driven Software Engineering 16

3 Embedded & Real-Time Software Construction - An Inventory 19

3.1 Historical Overview . 19

3.1.1 Structured Analysis and Design (From the late 1970’s up to
the mid 1980’s) . 20

i

3.1.2 Object-Oriented Analysis & Design (From the mid 1980’s to
the late 1990’s) . 22

3.1.3 A Decade of Great Diversity - CBSE, PLSE, MBSE (from the
late 1990’s to the early 2000’s) 24

3.2 State of the Art - The current situation in academia and industrial research 26

3.2.1 General-purpose Approaches 27

3.2.2 Domain-specific Approaches 29

3.3 State of the Practice - The current situation in industry 34

3.4 Observations & Conclusions . 36

4 Definition of Scope - Problems, Challenges & Goals 39

4.1 Defining the Domain Scope . 39

4.1.1 Measurement Devices in Industrial Process Instrumentation . 40

4.2 Problems & Challenges . 45

4.2.1 Constraint-Inadequate Model-Based Software Construction . 45

4.2.2 Methodological Incompleteness and Discontinuity 46

4.3 Definition of Goals . 47

II The MeDUSA-ViPER Methodology 49

5 A Model-Based Methodology 51

5.1 Sketching A Solution . 51

5.2 Related Work . 52

5.2.1 Methods . 53

5.2.2 Tools . 60

6 Method - MeDUSA 65

6.1 MeDUSA-Lifecycle . 65

6.2 MeDUSA-Definition . 67

ii

6.2.1 SPEM 2.0 . 67

6.2.2 MeDUSA Method Content 70

6.2.3 MeDUSA Method Operations 102

6.3 Reflective Characterization . 108

7 Languages - UML & ANSI-C 111

7.1 MeDUSA UML Models . 112

7.1.1 Requirements UML Model 113

7.1.2 Analysis UML Model . 115

7.1.3 Design UML Model . 118

7.2 MeDUSA UML Profiles . 125

7.2.1 Requirements UML Profile 126

7.2.2 Analysis UML Profile . 128

7.2.3 Design UML Profile . 129

7.3 MeDUSA UML-to-ANSI-C Code Generation Schema 130

7.3.1 General Transformation Strategy 131

7.3.2 Classifiers within a MeDUSA Design UML Model 132

7.3.3 Generating Folders and Translation Units 135

7.3.4 Generation of Syntactic Elements 136

8 Tool - ViPER 159

8.1 The ViPER Integrated Development Environment 159

8.2 ViPER MetiS- MeDUSA Methodical Support 166

8.2.1 ViPER MetiS Plug-in Architecture 167

8.2.2 ViPER MetiS Definition . 168

8.2.3 ViPER MetiS Task Wizards 169

8.2.4 ViPER MetiS Cheatsheets Plug-In 176

iii

8.2.5 Adoptions & Innovations . 177

III Evaluation & Conclusion 179

9 Evaluation of MeDUSA 181

9.1 Continuous Evaluation - A Living Method 181

9.1.1 Initial (Pre-Published) Edition - 2005/2006 181

9.1.2 First (Published) Edition - 2007 183

9.1.3 Second (Published) Edition - 2008 185

9.2 Practical Evaluation Results of the Second Edition 187

10 Assessment of ViPER 191

10.1 Software Structure & Complexity Evaluation 192

10.2 Development Process & Infrastructure Characterization 197

11 An Appraisal of Achieved Results 201

11.1 Goal Attainment . 201

11.2 Conclusion & Outlook . 203

iv

List of Figures

2.1 Embedded and Real-Time Computer Systems 9

2.2 Classification of Embedded & Real-Time Computer Systems 10

2.3 Classification of Embedded Real-Time Computer Systems 10

2.4 Disciplines of Software Engineering 13

2.5 Phases of Software Engineering . 13

2.6 The System Triangle Metaphor (cf. [LL07]) 15

2.7 The ”Meta-Step” Pattern of Mega-Modeling (cf. [Fav06]) 16

2.8 Model-Based vs. Model-Driven Software Engineering 17

3.1 Historic Outline of Software Construction Approaches 21

4.1 Domain Scope Definition . 40

4.2 Typical Mechanics/Hardware Architecture of a Measurement Device . 41

4.3 Measurement Principle of an Electromagnetic Flow Meter (cf. [GHH+04]) 44

5.1 The ViPER-MeDUSA Methodology 52

5.2 COMET Object-Oriented Lifecycle Model (cf. [Gom00]) 54

5.3 COMET Object/Class Structuring Criteria (cf. [Gom00]) 55

5.4 ROOM Hierarchical Modeling Example - System (cf. [SGW94]) . . . 57

5.5 ROOM Hierarchical Modeling Example - Subsystem (cf. [SGW94]) . 58

5.6 ROOM Behavioral Modeling Example (cf. [SGW94]) 59

v

5.7 IBM Rational Software Development Platform - Process Browser . . 61

5.8 IBM Rational Software Development Platform - Process Advisor . . . 62

5.9 Jaczone Waypointer - Activity Window 63

5.10 Jaczone Waypointer - Wizard Example 64

5.11 Jaczone Waypointer - Artifact Agent Example 64

6.1 The MeDUSA Life Cycle . 66

6.2 Terminology of SPEM 2.0 (cf. [OMG08]) 68

6.3 SPEM 2.0 Meta-Model - Top-level Hierarchy 68

6.4 SPEM 2.0 Meta-Model - Method Content 69

6.5 SPEM 2.0 Meta-Model - Process . 69

6.6 The MeDUSA Actor Taxonomy . 73

6.7 MeDUSA Example Use Case Diagram 74

6.8 MeDUSA Example Global System States Diagram 74

6.9 MeDUSA Example Use Case Description 75

6.10 MeDUSA Example Use Case Details Diagram 76

6.11 The MeDUSA Object Taxonomy . 77

6.12 The MeDUSA Trigger & Interface Object Taxonomies 77

(a) MeDUSA Trigger Object Taxonomy 77

(b) MeDUSA Interface Object Taxonomy 77

6.13 MeDUSA Example Context Diagram 78

6.14 MeDUSA Example Information Diagram 79

6.15 The MeDUSA Control Object Taxonomy 79

6.16 MeDUSA Example Inter-Object Collaboration Diagram (Communi-
cation) . 80

6.17 MeDUSA Example Inter-Object Collaboration Diagram (Sequence) . 81

6.18 MeDUSA Example Intra-Object Behavior Diagram 82

vi

6.19 MeDUSA Example Initial Structural Subsystem Design Diagram . . . 85

6.20 MeDUSA Example Initial Structural Subsystem Interface Design Di-
agram . 86

6.21 MeDUSA Example Initial Behavioral Subsystem Interface Design Di-
agram . 86

6.22 MeDUSA Example Initial Behavioral Subsystem Design Diagram . . 87

6.23 MeDUSA Example Consolidated Structural Subsystem Design Diagram 88

6.24 MeDUSA Example Consolidated Behavioral Subsystem Design Dia-
gram . 89

6.25 MeDUSA Example Consolidated Structural Subsystem Interface De-
sign Diagram . 90

6.26 MeDUSA Example Consolidated Behavioral Subsystem Interface De-
sign Diagram . 91

6.27 MeDUSA Example Structural System Architecture Diagram 92

6.28 MeDUSA Example Behavioral System Architecture Diagram 93

6.29 MeDUSA Example Structural Detailed Design Diagram 95

6.30 MeDUSA Example Behavioral Detailed Design Diagram (State Ma-
chine) . 96

6.31 MeDUSA Example Initial Task Report (excerpt) 99

6.32 MeDUSA Example Initial Schedulability Report (excerpt) 100

6.33 The MeDUSA Requirements Workflow Pattern 102

6.34 The MeDUSA Analysis Workflow Pattern 103

6.35 The MeDUSA Architectural Design Workflow Pattern 104

6.36 The MeDUSA Detailed Design Workflow Pattern 105

6.37 The MeDUSA Implementation Workflow Pattern 106

6.38 The MeDUSA Workflow . 107

6.39 The MeDUSA Architectural Design Phase 107

7.1 Examples of Key Artifacts contained in a MeDUSA Requirements
UML Model . 114

vii

7.2 Examples of Key Artifacts contained in a MeDUSA Analysis UML
Model . 116

7.3 Examples of Key Artifacts contained in the Subsystem fragment of a
MeDUSA Design UML Model . 121

7.4 Examples of Key Artifacts contained in the System fragment of a
MeDUSA Design UML Model . 124

7.5 MeDUSA Requirements Profile . 127

7.6 MeDUSA Analysis Profile . 128

7.7 MeDUSA Design Profile . 129

7.8 UML Classifiers Hierarchy, according to [OMG07d] 133

7.9 General Transformation of Classifiers into Translation Units 135

7.10 ANSI-C Primitive Types UML-Library 137

7.11 Example - Transformation of Enumeration 137

(a) Instance Specification: Enumeration with Owned Literals . . . 137

(b) Generated Code: Corresponding Struct Declaration 138

7.12 Example - Transformation of Data Type and (Non-Structured) Class . 138

(a) Instance Specification: Simple Class with Attributes and Oper-
ations . 138

(b) Generated Code: Corresponding Struct and Constructor & De-
structor Function Declarations 139

(c) Generated Code: Member and Selector Function Declarations,
corresponding to Owned Attributes 140

(d) Generated Code: Function Declarations for Owned Operations 140

(e) Generated Code: Macro Facade as Public Classifier Interface . 141

7.13 Example - Transformation of (Non-Structured) Class typing Part . . . 142

(a) Instance Specification: A Class typing a Part (Subsystem De-
composition) . 142

(b) Generated Code: Member Declarations corresponding to Asso-
ciation Ends . 142

(a) Instance Specification: Class typing Port (Provided Interface) . 144

viii

(b) Generated Code: Function Declarations corresponding to Pro-
vided Interfaces . 144

(a) Instance Specification: Instance Specification: Class typing Port
(Required Interface) . 145

(b) Generated Code: Function Pointer and Struct Pointer Member
Declarations corresponding to Required Interfaces 145

7.16 Example - Transformation of subsystem Component 147

(a) Instance Specification: Subsystem Component 147

(b) Generated Code: Struct Member Declarations for Parts & Ports,
Wiring . 147

7.17 Example - Transformation of system Component 148

(a) Instance Specification: System Component 148

(b) Generated Code: Struct Member Declarations for Parts, Wiring
of Parts within Constructor Implementation 149

7.18 Example - Transformation of a State Machine 150

(a) Instance Specification: State Machine 150

(b) Generated Code: Macro Definitions corresponding to States and
Events, Corresponding Struct Declaration 151

(c) Generated Code: Function Implementations corresponding to
Guards, Effects, and Transitions, Declaration of State-Transition
Table as Function Pointer Array and Declaration of State Tran-
sition Function . 152

7.19 Example - Transformation of a State Machine as Internal Behavior
Specification . 153

(a) Instance Specification: State Machine as Internal Behavior . . 153

(b) Generated Code: Struct Member Declaration and Function Im-
plementation within Owning Behaviored Classifier 154

7.20 Example - Transformation of a State Machine as Interaction Protocol
Specification . 155

(a) Instance Specification: Protocol State Machine as Interaction
Protocol . 155

ix

(b) Generated Code: Struct Member Declaration and Function Im-
plementations within Port’s Type 156

8.1 Eclipse SDK Architecture (cf. [DFK+04]) 160

8.2 ViPER IDE Architecture . 161

8.3 ViPER IDE Platform Plug-in Architecture 162

8.4 ViPER IDE UML2 Plug-in Architecture 163

8.5 ViPER UML2 VME (Screenshot) 164

8.6 ViPER UML2 CodeGen (Screenshot) 164

(a) Code Generation Context Menu 164

(b) Code Generation Wizard . 164

8.7 ViPER IDE NaUTiluS Plug-in Architecture 165

8.8 ViPER NaUTiluS (Screenshot) . 166

8.9 ViPER MetiS Plug-in Architecture 167

8.10 ViPER MetiS Definition (Screenshot) - Integration into Help System . 168

8.11 ViPER MetiS Definition - Help toc File (generated) 169

8.12 ViPER MetiS Code Generation Wizard (Screenshots) 170

(a) Task Wizard Description Page 170

(b) Task Wizard (Precondition) Validation Page 170

(c) Task Wizard Generation Sources And Options Selection Page . 170

(d) Task Wizard Generation Processing Page 170

8.13 Detailed Class Design of the ViPER MetiS Task Wizard core Package 172

8.14 Detailed Class Design of ViPER MetiS Task Wizard - Generation &
Transformation Wizard . 174

8.15 ViPER MetiS TaskWizards Traceability Meta-Model 175

8.16 ViPER MetiS Cheatsheets (Screenshot) 176

8.17 ViPER MetiS CheatSheets - MeDUSA Workflow Composite Cheatsheet177

x

9.1 MeDUSA Pre-Published Edition - Workflow 182

9.2 MeDUSA First Edition - Workflow Patterns 184

(a) Requirements Modeling . 184

(b) Analysis Modeling . 184

(c) Architectural Design Modeling 184

(d) Detailed Design Modeling . 184

10.1 Quality Characteristics according to IEC/ISO 9126 (cf. [IEC01]) . . . 191

10.2 ViPER IDE Architecture Definition within SonarJ 194

10.3 Abstraction-Instability Graph for ViPER IDE Features 196

10.4 ViPER Download Site (Screenshot) 198

xi

xii

List of Tables

7.1 Usage of Classifiers within a MeDUSA Design UML Model 134

10.1 ViPER IDE - Size Metrics Evaluation Results 193

10.2 ViPER IDE - Coupling & Cohesion Metrics Evaluation Results 195

xiii

xiv

Part I

Foundations

1

Chapter 1

Introduction

1.1 Context

The work presented in this thesis was conceived in an industrially funded research
project, being conducted at the Research Group Software Construction of the RWTH
Aachen University, in close cooperation with the German ABB Corporate Research
Center and selected subsidiaries of the ABB Business Unit Instrumentation, located in
Germany, Italy, and the United Kingdom.

The research venture was initiated in 2003 with the goal to introduce state-of-the-art
model-based software engineering techniques and technology to the domain of small
embedded & real-time systems, targeting first and foremost measurement field de-
vices within the industrial automation application area, as they are produced within
the ABB Business Unit Instrumentation. Due to the organizational constraints being
faced, identification of an appropriate development method, being commonly applica-
ble throughout ABB Business Unit Instrumentation was regarded to be of the highest
importance in order to gain a common terminology and procedure across all involved
subsidiaries, which up to then - due to the historic course of the ABB Business Unit
Instrumentation - had more or less worked in an unrelated, stand-alone manner.

MeDUSA, the model-based construction method, which forms an integral part of the
herein presented approach, was developed under this premise. The initial stimulus for
its development originated from the evaluation of several pilot projects, being jointly
conducted in 2003 and 2004 at the ABB Corporate Research Center and ABB Au-
tomation Products GmbH to gather experiences about the practical applicability of the
Concurrent Object Modeling and Architectural Design Method (COMET) [Gom00],
MeDUSA’s direct predecessor, to the development of field device software. The eval-
uation revealed that while COMET can be regarded as a promising method, it shows
some noticeable shortcomings and is thus not capable to meet the very special charac-
teristics, being faced in the industrial automation application area [NMSL04].

3

The need for a customized method, being capable to meet the very special characteris-
tics, was thus identified, resulting in the definition of the MeDUSA method. Being first
only internally documented and evaluated, the First Edition of the method was pub-
lished in 2007 [NL07a]. The Second Edition, a complete revision of the First Edition,
was published in 2008 [NL08] and incorporates many additional experiences gath-
ered from the application of MeDUSA within a pilot project conducted within ABB
Business Unit Instrumentation in 2007 and 2008. What is published herein basically
corresponds to the Second Edition, while some recent research experiences, which are
related to the modeling of timing and concurrency constraints within use case models
as well as to the real-time analysis based on use case models, have been incorporated
(cf. [Rit08] for details).

Being aware that a model-based methodical approach would not be practically ap-
plicable without adequate supporting tools, investigation was started to identify such
tools already in late 2004. This was done in terms of several ABB-internal tool eval-
uations related to UML modeling and code generation tools, which were guided by
the Research Group Software Construction. In this context, the need for an own tool
prototype, which could be used to quickly built-in and demonstrate new research ideas
and experiences, not already built into market available tools, was identified.

The development of ViPER was thus initiated. Having started in late 2004 as a simple
UML state machine editor to evaluate the applicability of some frameworks provided
by the Eclipse Foundation [Eclipse], the UML modeling related capabilities of ViPER
were continuously extended in the following years [Wal07][Ikr08][Do08], adding in
particular also support for the integrated modeling of narrative textual use case de-
scription [Wal07]. The tool was also equipped with flexible and customizable UML-
to-ANSI-C code generators [Fun06][Kev07][FNL08], and finally with dedicated me-
thodical support for the MeDUSA method [Her07][Rit08]. While ViPER was never
meant to be practically applied within ABB Business Unit Instrumentation, the tool
has thus been very useful to demonstrate how the application of the MeDUSA method
could be adequately supported.

It is a central statement of this thesis work that model-based software engineering, due
to its increased systematics and traceability, bears a great potential, especially within
the domain of embedded & real-time systems. In particular within this domain, the in-
creased abstraction and analyzability that is inherent to models, which then serve as the
central development artifacts, offer great advantages compared to traditional engineer-
ing approaches. However, these benefits can - as it is the second central statement of
this thesis work - only be completely unleashed if an integrated methodology, formed
by a systematic and concise method, adequate underlying languages, and appropriate
supporting tools is provided. The presentation of an integrated methodology is thus
the central concern of this thesis work.

4

1.2 Outline

This thesis work is split into three main parts. The first part, entitled ”Foundations”
provides the necessary background to enable understanding and facilitate access to
the herein presented methodological approach. It is initiated in Chapter 2 with the
definition of basic terms and the explanation of fundamental concepts and principles,
referred to throughout the work. An inventory of approaches related to the construction
of software for embedded & real-time systems - in the past and present - is attached in
Chapter 3, emphasizing on methodical approaches, but as well mentioning important
contributions related to languages and tools. It includes an explicit investigation about
the current state-of-the-art and state-of-the-practice of software construction within
the domain of embedded & real-time systems, as well as an in-depth discussion on the
discrepancy between the two. Based on this, the scope of the herein presented work
is then explicitly defined within Chapter 4, in terms of what systems are actually cov-
ered and what technical and organizational constraints are to be faced in the targeted
application domain. Problems and challenges, which arise within the defined domain
scope are then quoted, resulting in the formulation of goals for the herein presented
methodological approach.

The main part, entitled ”The MeDUSA-ViPER Methodology”, is then concerned with
the demonstration of the developed solution, which is formed by the software construc-
tion method MeDUSA, its underlying languages UML and ANSI-C, and the support-
ing tool ViPER. It is initiated within Chapter 5 by a draft of the presented solution, and
a quotation of closely related work with respect to methods and tools, before in Chap-
ter 6 the definition of the MeDUSA method is then provided in detail. An overview
of the UML language subset used within MeDUSA’s UML models, and a definition of
the required UML extensions, defined by means of MeDUSA specific UML profiles,
is provided in Chapter 7, together with a detailed specification on how the employed
language constructs can be adequately transferred into a procedural implementation
within the ANSI-C programming language. The main part is concluded by Chapter 8,
which introduces the ViPER tool, the third integral part of the presented methodology.

The concluding part, being concerned with ”Evaluation & Conclusion”, is initiated
with an individual evaluation of both, the MeDUSA method as well as the ViPER tool
within Chapters 9 and 10 respectively. As far as MeDUSA is concerned, the course
of the method is first outlined, as it reflects the results a continuous evaluation of the
method in the context of several pilot projects, conducted within ABB Business Unit
Instrumentation. A presentation and interpretation of gathered evaluation results is
then attached. Following this, the ViPER tool is evaluated in terms of aspects of prod-
uct quality. Here, the structure and complexity of the tool, as well as the process,
which is used for its development, are quoted, as both provide essential indications
on its inner quality characteristics. The thesis is concluded in Chapter 11 with a de-
tailed reflection on the actual contributions of this work, an assessment related to the
attainment of the previously formulated goals, as well as a conclusive summary and an
outlook on future work.

5

6

Chapter 2

Terms & Definitions

2.1 Embedded & Real-Time Computer Systems

From a broad perspective, there is quite an intuitive understanding on the notion of
an embedded computer system and a real-time computer system. However, when try-
ing to define precisely what an embedded or real-time system is, definitions vary in
manifold ways. This may be caused by the fact that the domain of embedded & real-
time systems is a quite broad one, and embedded as well as real-time systems can
be found in various application areas, like automotive, aerospace & defense, health-
care, telecommunications, consumer electronics, or industrial automation, all leading
to very different system characteristics.

Nevertheless, to define the scope of this thesis work, a disambiguation of the central
terms embedded computer system and real-time computer system is essentially neces-
sary, and is thus performed subsequently. A classification of those systems matching
the provided definitions is presented afterwards. This will then support the definition
of the scope of those systems, the approach presented herein, is applicable to.

2.1.1 Disambiguation

The IEEE Computer Society defines an Embedded Computer System as ”a computer
system that is part of a larger system and performs some of the requirements of that
system [. . .]” [IEEE91]. According to Michael Barr’s Embedded Systems Glossary
[Bar], an embedded computer system is furthermore defined to be ”a combination of
computer hardware and software, and perhaps additional mechanical or other parts
[. . .]”.

The combination of these two rather general definitions seems to be a usable defini-
tion, as they stress on two important aspects of an embedded computer system: the
embeddedness into a larger - the embedding - system, and its hybridity in terms of

7

hardware, software, and probably mechanics. An embedded computer system can be
further characterized by the following properties (cf. [Mar03]):

• Dedication - Embedded computer systems are usually dedicated to a certain ap-
plication or function. That is, in contrast to general-purpose computer systems,
the functionality is usually tied up into the hard- and software in an unchange-
able manner.

• Efficiency - Embedded computer systems have to be efficient. This might in-
volve weight and cost, it almost always includes efficiency in terms of resource
consumption at run-time, which can be denoted in terms of energy consumption,
memory consumption, and computation time.

• Dependability - Embedded computer systems often have to be dependable, as
they are used in safety-critical environments. According to Marwedel [Mar03],
dependability can be expressed in terms of reliability, maintainability, availabil-
ity, safety, and security.

Complementary, a Real-Time Computer System may be defined according to Kopetz
[Kop97] as ”a computer system in which correctness of the system behavior depends
not only on the logical results of the computations, but also on the physical instant at
which these results are produced”.

A real-time computer system is - as an embedded computer system - always part of
a larger system - the so called real-time system - which can in turn be decomposed
into different clusters, namely the real-time computer system, the controlled object,
and a (human) operator. As this implies, most real-time computer systems have the
task to control an object in their environment, what means to influence the state of the
respective controlled object. The simple observation of an object in the environment
without taking influence may also be a legal task for a real-time system (i.e. for a
real-time measurement system), so it is reasonable to broaden the definition to that
extend.

Besides the essential property of dependability, which can as well be attributed to real-
time computer systems, they may be further characterized by the following properties
(cf. [Kop97]):

• Reactivity - A real-time computer system has to be reactive. In order to per-
form its respective control or operation task, it has to react to stimuli from its
environment (operator or controlled object) with computed results. Those re-
sults usually have to be produced within a certain time interval, prescribed by
the environment of the real-time computer system. Dependent on the urgency of
the result, real-time systems may be classified into hard real-time and soft real-
time systems. While soft real-time systems may accept the result even if a given
deadline has been passed, hard real-time systems have to produce the respective
result at the correct instant, possibly causing harm if the expected result is not
computed within the defined deadline.

8

• Responsiveness - A real-time computer system has to be responsive. Results to
environmental stimuli have to be computed with a given certainty, including ex-
ceptional situations of high demand or even fault. According to the predictability
of the responsiveness of a real-time computer system, it may be characterized
as being guaranteed response or best-effort, depending on whether adequate
reasoning about the design can be done based on a specified fault- and load-
hypothesis or not.

• (Resource-)Adequacy - A real-time computer system has to adequately handle
the provision of its resources. That is, even in situations of high load or in fault
scenarios, the availability of sufficient resources has to be ensured. Regarding
the appropriateness of resource handling, real-time computer systems may thus
be characterized as being either resource-adequate or resource-inadequate.

Dependent on whether a real-time system can be best described to start its process-
ing and communication activities either in case of the occurrence of an environmental
event (excluding regular clock ticks) or at predetermined points in time, it can be fur-
ther characterized as being either event-triggered or time-triggered1 .

2.1.2 Classification

As it can be easily concluded from the preceding definitions, the intersection between
the set of embedded computer systems and the set of real-time computer systems is
actually not empty. In fact, as indicated by Figure 2.1, most of the embedded soft-
ware systems are probably also real-time computer systems, and most of the real-time
computer systems are probably also embedded computer systems.

��������
����	
��
��
���

�����
���
����	
��
��
���

��������
�����
���
����	
��
��
���

Figure 2.1: Embedded and Real-Time Computer Systems

Besides those systems falling into both categories, which will be referred to as Em-
bedded Real-Time Computer Systems in the following, there are also a couple of em-
bedded systems, which do not have real-time properties, and there are also real-time

1Note that a real-time system is not - by nature - event-triggered or time-triggered, but that this
is determined from the control paradigm chosen to describe the reactive behavior of the system. In
this context, a real-time computer system may as well be regarded as being hybrid, if it can neither be
represented and analyzed with sufficient precision either by the methods of the continuous systems theory
or by the methods of the discrete systems theory (cf. [Lun02])

9

systems, being not embedded. As denoted by Figure 2.2, embedded computing sys-
tems like automated tellers or set-top boxes, embedded communication & networking
systems like print servers or fax devices may be named as application examples for
non-real-time embedded computer systems. The group of non-embedded real-time
systems is probably larger. According to [Kop97], it may be classified into plant au-
tomation systems and multimedia systems.

��������
����	
��
��
���

�����
���
����	
��
��
���

����

�	
���
���
��
���

�	�
������
��
���

��������
����	
��
����	�
�

��������
����	�����

������
���

Figure 2.2: Classification of Embedded & Real-Time Computer Systems

However, the borders are getting more and more fuzzy between real-time and non-
real time embedded systems, and most embedded systems that can be found today,
do indeed show at least a portion of real-time behavior, so that the group of computer
systems that actually apply to both categories is probably also the largest group of
systems. Such systems are primarily used to measure or to control. They are needed in
various application areas like industrial automation, automotive, consumer electronics,
or even aerospace & defense. Besides being probably the quantitatively largest group,
measurement & control systems also have the largest historical background, as they
were traditionally used as replacements for electronic hardware approaches in control
and feedback control engineering (cf. [Sch04]).

��������
�����
���
����	
��
��
���

����	���
���
��
���
���
��
���

����	
�����
����������
��
���

Figure 2.3: Classification of Embedded Real-Time Computer Systems

10

Besides them embedded real-time computing & signal processing systems may be
identified, whose primary task is not to measure or to control (cf. Figure 2.3) but
to process signals or perform other arbitrary computation tasks. Those systems can
traditionally be found in the telecommunications industry, but are also widely spread
through other application areas like consumer electronics, medicine, or robotics.

It has to be mentioned that besides the classification schema applied here, which pretty
much takes into account the purpose of the respective systems and thus classifies em-
bedded & real-time systems along their application areas, several contrasting classifi-
cation schemata can be found in literature. Most of those schemata however concen-
trate on certain predominant of the above outlined characteristics, resulting in classi-
fication terms like dedicated system, dependable system, reactive system, continuous
system, or hybrid system, which is not regarded to be appropriate here.

2.2 Embedded & Real-Time Software

Having clarified the notion of embedded and real-time computer systems, Embedded
Software as well as Real-Time Software may be simply defined as the software run-
ning on an embedded respectively real-time computer system. The term Embedded
& Real-Time Software is therefore used as the general term to refer to the software
running on embedded & real-time systems. This is reasonable, because the character-
istics of the respective software running on an embedded & real-time computer system
are mostly dependent on the characteristics of the underlying hardware. In particular,
dependability and efficiency as well as responsiveness and resource-adequacy of an
embedded & real-time computer system have strong influence on the contained soft-
ware in terms of its non-functional requirements.

According to this, the software of an embedded & real-time computer system may
be characterized by a rather strong restrictiveness related to the resources being con-
sumed. That is, compared to other software, embedded & real-time software typically
has to be less demanding regarding computation time and memory consumption. Re-
lated to the reactivity and responsiveness constraints imposed on an embedded & real-
time computer system, the software running on it typically shows some sort of reactive
code. The necessity of parallel processing causes that concurrently running parts may
usually be identifiable. Dependability further causes that safety-related functionality
can be found, related to fault detection and recovery. Closely related, mostly due to
the strong non-functional restrictions that are imposed to an embedded & real-time
computer system by its environment, as well due to its dedicatedness, a strong com-
mitment to be compliant with industry standards is characteristic for embedded &
real-time software.

A classification of embedded & real-time software in terms of its purpose - like it was
done in case of the overall system - might lead to a distinction into embedded & real-
time System Software and Application Software, where system software is understood
to be responsible of interfacing with hardware and running the necessary services for

11

user-interfaces and applications, while application software performs productive tasks
for users. However, such a classification may be problematic within the domain of
embedded & real-time software, as a clear separation of system-related (i.e. hardware-
related) and user-related functionality is often impossible. Indeed, most of the software
running on an embedded & real-time system will probably show a mixture of both
aspects, especially if no underlying operating system can be found and the application
software is also responsible of interfacing to the underlying hardware. However, it is
reasonable to distinct a bootloader or an operating system from the software realizing
the dedicated application (in case such a distinction can be made), so system software
and application software will be referred to in the above sense, having in mind that
such a clear separation will not always be adequate or possible.

2.3 Engineering Embedded & Real-Time Software

Before defining the scope of the herein presented approach, a disambiguation of the
term Software Engineering and of closely related terms is regarded to be necessary.
This will be done in the succeeding section, followed by a clarification of the terms
Process, Method, and Methodology, as well as of terms and concepts related to model-
based software engineering.

2.3.1 Software Engineering, Construction, and Development

Friedrich Ludwig Bauer is often nominated as the originator of the term Software En-
gineering. It was on the NATO conference, held in Garmish, Germany, in 1968, where
he formulated his vision of ”the establishment and use of sound engineering princi-
ples in order to obtain economically software that is reliable and works efficiently on
real machines.” [Bau75]. To overcome the so called Software Crisis, Bauer regarded
the application of profound engineering principles as the essential step to systematize
the unsystematic, unreliable and error-prone software development, which could not
deal with the ever rising complexity. Today, software engineering has become a ma-
ture field in computer science, although the software crisis may still be regarded to
not have completely ended, as the problem of increasing complexity is also noticeable
today, especially in the field of embedded & real-time systems.

In line with the initial vision of Bauer, the IEEE Computer Society defines Software
Engineering as ”the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of
engineering to software.” [IEEE91], which is regarded to be a reasonable definition.

As denoted by Figure 2.4, it can be divided into four major disciplines, namely Soft-
ware Construction, Software Quality Management, Software Configuration & Change
Management, and Software Project Management.

12

���
�����������
����������

���
����
����
�	�
���

���
����
�	���

���������

���
����
������	��
�����
������
���������

Figure 2.4: Disciplines of Software Engineering

It further covers all phases of the overall Software Lifecycle, which can - on a coarse-
grained level - be split into Software Development, Software Operation & Mainte-
nance, and Software Decommissioning, as denoted by Figure 2.5.

���
����
�� �������

���
����
!����
����������
������

���
���
����

���������������

Figure 2.5: Phases of Software Engineering

In this sense, Software Construction is defined to comprise all constructive activities
and techniques related to the development and maintenance of software, including re-
quirements engineering, analysis, design, and implementation2. Software quality man-
agement, sofware configuration & change management, and software project manage-
ment are defined accordingly to comprise all management activities of the respective
management areas. In contrast to this, Software Development is defined as ”the period
of time that begins with the decision to develop a software product and ends when the
software is delivered” (cf. [IEEE91]).

While Software Development thus denotes a phase inside the overall software lifecycle,
Software Construction refers to one of the covered disciplines. When thus referring to
an approach as a Software Development Approach within this work, no assumption
on whether the approach does only cover constructive activities (related to develop-
ment) or is indeed a more wholistic approach covering management activities as well,
is made. In addition, when referring to a Software Construction Approach, it is not
further stated which lifecycle phases are indeed covered, but the application of con-
structive activities and the disregarding of management activities is assumed. This also

2Note that - as so often - there is a multiplicity of competing definitions related to software engi-
neering terminology. The IEEE Software Engineering Body of Knowledge (SWEBOK) [IEEE04] for
example defines five knowledge areas to capture the constructive software engineering activities, namely
Software Requirements, Software Design, Software Construction, Software Testing, and Software Main-
tenance, out of which Software Construction is defined to the ”detailed creation of working, meaningful
software through a combination of coding, verification, unit testing, integration testing, and debugging.”
The SWEBOK does however not define a term to refer to the entirety of all activities, related to the con-
struction of software, so the term Software Construction will instead be used to refer to this, while the set
of all implementation level activities will be denoted as Software Implementation instead.

13

implies that speaking of a Software Engineering Approach, no consice determination
on which respective disciplines and lifecycle phases are covered, is made.

2.3.2 Process, Method, and Methodology

As with several other terms, a clear consensus on the meaning of the term Software
Engineering Method has not been reached. Often, it is enmeshed with the related term
Software Engineering Process, which is defined by the IEEE as ”a sequence of steps
performed for a given purpose”. This is a quite general and expressionless definition
and does not allow a clear and precise differentiation. Other provided definitions are
fuzzy as well. Humphrey for example defines a Software Engineering Process as ”the
total set of software engineering activities needed to transform a user’s requirements
into software” [Hum89], which is similarly imprecise. The same holds for the defini-
tion of the term Method itself, which may be exemplarily quoted from the American
Heritage Dictionay as ”a means or manner of procedure, especially a regular and
systematic way of accomplishing something” [AHD04].

It is clear that a concise definition of the term Software Engineering Method thus re-
quires that in turn a clear definition of the term Software Engineering Process is pro-
vided. Despite the fuzziness and diversity that is apparent in the above definitions,
there seems to be a quite common consensus on the fact that a Software Engineering
Process refers to somewhat more wholistic and less precise, in such a sense that it usu-
ally covers all (or most of the) disciplines and lifecycle phases of software engineering,
while often not specifying any concrete principles or techniques in detail. A Software
Engineering Method on the other hand does usually not cover all software engineering
disciplines or phases, but indeed provides detailed techniques and principles to reach
a certain sub-goal.

Trying to capture this intuitive understanding into a definition, a Software Engineer-
ing Process may be regarded as a coarse-structural definition of the logical and tem-
poral application of software engineering activities to develop or maintain software.
A Software Engineering Method may then be further defined as a practical, system-
atic, and detailed procedure to accomplish a certain software engineering goal, in
line with software engineering principles and by applying software engineering tech-
niques. Following this, a Software Design Method, can thus be defined as a method
that supports the developer with the creation of a software design. Accordingly, a
Software Construction Method may be characterized as a method that covers all soft-
ware construction actitivies, and whose goal therefore is a systematically developed
implementation.

Having defined the notion of a Software Engineering Method, a Software Engineering
Methodology may be defined as a wholistic approach combining an approved method,
a workable notation, and appropriate tools, all being tied together by a set of common
principles and concepts3. Ludewig and Lichter [LL07] illustrate this quite demonstra-

3It may have to be pointed out in this context that the term methodology is sometimes also found in

14

������
�
�"

����������

�
�

��
��

#���	����

$����

Figure 2.6: The System Triangle Metaphor (cf. [LL07])

tively by means of their System Triangle metaphor, which is depicted in Figure 2.6.
Only if method, notation, and tool are grounded on common concepts and principles,
they form a coherent system, which may then be referred to as a methodology.

2.3.3 Model, Modeling Language, Meta-Model

Engineering has a long tradition in the use of models, which reaches even back into
antiquity. It was already in Ancient Greece and Rome, that models were applied to
support the construction of buildings and machinery (cf. [Sel03b, pp 1-16]). Then
and now, engineers use models for two main purposes, namely to describe an already
existing system, or to prescribe how a not yet existing system has to be constructed
(cf. [LL07]). Taking these two purposes, the definition of a Model as ”a description
or specification of a system and its environment for some certain purpose” [OMG03]
seems to be natural and intuitive.

A good engineering model, according to Selic, has to fulfil some key requirements in
terms of abstraction, intuition, accuracy, and expense (cf. [Sel03b, pp 1-16]). That is,
it has to be abstract in a sense that it hides all details irrelevant to the domain of con-
cern. It further has to be intuitive, so comprehension is easily accomplishable. A good
engineering model furthermore has to be accurate, in such a sense that it must faith-
fully represent all interesting aspects of the modeled system and that it allows accurate
predictions about interesting properties. Last, it has to be inexpensive in terms of its
construction effort, compared to the actual system. It thus supports the intuitive under-
standing and effective reasoning about a complex system by hiding unwanted details
and by concentrating on the interesting properties. It further allows to ”understand the
interesting aspects of a complex system before going through the expense and effort of
actually constructing it” [Sel03b, pp 1-16].

Like in traditional engineering, models also play a central role in software engineering.
In fact most of the artefacts, a software engineer has to deal with, are indeed models -
even if they differ in their degree of formality. This holds for a requirements specifi-
cation as well as for the source code of the resulting program, which is literally taken
an implementation model. In such a sense, even the software itself can be regarded

the meaning of the study of methods. This is however not the meaning that will applied here.

15

as a model. The intense use of models in software engineering of course requires a
certain degree of formality within the employed models, especially if tools are used.
That is, a (formal) engineering model has to be conformant to some (formal) specifi-
cation. According to mega modeling theory [Fav06], it may be equally stated that a
(formal) model has to be an element of a Modeling Language, which - inspired by
language theory, where ”a language is formalized as a set of sentences” - can in turn
be regarded as ”a set of [valid] models” [Fav05].

The complete specification of a modeling language, referred to as a Modeling Lan-
guage Specification in the following, usually has to cover the definition of its abstract
and concrete syntax, as well as its static and dynamic semantics. While the abstract,
notation independent syntax defines the constructs that build up the modeling lan-
guage, the static semantics, sometimes also referred to as well-formedness, specifies
how instances of the defined constructs are related to each other. The actual meaning
of a (well-formed) construct is defined by the dynamic semantics, while the (graphical)
notation of the covered constructs is in turn defined by the concrete syntax.

While the dynamic semantics of a modeling language is usually defined in terms of
natural language, as it is hard to formalize, and while the concrete syntax is normally
defined by some informal graphical illustrations, the abstract syntax and the static
semantics are usually formally defined, by means of a (formal) model, the so called
Meta-Model. According to mega modeling theory, such a meta-model may be regarded
as ”a model of a modeling language” [Fav06], or - from another viewpoint - as a model
of ”a set of models”.

��
��
�����

��������
#���	���

����� ��
��

��������
�
�������%�&

������
����%�&

��������
�
�������%�&

���������
��%�&

Figure 2.7: The ”Meta-Step” Pattern of Mega-Modeling (cf. [Fav06])

Conformancy of a model to a meta-model can is this sense be easily exemplified by the
so called ”Meta-Step” or ”Z” pattern of mega-modeling theory, which is demonstrated
in Figure 2.7. That is, a model is conformant to a meta-model, if the model is a member
of the set of models, which is represented by the meta-model in turn.

2.3.4 Model-Based and Model-Driven Software Engineering

Different to all other engineering disciplines, software engineering has the outstanding
property that the developed product, the software, is an immaterial one. The engineer-
ing of software - unlike any other engineering discipline - thus offers the exceptional
possibility to ”directly evolve models into full-fledged implementations without chang-

16

ing the engineering medium, tools, or methods”, as Selic points it out [Sel03a]. It thus
seems to be a natural and promising approach to found the engineering of software
on (formal) engineering models, as it might help to ”raise the level of abstraction of
specifications to be closer to the problem domain and further away from the imple-
mentation domain by using modeling languages with higher-level and better behaved
constructs” and as it might further help to ”raise the level of automation by using
computer technology to bridge the semantic gap between the specification (the model)
and the implementation (the generated code)” [Sel06].

Two main terms have emerged, referring to engineering approaches that employ mod-
els in the above sense, namely model-based and model-driven software engineering.
As so often, a concise definition and a clear separation of both terms is not commonly
agreed on.

���������
'��������

���������
(
���
������	�� �	
���
��

��������

������

�����
������

�����
�	
���
��

������
)����

������
��� ��������
����

����������

��������������������

Figure 2.8: Model-Based vs. Model-Driven Software Engineering

However, as indicated by Figure 2.8, it seems that there is a slight subliminal agree-
ment inside the software engineering community to use the term model-based software
engineering in a broad sense to refer to all approaches that rely on (formal) engineer-
ing models as primary engineering artefacts, and to use the term model-driven software
engineering exclusively to refer to those model-based approaches, that further achieve
a strong automation of the engineering process.

Model-Based Software Engineering (MBSE) can thus be defined as software engi-
neering, making systematic use of (formal) engineering models as primary engineer-
ing artifacts throughout the overall engineering life-cycle. Model-Driven Software
Engineering (MDSE) accordingly as model-based software engineering, formalizing
and automating the engineering process in terms of (semi-)automated model-to-model
transformation and model-to-code generation.

17

18

Chapter 3

Embedded & Real-Time Software
Construction - An Inventory

To be able to understand and evaluate the presented embedded & real-time software
construction approach, the current situation of software construction in this respective
domain has to be sketched. This will be done from two perspectives, an academic
State-of-the-Art as well as an industrial State-of-the-Practice viewpoint, as there is
quite a discrepancy between these two.

Before sketching the current situation however, a historic survey on the topic will
be provided. This is needed, as the basic principles and concepts underlying current
development approaches often have quite a history, and deep understanding, as well as
examination and evaluation of such an approach is often not possible without founded
historical background.

3.1 Historical Overview

Reflecting the history of embedded and real-time software construction approaches,
one has to concern oneself with a multiplicity of methods, languages, and tools. How-
ever, even if an approach delivered all of those kinds, forming an integrated methodol-
ogy, the principles and concepts characterizing it, can be inferred to the greatest extend
from the subsumed method and its related notation. As further - at least up to the unifi-
cation of several notations by the Unified Modeling Language (UML) in the late 1990’s
- each construction method had its own proprietary notation, the following outline will
predominantly concentrate on the method adherent to a construction approach, and will
in general not regared the associated notation and related tools explicitly. Where how-
ever notations are shared between methodological approaches, or where notations of
former approaches are reused, or where tools are considerably worth to be mentioned,
this will be pointed out explicitly.

19

While embedded & real-time software has - as already pointed out - its very special
characteristics, a lot of the underlying concepts and principles, as well as related no-
tations and methds are applicable to the development of software in other domains as
well. In fact, most of the approaches being applied to embedded & real-time software
have originated from the domain of classical industrial information systems. This is
why the following historic outline will not only concentrate on embedded develop-
ment approaches but will try to draw a relatively complete picture, enclosing all those
approaches, that either directly or indirectly influenced software development in the
embedded & real-time domain.

The graphical outline provided by Figure 3.1 might help the reader to reflect the fol-
lowing sections1. It shows all approaches being explicitly named in the following in
their respective historic context, classifies them according to their predominant de-
velopment paradigm and their membership to the embedded & real-time or other de-
velopment domains. It further sketches relationships between those approaches that
influenced one another.

3.1.1 Structured Analysis and Design (From the late 1970’s up to the mid
1980’s)

While systematic approaches to Structured Programming have already been developed
in the late 1960’s and the early 1970’s [DDH72], and while basic design principles
like stepwise refinement [Wir71] or information hiding [Par72] have been formulated
already during this time as well, it was not before the mid 1970’s that systematic
software development methods were developed.

Inspired by those Structured Programming approaches of the early 1970’s, the con-
cepts of procedural programming were adopted to the modeling of the system design
in the mid 1970’s, leading to what became known as Structured Design. Jackson Struc-
tured Programming [Jac75], Structured Design by Yourdon and Constantine [YC79],
and the Warnier/Orr method [Orr78] are prominent software design methods that ap-
peared during that time. They introduced several notations to capture functional and
data decomposition as well as data flow. Having applied programming concepts to
modeling the system design, it was a next natural step to transfer those concepts from
modeling of the solution domain to modeling of the problem domain as well. With the
end of the 1970’s the notion of Structured Analysis & Design was submitted by the
works of DeMarco [DeM79] as well as Gane and Sarson [GS79].

It was as well during the mid/late 1980’s that the first design methods especially tar-
geting the real-time domain emerged. Ward and Mellor [WM85] as well as Hatley and
Pirbhai [HP88] may be named in this context. Their approaches, being known since
as Real-Time Structured Analysis & Design, introduced the notation of state diagrams

1The Figure was mainly inspired by similar graphical outline on the history of the Unified Modeling
Language, which can be found in [Oes01]. Valuable input on the history of object-oriented methods, as
well as on those approaches especially targeting the embedded and real-time domain was also taken from
[Gra91] and [Gom00] respectively.

20

*�
�

*�
�+
��

��
,-

./

*�
�+
��

��
�

�
	�

	
��
�

�
��
��
��

�
��
��
,-

01
�

�
	�

	
��
��
�
�

�
�
��
�
�

��
��

�
��

!
��
23

��
��
��
�,
-0

.
�

�
	�

	
��
��
�
��

��
�

4�
	�
��

�2
�
��

�

��

��
��
,-

0-
�

�
	�

	
��
��
(
��

�
��
�

�
��

��
��

�,
-0

-
�

�
	�

	
��
��
�
�

�
�
��
(
��

�
��
�

5
��

�2
�
��
��

��
,-

0-

�
��
�
�
�

�
	

��

��
��

�
��
��

�
��
�
�
�

�
	�
��
��
�

��
�	
���
��
�

�
�
�
�
�

�
��
		
��
��
�

)
��

��
�,
-.

6

!
!
�
(

�
��
��

�2
�
��
��
��
,-

..
!
!
�
(

�
��

��

2!
��

���
,-

-7
!
!
�

)
��

��
�,
--

,
!
!
(
�2�
!
!
�

�
��

�2
4�

	�
��

��
,-

-7
8
�
�

3
���
��
)
��
�+
�,
--

9
!
�
$

8
	�

��
	�

��
,-

-,
!
!
�
:

*�
��

��
��

�,
--

7

!
!
�
�;-

/
!
�
$�
;-
< =
��
���

��
�
�

��

��
,-

-1

'
	�

��
�

�
��
��

��
��

>�
��
�,
--

/

$�
��

�'
	�

��
�

�
��
��

��
�,
--

0
8
��

	�
��
 �

��
��

��
�

�
��
��

�2
�
��
��
��
,-

-0

!
!
�
:
�;-

<
=
��
���

��
!
��
��

��
��

��
��
�

8
��

��
��

��
2�
��

�
,-

-/
�

�
��
�!
��
"�
��
#$
�%
��
	

��
��
��

&

�
�
�
�
�

�
��
		
��
��
'

&

(
�

�
��
		
�)
**
*

�

�
(
�

�
�"
+�
	$
$�
��
��

�
�
(
2�

�
�

!
�
5
�7
99

,

�
�

��
�
��

�
?�
�	

@�
23

���
��
,-

-.
=
��
���

��
�
��
��

��
*�

��
��

��
"�)

��
��

"�8
	�

��
	�

��
,-

--

!
!
�
(

:
�
��
�

�,
--

7

�
�
&

�

�
��
,$
�%
��
��
-

!�
�,
"$

�
.
	�
��
��
-

!
��
��

�
�

*�
��

��
��

�,
-.

.

!
�
:
A

5
��
��

�
2B
��

��
��
��

��
��
��
��
�,
--

0

�
/0
�

�
��
		
�)
**
�

5
��

��
�

�
��
�
��
��
��

�
��
�

�
@�

��
��

+�
2:
��
��

��
+�

��
79

99

�
��

�
��
��
'
��

�
���

�
5
��
��

���
��
�7
99

<
:
C�

�	

�
��
��
=
�
#

�
��
��
�2
)
��
��

��
79

97

!�
�,
"$
�0

/

1
	

2	

	
#�
$�
��
��

!
)
(

8
	�

��
25

��
��

��
��
,-

-7

�
!
�
(

5
��
��

�
�,
--

1
�
!
�
:
�

B
��

��
��
��

��
��
��
��
�,
--

<

(
��
��

�
�

	�
��
��
��

��
�

)
��

��
�7
99

9
�
	#

�
:

)
�

��
�,
--

-
'(

�
$

3
��
��
2#
��
�,
--

-

!
�
:
A
2�
)
�

B
��

��
��
��

��
��
��
��
�7
99

,
=
�
#�
�
��

��
��

�

�

�
��

��
�
��

2�
��

��
��
�7
99

9
�
(
&

�

3�
��

�
��
4�	
�4�
)*
*� �
��
��

��
��
��

��

�
�

(
��

��
�
�7
99

/

�
��

�
��
��
�
��
�	

�

�#
��
��
�
��
�

��
�

�
��
�
��

�2
A
��

�
��
��
79

9,

!
!
��
�

8
��

��
+�

	�
�,
--

6

B
!
!
�

8
��

��
��

��
,-

-7

�
�
��
�

�

5
"

%$
��
��
��%
+$
��
��
�

!
��
��

�
!
���

�

��

�(
��

�
��
��
�
��

��
��
�

�
��

��
��

�

�)

��
��

��
��

�

��
��
:
��

��
��

���
�

�
��
�	

�

�#
��
��
�
��

�

��
��
:
��

��
��

���
�

�
��

��
��

��
��

��
��

�

��
��
:
��

��
��

���
�

D
��

�(
(

+
��
��

��
79

97
�
	

�
�%
�

�
�"
+�
	$
$�
)*
*�

�

�
	�

	
��
��
(
��

�
��
��
�
��

��
��
�

6
��
�7
�(
%+
�%
��

�%
+�
	,
,

�	
!�
�$
��
$,
�!
�	
���
��	

+
��
�%
+�
��
��
(
�
��
��
��
�8
��
�	
���
��
��
��
�
	�
%�
	

��
�
	

#�
��
�%
���
	�
�!
$4

Fi
gu

re
3.

1:
H

is
to

ri
c

O
ut

lin
e

of
So

ft
w

ar
e

C
on

st
ru

ct
io

n
A

pp
ro

ac
he

s

21

to be able to specify stateful behavior. In this context, Harel also has to be mentioned,
who invented the notation of State Charts [Har88]. Other contributions targeting the
real-time domain, which appeared during the mid 1980’s, having significant impact on
later design methods, are the Modular Approach to Software Construction Operation
and Test (MASCOT) by Simpson [Sim86] and the Design Approach for Real-Time Sys-
tems (DARTS) by Gomaa [Gom84], who formalized the modeling of concurrent tasks
and their respective interfaces, and provided means to structure a real-time system into
such concurrent tasks.

3.1.2 Object-Oriented Analysis & Design (From the mid 1980’s to the
late 1990’s)

One of the most significant contributions of the early 1980’s is probably Jackson Sys-
tem Development [Jac83]. Here, Jackson relieved himself from the concept of func-
tional decomposition that had embossed those Structured Analysis & Design methods
of the 1970’s, and proposed to model real-world entities and events to capture the prob-
lem domain, which is why it is sometimes regarded as one of the first object-oriented
analysis methods - or at least as their direct predecessor.

Following this new programming paradigm of object-orientation, first truly object-
oriented methods were then developed in the late 1980’s and early 1990’s. Similar to
as it was done in terms of their Structured Design anchestors, object-oriented program-
ming concepts were transferred to the modeling of system design. Booch’s Object-
Oriented Design (OOD) is probably the first such approach. Having first published his
ideas in the object-based world of Ada-based systems [Boo86], Booch extended his
approach to a full Object-Oriented Design approach in the following years [Boo91]
[Boo94]. As with the Structured Design approaches a decade before, a shift from
modeling of the solution domain to modeling of the problem domain was the natural
next step. Object-Oriented Systems Analysis (OOSA) by Shlaer and Mellor [SM88], is
probably the first approach targeting in this direction.

It was followed by several other Object-Oriented Analysis & Design approaches. A list
of just the most important ones may contain OOA/OOD by Coad and Yourdon [CY91]
[CY92], Responsibility-Driven Design (RDD) by Wirfs-Brock et. al. [WBWW90], as
well as Object-Oriented System Analysis (OOSA) by Embley et. al. [EKW92], Hi-
erarchical Object-Oriented Design (HOOD) by Robinson [Rob92], Object-Oriented
Analysis & Design (OODA) by Martin and Odell [MO92] as well as Object Behaviour
Analysis (OBA) by Rubin and Goldberg [RG92]. Of course the Object-Modeling Tech-
nique (OMT) by Rumbaugh et. al. [RBP+91] as well as Object-Oriented Software
Engineering (OOSE) by Jacobson et. al. [JCJv92] have to mentioned in this context
as well. OMT was another data-oriented approach, like Booch’s OOD was. Similar
to OOA/OOD by Coad and Yourdon, it used class models for the analysis. How-
ever, its notation, which found broad acceptance, was different to that of all previous
approaches. It was also one of the first approaches that employed state-transition dia-
grams to model the life cycle of instances. OOSE is also a rather outstanding approach,
as it was the first one proposing the idea of using Use Cases to perform a scenario-

22

based analysis, rather than starting directly with a class model. The same holds for
OBA, which similarly describes the use of scenarios in the early analysis. HOOD,
which was developed on behalf of the European Space Agency (ESA), may be also
explicitly mentioned in this context, as it introduced the notion of a top-down hierar-
chically decomposed design that was picked up by various later approaches, especially
in the embedded & real-time domain.

It is not astonishing that Oestereich speaks of a ”blossoming of methods” ([Oes01]),
Jacobson even of ”method wars” [Jac96], when referring to that period of late 1980’s
and early 1990’s. However, this period of diversity was followed by a time of unifi-
cation. Having already influenced each other quite intensely in the following years,
leading to revised versions of their individual approaches Booch and Rumbaugh, uni-
fied their OOD and OMT approaches to the so called Unified Method [BR95]. Finally
the Unified Process [JBR99], a wholistic software development approach that further
integrated Jacobson’s OOSE was developed, combining the approaches of all three
amigos. Other unifying approaches had as well be undergone. The Fusion method by
Coleman et. al. ([CAB+93]) may be exemplarily named in this context, as well as
the Unified Modeling Approach by Rosenberg and Scott [RS99]. Furthermore Object-
oriented Process, Environment and Notation (OPEN) by Graham, Henderson-Sellers
and Younessi [GHSY97] may be named, which started as a unifying approach of
Henderson-Sellers’ Methodology for Object-Oriented Software Engineering of Sys-
tems (MOSES) [HSE94] and Graham’s Semantic Object Modelling Approach (SOMA)
[Gra95] and resulted in a unification movement being joined by around 30 methodol-
ogists, forming the so called OPEN Consortium.

Even if quite a few methods already existed during that time and the unification ef-
forts were quite strong, new approaches were yet published during the mid 1990’s.
Recursive Design by Shlaer and Mellor [SM97] may be mentioned here, as it is one
of the first approaches using automated transformation of analysis into design models
as well as complete code generation. OOram by Reenskaug et. al. [RWL96] is also
worth being mentioned, having introduced the notion of role models.

In the embedded & real-time domain Software Design Methods for Concurrent and
Real-Time Systems (CODARTS) by Gomaa [Gom93] and Octopus by Awad, Kuusela,
and Ziegler [AKZ96] may be mentioned. While CODARTS can be seen as a ma-
ture Structured Analysis and Design approach, bringing together best practices and
experiences of the elapsed decade, Octopus is one of the first object-oriented meth-
ods targeting the embedded & real-time domain. Other prominent approaches of that
time are Real Time Object Oriented Modeling (ROOM) by Selic et. al. [SGW94] and
Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) by Burns and
Wellings [BW94]. While HRT-HOOD was an extension of the already established
HOOD method to meet the needs of hard real-time systems, ROOM was a rather novel
approach. While using hierarchically decomposed models, similar to HOOD, ROOM
introduced the notion of fully encapsulated classifiers, being connected to their envi-
ronment by ports. ROOM was probably also the first approach that defined a clear
semantical cohesion between structural and behavioral models.

23

Two years before a common methodology was defined by the three amigos with their
Unified Process, they comitted themselves to a common notation, the Unified Modeling
Language (UML) [BJR96]. The UML was however not only influenced by Booch,
Jacobson, and Rumbaugh, but also incorported aspects of other approaches as well.
Harel for example contributed the notation of state charts [Har88], Martin and Odell
that of activity diagrams, Embley the idea of composite structures and high-level view,
just to name a few. A competetive approach to the UML, called OPEN Modeling
Language (OML), had been developed by the OPEN Consortium during the same time.
This notation however has not even slightly gained the impact of the UML. At the latest
by its adoption as an official Object Management Group (OMG) standard in 1997
[OMG97], the UML was the first and foremost modeling language. While former
approaches almost always had their own notation and tooling, those approaches being
published at the end of the 1990’s and in the early 2000’s were mostly influenced by
the UML.

The trend towards UML did also pertain the embedded and real-time domain, where
the Rapid Optimizing Process for Embedded Systems (ROPES) by Douglass [Dou99a]
and Concurrent Object Modeling and Architectural Design Method (COMET) by Go-
maa [Gom00] may be mentioned as the most significant developments. An adoption
of the ROOM methodology to use UML notation was also proposed by Selic and Rum-
baugh at this time as well. The respective profile extension to the UML ([SR98]) be-
came known as UML-RT and was the notation being supported by the Rational Rose
RealTime tool, which was an improvement of the ObjectTime tool supporting ROOM.
UML-RT may not be confused with RT-UML, which is the colloquial denomination of
a competeting proposal by Douglass [Dou99b], which was the notation supported by
the I-Logix Rhapsody tool, forming also the basis for the UML Profile for Schedula-
bility, Performance and Time, which was first published by the Object Management
Group (OMG) as a Final Adopted Specification in 2002 [OMG02].

3.1.3 A Decade of Great Diversity - CBSE, PLSE, MBSE (from the late
1990’s to the early 2000’s)

While the Object-Oriented paradigm had clearly dominated the 1990’s, the decade of
the 2000’s (including the late 1990’s) can be summarized as a decade of great diversity.

Inspired by the great success of Object-Oriented Analysis & Design and being driven
by the goal to achieve reuse also on the level of coarse-grained architectural building
blocks, adopting component-technology to existing object-oriented methodology lead
to the new paradigm of Component-Based Software Engineering (CBSE). Catalysis
by D’Souza and Wills 1998 [DW98] may be named as one of the first and probably
the most outstanding approach targeting this direction. It employs UML notation to
specify components with their respective interfaces, as well as connectors denoting the
composition of components. Other component-based contributions of that time are for
example UML components by Cheesman and Daniels [CD00], KobrA by Atkinson et.
al. [ABB+02], or Select Perspective by Apperly et. al. [AHL+03], all being related to
the UML as underlying notation as well. An enhanced version of the OPEN approach,

24

called OPEN/CBD, was also published at that time [HS01], enriching the original ap-
proach by techniques to support the acquisition and integration of components. In
the embedded and real-time domain, Component-Based Software Engineering did not
have the same impact than in the field of industrial information systems. However,
some approaches were developed targeting especially this domain. The Koala ap-
proach [vvKM00] by Ommering et. al. may be exemplarily named in this context,
being a component-based approach for embedded systems in the consumer electronics
market. The Pervasive component systems (PECOS) approach [MSZ01] by Müller et.
al. may be mentioned in this context as well, as it was one of the few approaches
especially targeting on small embedded real-time systems.

Being closely related to the CBSE principle of reusing components is the idea of de-
veloping software applications in terms of product families or product lines. Even if
Parnas had initiated the idea of developing program families already in the mid 1970’s
[Par76], and some trend-setting contributions could already be found in the late 1980’s
and early 1990’s, it was not before the early 2000’s that this trend gained significant
impact. Being inspired by the success story of such approaches in the hardware devel-
opment, where development in terms of product lines was already common practice
at this time, Product-Line Software Engineering (PLSE) was first and foremost ap-
plied in the closely related domain of embedded & real-time software. Quite a few
PLSE approaches saw the light of the day during the early 2000’s, out of which the
most prominent ones are probably FAST method developed by Weiss and Lai [WL99],
PuLSE by Bayer et. al. [BFK+99], and the Architectural Design Method by Bosch
[Bos00], as well as the Framework for Software Product Line Practice by Clements
and Northrop [CN02], which is - in contrast to the before mentioned - not a single
methodical approach, but a collection of approved practices and recurring problem
patterns. The Product Line UML-Based Software Engineering (PLUS) approach by
Gomaa, an extended version of his COMET method to develop software product lines,
may be named for the sake of completeness, as well as some approaches related to var-
ious European wide research projects like the ITEA Eureka projects CAFÉ or DESS.
All of those did however not have very great significance.

Besides those trends of Component-Based Software Engineering and Product-Line
Software Engineering, what can be observed during the early 2000’s is that with the
adoption of the UML as an official standard in 1997, a general trend to intensive use
of models throughout the development life cycle started, mostly employing the UML
as underlying notation. The Model-Driven Architecture/Model-Driven Development
(MDA/MDD) approach by the OMG [OMG01] may be named as one of the first ap-
proaches, making intense use of models, and it is by far the most popular one, be-
ing often named as some sort of progenitor for other model-driven approaches. The
basic idea behind it is to employ a Computation Independent Model (CIM) analy-
sis model and a Platform Independent Model (PIM) design model to capture a soft-
ware’s business logic independent from any underlying technical implementation de-
tail, like middle-ware or database technology. By combining the PIM with a model
of a concrete target platform, referred to as the Platform Model (PM), a Platform Spe-
cific Model (PSM) can be obtained, which can then be transformed into the Platform
Specific Implementation (PSI).

25

While the idea behind MDA/MDD is quite specific to the domain of industrial informa-
tion systems, the general ideas of having models as the central engineering artifacts has
been adopted by several succeeding approaches, leading to new paradigm of Model-
Based Software Engineering (MBSE) or Model-Driven Software Engineering (MDSE)
respectively. Like with all preceding paradigms, quite a few of such model-based ap-
proaches were published beginning in the early 2000’s. Executable UML by Mellor
and Balcer [MB02] may be named as one of the early approaches of that kind, as well
as the Software Factories approach by Greenfield and Short [GSCK04] at Microsoft
and the Generative Programming approach by Czarnecki and Eisenecker [CE00], both
being based on domain-specific modeling languages. In the embedded & real-time do-
main, the trend to model-based approaches can as well be observed. However, this
trend is rather young, so there are few approaches that have been published before the
mid 2000’s.

A last trend having emerged during the early 2000’s is that toward flexible and light-
weight development methods, originating from the ideas of Beck’s Extreme Program-
ming [Bec00]. This trend can as well be seen as a self-contained development paradigm,
namely Agile Software Development, and quite a few successful approaches were pub-
lished related to it. The Dynamic Systems Development Method (DSDM) by Stapleton
et. al. [Sta97], Feature Driven Development (FDD) by Coad et. al. [CLL99], and Ag-
ile Modeling by Ambler [Amb02] may be exemplarily named in this context, which all
have in common that they concentrate on the domain of classical information systems.
Although few methodologists tried to apply the idea to the embedded and real-time do-
main as well, amongst which Hruschka and Rupp [HR02], as well as Grenning et. al.
[GPB04] may be named, one may generally draw the conclusion that agile approaches
are indeed mostly inapplicable to this domain. Several reasons may be cited to sup-
port this thesis, for example the strong relationship between hardware and software
development and the hard time and space constraints embedded systems may face,
which indeed prevents the application of most agile techniques like planning games,
object-oriented refactoring, or test-driven development. The most apparent reason may
however be that this topic has already pretty much left the focus of the embedded and
agile communities, so that only few contributions can nowadays be found on that topic.

3.2 State of the Art - The current situation in academia and
industrial research

As already indicated, component-based, product-line, and model-based software engi-
neering are probably the predominant engineering paradigms of the current decade - at
least as far as the academic research is concerned. One may just look at the multiplicity
of research projects being undertaken in this direction, as well as at the number of con-
ferences and workshops related to the field, to fortify this thesis. While model-based
software engineering is a quite recently upcoming paradigm - at least if one ignores
the very early approaches related to OMG’s Model-Driven Architecture/Model-Driven
Design(MDA/MDD) initiative [OMG01], which can also be traced back to the early

26

2000’s - component-based and product-line software engineering may be regarded to
already have a certain history. Nevertheless, they still seem to be exposed to increasing
interest, especially in the embedded & real-time domain, where due to large techno-
logical advances in recent times, component-technology seems to be more and more
applicable, and where product-line related questions are always a hot topic due to the
multiplicity of product variants that often have to be faced.

However, while both, component-based and product-line software engineering, may be
regarded as interesting research fields, they are not in the central focus of this thesis’
work and will therefore not be investigated in detail in the following. One may refer
to [ABGP05] or [vdLSR07] and [KD06] respectively to find a good survey on current
research trends related to both fields. While this does of course not rule out that some
of the approaches, being named in the following, may also investigate component-
based related questions or cover aspects related to the engineering of product-lines, it
is just that the focus will be set to model-based software engineering in the following,
as it is regarded to have introduced a rather novel quality due to its central and absolute
commitment on models as the primary engineering artifacts.

As already indicated in the historic outline, it was not before the mid 2000’s, when
the Object Management Group adopted version 2.0 of its Unified Modeling Language
standard, that model-based software engineering has significantly gained impact. A
multiplicity of approaches has however been published since then, and this trend is
yet steadily increasing. While a number of those approaches may be regarded as being
generally applicable, various approaches can also be found, having their origin in a cer-
tain application area, thus accommodating the special characteristics of that respective
area.

There is a lot of interference between general purpose and application area specific
approaches, in terms of chronological adjacence as well as regarding contents - often
general purpose approaches have been customized by application area-specific ones, or
general purpose approaches have been generalized from practices and experiences be-
ing applied in certain application areas. A clear separation between those approaches
being applicable to several and those being restricted to a certain application area is
therefore hard to achieve. However, to draw a more systematic picture of the state-
of-the-art situation, such a separation is tried in the following, pointing out interfer-
ences between differently classified approaches where they are immanent. It should
be clear that below those explicitly mentioned interrelationships, influences between
the different presented approaches are natural and likely, not least because of the close
chronological adjacency of their inceptions.

3.2.1 General-purpose Approaches

Even if OMG’s Model Driven Architecture/Model-Driven Design (MDA/MDD) initia-
tive may be regarded as a rather special representative within the broad set of model-
based engineering approaches because of its strong focus on platform abstraction as-
pects (cf. Section 3.1.3), it has been generally accepted as the prequel of such ap-

27

proaches. Indeed, MDA/MDD may be regarded as one of the first approaches employ-
ing models as the central working artifacts throughout the overall software life-cycle.
However, while having great indirect influence in the field, a direct impact of OMG’s
initiative to the embedded & real-time domain could - at first - not be observed. This
is probably caused by the fact that platform abstraction is difficult in a domain where
resource constraints are very restrictive and where a lot of interfaces to the underlying
hardware are existing. It may also be caused by the fact that OMG’s initiative was at
first understood to be very much related to its object-oriented middle-ware approach
Common Object Request Broker Architecture Revision 2 (CORBA-2) [OMG95], which
is hard to apply in the embedded & real-time domain.

Having thus laid the early basis for this new engineering paradigm in the beginning of
the 2000’s, it was probably not before the adoption of OMG’s Unified Modeling Lan-
guage standard version 2.0 [OMG05c] in 2005, that model-based software engineering
has significantly gained impact in the embedded & real-time domain. This may be ex-
plained by the fact that the new standard version of the Unified Modeling Language
adopted many embedded & real-time concepts, such making the language more appli-
cable to this domain as well. The newly introduced composite structure diagrams may
be named in this context, which have been adapted from ROOM, as well as a major
revision of the already contained sequence diagrams to gain an expressive power com-
parable to that of Message Sequence Charts (MSC) [ITU04] (compare Section 3.2.2
on the situation in the telecommunications application area). Further, a newly defined
action semantics to increase the expressive power of behavior diagrams, as well as new
concepts especially related to timing aspects, incorporated into the newly introduced
timing diagrams, found its way into the language standard.

In the following years quite a few model-based methodological approaches have been
published, most of which had their origin in a respective application area (they will
be dealt with in the succeeding sections). Nevertheless, a few approaches may also
be named that can be regarded as being general purpose, for example I-Logix’ HAR-
MONY [Dou07], a model-driven successor to the quite popular ROPES approach, or
Accord/UML [TGRT06], an approach demonstrating the applicability of MDA con-
cepts to embedded & real-time systems, being published in the context of the French
Commissariat à l’Énergie Atomique (CEA).

At the same time the Object Management Group started to spent more and more ef-
forts on making its approaches better applicable to the embedded & real-time domain.
While the current 2.1.2 version of the Unified Modeling Language [OMG07d] is in-
tended to be widely applicable and does therefore not subsume additional embedded
& real-time specific concepts, great efforts are currently being spent in the definition
of a new dedicated add-on for the modeling and analysis of embedded & real-time sys-
tems, the so called Modeling Analysis of Real-time and Embedded systems (MARTE)
profile. Having been published in a first beta version in mid 2007 [OMG07a], MARTE
is intended to be a replacement of the current UML Profile for Schedulability, Perfor-
mance and Time [OMG05b]. It combines experiences gained with the latter profile and
also tries to integrate domain specific approaches like AADL or AUTOSAR (compare
Section 3.2.2 on domain-specific approaches within the automation and aerospace &

28

defense application domains for details) that have emerged in the meantime. Efforts
being spent by the OMG to transfer CORBA to the embedded & real-time domain
(CORBA/e) [OMG06a] may be also named in this context, as it is intended to increase
the applicability of MDA/MDD approaches in the respective domain.

While one trend of the current decade can thus be identified in terms of model-based
engineering becoming the predominant software engineering paradigm (at least from
a state-of-the-art perspective), a second trend can as well be observed, namely the
integration of related but distinct hardware and software engineering disciplines into
a common, integrated one. Indeed, Systems Engineering, as it is referred to, has a
long tradition. First ideas have been published in the late 1950’s and early 1960’s
[GM57][Hal62][Che67], and HW/SW co-design, which is closely related, has been
a major topic since the early 1990’s. Object Oriented Systems Engineering Method
(OOSEM), developed by Friedenthal et. al. [LFM00], or the Rational Unified Process
for Systems Engineering (RUP-SE) [Can01] may be named as more recent approaches.
With the adoption of the current UML standard this trend has then significantly am-
plified through the definition of a respective UML Profile for Systems Engineering
(SysML) [OMG07b]. Approaches like HARMONY-SE [Hof06] or SYSMOD [Wei06]
may be quoted as evidence for this.

3.2.2 Domain-specific Approaches

While there are a couple of generally applicable ones, the preponderant majority of cur-
rent engineering approaches - especially those related to model-based software engi-
neering - may be traced back to a specific application area. Here, aerospace & defense,
automotive, as well as telecommunications may be regarded as the key application ar-
eas, serving as some sort of catalyst due to their specific regulatory, organizational and
economical constraints.

That is, within all three domains, strong regulatory constraints related to reliability
and safety can be observed. A distributed development environment in terms of a
multiplicity of suppliers and a smaller set of manufacturers is also characteristic. Both
contributes to the fact that unifying standards are agreed on. However, the predominant
reason probably is that within all three key application areas, a handful of market
dominating manufacturers can be found, which have the economic strength to facilitate
new approaches. Most domain-specific model-based engineering approaches, having
emerged in recent time, thus can - probably due to this exceptional position - be traced
back to the aerospace & defense, automotive, or telecommunications application area,
as will be pointed out in the succeeding sections.

Aerospace & Defense Aerospace & defense can probably be seen as one of the
precursor application areas in terms of model-based software engineering. Already in
the mid 1990’s first efforts to use graphical specification languages and code generation
could be observed. As a result of DARPA’s Domain Specific Software Architecture
(DSSA) program, which was started in 1991 [MG92], early specification languages

29

like MetaH to specify software architectures or ControlH, being used for guidance,
navigation, and control algorithms were developed, as well as sound modeling tools to
support those languages.

A unified modeling standard to specify software architectures and to leverage model-
based software engineering was reached with the Architecture Analysis and Design
Language (AADL) language, being defined by the Aerospace Avionic Systems Divi-
sion of the Society of Automotive Engineers (SAE) in 2004. Having started as a mere
textual specification language, inspired pretty much by the above mentioned MetaH
language, AADL was subsequently enhanced by graphical notation capabilities and
in 2006 also with a concise underlying meta-model. Since 2007 a UML profile for
AADL is as well available.

Closely related to AADL is the COTRE Architecture Description Language, which
was developed by the European COmposant Temps RÉel (COTRE) project [FG+04],
executed from 2002 until 2004. In contrast to AADL, the COTRE language was de-
signed to not only support specification but also formal verification of systems, thus
going beyond the scope of AADL. However, AADL and COTRE also had a lot of
interferences, leading finally to the adoption of some of COTRE’s core modeling con-
cepts (high level composition and dynamic description of component behavior using
an automata language) into the AADL language standard, incorporated into the so
called Behavioural Annex of the AADL [Sub07].

A multiplicity of non-commercial and commercial tools have been published to sup-
port AADL/COTRE, for example SEI’s Open Source AADL Tool Environment (OS-
ATE), the Toolkit In OPen source for Critical Applications & SystEms Development
(TOPCASED) by the CNRT Aeronautic & Space partners, or Ocarina by Télécom
Paris, all supporting the graphical modeling with AADL as well as the evaluation of
AADL specified architectures. Some, as the ADeS tool by Axlog Ingénierie, also offer
simulation of such architectures.

While there are thus some commonalities with respect to notation and tools, only few
common approaches in terms of software engineering methods can be identified. Both,
AADL as well as COTRE are closely related to the notation provided by the HOOD re-
spectively HRT-HOOD method. Indeed, a lot of modeling concepts incorporated into
those languages originate from the HOOD notation, others can be directly mapped to
HOOD concepts [Dis04]. Thus, in terms of software engineering methods, HOOD
and HRT-HOOD, which have undergone several updates from their first publications
in 1992 and 1994 respectively, still have to be regarded as state-of-the-art, even if
AADL is employed as underlying notation. Apart from them, only few engineering
methods can be found that are specific to the aerospace & defense application area,
and those that can be found are usually proprietary to a specific company. The Model-
Centric Software Development (MCSD) [WL06] of Lockheed Martin may be exem-
plarily named in this context, which is one of the few publicly proclaimed company
specific model-based engineering solutions.

30

Other approaches are rather domain unspecific, often not limited to the engineering
of software but indeed addressing overall systems engineering. The aforementioned
rather general OOSEM and Harmony-SE method approaches indeed have their origin
in the aerospace & defense application area. The Department of Defense Architec-
ture Framework (DoDAF) and the UK Ministry of Defense Architecture Framework
(MODAF) can be also named in this context. Even if a complete software engineering
method is not delivered by them, at least a compilation of guidelines and instructions
is provided. The so called DoDAF deskbook [Gro03] for example prescribes detailed
tasks that have to be performed to create DoDAF models and defines, which deliver-
ables have to be produced.

Automotive In the automotive application area, the situation faced is quite compa-
rable to that of the aerospace & defense area. That is, model-based software engineer-
ing of control and feedback control algorithms could be regarded as state-of-the-art
in automotive software engineering already in the early 1990’s (cf. [Sch04]). Tools
like MathWorks’ MATLAB Simulink/Stateflow or ETAS’ ASCET-SD were used from
then on to specify and also simulate control and feedback control engineering models,
code generation from those models was already supported. However, those approaches
were restricted to the engineering of single car functions.

As a consequence, strong efforts to achieve software engineering solutions to face the
integration of different functions and subsystems in terms of an overall software archi-
tecture, can thus be observed from the early 2000’s. The ITEA Electronics Architecture
and Software Technology - Embedded Electronic Architecture (EAST-EEA) research
project [TEF+03] may be named in this context, which was executed from 2001 to
2004, bringing together major European car manufacturers, as well as suppliers, tool
editors and research institutes. Besides the definition of a common middleware plat-
form to abstract from the rather special hardware architecture in terms of distributed
and interconnected electronic control units (ECUs), its most important work result
is probably the EAST Architecture Design Language (EAST-ADL). EAST-ADL was
specified as a UML profile to allow modeling support by standard UML tools. It may
be regarded as the first unified notation for software architectures in the automotive
application area, supporting modeling on different abstraction levels.

Further, AutoMoDe, a research project being executed from 2003 to 2006 at the TU
Munich in close cooperation with the German car manufacturer BMW, its supplier
Robert Bosch GmbH and the tool vendor ETAS [BBR+05], may be mentioned. Its
goal was to provide concepts to better integrate between different abstraction levels
and views of an architecture model, something that was identified as a weakness in the
EAST-ADL. Its major working outcome was the homonymously named AutoMoDe
notation allowing to better integrate models of different abstraction levels, and a pro-
totypical tools support by the respectively extended AutoFocus2 tool.

Besides those efforts of the research community, the automotive industry itself pressed
ahead by itself in terms of the AUTOSAR (AUTomotive Open System ARchitecture)
initiative. That is, in 2003 a consortium was jointly founded by major international car

31

manufacturers and suppliers to define a standard architecture for automotive software
applications. As a result, the first AUTOSAR specification was published in 2005, a
current version of the standard, AUTOSAR 2.1, is available since 2007. The initiative
adopted various concepts defined by the EAST-EEA project, in particular the specifi-
cation of an independent middle-ware, which enables the integration of independently
developed AUTOSAR software components into an overall software system. The de-
velopment of AUTOSAR compliant software components is supported by nearly all
domain-specific tools, for example ETAS’ ASCET or dSpace’s SystemDesk. It has to
be pointed out that AUTOSAR does only specify a common software architecture in
terms of a common runtime environment and defined hardware abstraction and soft-
ware communication interfaces and no common notation.

To bring together those efforts, the European Commission founded the Advancing
Traffic Efficiency and Safety through Software Technology (ATTEST) project in 2006
[ATE07]. Its goal is to define a new automotive architecture description language,
based on the experiences with EAST ADL, being furthermore aligned with AUTOSAR
and UML/SysML. Special research is currently also going on to deal with integration
aspects related to timing and concurrency issues in the context of AUTOSAR. This is
investigated by the ITEA Timing Model (TIMMO) project [J+07].

However, while a lot of efforts can be observed related to model-based software engi-
neering in terms of notations/languages and tools, similar to the aerospace & defense
application area, common software engineering methods seem to be rather rare.

Telecommunications The situation faced in the application area of telecommunica-
tions is a twofold one. Mobile devices like cellular phones or PDA’s have undergone
a fast-paced development. While resource limitations in terms of memory and com-
putation time still require special awareness in the engineering of mobile application
software, they do not seem to be the most challenging constraints any more. Instead,
aspects relevant to classical industrial information systems like modifiability, run-time
extensibility and rapid application development [Mik07] seem to be the most signifi-
cant drivers.

While the development of software for such devices is still challenging, it is therefore
probably more comparable to that of classical information systems rather than that of
other embedded & real-time systems (and is therefore slightly out of the scope of this
thesis’ work). Indeed, system software for such devices can rely on capable operating
systems and implementation frameworks; often parts of the required functionality can
even be integrated as a complete System on a Chip (SoC). Development of application
software can apply modern object-oriented technology like Java or .NET and profound
class bibliographies and API’s are available.

32

The situation faced in the engineering of network infrastructure related devices like
telecommunication switches or routers seems to be a bit different. Here, indeed most
of the embedded & real-time characteristics laid out in Section 2.1 still perfectly hold.
Traditionally, those software has been specified using languages like the Abstract Syn-
tax Notation 1 (ASN.1) [ITU02], the Specification and Description Language (SDL)
[ITU99], or Message Sequence Charts (MSC) [ITU04]. Those languages have all be-
ing standardized by the International Telecommunication Union (ITU) already during
the late 1970’s and early 1980’s, and soon after the adoption of the initial Unified
Modeling Language standard in 1997, have been mapped to it in the form of UML
profiles.

Having undergone their latest revisions in the late 1990’s and early 2000’s, those
ITU-related languages are nowadays mostly subsumed by the current version of the
Unified Modeling Language. This is reflected - not least - by the fact that specific
tool support for the respective languages has been replaced with according UML sup-
port (for instance compare Telelogic’s Tau Generation 1 versus Tau Generation 2).
While the Unified Modeling Language thus seems to be accepted as the current state-
of-the-art modeling language (at least with respective profile support), the applica-
bility of OMG’s MDA approach in the respective application area is a current re-
search topic. The European funded MOdelDrivenArchitecture in TELecomunnications
(MODA-TEL) [Gav02] executed from 2002 to 2004 may be named in this context.

Miscellaneous Different to aerospace & defense, automotive, and telecommunica-
tions, the state-of-the-art situation in other embedded & real-time application areas
like industrial automation, consumer electronics, or healthcare seems to be hard to
sketch, as - due to different organizational and economical constraints - joint domain-
specific research efforts seem to be quite seldom. While some major companies of the
respective application areas are also involved in the several research projects attributed
to one of the aforementioned key application areas, most domain-specific research ef-
forts in the non-key application areas seem to be proprietary, that is specific to a certain
individual company.

There are several reasons for this. First, in contrast to the aforementioned aerospace
& defense, automotive, and telecommunications key application areas, the software
mostly seems to be of a lower complexity. This allows a centralized, non-distributed
development, where one developing organization is in overall control of the develop-
ment cycle. This is very much in contrast for example to the automotive application
area, where the car manufacturers mostly take the role of integrators and the develop-
ment of software components is realized by suppliers, forcing a distributed engineer-
ing of software. Further, as opposed to the aforementioned key domains, the respective
markets seems to be not as narrow, showing a greater number of market participants.
Also regulatory constraints seem to be less demanding, if one for example compares
the situation of consumer electronics to that in the aerospace & defense industry. Last,
the trend to standardization seems to be less traditional in those domains, if for ex-
ample compared to the situation faced in the telecommunications sector, where major
joint standards had already been defined in the late 1960’s. All those aspects con-

33

tribute their portion to the effect that a trend to joint research or even to unification and
standardization efforts seems to be less distinct in the respective domains.

However, a general trend towards model-based software engineering can also be ob-
served in those application areas. This may be fortified by the fact that - even if the
scope and impact of such approaches is limited and the overall number of publications
is not as distinct as in the aforementioned key application areas - research experiences
related to model-based software engineering approaches are publicly shared at respec-
tive conferences or workshops. Also product-line engineering can be regarded as a
central point of interest, in particular in application areas like the consumer electron-
ics, where a large number of product variants has to be handled.

3.3 State of the Practice - The current situation in industry

While the state-of-the-art situation reflects that model-based software engineering - be-
sides component-based and product-line engineering - is probably the dominant engi-
neering paradigm of the decade, the current situation that one can face in the industrial
practice does - of course - often provide a different picture.

The European Software Engineering Methodologies for Embedded Systems (MOOSE)
research project [vS02], executed from 2002 to 2004, conducted a survey amongst
19 Finnish companies (Hirvi survey) and 30 European companies (acquired by a web
repository) and gathered empirical data from over 100 development projects related to
embedded & real-time software (cf. [vS04][TK04]).

Interestingly, the survey showed that indeed 16% of the Hirvi survey projects and even
about 40% of the web repository projects were developed without using any design re-
spectively construction method. While 16% (Hirvi survey) to 17% (web repository) of
the projects claimed to use Structured Analysis & Design, and Object-Oriented Anal-
ysis & Design based on Rumbaugh notation was used in 13% of the web repository
projects (in this case no data is available from the Hirvi survey), 37% (Hirvi) respec-
tively 23% (web repository) of the projects used a design method based on the UML as
notation, not providing however any detail about the underlying engineering paradigm.

The interesting question would be how many of those approaches using the UML in-
deed can be regarded as being model-based or even model-driven. While truly scien-
tific data is not available to investigate this (the MOOSE project did not cover this), an
online survey conducted by Ganssle in 2006 amongst 659 respondents of his newslet-
ter The Embedded Muse [Gan06] might give an interesting answer: accordingly, only
about 5% of the respondents stated to even perform automatic code generation based
on UML models2. This enforces the impression that model-based software engineer-
ing seems to not have found its way into the majority of industrial projects yet. The
impression may additionally be fortified by the fact that according to the MOOSE sur-

2According to the survey, 4% perform automatic code generation based on UML class diagrams, 3%
from UML sequence diagrams, and 7% from UML state machine diagrams

34

vey, over 50% of the overall projects (Hirvi and web repository) were developed using
either no design tools or a general drawing tool.

Another interesting result of the MOOSE project is that the main implementation lan-
guage used in most development projects related to embedded & real-time projects is
still C or even Assembler. The amount of projects using Assembler (in combination
with C/C++) as coding language is stated to be above 20%, plain C is used for imple-
mentation in more than 30% of all projects, and in combination with C++ in more than
50% of the projects. This seems to be a representative result. Indeed, online surveys
performed by ESL Now! [ESL05] or the Electronic Engineering Times [Rom06] per-
formed in 2005 and 2006 yield similar results on the yet outstanding importance of the
C and Assembler languages.

In case of those projects using a combination of C and C++ it would of course be
interesting to know, to what percentage those projects indeed used the object-oriented
capabilities of the C++ language. While the study conducted by the MOOSE project
does not give any hints on this, the already quoted online survey by Ganssle might help
to come to a concise interpretation: out of the 659 respondents of his survey, 63.7%
stated to use no object-oriented implementation language at all and 34.7% answered
to use an object-oriented implementation, but only for purposes of encapsulation, not
making use of object-oriented features like inheritance or polymorphism. 22.2% of the
respondents answered to use an object-oriented language, making use of its inheritance
features but not relying on polymorphism. Only 14% of the respondents stated to use
an object-oriented language to its overall extend in terms of encapsulation, inheritance,
and polymorphism [Gan06].

While this empirical data might help to gather a first impression of the current state-of-
the-practice, its representativity may be questioned, due to its limited scope. A concise
characterization of the current industrial situation could of course be better achieved
by examining the situation in the different application areas in detail, as it was done in
case of the state-of-the-art situation. Concerning the situation in the industrial practice
however, this is a considerably difficult venture, as empirical data is outstandingly rare.

What can be stated is that in the aerospace & defense application area, still most in-
dustrial development projects seem to employ long-term approved methodological ap-
proaches. The development efforts related to the Eurofighter fighter plane or the Airbus
A-380 passenger plane may be named exemplarily in this context, where the applica-
tion of HOOD and HRT-HOOD methods and related STOOD and CP-HOOD tools
is documented, reflecting a state-of-the-art situation of the early 1990’s. However,
quite a number of industrial pilot projects related to model-based software engineering
using AADL and UML respectively SysML are documented as well, so it is likely
that there will be ongoing effort in this direction (cf. [Fei07]). The large extend to
which aerospace & defense companies are involved in current research efforts related
to model-based engineering also confirms this prognosis.

In the automotive application area, model-based engineering of single control and
feedback-control related car functions, based on mathematical models, as supported by

35

tools like Mathwork’s Matlab, Simulink and Stateflow or National Instruments’ MA-
TRIXx, has quite a long tradition, reaching back to early pioneers in the early 1990’s
and may be regarded as being widely used with the end of the 1990’s. Today, model-
driven development of single car functions may thus be regarded as being state-of-the-
practice. Model-based engineering of the overall vehicle software in terms of a proper
integration of different software components (on different ECUs) to an overall soft-
ware system is not yet state-of-the-practice and is therefore in the very central interest
of the automotive industry. One may just look at the strong efforts related to the afore-
mentioned AUTOSAR initiative to confirm this. Here, according to [FBH+06], first
car models, having parts of its functionality realized conformant to AUTOSAR, will
go into series production in 2008, and all core partners of the AUTOSAR consortium
will have implemented AUTOSAR conformant software in their vehicle generations
by 2010.

While the general impression that arises from the surveys and polls quoted above
sketches a rather dark picture regarding the state-of-the-art situation in the embed-
ded & real-time domain, these two examples show that - at least in some application
areas - first ground regarding model-based engineering of software has already been
gained. A widespread adoption of model-based engineering in the embedded & real-
time domain, or in even a single of its key application areas, is however far from being
realized.

3.4 Observations & Conclusions

Reflecting the historic course of software engineering approaches for the embedded
& real-time domain it can be observed that this domain has more and more moved
into the focus of academic interest. That is, while the overall number of approaches
targeting classical information systems may still outweigh the number of embedded
& real-time approaches, recent history shows that the domain is significantly gaining
impact. A very strong indicator for this may be that several of the recently introduced
product-line, component-based, and model-based engineering approaches either ex-
plicitly concentrate on the domain of embedded & real-time systems, or at least pro-
vide a demonstrating case study being related to the respective domain.

While this may be an indication for the significant increase in its overall (economic)
importance, it can as well be taken as an indication that the adversity here is a rather
great one. The current state-of-the-practice situation, as it was sketched in the pre-
ceding section, may support this thesis. Indeed, the embedded & real-time domain
seems to face a number of difficulties. First, strong technical restrictions are typical to
most embedded & real-time systems, having strong implications on the software that
is running on those systems in terms of dependability, efficiency, or adequacy and thus
making the engineering of those software challenging. Second, the organizational, and
economical constraints in the embedded & real-time domain are somewhat outstand-
ing compared for example to the domain of classical industrial information systems.
In fact, software engineering has - historically seen - played a quite subordinate role

36

in the engineering of most embedded & real-time systems, which were in the majority
originally build up as mere mechatronic devices, having either no or only few parts
realized in software.

With the trend to build-in more and more functionality into embedded & real-time de-
vices, and with an ever increasing cost pressure, the amount of software in such devices
is steadily increased, leading also to a greater complexity. This increased complexity
together with the strong aforementioned technical restrictions that are characteristic for
embedded & real-time software are the central challenges, the embedded & real-time
domain has to face. As the historic survey unveils, abstraction is the principle to face
complexity. Having first begun to transfer programming language constructs and prin-
ciples to the late detailed design, the application of models - offering an increased level
of abstraction - has advanced more and more from the solution space into the problem
space. That is, soon after those early approaches using models within detailed design
only, further approaches entered the field, applying modeling also to the analysis phase
to gain a concise understanding of the problem space.

The central commitment to models as the primary engineering artifacts throughout the
overall software life-cycle, as it is proposed by model-based software engineering, thus
seems to be an adequate means to face the increased complexity. The large number of
model-based approaches, being published related to model-based software engineering
in the embedded & real-time domain, and strong related efforts spent at least in some
key industrial application areas may be taken as a good indication for this.

However, as the characterization of the industrial state-of-the-practice situation re-
veals, a broad adoption of current state-of-the-art approaches, in a sense that they are
commonly applicable to the overall embedded & real-time domain, does not seem to
be the case. Indeed, observing those strong efforts in the aerospace & defense, auto-
motive, and telecommunications industry on the one side, and evaluating the results of
current surveys on the other side, leads to the impression of a rather strong diversifica-
tion within the embedded & real-time domain. While certain key application areas are
far ahead - being in the central focus of current research efforts - other application areas
like consumer electronics, industrial automation, healthcare and others seem to be way
behind, either because of different technical restrictions, but probably also because of
different organizational and economical constraints.

37

38

Chapter 4

Definition of Scope - Problems,
Challenges & Goals

As the comparison of the current situation in the academic research and in the indus-
trial practice clearly unveils, there is quite a broad gap between them. Even if this does
not hold for the embedded & real-time domain in particular, but can be observed for
other domains as well, here the gap is a rather great one. This seems to hold espe-
cially for those non key application areas besides aerospace & defense, automotive, or
telecommunications, where the adoption of current state-of-the-art results seems to be
hindered by technical, economical, or organizational constraints. It is thus the goal of
the herein presented approach to deliver a model-based methodology, which especially
targets small embedded & real-time systems in the respective marginal application ar-
eas, where software development is - due to the very special constraints - far behind
that of others.

It has to be clear that even if limiting the systems, being targeted by the approach, to
small embedded & real-time systems, and even if limiting the application areas, be-
ing targeted, to those marginal application areas as industrial automation, medicine, or
consumer electronics, the domain scope would be too broad as that a single method-
ological approach could reasonably address it. The domain scope therefore has to be
limited. This will be done in the following section. Based on a thoroughly defined
domain scope, concrete problems and challenges will then be investigated within the
defined scope, so that concrete goals for the herein presented approach can be derived
subsequently.

4.1 Defining the Domain Scope

While searching for those embedded & real-time devices, where the adoption of cur-
rent state-of-the-art approaches seems to be difficult, and where the gap between state-
of-the-art and state-of-the-practice thus seems to be rather great, one inevitable crosses

39

the domain of small embedded & real-time systems. While from a general viewpoint
those devices may be characterized as rather incomplex, their development is never-
theless rather challenging, as usually strong technical constraints have to be faced.
Additionally, the rather marginal application areas, they can be found in, have their
own distinct organizational and economical constraints, as already pointed out.

While this characterization of small embedded & real-time systems gives a first impres-
sion, it leaves a lot of fuzziness about which systems do indeed fall into the respective
scope of the herein presented approach, and which do not. To achieve this, a more
detailed characterization of the domain scope is of course necessary. However, an ex-
act qualitative and quantitative definition of such a scope evidently seems to be quite
difficult, as the applicability of an approach cannot be judged on a yes-or-now scale.

��������
����	
��
��
���

�����
���
����	
��
��
���

��������
�����
���
����	
��
��
���

�����
����������������
���

��
���

����	�����

�� ����

��
������
�����

Figure 4.1: Domain Scope Definition

While the approach presented herein may not be regarded as domain or even device
specific, its scope may thus - as indicated by Figure 4.1 - be probably best defined
by naming a prominent representative, which is covered and shows some typical char-
acteristics. Measurement devices, as they can be found in the industrial automation
application area, will be used for this purpose1. The somehow broadened scope of the
approach may then be easily inferred by comparing the characteristics of a potential
target system to that of the representative.

4.1.1 Measurement Devices in Industrial Process Instrumentation

Within the industrial automation application area, measurement devices are counted
among that group of devices, which is referred to as field devices because - in the con-
text of a larger industrial automation plant - they are employed in the field, that is in
direct contact to the physical processes being controlled, in contrast to those devices
being employed in the process control level. Measurement devices may be classified

1Indeed measurement devices are sort of devices, the herein presented approach was initially devel-
oped for and where it has been initially evaluated with.

40

according to the physical process value they measure, which is mainly temperature,
pressure, or flow. They occur in a multiplicity of product variants related to the differ-
ent measurement principles, which are applicable, as well as to the different communi-
cation bus systems, being used in the process automation industry. Variants range from
low cost mass products, as they are for example used in temperature measurement of
nonhazardous liquids, to very upscaled marginal products, as for example used in the
flow measurement of explosive gases.

In general, those devices may be characterized by hard resource constraints in terms
of memory consumption, power consumption, and computation time, being imposed
on them by the industrial environments, they are used in. Strong constraints regarding
reliability are always natural for such industrial devices as well. The presence of possi-
bly harsh environments additionally enforces that certain measurement devices, being
specially developed for such purposes, also fulfill respective safety requirements, as
prescribed by related industry standards ([IEC98], [MIS94]).

From a hardware viewpoint, measurement devices may be characterized as single or
simple multi-processor systems (a single main micro-controller and usually not more
than 2 peripheral micro-controllers), mostly based on 16-bit, sometimes also on small
32-bit embedded micro-controllers, being usually equipped with physical memory of
about 32-512 KByte ROM and 0.5-512 KByte RAM. As already stated, measurement
devices have to offer interfaces to different industrial communication bus systems to
output the measured process values, and to be configurable and controllable by the
process control level.

E����
������%�&

(
��

��
��
B
��
��

��
�

�
��
�
�

��B
��
��

��
�

(������F2!

�������

�����
%8!�"�8(�&

=����F�
������

����
���F2!

�������	���

�
��

��
��
��

'��
���

Figure 4.2: Typical Mechanics/Hardware Architecture of a Measurement Device

The typical mechanics/hardware architecture of a measurement device may be char-
acterized as denoted by Figure 4.2. That is, on the analog hardware level they are
equipped with sensors and related filters, and - dependent on whether the commu-
nication bus systems supplies the device with electrical power or not - with an own

41

power supply. The digital hardware consists of analog i/o components interfacing to
the analog hardware, i.e. analog-digital converters used to collect data samples from
the analog sensors, as well as digital-analog converters, used for example to output
the measured process values on analog communication busses (this may however also
be realized by the main or a peripheral microcontroller). Digital i/o components can
also be found to realize communication with digital input and output components.
Measurement devices are further equipped with a user interface in terms of a simple
display and a keypad to display the currently measured process values and to allow a
configuration and control of the device by a local operator.

The software running on measurement devices may in general be characterized as
having a rather low complexity. That is, its run-time structure is rather static, in a
sense that the overall software structure is initialized at startup and does not dynami-
cally reconfigure during run-time. Even in case of a distributed architecture in terms
of a multi-processor system, the software may as well not regarded to be intensely
complex, as each peripheral microcontroller unit normally has a separate serial com-
munication interface to the main microcontroller unit, and communication is usually
initiated solely from there. Further, all hard real-time related functionality can be un-
ambiguously attributed to the single main measurement task, the device has to fulfill,
which is performed in terms of gathering analogue data samples via the device’s sen-
sors, processing the gathered sample data in order to calculate measurement values
(signal processing), as well as output of the resulting measurement values on commu-
nication busses and on the local display. All other functionality offered by a measure-
ment device, which is related to configuration, diagnosis, or maintenance, is usually
non-real-time critical.

Further, the software often has to take direct control of the underlying physical hard-
ware, as still most of such measurement devices is not equipped with an embedded
real-time operating system. However, at least in case of multi-processor devices, an
embedded real-time operating system is nowadays usually used on the main microcon-
troller unit, and a recent trend towards using an embedded operating system also in the
simpler devices is observable. Not only because of the high hardware contiguousness
that results from the absense of an operating system, but also because of the very strin-
gent resource consumption constraints, the implementation language used to realize
the software is still plain C - in close correspondence to the survey results quoted in
Section 3.3.

From an economical and organizational viewpoint, the domain of measurement de-
vices may be regarded as a rather harsh one as well. There is an inherently existing cost
pressure that accompanies the development of measurement device software. In those
cases where measurement devices are produced in a low overall number of pieces, the
overall development costs have a relatively high impact on the single per-product costs,
so software development is directly affected by this cost pressure, while the per piece
hardware costs are of course also crucial. In case of a large number of produced pieces,
the per-product hardware costs are the most significant ones, so that preferably cheap
hardware is employed, what then indirectly has an effect on software development as
well, as stronger technical restrictions are faced. In both cases hardware development

42

seems to have precedence, as it is the important cost driver. Consequently the develop-
ment of the system’s hardware is traditionally done in advance or at least with a slight
jut towards that of software.

From a regulatory viewpoint, safety standards like IEC 61508 [IEC98] or recommen-
dations like the MiSRA reports [MIS94] have to be named, which are applicable to
those devices, being used in hazardeous environments. While those standards do not
specify how software development has to be performed in detail, they restrict it by
prescribing the application of certain safety related engineering techniques to assure
that safety related aspects are covered. Besides, domain-wide software development
standards can not be found, and efforts targeting this direction can further not yet be
identified. This may be explained by the fact that the organizational constraints are
quite different here compared to those key application areas, where a handful of mar-
ket dominant manufacturers can agree on unified development standards, and further
have the market power to dictate them.

A last thing that has to be pointed out is that, as in a considerably amount of other
embedded & real-time application areas as well, software development is mostly not
performed by software engineers, but by electrical engineers, communication engi-
neers, process engineers, or physicians. While this should not be understood as a
discrimation of those professions, it is merely mentioned to point out that due to the
minor role software engineering has traditionally played in the embedded & real-time
domain, software is developed mostly by domain experts, which do not have profound
software engineering skills, as they are not extensively educated in the respective field.

A Typical Measurement Device - The Electromagnetic Flow Meter

To conclude the characterization of the preceding section, it may be reasonable to
characterize a typical example device. The example considered here will be an elec-
tromagnetic flow meter, which is a measurement device used to measure the flow rate
of a (electrically conducting) liquid, floating through a pipe2.

The physical measurement principle, an electromagnetic flow meter is based upon, is
the Faraday law of electromagnetic inductance. It states that an electric conductor,
being moved through a magnetic field, induces a voltage orthogonal to the direction of
the magnetic field and the direction of its movement. The electromagnetic flowmeter
makes use of this law, by creating an electromagnetic field through two magnetic coils,
which are diametrically fitted on the pipe, through which the to be measured liquid is
floating. If the liquid is conducting, it will induce a voltage orthogonal to the electro-
magnetic field, as denoted by Figure 4.3, which can then be measured by electrodes,
which are placed orthogonal to the magnetic coils that induce the field. From the mea-
sured induced voltage, the so called raw flow velocity, the flow velocity (in m/s) and
the flow rate (in l/s)) (both referred to as process values in the following) of the liquid,
proportional to the latter, can be computed.

2The example device was already introduced in [NL07a] and [NL08] as a running example. It will
serve the same purpose within this thesis report, accordingly.

43

Figure 4.3: Measurement Principle of an Electromagnetic Flow Meter (cf. [GHH+04])

Conformant to the typical hardware architecture of a measurement device, outlined
before, the electromagnetic flow meter example device is assumed to the equipped
with a human machine interface (HMI), manifested in terms of a small LCD display
and a keypad, used to report the process values to a local operator and to allow local
configuration of the device. Furthermore, it is assumed to come with two digital and
an analog (current) output. Its hardware is further split into two parts, namely a sensor
board, which controls the magnetic coils and collects raw data from the measurement
electrodes, and a main board, which is responsible of controlling the sensor board, as
well as the HMI and the analog and digital outputs3.

From a software viewpoint the electromagnetic flow meter device may be regarded to
contain two distinct embedded software systems, namely the one on the sensor and
the one on the main board, both being interconnected via a defined communication
protocol. The software running on the sensor board is responsible of interfacing to the
sensor hardware, i.e. it drives the magnetic coil by a pulse-width-modulation (PWM)
and gathers the sensor raw data via an analog-digital-converter (ADC). It is further
responsible of preprocessing the collected sensor raw data, i.e. it performs a sensor
related calibration, as well as en error detection and correction. The main board soft-
ware is responsible of performing the signal processing, i.e. it calibrates and filters
the preprocessed raw values, calculates the resulting process values, and outputs those
values on the display and the outputs. It is furthermore responsible of handling the
interaction with a local operator via the HMI.

3The example system presented in [NL08] is assumed to have a dedicated output board as well, used
to control the analog (current) output. It may however also be assumed, that the current output is driven
by means of a pulse-width-modulation (PWM) through the main board micro-controller itself.

44

4.2 Problems & Challenges

As pointed out before, model-based software development still faces a lot of problems
in the domain of small embedded & real-time systems, especially in those non-key ap-
plication areas apart from aerospace & defense, automotive, and telecommunications.
In order to provide an approach that is applicable within these application areas, the
reasons for this inapplicability have to be investigated first, so that distinct goals can
be formulated. This will be done subsequently.

4.2.1 Constraint-Inadequate Model-Based Software Construction

As stated before, model-based software engineering seems to be a reasonable means
to deal with the increased complexity that has to be faced. It further seems to be
promising in order to face the strong technical restrictions that especially small em-
bedded & real-time systems like measurement devices have to face. This is not least
due to the increased analysis potential that is gained through the intense use of models.
By reasoning on models and by simulating or even executing them, consequences of
decisions or the adequacy of possible solutions may be evaluated and assessed very
early, even before they are actually determined or realized. It is also because model-
based engineering - if applied systematically - empowers enhanced traceability, so that
design decisions can thus be tracked. This does of course hold for model-driven engi-
neering in particular, where models are interrelated much closer due to the enhanced
formality, and the thereby enabled higher degree of automation.

The interesting question that comes up in this context is, why promising model-based
or even model-driven software engineering approaches, which have been adopted in
other parts of the domain, are not properly applicable to small embedded & real-time
systems, as they can be found in the marginal application areas. The most significant
reason for this seems to be that most of current model-based engineering approaches
seem to be somehow contrasting to the very strong technical constraints that are being
faced in terms of resource consumption and timing constraints. Even if model-based
software engineering does not necessarily lead to larger and less efficient programs,
the problem is that most model-based approaches - even if nominally targeting the
embedded & real-time domain in particular - also compel the use of higher abstrac-
tion implementation technology like object-oriented programming languages or even
component-based middleware. This probably also explains why OMG’s MDA/MDD
approach did not significantly gain ground in the domain of small embedded & real-
time systems. If object-oriented concepts and component-based design principles are
only facilitated in the analysis and design phases and basic implementation technology
is used afterwards, it seems to be even more inapplicable, because then, a significant
breach between design model and implementation model, i.e. source code, is the re-
sult.

45

Another problem inherent to the application of higher abstraction techniques is related
to the organizational constraints that often have to be faced. As already mentioned,
software developers in the respective application areas are not always educated soft-
ware engineers, so that profound training of the involved personnel is necessary to
achieve a common familiarity with the applied concepts and technologies. This of
course is a major hindrance to the adoption of such approaches because of the afore-
mentioned immanent cost pressure.

4.2.2 Methodological Incompleteness and Discontinuity

Another challenge arises from the historic survey, software engineering has undergone
from the late 1990’s. As Section 3.1.2 unveils, the unification process of the vari-
ous different methodological approaches of the early and mid 1990’s, related to the
Unified Modeling Language, has lead to a drop out of support for concrete design re-
spectively construction methods in related tools. In fact, while before the unification
process each approach had its own notation, method, and related tools, where these
tools where equipped with methodical support at least to some extent, this support
has more and more been removed from the respective tools afterwards (or the tools
have disappeared), so that most of today’s modeling tools do indeed not deliver any
methodical support.

The lack of profound methodical support in today’s tools can be regarded as a ma-
jor drawback, as a coherent methodological system can only be achieved if notation,
method and tool are closely integrated and rely on common concepts and principles
(compare the system triangle metaphor in Section 2.3.2). If methodical support is not
provided by respective tools, this can thus be regarded as a major hindrance to the
application of a method. This is the case not only because the acquisition and adop-
tion of the method is complicated, it is also because potentially automatable or semi-
automatable steps of the respective method have to be performed by hand, naturally
leading to a lower acceptance of the method or even to its disapproval.

Another aspect that hinders the applicability of model-based construction approaches
is that most often tool support may not be regarded as being continuous. That is,
from the early requirements analysis up to the detailed design, most activities are well
supported by respective modeling tools (although each one of course has its own weak-
nesses and drawbacks). Nevertheless, in particular the transition from detailed design
into the respective implementation are most often not profoundly supported. This is
first and foremost the case because flexible and customizable code generation facilities
are not offered by todays modeling tools and also because implementation support is
mostly not integrated into them, but instead provided by additional third-party devel-
opment environment.

46

4.3 Definition of Goals

It is nevertheless assumed that model-based software engineering is a promising ap-
proach, especially within the domain of small embedded & real-time systems. This is
first, because it accommodates a more systematic approach to software engineering,
leading to an enhanced traceability, and second, because it offers an increased poten-
tial in terms of reasoning and analyzability. However, this great protential can only be
unleashed, if the aforementioned problems and challenges are considerably taken into
account.

Being aware of the methodological incompleteness and discontinuity that is inherent to
most existing model-based approaches, it has to be statet that an effective model-based
solution has to be arranged as a complete, continuous, and integrated methodology.
Taking a goal-oriented viewpoint, this may be formalized as:

Goal (Methodological Integrity). An overall software construction methodological
approach has to be delivered in terms of a concise method, an appropriate notation,
and adequate tool support, being all related by common concepts and principles.

(i) Methodological Completeness - A wholistic approach has to be provided, cov-
ering all constructive software engineering activities from the early analysis up
to the late detailed design and its final transition into the resulting implemen-
tation. This in particular has to include a precise definition about the structure
of the employed models, as well as a thoroughly documented mapping between
design and programming language constructs.

(ii) Methodological Integration - To form an overall integrated methodology, both,
a method and a supporting tool, have to be provided, being integrated with
each other via common concepts and principles. To allow easy adoption and
acquisition of the method, and to enable a high degree of automation, dedicated
methodical tool support has to be in particular provided, including substantial
support for the execution of the method’s tasks, as well as for its chronological
procedure.

Model-based software construction can furthermore only be successfully adopted to
those small embedded & real-time systems within the marginal application areas, if
the very special technical constraints of those systems and additionally the also rather
special organizational constraints of their respective application areas are properly re-
flected, so that the second major goal of the presented approach may be denoted as
follows:

Goal (Constraint-Adequateness). The delivered methodology has to properly reflect
the very special technical and organizational constraints of small embedded & real-
time systems in the marginal application areas.

(i) Technical Adequacy - It has to be ensured that the very special technical con-
straints of small embedded & real-time systems are met. That is, in particular

47

resource and timing constraints have to be explicitly and continuously regarded
(Real-Time Awareness). Concepts that would lead to a breach between design
and implementation have to be avoided (Seamless Continuity). Furthermore,
no specific technology has to be prescribed or enforced, which could hinder the
applicability of the approach (Technological Insensibility).

(ii) Organizational Adequacy - The very special organizational constraints, being
faced in the marginal application areas have to be met. It thus has to be en-
sured that a solution is practically applicable and understandable (Practical
Applicability & Understandability), in particular where software development
is performed by others than educated software engineers. It furthermore has to
be ensured that standard-conformant languages and tools are employed when-
ever possible, as the organizational and economical constraints, which are be-
ing faced in the marginal application areas, do not facilitate the development of
proprietary languages or tools (Standard Conformity).

These goals have to be inescapably addressed if a model-based software construction
approach is intended to be capable of meeting the very special characteristics of small
embedded & real-time systems, and if it wants to be compatible with the special or-
ganizational constraints, which are being faced in the respective application areas, as
well.

48

Part II

The MeDUSA-ViPER
Methodology

49

Chapter 5

A Model-Based Methodology

5.1 Sketching A Solution

Having clearly defined the problems, challenges, and goals, it is time to come up with
a solution.

MeDUSA (Method for UML-based Construction of Embedded & Real-Time Software),
the method, which forms a central part of the solution, is a model-based software
construction method, facilitating the intense use of models as the central engineering
artifacts throughout the overall software construction. Being organized around the
use case concept, the method was designed to be systematic and straightforward. It
uses the UML in its current version 2.1.2 [OMG07d] as underlying notation and -
unlike most other published methods, which are rightly referred to as design methods -
explicitly covers all software construction steps from the early requirements modeling
up the late implementation. This in particular includes a seamless transition of a UML-
based detailed design into a procedural implementation in the ANSI-C language, what
has been repeatedly emphasized as crucial to the success of any model-based approach
within the domain of small embedded & real-time systems, and which has conclusively
lead to the formulation of the methodological completeness goal (cf. Section 4.3).

Having repeatedly pointed out the importance of an overall integrated methodological
solution, it is clear that MeDUSA, even if being a crucial part of it, does not make
up the overall solution. Indeed, as sketched by Figure 5.1, together with the underly-
ing languages it is part of a larger methodological approach, in which ViPER (Visual
Tooling Platform for Model-Based Engineering) forms the complementary part of the
supporting tool.

ViPER delivers graphical UML modeling capabilities, as well as UML-to-ANSI-C
code generation (cf. [FNL08]). Additionally a toolkit for editing and simulating of
textual, narrative use case descriptions, as proposed by the method (cf. [WNHL08]),
is offered, as well as dedicated methodical support for MeDUSA.

51

(A�F��
�
�

��
��

#���	����

$����
G G

�����
H��	���$����������
��������
������)�����:����������

��	
��
��
��������=�#�)����
����
�	�
�������:�������
��8����$�������
����

��	
��
=�#���������=�#

����������
�������

�����������

Figure 5.1: The ViPER-MeDUSA Methodology

All three building blocks of the sketched solution will be investigated in detail within
the following chapters. As the method forms an integral part of it, it will be taken
as a starting point. Subsequently, the employed languages will be paid attention to.
That is, it will be elaborated, what parts of the UML are actually used within the con-
struction of all MeDUSA UML models, and it will be detailedly elaborated how design
model concepts can be seamlessly transferred into respective ANSI-C equivalents. The
description of the methodology will be completed by a presentation of ViPER, the sup-
porting tool. Here, concentration will be spent on the MeDUSA specific methodical
support that is offered.

5.2 Related Work

Of course, a methodology as the one presented herein is never developed in the open
countryside. Before thus introducing the components of the presented solution in terms
of MeDUSA, ViPER and their related modeling and implementation languages in the
following chapters, closely related work will be introduced in the following.

For MeDUSA, this will be done in terms of Gomaa’s COMET method [Gom00],
which may be denoted as the precursor of MeDUSA, as well as ROOM, by Selic et.al
[SGW94], which may be quoted as having strong impact on the applied notation and of
the integrated modeling between structural and behavioral aspects, as it is incorporated
into MeDUSA.

In the context of ViPER, it will be investigated to what extend methodical tool sup-
port is provided by currently available state-of-the-art tools, as this is regarded to be
the key focus of the herein presented work. Even while the respective functionality is
built into ViPER as well, investigating to what extend UML modeling capabilities or
UML-based code generation is offered by other approaches, is omitted here. This is,
because the offered UML modeling capabilities are anyway more or less comparable,
and because - even while there are several shortcomings related to the code genera-

52

tion facilities of those tools, to which the ViPER UML2 Code Generator offers some
innovative solutions - this is not regarded to be at the heart of the herein presented
methodology. The interested reader may be delegated to refer to [FNL08], [Fun06], or
[Kev07] to get an in-depth discussion on this.

5.2.1 Methods

Indeed, besides the COMET method, which served as its starting point and its first and
foremost inspiration, MeDUSA comprises and incorporates various ideas and prac-
tices originating from other, sometimes earlier approaches. It would be tedious work
to deliver a complete list of all direct and indirect influences of related development ap-
proaches. However, at least the two most relevant ones, namely COMET and ROOM,
have to be quoted to enable a deep understanding of the MeDUSA method, and to
allow a well-founded assessment of the actual contribution acquired by it.

COMET

Being published in 2000, COMET may be named as one of the second generation
object-oriented approaches for embedded & real-time systems. While its direct prede-
cessor Software Design Methods for Concurrent and Real-Time Systems (CODARTS)
[Gom93], could still be characterized to be some sort of structured analysis & design
approach, even if it already employed certain object-based/object-oriented concepts,
COMET can be regarded as being a truly object-oriented method.

In detail, COMET is based on the object-oriented iterative life-cycle model denoted
by Figure 5.2, out of which it covers Requirements Modeling, Analysis Modeling, and
Design Modeling. Being an object-oriented method, requirements modeling is done
in terms of use case modeling, using the graphical notation proposed by the UML,
extended by a textual, narrative description for each identified use case, which captures
the steps of the default scenario as well as single alternative steps.

Analysis Modeling is done in terms of static modeling of the system context and of
internal long-living data, and in terms of dynamic modeling of object collaborations
for each identified use case, including specification of intra-object behavior for state-
dependent objects, participating in the collaborations. In detail, Static Modeling of
the System Context is done by developing a class diagram, showing external hard-
ware systems, software systems, or human users in the surrounding environment of the
system-under-development, as well as corresponding internal interface classes. Static
Modeling of Entity Classes is then done to identify the internal long-living data ob-
jects. It is performed using one or more UML class diagrams, depicting data intensive
classes and their relationships in terms of generalizations and associations.

Having identified interface and entity classes during static modeling, Dynamic Mod-
eling is then performed to identify further analysis objects/classes. During dynamic
analysis of inter-object collaborations, UML collaboration diagrams are developed

53

Figure 5.2: COMET Object-Oriented Lifecycle Model (cf. [Gom00])

to find and describe an object collaboration for each identified use case, so that the
inter-object behavior of the respective object collaboration jointly performs goal of
the respective use case. The identification of the analysis objects, forming an object
collaboration for a use case, is supported on the one hand by reflecting the before-
hand identified interface and entity classes, and additionally via the object respectively
class taxonomy displayed in Figure 5.3, which is referred to as the Object and Class
Structuring Criteria.

Having modeled the system-under-development in terms of analysis objects together
with their inter-object collaborative and their (state-dependent) intra-object behavior,
Design Modeling can be subsequently performed. First, the identified analysis model
artifacts are synthesized, which is done in terms of synthesizing statecharts, the col-
laboration model, and the static model. Synthesizing statecharts is done in terms of
synthesizing the partial state-dependent behavioral facets, a state-dependent control
objects unveils in the different object collaborations, it participates in, to an overall
statemachine describing its complete intra-object behavior. Synthesizing the collab-
oration model is done in terms of consolidating the different collaboration diagrams,
developed during Analysis Modeling, into an overall collaboration model. Synthesiz-
ing the static model is done by combining the different class diagrams for the interface
and entity classes to an overall static model of the system-under-development, and
by extending classes, which can be inferred from the objects, being identified during
Dynamic Modeling.

54

Figure 5.3: COMET Object/Class Structuring Criteria (cf. [Gom00])

After synthesizing the analysis artifacts to a consistent overall analysis model, the
overall system architecture can be developed. Here, identification of subsystems is the
first step. This is done by applying so called Subsystem Structuring Criteria, which
basically is a taxonomy of subsystem stereotypes similar to that provided for object-
s/classes (although it is not disjoint). The goal is to obtain a consolidated collabora-
tion diagram for each subsystem, showing the objects composed by it, as well as a
high-level collaboration diagram for the overall system. Based on this initial system
architecture the concurrent task architecture is then developed by structuring the sub-
systems into concurrent tasks and by designing their respective task interfaces, which
is collectively referred to as Task Structuring. Subsequent to this, the performance
of the design is analyzed in terms of a real-time scheduling analysis. If the overall
architecture is sufficiently performant, Class Design is then executed for each subsys-
tem. Here, the classes’ interfaces in terms of all offered operations, as well as the
inheritance hierarchies between the identified classes are designed.

Last, the detailed design is developed for each subsystem. This is done in terms of
designing the internals of the composite tasks by identifying all nested passive infor-
mation hiding classes and by designing task synchronization mechanisms for those
nested classes, which are accessed by multiple tasks, as well as by designing con-
nector classes to realize inter-task communication. After having designed each task’s
internal sequencing logic, the detailed design of each subsystem is concluded with a
more in-depth analysis of the subsystem’s performance. Each subsystem can then be
implemented.

55

A concluding assessment of the COMET method may come to the result that compared
to other approaches in the respective field, the COMET method has some outstanding
features, which also mainly influenced the conception of the presented approach. In
detail, these are:

• a systematic, iterative approach to develop embedded & real-time software

• taxonomies to support identification and structuring of objects/classes, subsys-
tems, and tasks

• a standard notation, in terms of the UML and extending profiles (taxonomies)

• an integrated performance analysis based on real-time scheduling theory

However, the practical application of COMET in industrial pilot projects conducted
at the German ABB Research Center as well as ABB Business Unit Instrumentation
showed some weaknesses and shortcomings, which were already thematized in earlier
publications [NL07a]. In detail, it may be criticized that COMET

• facilitates an object-oriented design, thus deteriorating the transformation of the
detailed design into a procedural implementation

• introduces a lot of overhead by extensive modeling on the class and object level,
which would not be needed in case of an underlying procedural implementation
(here, the runtime structure in terms of objects could be modeled directly)

• is based on an outdated version of the UML standard and does thus not make use
of the new modeling capabilities offered by the current UML language standard
version 2.1.2

• does not facilitate reuse of components, as no means for selection and integration
of such components is given

It may thus be concluded - as it was already done earlier (cf. [NMSL04]) - that COMET
is a by all means a practically applicable design method, having however some draw-
backs, which express themselves especially in the context of those constraints, which
are being faced in the marginal application areas that are targeted by the herein pre-
sented approach. While it is thus not an unrestrictedly adequate method to develop
software for small embedded & real-time systems, it may however be characterized
as a very systematic method, additionally offering some novel outstanding properties,
for instance the provided structuring criteria as well as the integration of performance
analysis into software design.

ROOM

Real-Time Object Oriented Modeling (ROOM) was published by Selic, Gullekson,
and Ward in 1994, fairly at that time that Gomaa published COMET’s predecessor

56

CODARTS. It has to be mentioned explicitly as well, mainly because of its modeling
capabilities in terms of hierarchical structures and because of its close integration be-
tween structural and behavioral aspects of a software architecture. Unlike COMET or
CODARTS, ROOM does indeed not provide a concise method. Instead, software con-
struction is understood merely as modeling on different levels of abstraction. Using
a phase-independent set of modeling abstractions, ROOM pursuits the goal of phase
independence. It thus covers how modeling for different levels of abstraction has to be
performed, but it does not provide detailed guidance on what to model in which timely
order.

However, the major contribution of ROOM is its well designed, very concise and se-
mantically clear modeling language. Unlike other approaches of its time, ROOM of-
fers the outstanding possibility to model hierarchical system structures. So called ac-
tors, ROOM’s denomination for objects, i.e. ”independent, concurrently active logical
machines” [SGW94], are defined by corresponding actor classes, whose internal de-
composition can in turn be specified by other nested actors, thus allowing to model
arbitrary nested system structures.

Figure 5.4: ROOM Hierarchical Modeling Example - System (cf. [SGW94])

For illustration purposes, consider the example presented in Figures 5.4 and 5.5, which
depicts a simple telecommunication switching system. As denoted by Figure 5.4, the
actor definition of a respective System actor is specified as a hierarchical structure, be-
ing decomposed into nested actors, namely Telephone1, Telephone2, AdminUI, Line1,
Line2, and PBX, interconnected to each other via named Ports and so called Bind-
ings, to establish inter-actor communication. The nested PBX actor, whose actor class
definition is denoted in Figure 5.5, is itself internally decomposed, leading thus to an
overall hierarchical system design (of course, its internally nested actors may in turn
be hierarchically structured).

57

Figure 5.5: ROOM Hierarchical Modeling Example - Subsystem (cf. [SGW94])

The full encapsulation of actors that is being expressed in terms of the ports concept,
may be mentioned as another outstanding feature of the ROOM language. That is, the
externally visible interface of a respective actor is solely defined in terms of its ports,
which are the only interaction points, via which communication with the actor can be
established. This leads to an explicit definition of all context dependencies, an actor
might have, as well as to a clear encapsulation of the actor’ internal structure (if it
has one). To illustrate this, the PBX actor may be quoted again. It fully encapsulates
its internal structure towards the other actors inside the system and allows inter-actor
communication only via its tel1, tel2, and admin ports.

Last, the seamless integration between structural aspects of a system and behavioral
aspects, which is achieved by the ROOM language, has to be mentioned. That is,
actors have internal behavior that can be expressed in terms of a finite statemachine,
being expressed by a so called ROOMchart, as exemplarily denoted in Figure 5.6 for
the Call actor nested inside the PBX. In detail, interconnection between structure and
behavior is consistently achieved using ports as well. That is, two types of ports are
actually supported by the ROOM language, namely relay ports, which simply prolong
incoming external communication to a nested internal actor and vice versa (as in case
of the admin, tel1 and tel2 ports in the PBX actor reference), and end ports, which are
directly connected to the actor’s internal behavior. That is, the arrival of a message
at an end port of an actor causes a respective signal to occur within the ROOMchart,
expressing the internal behavior of the actor, so that state transitions and resulting
actions can occur (which may e.g. be the processing of the message and the sending
of a respective return message).

While not going further into detail about additional modeling capabilities of the ROOM
language, it can be concluded that the aforementioned advantageous novelties had sig-
nificant influence on later approaches, including the one presented here. It can for

58

Figure 5.6: ROOM Behavioral Modeling Example (cf. [SGW94])

example be inferred from the fact that via its direct successor UML-RT, which was
incorporated into Rational’s Rose Real-Time modeling tool, hierarchical modeling and
the encapsulation concept, as well as the close integration between structural and be-
havioral aspects have finally made its way into the current UML standard version.
There, precisely this is now also expressible in terms of composite structures and com-
ponent diagrams, as well as closely integrated behavioral diagrams as state machines,
interactions, or activities.

A significant contingent of ROOM’s success may also be attributed to the fact that
profound tool support was delivered for the ROOM modeling language in terms of the
ObjecTime tool set. Being equipped with a model manager, editor, validator, compiler
and even with model execution capabilities, the ObjecTime tool set enabled profound
engineering of ROOM models.

However, ROOM also had its drawbacks, which in particular also holds for the ROOM
modeling language, even if aforementioned advantages do somewhat outweigh them.
One major drawback is that apart from the explicitness and clarity that the port con-
cept brings in terms of encapsulation and context dependencies, it is somehow not as
straight-forward applicable as it seems to be. The different port types (relay, end) in
combination with the concept of protocols (a specification of how messages are ex-
changeable via a certain port) and the conjugation concept (a port is a conjugation if
it has a corresponding protocol with an inversed direction, i.e. for every incoming
message it has a respective outgoing message and vice versa) makes the composition
of actors somewhat unclear and complex. Another disadvantage is the rather intricate

59

modeling of layered structures and the difficulty to specify non state-dependent actor
behavior. The most significant drawback of ROOM however may be seen in the lack
of a profound method. Even if the modeling language is to an overall extend clear and
precise, its applicability is not naturally given, and an uncoordinated and unsystem-
atic application of the respective modeling elements, based on heuristics, may not be
regarded as being goal-oriented.

5.2.2 Tools

A complete list of all tools related to the herein provided ViPER tool would of course -
as in case of those methods that have somehow inspired the development of MeDUSA
- be quite inexhaustible. Various programming and modeling tools as well as integrated
development environments for programming and modeling have emerged during the
last decades, and all of them probably have added their own partial contributions, so
that investigating the originator of all the concepts and principles, being incorporated
into one of todays state-of-the-art integrated development environments, is hard to
achieve.

Guided by the goal of methodological integration, which was formulated in Section
4.3 as one of the key goals, the focus may thus be spend on investigating, to which ex-
tend methodical support is offered by current state-of-the-art tools, as this is a strong
indicator for the applicability and usefulness of a methodology. Profound tool-based
support for the execution of individual tasks (steps, guidances, etc.), as well as sophisti-
cated support on the creation and assessment of the developed work products (metrics,
checklists, etc.) can decisively and extensively support a role performer. Even basic
methodical support in the form of a simple browser access to an electronic method
definition may be helpful.

Most of today’s available UML modeling tools however do not come with such a me-
thodical support, not even in its simplest form. One major reason for this may be
found within the historic course of the UML, as it was briefly sketched within Section
3.1.2. That is, having originated from various object-oriented methodical approaches,
the UML was developed as a unified notation, not incorporating any concrete method-
ical aspects of the underlying approaches. While most tool vendors offer some sort of
installation modes to customize the functionality of their tool to best meet a respective
role performer (e.g. developer and designer installation modes), concrete methodical
support for a specific method can thus only be observed, where the respective tool
vendor is at the same time also method vendor. This is for example the case with IBM
Rational, which is vendor of the Rational Unified Process and delivers a set of UML
modeling tools in terms of the IBM Rational Software Development Platform.

60

More sophisticated methodical support is on the other hand offered solely by dedi-
cated methodical support tools. Here, Jaczone Waypointer may be named, which is an
agent-based tool to support the execution of the Rational Unified Process. It has the
capability to integrate itself into the Rational Software Development Platform and may
thus be quoted as a good example on how more dedicated methodical support may be
provided.

IBM Rational Software Development Platform

The IBM Rational Software Development Platform is IBM Rational’s four member
product-line to facilitate UML-based model-based design. The comprised products,
namely the IBM Rational Software Modeler, IBM Rational Systems Developer, IBM
Rational Application Developer, and IBM Rational Software Architect differ in detail
about the concrete programming languages and technologies, being covered, as well as
the application domains, being targeted, which ranges from the development of small
embedded software up to that of large industrial enterprise applications.

Regarding methodical support they are all equipped with a Process Advisor and Pro-
cess Browser component to support development according to the Rational Unified
Process. The Process Browser, depicted by Figure 5.7, is a hypertext browser, which
allows to navigate a UMA-based1 definition of the Rational Unified Process.

Figure 5.7: IBM Rational Software Development Platform - Process Browser

1The methodical support within the IBM Rational Software Development Platform is based on the
IBM Rational Method Composer, which in turn uses the Unified Method Architecture (UMA) as under-
lying notation. Compare Section 6.2.1 for more details.

61

The Process Advisor on the other hand provides context-sensitive guidance, in terms of
Tools Mentors, Work Products, and Tasks, covered by the RUP definition. It thus offers
some sort of dynamic assistance, as the provided excerpts of the RUP documentation
are filtered according to the current selection of resources. So, as outlined by Figure
5.8, when editing a UML use case diagram, the display of RUP contents is limited to
those Tools Mentors, Work Products, and Tasks that are related to modeling of use case
diagrams.

Figure 5.8: IBM Rational Software Development Platform - Process Advisor

Besides offering such a context-sensitive access to the static RUP documentation, dy-
namic support is not delivered. That is, in particular, no specific wizards or agents
are offered by the platform to support a RUP role performer during the execution of a
specific task, e.g. by automatizing or semi-automatizing certain steps.

Jaczone Waypointer

Jaczone Waypointer by Ivar Jacobson International is a tool explicitly delivering me-
thodical support for the IBM Rational Unified Process2. The tool may be integrated
with Microsoft Word and the IBM Rational Software Architect to manage the develop-
ment and refinement of documents and models according to the IBM Rational Unified
Process. Jaczone Waypointer is organized around the Activities of the IBM Rational
Unified Process, so that the Activity Window, which is depicted by Figure 5.9, serves
as the central interface for interactions with the user.

2Actually the process supported by Jaczone Waypointer is a subset and a refinement of the IBM Ra-
tional Unified Process, covering parts of the Requirements, Analysis & Design, and Project Management
disciplines, and refining them with additional steps and more fine grained activities (cf. [Jac08]).

62

Figure 5.9: Jaczone Waypointer - Activity Window

Within Waypointer, an activity is defined to be ”a well-defined unit of work that a user
or a group of users carry out when adopting a role.” [Jac08]. It is usually structured
into a set of steps, which are offered for selection by a respective Activity Agent within
the Activity Window of Jaczone Waypointer, associating each step with a set of rules,
concretely manifested as checks or conclusions. Steps may also be supported by a set
of Wizards, which are ”kind of dialogue[s] with the user, during which conclusions and
checks are traversed in sequence”, and which usually ”encapsulate smaller modeling
tasks [..] within a specific activity” [Jac08]. An example for such a Wizard is depicted
by Figure 5.10. It shows one page of the Split a Use Case Wizard, which is available
from within multiple Activity Agents of the Requirements Discipline.

Besides Wizards, Artifact Agents support a role performer while working with a con-
crete artifact. As exemplarily depicted by Figure 5.11, an Artifact Agent ”collects a
set of rules that are applicable for a particular type of artifact” [Jac08] and thus helps
to point a role performer to inconsistencies and defects within the respective artifact.
It also offers a set of Conclusions, which may for instance be the proposed execution
of a respective Activity Agent or Wizard.

63

Figure 5.10: Jaczone Waypointer - Wizard Example

Figure 5.11: Jaczone Waypointer - Artifact Agent Example

While the execution of individual activities and the handling of individual artifacts are
thus relatively well supported by the Jaczone Waypointer, the timely execution of ac-
tivities, as defined by the IBM Rational Unified Process, are not explicitly thematized.
A user can however select to adopt certain roles, as defined by the IBM Rational Uni-
fied Process, so that the Jaczone Waypointer offers only those activities, the respective
role is involved in. Nevertheless, the tool does not further guide him with respect to
the timely execution of those activities, applicable to his adopted roles.

64

Chapter 6

Method - MeDUSA

Having started in early 2005 as a slight enhancement to the COMET method that
was developed in conjunction with the ABB Corporate Research Center, MeDUSA
(MethoD for UML2-based Construction of Embedded & Real-Time SoftwAre) has un-
dergone several changes in the following years. The evolution of the method hit -
as indicated before - its first peak in its initial publication in 2007 [NL07a]. Having
gained further experiences in the following, a total revision of the method, denoted
as MeDUSA Second Edition was published in mid 2008 [NL08]. The MeDUSA def-
inition provided in the following sections is based on this completely revised Second
Edition. However, some changes related to the modeling and analysis of timing and
concurrency constraints, which have been investigated in depth since the publication
of the Second Edition have been already incorporated1.

6.1 MeDUSA-Lifecycle

MeDUSA is a mere software construction method. That is, only software engineering
concerns are addressed, and the development of electronical and mechanical hardware,
which are the other essential parts of system development, are explicitly not covered.

To understand the conception of MeDUSA, those aspects however have to be regarded
as well, as indeed the different disciplines are interrelated to each other. An overall
system development life cycle may be assumed, as it is outlined by Figure 6.1. While
there are system wide activities as the initial elicitation of system requirements or the
final integration of software, electronical hardware, and mechanical hardware to an
overall system, the development inside the different disciplines may be regarded to be
executed more or less concurrently within different development threads.

1As MeDUSA is regarded to be a living method, further changes are likely also after the publication
of this thesis work. The most recent version of the method definition can always be obtained from the
MeDUSA project site [MeDUSA].

65

�
��

��
��
��

��
�

��
��

�
��

:
��
�

��
��
��

��
�

��
��

�
��

�
��

�

��
��
�
�

��
��

�
��

��
���(������

��
���F�
����
���

��������
����������

�������
�������

����������

�������
�����������
 !�"����

����������

�

��
�
��
�!
�
�
#�
��
!�
��
��
��

��
�

��
����� �������

��	
��

Figure 6.1: The MeDUSA Life Cycle

Those threads are however not unrelated to each other, as indicated within Figure 6.1
as well. Mechanical and electronical hardware are for example closely related, be-
cause they have to jointly address questions of housing design or circuit design, both
restricted by the non-functional requirements for the overall system. Electronics devel-
opment and software development are even more intensely coupled, as the electronical
hardware indeed forms the embedding system for the embedded software. Thus, all
aspects related to the real-time & embedded nature of the software are somehow re-
lated also to the electronical hardware, and as such have to be jointly addressed by
both disciplines. However, in the context of MeDUSA, it is assumed that hardware
development is performed with a slight advance, so that an initial hardware design has
been developed when starting the MeDUSA Requirements Phase, and a hardware pro-
totype is available not later than before starting Implementation Phase, at least in the
form of some breadboard, so that parts of the software can already be integrated with
the electronical hardware. It is reasonable to do so, because, due to the technical and
economical constraints in the respective application domains, hardware development
is regarded to be the main driver of system development.

66

What has to be emphasized again is that MeDUSA is a mere software construction and
not an overall software development method. That is, out of all software engineering
activities only the constructive ones are being covered, and quality management, con-
figuration & change management, as well as project management (cf. Section 2.3.1)
are not addressed2. MeDUSA thus does not only have to be embedded into a larger
system development process, but indeed, as indicated by Figure 6.1, also into some
sort of umbrella software development process, that addresses all other software engi-
neering disciplines to their required extend.

6.2 MeDUSA-Definition

With its first publication [NL07a], the MeDUSA method has been formally defined
based on the Unified Method Architecture (UMA) meta model [Hau05][Hau06], which
was developed by IBM as an advancement to OMG’s Software Process Engineering
Meta-Model (SPEM) 1.1 standard [OMG05a].

UMA was chosen for the definition of MeDUSA for two main reasons. First, because
profound tool support for editing and publishing of UMA-based method definitions
is offered in terms of IBM Rational’s commercial Method Composer tool, as well as
its non-commercial open-source derivate EPF Composer, offered by the Eclipse Pro-
cess Framework (EPF) project [EPF]. Second, because UMA was - at the time of
MeDUSA’s initial publication - IBM’s and its related OMG partners’ candidate pro-
posal for the then upcoming SPEM 2.0 standard of the OMG [OMG08], and because
it was intended that future versions of UMA would be aligned with the final version of
the SPEM 2.0 standard.

As the adoption process of the current SPEM standard had been finished at that time,
SPEM 2.0 was then chosen as notation to define the Second Edition of MeDUSA
[NL08]3 and will thus be used herein as well. Before providing the detailed definition
of MeDUSA in the following sections, SPEM 2.0 is therefore outlined shortly in the
following.

6.2.1 SPEM 2.0

SPEM (Software Process Engineering Meta-Model) is an official OMG standard used
to ”describe a concrete software development process or a family of related software
development processes” [OMG08], and is as such also best applicable to define a more
lightweight methodical approach as the MeDUSA method. According to the stan-
dard document [OMG08], it incorporates a clear separation of the contentual aspects
(what-to-do) of a method or process definition, the so called Method Content, and the

2An exception to this is the real-time analysis, being covered by MeDUSA, which is a somehow
analytical task and may thus also be accounted to software quality management.

3Technically however, UMA is still used to define the MeDUSA method library, as the related Eclipse
Process Framework Composer tool is used to generate its hypertext documentation (cf. Section 8.2.2)

67

time-related ones (when-to-do-it), which is referred to as the Process, as illustrated by
Figure 6.2.

Figure 6.2: Terminology of SPEM 2.0 (cf. [OMG08])

Accordingly, the meta-model defines two basic abstract concepts, namely Method
Content Element and Process Element, as denoted by Figure 6.3, upon which re-
spective concept hierarchies are build up. As already indicated by their exposed illus-
tration in Figure 6.2, Guidances play some hybrid role, as they are used in both con-
cept worlds. Being Extensible Elements, Guidances of various different Guid-
ance Kinds are supported. In detail, these are Template, Estimation Consid-
eration, Example, Checklist, Guideline, Concept, Estimate, Practice, Term
Definition, Report, Tool Mentor, Supporting Material, and Whitepaper.

Figure 6.3: SPEM 2.0 Meta-Model - Top-level Hierarchy

Method Content The method content is basically defined in terms of Task Def-
initions, Role Definitions, and Work Product Definitions, as illustrated by
Figure 6.4. Task Definitions are defined in terms of atomic Steps that describe
the detailed actions that have to be performed. Their execution requires respective
Qualifications, which have to be provided by related Role Definitions. To exe-
cute a Task Definition, a set of ToolDefinitions may be employed, which is ac-
cordingly used to manage related Work Product Definitions. Role Definitions

68

providing the Qualifications for a Task Definition may be defined as its de-
fault performers (formalized by Default Task Definition Performers). A Role
Definition may be further assigned responsibility for the Work Product Defini-
tions related to a Task Definition (formalized by (Default) Responsibility
Assignments). Work Product Definitions may further be specified as (Default)
Task Definition Parameters for a Task Definition, meaning that they serve as
its input respectively output.

Figure 6.4: SPEM 2.0 Meta-Model - Method Content

To group related Method Content Element, SPEM 2.0 additionally offers an ele-
ment called Category, which is extended by different Category Kinds for the spe-
cific Method Content Elements, namely Discipline (used to group Task Defi-
nitions), Role Set, Domain (used to group Work Product Definitions), as well
as Tool Category.

Figure 6.5: SPEM 2.0 Meta-Model - Process

69

Process The Process part defines how the different Task Definitions, defined
in the Method Content, are performed over time. As indicated by Figure 6.5, this
is done in terms of a breakdown-structure, built up of Task Uses, which reference
respective Task Definitions of the Method Content, Milestones, and Activi-
ties. As Activities may furthermore contain nested Breakdown Elements, arbi-
trary hierarchical structures can be build up. Different Activity Kinds are supported
by SPEM 2.0. Besides Iterations and Phases, Process Patterns, and Delivery
Processes are supported, as well as Process Planning Templates. While a Pro-
cess Pattern represents a reusable process building block, a Delivery Process is
understood to be a full end-to-end lifecycle process.

Notational Clarification While the clear separation into Method Content and Pro-
cess, as it is proposed by SPEM 2.0, is regarded to be very adequate, the employed
terminology seems to be misleading, at least as far as the terms Process, Process
Pattern, and Delivery Process are concerned. Denominating the definition of the
time-related aspects of a method or process as Process seems to be somewhat mis-
leading. The same holds for the term Process Pattern, which is regarded to be
quite fuzzy. Last, the term Delivery Process to denote the complete definition of all
MeDUSA related activities in their timely order seems to be inappropriate, in particu-
lar with respect to the definitions provided in Section 2.3.2, as MeDUSA is regarded
to be a method rather than a process.

Because of this an alternative denomination will be used here. The term Method Op-
erations will be used in the following to refer to what it denoted as Process in SPEM
2.0 terminology, namely the definition of the time-related aspects of the method. Ad-
ditionally, the terms Workflow and Workflow Pattern will be used to refer to the
concepts subsumed by the terms Delivery Process and Process Pattern respec-
tively. All other terms are adopted from the current SPEM 2.0 specification.

6.2.2 MeDUSA Method Content

The MeDUSA Method Content is defined in terms of six disciplines, grouping 18
MeDUSA defined tasks. In detail, the disciplines, being covered, are:

• Requirements Modeling Discipline

• Analysis Modeling Discipline

• Architectural Design Modeling Discipline

• Detailed Design Modeling Discipline

• Implementation Discipline

• Real-Time Analysis Discipline

70

While each discipline groups logically and timely related tasks, it does however not
define a chronological order between them. And while this should also not imply
a strict chronological order amongst the disciplines, five of the six disciplines were
named to match certain phases within the software development lifecycle. This was
done to denote that those tasks, being comprised by the respective disipline, are usually
first executed when the respective phase is commenced.

MeDUSA comprises 12 modeling related tasks, being subsumed by the Requirements,
Analysis, Architectural, and Detailed Design Modeling Disciplines. The modeling
tasks subsumed by a respective discipline may be regarded to be related in a sense
that they yield model artifacts on the same level of abstraction. For instance, all tasks
subsumed by the Analysis Modeling Discipline are subject to modeling of the prob-
lem domain. As this in turn requires that their individual contributions have to be
consistent and integrabel with each other, the modeling tasks of a respective disci-
pline, may indeed be understood to contribute to a common, shared, discipline specific
model, which consistently integrates their individual contributions. Accordingly, the
MeDUSA Method Content defines three such models4, namely:

• Requirements Model

• Analysis Model

• Design Model5

While an Implementation Model may also be defined as the fourth integrated model
within MeDUSA (cf. [NL08]), this model indeed manifests itself as mere source code,
and is as such not subject to modeling but to implementing. It is further not comparable
to the other formal engineering models in terms of its covered abstraction, and does
also not yield comparable challenges in terms of consistency and integration.

Having all this in mind, the Method Content will be outlined in detail in the following
along the defined disciplines. For each discipline, the common purpose of its sub-
sumed tasks will be summarized first, and all roles involved in the execution of its
subsumed tasks will be named. Subsequently, each task will be described in detail,
naming its contribution in terms of its produced work products, where - for the sake of
simplicity - only diagram related contributions will be explicitly named, and the under-
lying (UML) model contributions will not be elaborated in detail. They are subject to
an in-depth discussion within Section 7.1, where the precise structure of all MeDUSA
related UML models is investigated.

4Note that while most modeling contributions are actually made in terms of UML artifacts, those
discipline specific models are not referred to as UML models, because additional contributions, as for
instance narrative use case descriptions, may be subsumed. Three discipline specific UML models are
defined accordingly, being regarded as fractions of the respective overall, integrated discipline specific
models.

5As Architectural Design Modeling and Detailed Design Modeling are regarded to be on the same
abstraction level, they share a common Design Model.

71

6.2.2.1 Requirements Modeling Discipline

The Requirements Modeling Discipline, whose tasks are jointly performed by a Re-
quirements Engineer, is concerned with the elicitation and analysis of the functional
and non-functional requirements, as well as with capturing them in a respective Re-
quirements Model. As MeDUSA is a use case driven design method, (UML-based)
use case modeling is the central task subsumed by this discipline. However, to cap-
ture a set of use cases together with their interrelationships in one or more UML use
case diagrams is not regarded to be sufficient. Indeed, the details of each use case, i.e.
the scenarios covered by it, have to be captured as well. Therefore formulating use
case details is the second elementary task defined by this discipline. It can be done
by using additional UML behavior diagrams (activity, state machine, or sequence), by
providing detailed textual narrative descriptions, as proposed in [WNHL08], or by a
combination of both.

Use Case Modeling Eliciting and understanding the requirements of an embedded
& real-time software system is the starting point for its development. It is done by
specifying all interactions between the software system and its external environment,
which is formed by other software or hardware systems6, as well as by capturing the
internally triggered behavior.

According to the current UML specification [OMG07d], which serves as the com-
monly accepted standard with respect to definition of terms and concepts related to
use case modeling, a use case is defined to be ”the specification of a set of actions
performed by a system, which yields an observable result that is, typically, of value
for one or more actors or other stakeholders of the system.”. While use cases have
been initially developed to capture the functional requirements of large-scale indus-
trial applications [Jac87] [Jac04], the specification of the software’s behavior in terms
of actor-system-interactions seems to be promising also in the domain of embedded &
real-time systems, where a great fraction of the system behavior is indeed related to
the interaction with the external, embedding environment.

Contrary to use case modeling of large-scale industrial applications, where it is first
and foremost applied to capture only functional requirements, in the context of embed-
ded & real-time systems, especially non-functional timing and concurrency constraints
play an outstandingly important role and thus have to be regarded as well. Unfortu-
nately, use case modeling, as currently defined by the UML [OMG07d], does not offer
adequate means to specify non-functional requirements.

However, as explicitly and detailedly outlined in [NL07b], modeling of timing and
concurrency constraints can be supported by some workarounds. By separating out all
triggers of system behaviour into distinct trigger actors, as denoted by the MeDUSA
Actor Taxonomy shown in Figure 6.6, and by thus separating them from the mere pas-

6In case of an embedded software system, human users do normally not occur as direct communi-
cation partners. Indeed they communicate with the system indirectly via related hardware or software
systems in its environment.

72

Figure 6.6: The MeDUSA Actor Taxonomy

sive communication interfaces, which are in turn represented by corresponding inter-
face actors, important timing and concurrency constraints can be explicitly addressed.
That is, timing constraints like timer periods for periodically occuring triggers, or re-
spective worst-case interarrival times for aperiodic ones, can be directly attributed to
the respective trigger actors. Behavior being internally triggered periodically, as it is
often found in embedded & real-time systems, can thus be consistently modeled with
the help of (internal) timer actors. Furthermore, synchronization respectively interfer-
ence between concurrently executing use cases can be addressed by modeling (inter-
nal) constraint actors. Here, bidirectional communication in the form of a rendezvous
may be differentiated from unidirectional communication in the form of send/receive,
produce/consume, or read/write7.

It has to be mentioned that the use of internal actors to denote internal triggers or syn-
chronization events is not aligned with the currently documented practice of use case
modeling. Indeed, Jacobson and Overgaard ([JCJv92]) state that “the essential thing
is that actors constitute anything that is external to the system we are to develop” and
Cockburn [Coc00] explicitly judges the modeling of internal actors to be ”extremely
rare, and usually a mistake”, as the computer system could thereby be treated as a
”white box”. However, as above proposed modeling practices only facilitate the use
of internal trigger and not interface actors, the danger of modeling the system as a white
box does not seem to be given to a large extend; of course, as always, the concepts can
be misused, but they do not entrap it.

MeDUSA defines the output of the Use Case Modeling task to be one or more UML
use case diagrams, as exemplarily denoted by Figure 6.7. Additionally, if the software
system shows global states, for example due to different operation modes, those global
states should be explicitly captured in a Global System States Diagram. It is realized
in terms of a UML state machine diagram, as exemplarily depicted by Figure 6.8.

7The MeDUSA Actor Taxonomy was updated after MeDUSA’s publication as Second Edition within
[NL08] to support a more sophisticated modeling of concurrency constraints. Compare [Rit08] for de-
tails.

73

Figure 6.7: MeDUSA Example Use Case Diagram

Figure 6.8: MeDUSA Example Global System States Diagram

74

Use Case Details Modeling A use case represents a variety of different scenarios of
interaction between the system and its external environment. Besides a basic behavior,
which is understood to be the default scenario, this might - as stated in the UML speci-
fication [OMG07d] - ”include possible variations [...], including exceptional behavior
and error handling”. It is thus important to not only describe a use case from a black-
box perspective, but to indeed specify its internals in terms of its covered scenarios.

While the UML offers a set of behavioral diagrams to describe the internal details
of a use case (activity, state machine, or sequence diagrams), and while a manifold
of other notations has been proposed to specify detailed use case descriptions (cf.
[HLNW09]), textual narrative descriptions of use case details seem to be widely used
and accepted, because of the advantages they offer with respect to understandability.
In fact, apart from state-based use case behavior, which probably seems to be best
captured by a state-based formalism, describing the details of a use case in a textual
narrative form is regarded to be advantageous to other formalisms. This is, because
a textual formalism is formal enough to allow validation of consistency and integrity
of a narrative description model, while the advantages of natural language with its
increased capabilities in terms of readability and understandability are preserved. A
flow-oriented formalism, as proposed in [WNHL08], furthermore offers the advantage
that it nicely supports the intuitive creation of detailed descriptions. That is, starting
with a default scenario, which is described completly and explicitly in all detail, the
so called main flow, further scenarios can be modeled in an incremental manner, by
simply describing the differences they show towards the latter.

The work product of the Use Case Details Modeling task is thus defined to be Nar-
rative Use Case Description for each identified use case, as exemplarily denoted by
Figure 6.9.

Use Case Current Output
Main Flow
Start
1 Alternative Extension Point : Choose Between simulation and calculation
2 Specialization Extension Point : Calculate actual current
3 Alternative Extension Point : Current stored
4 Validate that current does not exceed span limits.
5 Alternative Extension Point : Current validated
6 Calculate PWM output signal.
7 Normalize.
8 Include Use Case PWM Output.
9 Alternative Extension Point: End
End

Alternative Flow Simulate Current
Start At Choose Between simulation and calculation, if simulation mode has been set
1 Use simulation current as actual value.
End Continue at Current stored

Alternative Flow Raise ”Limits exceeded” alarm.
Start At Current validated, if the current exceeds span limits
1 Raise ”Limits exceeded” alarm.
End Continue at End

Figure 6.9: MeDUSA Example Use Case Description

75

Where this seems to be better applicable - a Use Case Details Diagram in terms of
a respective UML behavior diagram, as it is exemplarily denoted in Figure 6.10 may
also be employed.

Figure 6.10: MeDUSA Example Use Case Details Diagram

6.2.2.2 Analysis Modeling Discipline

While the Requirements Modeling Discipline is concerned with the elicitation and ana-
lyis of requirements in terms of use cases, the objective of the Analysis Modeling Dis-
cipline, whose tasks are jointly performed by a System Analyst, is to gather a profound
and more detailed understanding of the problem domain. This is done by constructing
an Analysis Model in terms of analysis objects, whose individual and collaborative
behavior performs the system behavior as it has been captured in the use cases, which
were identified during Requirements Modeling. The construction of an Analysis Model
can conceptually be broken down into three main objectives, namely:

• identification of the analysis objects needed to perform the system’s behavior

• capturing the collaborative, inter-object behavior of the identified objects

• capturing the individual, intra-object behavior of each identified object

76

The identification and classification of analysis objects is guided by the respective
MeDUSA Object Taxonomy, similar to as it is done for actors by means of the MeDUSA
Actor Taxonomy. It is denoted in Figure 6.11 and proposes a disjoint categorization of
analysis objects into trigger, interface, control, entity, and application-logic objects.

Figure 6.11: The MeDUSA Object Taxonomy

Trigger and interface objects are the system-internal representations of (internal and
external) event sources, as well as external interfaces, being already captured in the
requirements model, so that they can be easily transferred from respective trigger and
interface actors. Entity objects represent long-living data the software has to be kept
track of, while control and application-logic objects encapsulate behavioral aspects of
the software, which is a state-dependent or coordinative control-flow in case of the
first, as well as certain business-logic or a specific algorithm in case of the latter. Their
identification is a more creative process as there are no direct correspondences in the
Requirements Model.

The identification of the different object types is subsequently performed. That is
first the identification of trigger and interface, as well as entity objects is done inde-
pendently in terms of Context Modeling and Information Modeling. Successively the
identification of the remaining control and application-logic objects is performed in
terms of Inter-Object Collaboration Modeling, which is concerned with identification
of an object collaboration for each identified use case. Last, the internal behavior of
each identified object is captured in terms of Intra-Object Behavior Modeling.

Context Modeling Context Modeling is done to identify those analysis objects that
encapsulate triggers of system behavior, as well as those realizing interfaces to the
external hardware devices and software systems. As the external environment of the
software system has already been captured in terms of respective trigger and interface
actors in the Requirements Model, the identification of trigger and interface objects is
usually pretty much straight-forward.

(a) MeDUSA Trigger Object Taxonomy (b) MeDUSA Interface Object Taxonomy

Figure 6.12: The MeDUSA Trigger & Interface Object Taxonomies

77

However, it has to be pointed out that the identified trigger and interface objects do
not represent the event sources or external interfaces themselves, as the actors did,
but indeed encapsulate their software-internal respresentations, so that a one-to-one
mapping does not necessarily have to be the case. Indeed, a single trigger actor may
lead to multiple internal trigger objects to denote different logical event sources, while
multiple interface actors may indeed be represented internally by a single interface
object.

Figure 6.13: MeDUSA Example Context Diagram

As exemplarily shown in Figure 6.13, the outcome of the Context Modeling task is de-
fined as a UML object diagram, which denotes all relevant timer and interface objects,
being referred to as the Context Diagram.

Information Modeling Information Modeling is performed to identify data inten-
sive (analysis) objects, so called entity objects. Entity objects are most likely accessed
by several use cases, and thus represent the persistent, i.e. long-lasting data, the soft-
ware has to keep track of. While embedded & real-time software is normally not ex-
pected to be very data intensive, at least if being compared to an information system,
quite a number of entity objects might actually be involved. In case of the measure-
ment example device, being quoted in Section 4.1.1, a significant amount of data is
for example related to configuration and monitoring of the device, keeping track of
everything the user is able to configure or check.

While the use cases may implicitly deliver valuable input for the identification of entity
objects as well, those objects cannot be identified as easily and straight-forward as
interface or trigger objects, as they are most often not explicitly denoted within the
detailed description of a use case. Often, they are indeed only inferrable implicitly, for
example where they are mentioned to be exchanged between the system and its related
actors, or where their values have some impact on the course of events taken during
a system-actor interaction. It thus has to be pointed out that Information Modeling is
a quite creative task that probably has to be performed in several iterations, before a
consistent set of entity objects has been acquired.

78

MeDUSA defines the outcome of the Information Modeling task to be one or more
Information Diagrams in the form of UML object diagrams to denote all entity objects
together with their respective relationships. An example for such a diagram is denoted
by Figure 6.14, which depicts an Information Diagram, developed for the example
system, pointed out in Section 4.1.1.

Figure 6.14: MeDUSA Example Information Diagram

Inter-Object Collaboration Modeling Having already inferred trigger and inter-
face as well as entity objects during Context Modeling and Information Modeling, the
remaining control and application-logic objects now have to be successively identified
in order to gain a complete and consistent Analysis Model. Application-logic objects
encapsulate arbitrary functionality related to the given application domain, for exam-
ple an algorithm or a piece of business logic, which usually accesses more than one
entity object and is therefore, or because it might likely change, encapsulated into an
individual object. Control objects in turn encapsulate mere control logic. As denoted
by Figure 6.15, they can be further classified into state-dependent control objects and
non state-dependent coordinator objects, dependent on their behavioral characteristics.

Figure 6.15: The MeDUSA Control Object Taxonomy

79

While Context Modeling and Information Modeling support the identification process
by analyzing the requirements model from a rather static viewpoint (i.e. not the de-
tailed flow of events subsumed by the use cases, but the static information captured
within it, is of main interest), identification of the remaining control and application-
logic objects is performed by taking a rather dynamic viewpoint. That is, the detailed
flow of events of each use case is analyzed and transferred into message-based com-
munication of an object collaboration. The identification of those objects, participating
in the respective object collaboration, is thus implicitly performed, where the need for
a collaboration participant is recognized.

Figure 6.16: MeDUSA Example Inter-Object Collaboration Diagram (Communica-
tion)

The outcome of the Inter-Object Collaboration Modeling is a number of Inter-Object
Collaboration Diagrams, depicting the different object collaborations. These diagrams
may be developed as UML sequence or communication diagrams, as depicted by Fig-
ures 6.17 and 6.16, dependent on which formalism is best suited.

80

Fi
gu

re
6.

17
:

M
eD

U
SA

E
xa

m
pl

e
In

te
r-

O
bj

ec
t

C
ol

la
bo

ra
tio

n
D

ia
gr

am
(S

eq
ue

nc
e)

81

Intra-Object Behavior Modeling Intra-Object Behavior Modeling is the conceptu-
ally last task covered by the Analysis Modeling discipline. While Inter-Object Collab-
oration Modeling captures the behavior of an object only with respect to what is un-
veiled in the context of a respective object collaboration, Intra-Object Behavior Mod-
eling focusses on synthesizing the individual behavioral fragments, an object shows
in the different collaborations, it participates in, into an overall integrated intra-object
behavior model.

Intra-Object Behavior Modeling is in particular useful for control objects, showing
state-dependent behavior. Here, just by being inferred implicitly from the partial be-
havior, the object unveils in the different collaborations, the overall object behavior
may not be obvious and apparent. To faciliate an easier accessibility, synthesizing of
the individual behavioral fragments into an overall integrated state machine model is
necessary. Indeed, in extremes, it might not be clear before such a synthesizing that the
partial behavioral fragments of a respective control object were indeed modeled to be
inconsistent with each other, so that Intra-Object Behavior Modeling helps to identify
such problems at an early stage.

Besides modeling intra-object behavior of state-dependent control objects, which is
regarded to be a mandatory part of Intra-Object Behavior Modeling, it might be helpful
to explicitly capture the behavior of other non-trivial objects as well, possibly using
different behavioral formalisms offered by the UML. It might thus for example be an
option to explicitly capture an algorithm, encapsulated by an application-logic object,
with the help of a UML activity diagram, or to document the behavior of a non state-
dependent coordinator object with the help of a UML sequence diagram.

Figure 6.18: MeDUSA Example Intra-Object Behavior Diagram

Hence, the work products produced by the Intra-Object Behavior Modeling task are
defined to be one or more Intra-Object Behavior Diagrams in the form of a UML state
machine (as exemplarily shown in Figure 6.18), sequence or activity diagram. For
state-dependent control objects the development of a Intra-Object Behavior Diagram
in the form of a UML state machine diagram is regarded to be mandatory due to above

82

mentioned reasons, while in case of other analysis objects the effort of creating such a
diagram has to be individually weighted up against the benefits it provides.

6.2.2.3 Architectural Design Modeling Discipline

As indicated by its denomination, the Architectural Design Modeling Discipline, which
tasks are jointly performed by a System Architect, is basically concerned with the def-
inition of the software architecture. According to Bass, Clements and Kazman, a soft-
ware architecture may be defined as ”the structure or structures of the system, which
comprise software elements, the externally visible properties of those elements, and
the relationships among them” [BCK03]. While this definition is regarded to be quite
appropriate and sound, it has the slight disadvantage that - even it this is indeed sub-
sumed - it is not emphasized that the relationships between the respective software
elements can not only be defined from a structural perspective, but indeed also from a
behavioral one. Taking this into consideration and additionally that in the context of
MeDUSA, the respective software elements on the architectural level are denoted as
subsystems, the objective of Architectural Design Modeling Discipline can be formu-
lated as defining the software architecture in terms of:

• identifying subsystems and characterizing their externally visible interfaces

• identifying the structural relationships between the identified subsystems

• identifying the behavioral relationships between the identified subsystems

The first subgoal, namely the identification of subsystems and their externally visible
required and provided interfaces, is conceptually broken down into two closely related
tasks, namely Subsystem Identification and Subsystem Consolidation, which in prac-
tice may be decided to be performed in one integrated step8. Subsystem Identification,
the conceptually first task, is concerned with identifying subsystems and their (prelim-
inary) interfaces by grouping together analysis objects, thus partitioning the Analysis
Model. Subsystem Consolidation successively deals with consolidating the identified
subsystems. That is, the analysis objects grouped into the subsystems and the sub-
systems’ provided and required interfaces, which were initially merely inferred from
the behavioral relationships between the allocated analysis objects, have to be consol-
idated under design considerations. Having performed this, and thus having gained
a consistent partitioning of the software into well defined and strongly encapsulated
subsystems with properly defined required and provided interfaces, the integration of
the subsystems can be defined from a structural and behavioral perspective. This is
covered by the Structural System Architecture Modeling and Behavioral System Archi-
tecture Modeling respectively.

8The work products produced by the Subsystem Identification task are regarded as intermediate work
products, which have to be refined and detailed by the successively performed Subsystem Consolidation
task, so merging the two conceptually separated tasks together is a legal option for an experienced System
Architect.

83

Different to the Requirements Modeling and Analysis Modeling Disciplines, there is no
distinct Architectural Design Model to be jointly created by the tasks of the Architec-
tural Design Modeling discipline. Indeed, the respective Design Model is shared be-
tween the Architectural Design Modeling and Detailed Design Modeling Disciplines,
as both reside on the same abstraction level. The Design Model is further outstanding
because it may - different to the other modeling discipline specific models - be realized
as a distributed model, being split into several model fragments (one for each subsys-
tem as well as one for the system-wide artifacts, integrating the subsystem specific
model fragments as some kind of umbrella model), to allow the distributed develop-
ment of the detailed design for each subsystem.

Subsystem Identification Identifying subsystems, the central building blocks of the
software architecture, and their externally visible interfaces is the first essential ob-
jective covered by the Architectural Design Modeling Discipline. As this objective is
rather complex it is conceptually broken down into two tasks, out of which Subsystem
Identification is concerned with the identification of subsystems and their preliminary
interfaces based on the information captured in the Analysis Model. According to Ja-
cobson, Christerson, Jonsson, and Övergaard, who denote the ”task of subsystems” to
be ”to package objects in order to reduce the complexity” [JCJv92], identification of
subsystems is performed by grouping together analysis objects and thus dividing the
Analysis Model.

Obviously, the identification of subsystems is no straightforward task but a rather cre-
ative and inventive one, which has to combine conflicting objectives, out of which - in
the context of embedded & real-time software - the two most outstanding are main-
tainability and performance. In terms of maintainability, locality in changes has been
named by Jacobson et. al. [JCJv92] as the most important design principle that has
to be regarded during the division of objects into subsystems. It refers to the principle
of ”predicting what the system changes will look like, and then making the division
on the basis of this assumption”. Emphasizing the performance aspect, task coupling
has been named in [NL08] as a second design principle of comparably outstanding im-
portance, whose essence is to keep the number of tasks spanning multiple subsystems
as low as possible to reduce synchronization overhead and thus improve the system
performance. Other principles like functional coupling (cf. [JCJv92]) or reusability
(cf. [NL08]) may additionally be named in this context.

Having divided of analysis objects into subsystems, the externally visible interfaces of
each subsystem have to be successively retrieved by investigating the inter-object com-
munication captured in the Analysis Model. That is, all messages, being exchanged be-
tween the objects, being composed by a respective subsystem, and those objects, being
composed by other subsystems, have to be transferred into operations of respective re-
quired or provided interfaces of that subsystem. Those interfaces subsequently have to
be aggregated to ports, which represent the single interaction points of the subsystem.
It has to be pointed out that - in order to obtain fully self-encapsulated subsystems -
the required and provided interfaces should indeed be modeled individually for each
subsystem and interfaces should not be shared. However, as the subsystems will have

84

to be integrated with each other via their interfaces during Structural System Archi-
tecture Modeling, they should already be designed in such a way, that communicating
subsystems offer respective compatible required and provided interfaces. Due to this, a
straightforward and simple approach to modeling the required and provided interfaces
of a subsystem is to design a set of required and provided interfaces for each external
subsystem, the respective subsystem has to communicate with.

The identification process is supported and its results are documented by several work
products that describe the identified subsystems from both, a structural as well as a
behavioral perspective. The structural viewpoint is described by an Initial Structural
Subsystem Design Diagram and an Initial Structural Subsystem Interface Design Dia-
gram. The first, a UML composite structure diagram, shows the (analysis) objects (in
terms of parts) and ports composed by the subsystem, as exemplarily shown by Figure
6.19.

Figure 6.19: MeDUSA Example Initial Structural Subsystem Design Diagram

The second, a UML class diagram, denotes the signatures of the required and pro-
vided interfaces and their aggregation to the ports via respective usage or realization
relationships to the respective port’s type. It is exemplarily shown by Figure 6.20.

The behavioral aspects inherent to a subsystem are in turn captured by one or more
Initial Behavioral Subsystem Design Diagram(s), as well as one or more Initial Be-
havioral Subsystem Interface Design Diagram(s). The Initial Behavioral Subsystem
Interface Design Diagram(s) capture the externally visible behavior of the subsystem,
offered via its ports. They are developed as UML (protocol) state machine diagrams
either to specify the communication capabilities of the subsystem as a whole, as ex-
emplarily shown in Figure 6.21, for a single port, or even for a single interface.

85

Figure 6.20: MeDUSA Example Initial Structural Subsystem Interface Design Dia-
gram

Figure 6.21: MeDUSA Example Initial Behavioral Subsystem Interface Design Dia-
gram

The Initial Behavioral Subsystem Design Diagrams, as exemplarily denoted by Figure
6.22, developed in the form of UML sequence diagrams, in turn capture the internal
behavior of the subsystem, that is they reflect how externally (via ports) or internally
(via trigger objects) stimulated behavior manifests itself in terms of internal message
communication amongst those parts and ports, composed by the subsystem.

86

Fi
gu

re
6.

22
:

M
eD

U
SA

E
xa

m
pl

e
In

iti
al

B
eh

av
io

ra
l

Su
bs

ys
te

m
D

es
ig

n
D

ia
gr

am

87

Subsystem Consolidation While Subsystem Identification is merely concerned with
the division of (analysis) objects into subsystems, Subsystem Consolidation now ex-
plicitly addresses the consolidation of the initially identified subsystems under design
considerations, affecting both, the internal decomposition as well as the externally
visible interfaces, which has so far been merely inferred from the inter-object commu-
nication of the Analysis Model.

Figure 6.23: MeDUSA Example Consolidated Structural Subsystem Design Diagram

That is, the analysis objects partitioned into the identified subsystems now have to be
transferred into design objects, which should have a strong internal cohesion and only
loose coupling towards other design objects, what is basically achieved by splitting
apart or by merging analysis objects.

The resulting structural decomposition of the subsystem is documented by a revision of
the Initial Structural Subsystem Design Diagram, which was developed during Subsys-
tem Identification for each subsystem, being referred to as a Consolidated Structural
Subsystem Design Diagram. An example is depicted by Figure 6.23.

Further, from a behavioral viewpoint, the subsystem-internal communication between
the resulting design objects, which was initially inferred from the inter-object behav-
ior, has to be updated accordingly. Further detail also has to be added in terms of
all parameters that have to be exchanged with the messages. Revisions of the Ini-
tial Behavioral Subsystem Design Diagrams, accordingly referred to as Consolidated
Behavioral Subsystem Design Diagrams, as exemplarily denoted by Figure 6.24, are
developed for this purpose.

88

Fi
gu

re
6.

24
:

M
eD

U
SA

E
xa

m
pl

e
C

on
so

lid
at

ed
B

eh
av

io
ra

l
Su

bs
ys

te
m

D
es

ig
n

D
ia

gr
am

89

What has to be done for the internal subsystem decomposition also holds for the ex-
ternally visible interfaces of each subsystem. Here, the allocation of operations to
respective interfaces, as well as that of interfaces to respective ports has to be recon-
sidered, first to reflect the changes imposed by the consolidation of the subsystem de-
composition, second due to considerations related to the integration capabilities of the
subsystem. It may for example be reasonable to split an interface into several smaller
ones in order to separate out several distinct aspects, resulting in a better integrateabil-
ity and an enhanced reusability of the subsystem. It may also be reasonable to design
an interface so that it best matches a respective matching interface of an already exist-
ing subsystem that has to be reused. Additionally to this restructuring, all interfaces
have to be enriched with supplementary detail. That is, the signatures of all interface
operations have to be fully specified in terms of their parameters and parameter types,
whose detailed design has to be evolved as well.

As in case of the internal subsystem decomposition, updated versions of the Initial
Structural Subsystem Interface Design Diagrams and Initial Behavioral Subsystem In-
terface Design Diagrams are developed, which are accordingly referred to as Consol-
idated Structural Subsystem Interface Design Diagrams and Consolidated Behavioral
Subsystem Interface Design Diagrams. Examples for both diagrams are provided in
Figures 6.25 and 6.26 respectively.

Figure 6.25: MeDUSA Example Consolidated Structural Subsystem Interface Design
Diagram

The conclusive outcome of the Subsystem Consolidation task may thus be understood
as a set of fully encapsulated subsystems with only explicit context dependencies (in
terms of provided and required interfaces, exposed via ports) and well designed inter-
nal decompositions. Due to the conceptually very close relationship between Subsys-
tem Identification and Subsystem Consolidation, an experienced System Architect may
even decide to perform both tasks in a single step, thus eliding the initial diagrams,
being defined as outputs of the Subsystem Identification, and directly evolving respec-
tive consolidated diagrams. The contribution to the underlying Design Model will be
identical, as the initial diagrams are sort of intermediate work products.

90

Figure 6.26: MeDUSA Example Consolidated Behavioral Subsystem Interface Design
Diagram

Structural System Architecture Modeling Having defined the individual subsys-
tems in terms of their composed design objects and their externally visible interfaces,
the next step is to structurally integrate those subsystems via their exposed interfaces
to an overall software system. That is, subsystems have to be assembled in such a
way that each required interface, exposed by a subsystem, is served by a respective
provided interface of another. In detail, wiring is performed by designing an assembly
connector between those ports, exposing (signature) compatible required and provided
interfaces. By this, it is ensured that each context dependency, a subsystem discloses
via a required interface, is indeed fulfilled by another subsystem via a respective pro-
vided interface, so that the all subsystems structurally fit together and thus form an
overall integrated system. To this extend, Structural System Architectural Modeling
may be understood to be more concerned with proofing of concept, rather than actual
creative modeling.

The work product produced by the Structural System Architecture Modeling is a UML
composite structure diagram representing the overall system as an enclosing compo-
nent, whose internal structure is manifested in the form of composed parts, represent-
ing the aggregated subsystem (component) instances. It is denoted as the Structural
System Architecture Diagram and it is recommended, as demonstrated in Figure 6.27,
to employ the notation of ball-and-socket assembly connectors, thereby explicitly de-
noting the respective interfaces forming the basis for each wiring.

Behavioral System Architecture Modeling While Structural System Architecture
Modeling specifies the structural aspects of the system architecture, thus validating that
the subsystems fit together from a structural viewpoint, Behavioral System Architecture
Modeling aims at defining how the subsystems are integrated with each other from a
behavioral perspective, thus validating that the subsystems are also well designed to
this extent and that they can thus be well integrated to an overall system behavior.

91

Figure 6.27: MeDUSA Example Structural System Architecture Diagram

That is, all system-wide behavioral threads, i.e. those affecting several subsystems,
have to be mapped to the underlying structural system architecture, by specifying how
they are manifested in terms of operation calls, being exchanged between the par-
ticipating subsystems via their respective ports. To this extend, the Behavioral System
Architecture Modeling task may be regarded to be more of a validation rather than con-
struction nature. However, the specification of how the system-wide communication
is established between the identified subsystems is of valuable input to any Subsystem
Designer and Subsystem Implementer, when creating the detailed class design for a
subsystem and when successively implementing these respective classes, as well as
for the Real-Time Analyst when performing an analysis.

The work products produced during Behavioral System Architecture Modeling are Be-
havioral System Architecture Diagram(s), as exemplarily depicted by Figure 6.28.
They are developed in the form of UML sequence diagrams, which depict the in-
volved subsystem instances (and optionally their composed ports) and capture the
inter-subsystem communication in terms of messages, which are exchanged via their
respective ports.

92

Fi
gu

re
6.

28
:

M
eD

U
SA

E
xa

m
pl

e
B

eh
av

io
ra

l
Sy

st
em

A
rc

hi
te

ct
ur

e
D

ia
gr

am

93

6.2.2.4 Detailed Design Modeling Discipline

Based on the thoroughly defined software architecture, which is specified in terms
of a set of self-encapsulated, collaborating subsystems, the Detailed Design Model-
ing Discipline is concerned with the development of a detailed design for the internal
decomposition of each subsystem. That is, while the detailed design of all exposed
interfaces, of all related ports’ types, and of all (data) types, being used as param-
eter types in the signatures of the exposed interfaces’ operations, has already been
developed during Subsystem Consolidation, the detailed class design for those design
objects, forming the internal decomposition of a respective subsystem, now has to be
developed. Following Jacobson et. al., who state that ”subsystems may also be used as
handling units in the organization” [JCJv92], Detailed Design Modeling is performed
individually for each subsystem by a respective Subsystem Designer.

Detailed Structural Design Modeling While the detailed design for all classes and
data types related to the externally visible interfaces of the subsystems has already been
developed during Architectural Design Modeling, Detailed Structural Design Model-
ing is concerned with developing detailed classes for all design objects being internally
composed by a respective subsystem.

In detail, for each part belonging to a subsystem’s internal decomposition, a class has
to be developed (to type the part), and associations have to be designed to type all
connectors, composed by the subsystem. That is, for every assembly connector, being
established between two parts, a respective association has to be designed between
those classes, being used as types for the respective parts, and for every delegation
connector, such an association has to be designed accordingly between the types of the
related part and port.

The operations of each class have to be inferred from the messages, being specified by
the Consolidated Behavioral Subsystem Design Diagrams, which has been developed
during Subsystem Consolidation. Additional input may be taken from those Intra-
Object Behavior Diagrams, being developed during Intra-Object Behavior Modeling,
which may in turn also lead to a set of attributes (e.g. to reflect the object’s state, in case
a state machine was used to specify intra-object behavior). The same holds for those
classes, being designed as types for the subsystem’s ports. Here, in case a protocol
state machine was developed during Subsystem Consolidation, attributes and opera-
tions may be identified, additional to the operations that were already derived from
the port’s required and provided interfaces. In case of entity objects, further attributes
may also be derived from the slots that were captured in the System Information Dia-
gram(s).

The work product produced by the Detailed Structural Design Modeling is a so called
Structural Detailed Design Diagram, which is developed for each subsystem in the
form of a UML class diagram, as outlined by Figure 6.29. It denotes the classes, which
have been designed as types for the parts and ports composed by the subsystem, as well
as associations between those classes, according to the connectors, being composed.

94

Fi
gu

re
6.

29
:

M
eD

U
SA

E
xa

m
pl

e
St

ru
ct

ur
al

D
et

ai
le

d
D

es
ig

n
D

ia
gr

am

95

Detailed Behavioral Design Modeling Based on the internal object behavior that
has been initially captured in the Intra-Object Behavior Diagrams, the internal behav-
ior of the design objects now has to be consistently modeled. That is, the behavioral
specification captured in the Intra-Object Behavior Diagrams has to be updated to
reflect the changes made to the internal subsystem decomposition during Subsystem
Consolidation (i.e. if design objects were merged together or split apart). Further it
has to be enriched with additional detail, and it has to be integrated with the structural
specification developed during Detailed Structural Design Modeling.

Behavioral Detailed Design Diagrams are developed for this purpose, in the form of
a UML state machine diagram to depict the overall object behavior, as denoted exem-
plarily by Figure 6.30, or in the form of activity diagrams for individual behavioral
aspects (i.e. operations), dependent on which granularity and which behavioral for-
malism is best suited.

Figure 6.30: MeDUSA Example Behavioral Detailed Design Diagram (State Machine)

It has to be pointed out that, because modeling those diagrams requires some effort, it
is of course only reasonable for those objects, whose internal behavior is neither trivial
nor obviously clear, and can further not be inferred from the Consolidated Behavioral
Subsystem Design Diagrams. Therefore, respective diagrams will most likely only be
developed for state-dependent control and application-logic objects with non-trivial
behavior.

6.2.2.5 Implementation Discipline

Regarding the covered life cycle phase, the Implementation discipline is the conceptu-
ally last constructive discipline covered by MeDUSA. It is concerned with transferring
the software design, as developed by the tasks of the Architectural Design Modeling
and Detailed Design Modeling Disciplines, into source code and enriching this source
code to a complete and valid code base. Due to this, the Implementation Discipline is

96

conceptually split into two parts, namely the mere transformation of the information,
which is captured explicitly in the Design Model, referred to as Code Generation, as
well as the evolution of the generated skeleton source code into a fully featured code
base, what is being performed by the Implementing and Integrating tasks respectively.
While Implementing is concerned with the development of missing code details for the
individual subsystems and is thus performed by a respective Subsystem Implementer,
Integrating deals with the development of glue code needed to integrate the subsystems
into an overall software system. It is thus performed by a single responsible System
Integrator.

Code Generation Transferring the structural and behavioral information, captured
within the Design Model, into source code is what Code Generation is concerned with.
Explicitly targeting a seamless transition into a procedural implementation language,
MeDUSA does not facilitate object-oriented concepts (inheritance and polymorphism)
throughout its modeling tasks. Therefore, the transition of the structural informa-
tion, being captured in the Design UML Model, into respective procedural source code
equivalents is relatively seamless and straight-forward and can thus to a large extend
be automatically performed by a respective code generation tool (cf. Section 7.3 for
a detailed survey on how the structural artifacts, captured in a MeDUSA-conformant
Design UML Model can be transferred into ANSI-C code). While some exceptional
behavioral aspects like the intra-object behavior, specified by a sufficiently detailed
and consistent state machine, can as well be automatically transferred, most of the
behavioral code fragments will have to be added manually. This is, because the gap
that naturally exists between the abstraction levels reflected in the design model and
resultant source code is mainly manifested in behavioral aspects, so that for example
method bodies are not - or only insufficiently - specified, and can thus not be automat-
ically generated.

Code Generation is jointly performed by the Subsystem Implementer as well as the
System Integrator. The reason for the involvement of both roles is that the source code,
being related to the externally visible interface of a subsystem, is as well important
for the Subsystem Implementer, who has to implement the subsystem according to its
specification, as well as for the System Integrator, who has to develop the glue code
to integrate all subsystems (as well as the initialization code, etc.). The work products
being produced are manifested in terms of several, yet incomplete source code files,
which are jointly referred to as the Skeleton Code, thus emphasizing that details have
to be added by subsequent tasks.

Implementing Taking the Skeleton Code produced for a subsystem during Code
Generation as a starting point, the Implementing task is concerned with adding all nec-
essary detail to obtain a complete source code base for a respective subsystem. This
in particular comprises the implementing of all method bodies, which could not be au-
tomatically transferred by the Code Generation task, as well as all code details going
beyond the abstraction level captured in the Design Model, as for example hardware
related code for initialization or configuration of the underlying platform.

97

The work product produced by the Implementing task is the detailed code that is needed
to transfer the subsystem related skeleton code into a fully-featured code base (for
that subsystem). It has to be pointed out that while Code Generation can mostly be
automated, Implementing still has to be regarded as a mostly handcrafted task (even if
nowadays being supported by profound development tools), which requires experience
and training and good knowledge of the underlying hardware platform.

Integrating Integrating is the conceptually last task covered by MeDUSA. As al-
ready outlined before, it is concerned with the development of glue code, needed to
integrate the source code of the different subsystems into a valid and complete source
code base for the overall software system. While most of the structural code fragments
needed for the integration of the subsystems may already be automatically generated
during Code Generation, there are parts that have to be manually dealt with, for in-
stance the code related to the initialization and startup and to the configuration of the
underlying hardware platform. As mentioned before, in order to guarantee a seamless
and smooth integration, Integrating is performed by the System Integrator in close co-
operation with the Subsystem Implementers, who are responsible for the Implementing
of the individual subsystems. The outcome is the glue code needed for the integration
of the different subsystems, as well as for initialization purposes.

6.2.2.6 Real-Time Analysis Discipline

As repeatedly motivated, real-time requirements related to timing and concurrency
issues are of outstanding importance for embedded & real-time systems and thus have
to be regarded intensely and as early as possible. It is thus an essential aspect of
MeDUSA to continuously perform a real-time analysis, based on the work products of
all constructive modeling disciplines, i.e. Requirements Model, Analysis Model, and
Design Model respectively.

Naturally, the real-time analysis gains precision and significance in the same extend,
the underlying models, gain expressiveness and accuracy. That is, while a Preliminary
Real-Time Analysis, being based on the Requirements Model, may merely be employed
to get an initial, yet vague, impression on possible performance and schedulability is-
sues of the later software system, the Interim Real-Time Analysis and Conclusive Real-
Time Analysis, being performed on the basis of the Analysis Model and Design Model
respectively, yield increasingly detailed and resilient results. Nevertheless, even an
early real-time analysis based on the Requirements Model is regarded to be important
and worthwhile, as it might give early indications on the feasibility and realizability of
the software and might help to identify hot spots that have to be especially investigated
throughout adjacent modeling tasks of the Analysis Modeling or Architectural Design
Modeling Disciplines respectively.

All tasks covered by the Real-Time Analysis discipline, namely Preliminary Real-
Time Analysis, Interim Real-Time Analysis, and Conclusive Real-Time Analysis are
performed by the Real-Time Analyst, who has to be profoundly educated in real-time

98

analysis techniques, having in particular fundamental experience in the estimation of
CPU consumption times, something directly influencing the quality and the resilience
of the analysis results.

Preliminary Real-Time Analysis While the consequent application of the MeDUSA
Actor Taxonomy (cf. Figure 6.6) allows to explicitly express timing and concurrency
issues in a way consistent to the current UML standard definition, it furthermore of-
fers the possibility of analyzing the use case model with respect to those real-time
requirements. Annotating timer periods or respective worst-case inter-arrival times to
the identified timer and eventer actors and estimating execution times for the identified
use cases (in detail for the respective worst-case execution time scenario subsumed by
each use case), a performance analysis based on real-time scheduling theory and event
sequence analysis may be applied already to the use case model.

While such an analysis - no matter how accurate and detailed it is performed - remains
rather vague and does thus not allow to confirm the schedulability of a later design, it
might provide early information about the feasibility and realizability of the software
with respect to a respective hardware platform. That is, it might help to identify critical
spots that have to be especially investigated, e.g. by constructing an early prototype.
It might also help to decide that a selected hardware platform9 is not suitable at all.

The output of the Preliminary Real-Time Analysis is defined to be an Initial Task Re-
port as well as an Initial Schedulability Report, as exemplarily shown in Figure 6.31
and 6.32. While the first lists the identified system-actor interaction threads, the re-
spective worst case scenario, and the estimation of the related CPU consumption (the
utilization is computed as documented in [NL08]), the latter documents the results of
the schedulability analysis, performed as detailedly documented in [Gom00].

Initial Task Report

Trigger Scenario Frequency
(Ti)

CPU con-
sumption
(Ci)

Utilization
(Ui)

Priority
(Pi)

t1 Sensor ADC
Interrupt

Collect and pre-
process ADC sam-
ples from sensor

25 µs 5 µs 0.2 HIGH
(1)

t2 Measurement
Timer

Calculate Raw Flow
Velocity from ADC
samples

500µs 70 µs 0.14 HIGH
(2)

t3 Calculation
Chain Timer

Calculate Flow Ve-
locity, Volume and
Mass Flow from Raw
Flow Velocity and
output them by PWM

100 ms 14.5ms 0.145 MED
(4)

t4 Digital Out-
put Timer

Output Process Value
on Digital Output

200µs 3µs 0.015 HIGH
(3)

. .

Figure 6.31: MeDUSA Example Initial Task Report (excerpt)

9As outlined in Section 6.1, MeDUSA assumes that hardware development is performed slightly
ahead of software development.

99

Initial Schedulability Report

Task t1 is an aperiodic, interrupt-driven task with a worst case inter-arrival time of T1 = 25µs and a CPU con-
sumption time of C1 = 5µs. It has the highest priority.

1. Preemption time by higher priority tasks with periods less than t1. There are no tasks with periods
less than t1.

2. Execution time C1 for task t1. Execution time is 5µs what leads to a utilization of 5µs/25µs = 0.2.
3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t2 may block task t1 because it accesses the ADC samples

collected by task t1. We assume that the blocking time (needed to read out the ADC samples) can be
estimated to 4µs, which leads to a blocking utilization during period T1 of 4µs/T1 = 4µs/25µs = 0.16.

The worst case utilization of task t1 can thereby be computed as execution utilization + blocking utilization =
0.2+0.16 = 0.36, which is well below the utilization bound of 0.69, so task t1 will meet its deadline.

Task t2 is a periodic task with a period of T2 = 500µs and a CPU consumption time of C2 = 70µs. It has the
second highest priority.

1. Preemption time by higher priority tasks with periods less than t1. Task t2 could be preempted by
task t1, which has a shorter period but a higher priority. The preemption utilization of task t2 is 0.2

2. Execution time C2 for task t2. Task t2 has an execution time of 70µs, which leads to a CPU utilization
of 0.14.

3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t3 may block task t2 because it accesses the raw flow

velocity calculated by task t2. We assume that the blocking time (needed to access the flow velocity)
can be estimated as 3µs, which leads to a blocking utilization during period T2 of 3µs/T2 = 3µs/500µs =
0.006.

The worst case utilization of task t2 can thereby be computed as 0.2+0.14+0.006 = 0.346 which is below the
utilization bound of 0.69, so task t2 will also meet its deadline.

Task t3 is a periodic task with a period of T3 = 100ms and a CPU consumption time of C3 = 14.5ms. It has the
lowest priority of the four regarded tasks.

1. Preemption time by higher priority tasks with periods less than t3. Task t3 could be preempted by
tasks t1, t2 and t4, which all have a shorter period and a higher priority. The summarized preemption
utilization of these tasks is 0.355

2. Execution time C3 for task t3. Task t3 has an execution time of 14.5µs, which leads to a CPU utilization
of 0.145.

3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t3 has the lowest priority of the regarded tasks, so no tasks

fall in this category.

The worst case utilization of task t3 can be computed as 0.355 + 0.145 = 0.5, which is below the utilization
bound of 0.69, so task t3 will also meet its deadline.

Task t4 is a periodic task with a period of T4 = 200µs and a CPU consumption time of C4 = 3µs. It has the third
highest priority of the regarded tasks.

1. Preemption time by higher priority tasks with periods less than t4. Task t3 could be preempted by
task t1, which has a shorter period and a higher priority. The preemption utilization of task t1 is 0.2.

2. Execution time C4 for task t4. Task t4 has an execution time of 3µs, which leads to a CPU utilization
of 0.015.

3. Preemption by higher priority tasks with longer periods. Task t4 can be preempted by task t2,
which has a higher priority and a longer period. Preemption utilization of task t2 is C2/T 4, which is
70µs/200µs = 0.35.

4. Blocking time by lower priority tasks. Task t4 may be blocked by lower priority task t3 when it
tries to obtain the next process value to be outputted on the digital output. As t3 does need to block the
process value for exclusive write access, we assume that blocking time will be around 5µs, so a blocking
utilization during period T4 of 5µs/T4 = 5µs/200µs = 0.025 does result.

The worst case utilization of task t4 can therefore be computed to 0.2 + 0.015 + 0.35 + 0.025 = 0.59, which is
below the utilization bound of 0.69, so also task candidate t4 will meet its deadline.

Figure 6.32: MeDUSA Example Initial Schedulability Report (excerpt)

100

Interim Real-Time Analysis With the detailed specification of inter-object message
communication, as it is captured in the Analysis Model, a more detailed real-time anal-
ysis can be performed, compared to the one being based on the Requirements Model.
While the work products being produced, namely an Unconsolidated Task Report and
an Unconsolidated Schedulability Report, are very similar to those initial reports, being
produced during Preliminary Real-Time Analysis, they may now yield more detailed
and resilient results. That is, CPU consumption times can now be estimated on the
basis of individual messages (i.e. the time an object needs to consume a message and
respond to it), being exchanged by the objects in the context of respective collabora-
tions,

It has to be pointed out again that, even if valuable information can already be inferred
from such an analysis, the overall task design is not performed earlier than during
Architectural Design Modeling. In fact, the allocation of tasks to subsystems is one
major criteria, which may be applied to the division of objects, as it is performed by
Subsystem Identification and Subsystem Consolidation.

Conclusive Real-Time Analysis Based on the overall software architecture, which
explicitly specifies the system decomposition in terms of fully encapsulated subsys-
tems, thus also specifying the allocation of tasks among those subsystems in terms of
the divided trigger objects, a Conclusive Real-Time Analysis can be performed. That
is, as the consolidation of objects, which is performed during Subsystem Identification
and Subsystem Consolidation, has lead to a final task design as well (as the active trig-
ger objects are of course also affected by it), the schedulability of the overall system
can now be analyzed in all detail. In this context, the communication and synchro-
nization overhead that has been introduced with the respective subsystems (of course
inter-subsystem communication is more expensive than intra-subsystem communica-
tion, which manifests itself within the subsystem’s internal decomposition) can be
explicitly regarded.

The Conclusive Real-Time Analysis is performed using the same techniques than Pre-
liminary Real-Time Analysis and Interim Real-Time Analysis. Being based on the
most detailed and precise model that is developed, the Conclusive Real-Time Anal-
ysis is the last real-time analysis task being performed, as the analysis of the system’s
performance and schedulability may subsequently be analyzed by directly executing
and simulating the system, or respective parts of it. The Detailed Design Modeling
discipline does indeed not change the allocation of active objects, and a subsequent
real-time analysis is therefore not proposed by MeDUSA10. However, performance
problems, which have been identified by the Conclusive Real-Time Analysis, indeed
have to be regarded before going into Class Design Modeling, as a non-optimized de-
tailed design for the internal decomposition of a subsystem may of course affect the
overall system performance in a significant negative way.

10Indeed, it is assumed that the overhead to perform another detailed analysis does not pay of here, as
subsequently, code fragments may be generated and directly simulated and analyzed by their execution.

101

6.2.3 MeDUSA Method Operations

The MeDUSA Method Operations is defined in terms of a workflow and five workflow
patterns, which correspond to the five software construction life-cycle phases covered
by the method, namely

• Requirements Workflow Pattern

• Analysis Workflow Pattern

• Architectural Design Workflow Pattern

• Detailed Design Workflow Pattern

• Implementation Workflow Pattern

Each workflow pattern defines how the modeling tasks, comprised by each discipline,
are executed to construct a respective discipline-specific model, and how the tasks
of the Real-Time Analysis discipline are continuously applied. The defined workflow
patterns are introduced in detail in the following paragraphs, followed by the definition
of the overall MeDUSA Workflow, which structures the method execution into five
phases, each describing iterations of the respective workflow patterns.

Requirements Workflow Pattern The Requirements workflow patterns defines the
activities related to the construction of the Requirements Model. As outlined by Figure
6.33, the pattern describes the simultaneous application of Use Case Modeling and Use
Case Details Modeling, as well as that of a Preliminary Real-Time Analysis to ensure,
real-time and concurrency constraints are adequately accounted.

Figure 6.33: The MeDUSA Requirements Workflow Pattern

102

The parallel execution of Use Case Modeling and Use Case Details Modeling, as indi-
cated by Figure 6.33 is of course stylized, but it indicates that the two tasks are closely
related. In practice, the development of the Requirements Model will be a rather itera-
tive process that is realized by the interlocked execution of both tasks. That is, it will
start with the retrieval of an initial set of use cases, which will then be successively
described in detail, leading in turn to a revision of the initially identified use cases,
and so on. For instance, the description of a use case’s details might give valuable in-
formation about the adequacy or inadequacy of the granularity of the use cases (often
beginners tend to model too fine-grained use cases, resulting in too short descriptions).

As soon as an overall integrated Requirements Model of satisfying quality has been
gained, a Preliminary Real-Time Analysis can be performed, to identify potential per-
formance problems and to ensure that real-time and concurrency constraints are ade-
quately reflected. If being automated by means of an analysis tool, such an analysis
may - different to its indication in Figure 6.33 - be executed not only on the final, but
as well on intermediate revisions of the Requirements Model.

Analysis Workflow Pattern The Analysis workflow pattern pools the activities re-
lated to the construction of the Analysis Model to gain a detailed and profound under-
standing of the problem domain.

Figure 6.34: The MeDUSA Analysis Workflow Pattern

As outlined by Figure 6.34, it is started with the conceptually parallel execution of
Context Modeling and Information Modeling, to identify trigger, interface, and en-
tity objects, in accordance to the MeDUSA Object Taxonomy (cf. Figure 6.11). Sub-

103

sequently, Inter-Object Collaboration Modeling is performed to identify object col-
laborations for the identified use cases and by this also the remaining control and
application-logic objects. Having captured the internal behavior of the identified ob-
jects in terms of Intra-Object Behavior Modeling as well (at least for state-dependent
control objects), the Analysis workflow pattern is concluded by an Interim Real-Time
Analysis to identify potential performance problems that have to be in particular re-
garded during subsequently performed design activities.

It has to be emphasized that while indeed no software architecture is designed yet, and
while understanding of the problem domain is the central goal being targeted, many
design decisions are actually being anticipated during execution of the Analysis work-
flow pattern. That is, the impact of a analysis-related modeling decision on the later
subsystem identification and consolidation is great and should not be underestimated.
As an example, the decision of modeling a piece of application logic either by a self-
contained algorithm object, separated from the data it accesses, or by attributing it to
a respective entity object, may be quoted, as it directly affects the division of objects
into subsystems.

Architectural Design Workflow Pattern While Analysis is concerned with under-
standing the problem domain, Architectural Design is about building a solution. That
is, the Architectural Design workflow patterns subsumes the tasks to construct the
overall software architecture in terms of decomposition of the system into fully en-
capsulated and self-contained subsystems, which collaboratively perform the system
behavior.

Figure 6.35: The MeDUSA Architectural Design Workflow Pattern

104

Accordingly, as outlined by Figure 6.35, Subsystem Identification is initially performed
to divide the analysis objects of the Analysis Model into subsystems. The subsequent
execution of System Consolidation ensures that the initial subsystem decomposition is
sustainable under design considerations. That is, it literally turns the initially divided
analysis objects into design objects, while indeed also consolidating the interfaces of
the identified subsystems according to their later integration needs. As already indi-
cated, Subsystem Identification and Subsystem Consolidation are strongly related to
each other, so they may be jointly executed in one step. Structural System Architec-
ture Modeling and Behavioral System Architecture Modeling, which are subsequently
performed, are then concerned with integrating the different subsystems, which have
been individually defined in terms of their structural and behavioral properties and
context dependencies, into an overall software system. While Figure 6.35 indicates
that the two activities are somehow executed simultaneously, it has to be pointed out
that Structural System Architecture Modeling is started with some advance, as it estab-
lishes the structural relationships between the identified subsystems, based on which
the behavioral relationships, being addressed during Behavioral System Architecture
Modeling, are then defined. Both activities are however strongly intertwined, what is
why they are indicated within Figure 6.35 as parallelly executing activities.

To analyze the feasibility of the developed software architecture in terms of real-
time and concurrency aspects, a Conclusive Real-Time Analysis is successively per-
formed. Unlike the previously executed Preliminary Real-Time Analysis and Inter-
mediate Real-Time Analysis, the analysis is now based on the actual task design, as
it manifests itself after the division and consolidation of all active trigger objects, so
precise and resilient can now be inferred on the actual schedulability of the system.

Detailed Design Workflow Pattern Having defined the overall software architec-
ture, the Detailed Design workflow pattern, as denoted by Figure 6.36, may be exe-
cuted to develop the detailed design of each identified subsystem.

Figure 6.36: The MeDUSA Detailed Design Workflow Pattern

Here, at first information hiding classes for all design objects have to be developed, as
well as for the subsystems’ owned ports. The specifications of individual object be-

105

haviors, which were initially modeled during Analysis Modeling now also have to be
updated (to reflect the changes of Subsystem Consolidation) and further detailed. This
is done in terms of Detailed Behavioral Design Modeling. As in Architectural De-
sign Modeling, both activities are performed pretty much in parallel, while Detailed
Structural Design Modeling of course has to be started with some slight advance, as
it defines the structural elements, which may then be referred to during Detailed Be-
havioral Design Modeling. As the subsystem’s interfaces have already been explicitly
defined before, the Detailed Design workflow pattern can - different to all preceding
ones - be performed in parallel for each subsystem.

Implementation Workflow Pattern Based on the detailed design, as it is captured
in the Design Model, the Implementation workflow pattern can be performed. It is
concerned with transferring the information, captured in the Design Model, into re-
spective source code and with adding all necessary code details to build up a valid and
consistent source code base from it.

Figure 6.37: The MeDUSA Implementation Workflow Pattern

Conceptually, this is performed in two steps. First, as outlined by Figure 6.37, code
generation is performed to generate skeleton code from the structural and parts of
the behavioral information, being explicitly captured in the Design Model. Second,
the code generated for each subsystem has to be enriched with all code details that are
neccessary to turn it into a valid source code base for that subsystem, and the glue code,
needed to integrate the different subsystem-related source code building blocks, has to
be implemented. As indicated in Figure 6.37, Implementing, which is concerned with
enriching the source code of each subsystem with the needed details, and Integrating,
which addresses the development of the missing glue code, are pretty much executed
in parallel. As already motivated in Section 6.2.2.5, a close cooperation between both
activities is inevitable to ensure consistency of the overall source code base.

106

MeDUSA Workflow According to the five software construction lifecycle phases
being covered, the MeDUSA Workflow, as denoted by Figure 6.38, is defined in terms
of five phases, namely Requirements Phase, Analysis Phase, Architectural Design
Phase, Detailed Design Phase, and Implementation Phase, which are sequentially ex-
ecuted.

Figure 6.38: The MeDUSA Workflow

Each phase is a self-contained unit, concerned with the development of a respective
discipine specific model. As already mentioned, all design related activities rely on
a single Design Model, so with the conclusion of the Architectural Design Phase the
Design Model is indeed not yet complete. It may however be regarded as being self-
contained at that time, as it captures the overall software architecture. The Implemen-
tation discipline is also somehow outstanding, as it does not produce a model in the
literal sense; however, the source code that is developed during its execution may be
regarded as a model as well.

Figure 6.39: The MeDUSA Architectural Design Phase

As exemplarily denoted by Figure 6.39 for the Architectural Design Phase (the other
phases are defined accordingly), each respective phase specifies the iterative execu-
tion of the homonymous workflow pattern and allows reiterations of those patterns,
addressing earlier lifecycle phases, where this is regarded to be necessary. What has
to be emphasized in this context is the explicit iterative nature of the method that man-
ifests itself in those backflows. As Jacobson et. al. exemplarily point it out in the

107

context of architectural design: ”When the division into subsystems is made, in some
cases it may also be desirable to modify analysis objects also. This may be the case,
for instance, when an entity object has separate behavior that is functionally related
to more than one subsystem. If this behavior is extracted, it may be easier to place
the entity object in a subsystem.” [JCJv92]. It is - to point that out in all clarity - not
the confession of a mistake, if the activities of an earlier lifecycle phase are reiterated,
but a natural and essential aspect of a creative process that leads to models of higher
quality and to greater awareness and justifyability of the made design decisions.

6.3 Reflective Characterization

As already pointed out, MeDUSA was not designed from scratch, but by taking into
consideration approved principles, concepts, and techniques. While COMET and
ROOM have been already named (cf. Section 5.2.1), and may be regarded as some
sort of precursors, MeDUSA further incorporates many concepts of even earlier ap-
proaches, outlined within Section 3.1. As far as its overall method design is concerned,
a general affinity towards those object-oriented approaches of the 1990’s cannot be de-
nied, where OOSE [JCJv92] and the closely related Unified Object Modeling [RS99],
as well as COMET have to be explicitly named due to the high degree of similarity.

The modeling of requirements in the form of use cases or scenarios, which is quite es-
sential for those approaches, has been originally proposed by Jacobson et. al. [JCJv92],
and can for instance also be found in OBA [RG92]. The modeling of the system’s ex-
ternal context and intensive long-living data, as incorporated into MeDUSA’s Context
Modeling and Information Modeling tasks, reaches even back to those Structured Anal-
ysis and Design approaches of the 1980’s ([Jac83], [WM85]) and was subsequently
picked up by some object-oriented approaches, including also COMET. The dynamic
modeling of object collaborations, as it is incorporated into MeDUSA in terms of Inter-
Object Collaboration Modeling has to be credited mainly to OOD [Boo91] and OOSE
[JCJv92].

The idea of introducing object structuring criteria to support the identification of ob-
jects during analysis may be as well traced back to the object-oriented approaches
of the 1990’s ([SM88], [CY91], [JCJv92]), and was later incorporated as one of its
essential ingredients into Gomaa’s COMET method. The differentiation into active
and passive objects, as it is incorporated into the MeDUSA Object Taxonomy may be
traced back to Booch [Boo86], and has found - via HOOD [Rob92] - its way into those
object-oriented real-time methods like COMET or ROOM.

Modeling of internal object behavior may be similarly classified as originating from
those object-oriented approaches of the early 1990’s. It was in particular promoted by
Harel [Har88][HG96] as well as Shlaer and Mellor [SM92]. Not least, it has found its
way into ROOM, where the modeling of individual object’s behavior in terms of state
machines is quite essential (cf. Section 5.2.1). The subsequent division of analysis
objects into subsystems, as the first step of system design, is of course an essential

108

activity, being coverd by all object-oriented approaches. Jacobson et. al. [JCJv92]
may however be explicitly named here, as he names a number of design principles
(locality in changes, functional coupling, etc.) to support the division process.

Regarding the specification of a software system’s architecture, of course a myriad of
publications can be found. However, the hierarchical manner, in which a MeDUSA
architecture is organized in terms of fully encapsulated, collaborating subsystems with
only explicit context dependencies and a well-structured internal decomposition, may
most likely be traced back to ROOM, whose concise and coherent architectural model-
ing language was already pointed out in Section 5.2.1. The concepts of ports and con-
nectors, as it is intensely applied by ROOM to preserve encapsulation, was of course
intensively promoted also by component-based approaches. In this context, Catalysis
[DW98] may be explicitly named, where respective concepts were first represented by
means of the UML.

While the development of a detailed class design for the identified design objects, as
it is performed by Detailed Structural Design Modeling, is indeed a rather mechani-
cal process inside MeDUSA, where consolidation is performed on the level of objects,
this has of course been of major interest to the research community in the early 1990’s.
What has been not so intensively regarded is the transfer of those concepts into source
code equivalents. While ROOM may be quoted as a notable exception, which - even if
not explicitly documented - supports a transition of a ROOM-based design into a C++
implementation by means of the ObjectTime toolset, most methods being published in
the 1990’s were developed as mere design methods, thus not covering the implemen-
tation phase. Additionally, not much third-party research interest seems to be docu-
mented related to this, in particular on how component-based concepts like ports and
connectors can be seamlessly transferred. While Wong may be named as one of the
few that explicitly describes the transformation of those concepts for object-oriented
languages [Won93], a mapping of port and connector concepts into a procedural, non
object-oriented implementation language, does not seem to have been intensively re-
garded.

However, even while adopting several approved and advantageous concepts, MeDUSA
may be rightly denoted as a self-contained method. That is, its continuity and system-
atics as well as its prominent characteristics set it apart. They will be shortly outlined
in the following.

Model-Based As it is quite obviously inferrable from the definition of MeDUSA,
models play an outstandingly important role throughout the overall method, and mod-
eling, the engineering of models, is MeDUSA’s most essential activity. Therefore,
MeDUSA may be unreservedly denoted as a model-based method. While the po-
tential of automatic transformations between the employed discipline-specific models
increases with the onwarding life-cylce, not all transformations are indeed automiz-
able. Some remain to be quite creative, so that according to the definitions provided in
Section 2.3.4, MeDUSA may not be unambiguously denoted as being model-driven,
even if some part of the research community would probably denote it as such.

109

Use Case-Driven MeDUSA may further be characterized as use-case driven. That
is, use cases are the central concept, around which essential tasks of MeDUSA are
being performed. Being identified during Requirements, use cases indeed affect Anal-
ysis and Architectural Design phases, e.g. during Inter-Object Behavior Modeling or
Behavioral System Architecture Modeling.

Instance-Driven & Class-Based While the use case concept is closely related to
object-oriented engineering, MeDUSA is not and object-oriented method, as the ap-
plication of the central object-oriented concepts of inheritance and polymorphism is
indeed not enforced to meet the goal of seamless continuity (cf. Section 4.3). Indeed,
all of MeDUSA’s modeling activities from the early Requirements Modeling up to the
late Architectural Design Modeling (regarding the subsystems’ interfaces) or even De-
tailed Design Modeling (regarding the subsystems’ internal decompositions) are based
on objects rather than classes, so that MeDUSA might be accordingly denoted as an
instance-based method. Due to this the application of inheritance is not enforced,
and object-oriented concepts may only be optionally applied during Detailed Design
Modeling, in case a Subsystem Designer decides on this. MeDUSA however does not
prescribe to use object-oriented concepts, as it has the goal of a seamless transition
from detailed design into a procedural implementation. Being oriented at classes and
objects and disregarding inheritance and polymorphism, MeDUSA may thus - accord-
ing to the categorization provided by Wegner [Weg87] - be characterized more as a
class-based method11.

The main reason why MeDUSA was designed to be instance-driven and class-based
is that this is regarded to be more seamless, compared to an approach, which vacillates
between modeling on the class and modeling on the object level, and is - as experience
has shown - as such easier amenable to developers in the marginal application domains.

Real-Time Aware The explicit handling and awareness of real-time constraints may
be quoted as a further distinct characteristic of MeDUSA. That is, through its Actor
Taxonomy and Object Taxonomy, MeDUSA facilitates the explicit handling of real-
time and concurrency constraints throughout the overall development lifecycle. The
real-time awareness further manifests itself in the continuous real-time analysis that
has been incorporated into the method. While COMET did only propose a respective
schedulability analysis after the task design, which is performed late during architec-
tural design, MeDUSA incorporates a respective real-time analysis to be continuously
performed, beginning with a preliminary early analysis on the basis of the identified
use cases.

11The usage of the Class concept within MeDUSA corresponds to what is covered by a class-based
programming language (cf. [Weg87]). It is therefore reasonable to denote MeDUSA as a class-based
method, even if classes actually play a subordinate role, due to the instance-driven nature of the method.

110

Chapter 7

Languages - UML & ANSI-C

Regarding overall software development, several languages may be named as being
involved, reaching from informal natural language, used to formulate requirements,
up to very formal languages, as for example used for modeling, implementation, or
even testing. Here, of course, the focus will be on software construction only, and it
will of course be limited to formal languages. In this context, two such languages may
be named, namely the UML modeling language, which is used to specify nearly all of
the involved models1, as well as the implementation language, namely ANSI-C, which
is used to implement the resulting source code.

To support a detailed and profound understanding of the method, going beyond what
can be inferred from the example diagrams provided in Section 6.2, it has to be pre-
cisely laid out, which UML concepts are actually applied throughout the tasks of the
method, and how the precise structure of the underlying UML models is constituted.
Even while not all of these model elements may be directly visible in the UML dia-
grams, as a diagram of course hides certain details, a clear understanding of the precise
UML model structure is of great significance to ensure consistency and traceability.
The basic structure of the three MeDUSA UML models, namely Requirements UML
Model, Analysis UML Model, and Design UML Model will thus be detailedly laid out
in the following Section.

Even while the UML is a very comprehensive modeling language, it does not cover
all MeDUSA defined concepts to the required extend. MeDUSA’s taxonomies are of
course not covered by the UML, and there are a number of discrepancies, which may
be attributed to the instance-driven nature of the method. Having defined the pre-
cise structure of all MeDUSA defined UML models in terms of the employed model
elements and their relationships, it can be easily illustrated, where a discrepancy in
concepts between the UML and MeDUSA is noticeable. Based on this, the neces-
sary extensions to the UML, realized by means of MeDUSA UML profiles can then
subsequently be introduced within Section 7.2.

1Except those extensions, being introduced to textually describe use case details (cf. Section 6.2.2.1),
all formal MeDUSA models are indeed specified using the UML.

111

Having precisely defined the structure of the MeDUSA Design UML Model, the gener-
ation of source code, which is based on it, can then also be addressed. That is, it can be
broken down to a specification on how to transform the employed UML concepts (i.e.
meta classes) into respective implementation language constructs. This will be done in
the concluding section of this chapter. What has to be pointed out is that, while such
a mapping may usually be arbitrary complex, covering a lot of optimizations and im-
provements, and may as such be applicable only within certain specific constellations,
the generation schema presented in Section 7.3 is meant to be generally applicable.
That is, it does not reflect what may be achievable in terms of optimization, but rather
serves to demonstrate feasibility.

7.1 MeDUSA UML Models

The precise structure of the MeDUSA related UML models has to be defined in terms
of a detailed specification about which kind of modeling elements are contributed via a
respective UML diagram, and on how those modeling elements are structurally related
to each other.

Defining the structure of the Requirements UML Model, Analysis UML Model, and
Design UML Model, could be done formally by characterizing their respective un-
derlying meta-model in terms of concrete and abstract syntax, as well as the static
and dynamic semantics that applies to the set of all valid MeDUSA UML models (cf.
Section 2.3.3). Being a UML-based method, this could be done in terms of a special-
ization of the UML meta-model, in terms of its abstract syntax and its static semantics
(as the concrete syntax and dynamic semantics do not affect the structure and can be
preserved). While such a formal approach would lead to the desired goal of an exact
specification of the structure of those UML models, being developed in the context
of MeDUSA, it has some drawbacks. First, it would be very complicated and costly
to achieve, as the UML specification is a quite vast document. There would also be
the danger of restricting the modeling capabilities too strong, so that the flexible ap-
plication of MeDUSA could not be further guaranteed. Further, the concrete mapping
between the actual UML diagram elements and their underlying modeling artifacts
would still remain somehow vague.

Therefore, a different, less formal but more practical approach is chosen here. For
each UML diagram, being defined as work product of a MeDUSA task, the relevant
UML concepts, i.e. meta-classes as well as related meta-associations, will be briefly
sketched, based on the example diagrams that were introduced in Section 6.2. Due to
the large number of UML concepts being involved, this will not be done exhaustively
but for the relevant key concepts only, in particular, where a more restricted static
semantics than that defined by the UML is employed. If for example a State Machine
is used to represent global system states in a Requirements UML Model, it will be
specified how the State Machine is structurally integrated into the model (i.e. it is
attached as owned Behavior of the system Component), but it will not be detailedly
laid out that the inherent contribution actually comprises also a nested Region and

112

various contained States, Pseudostates, Final States and Transitions, or even
other UML elements.

The notation that is applied to describe the instance specification of the UML mod-
els is that of UML object diagrams, where instance specifications are used to represent
model elements, i.e. instances of meta-classes, and links are used to represent instances
of meta-associations, thus depicting relationships between model elements. Due to a
lack of space, those instance specifications will be limited to only reflect the aforemen-
tioned key concepts. A more elaborated specification of the example MeDUSA UML
models’ structure can be found in [NL08].

7.1.1 Requirements UML Model

As defined by MeDUSA’s method content, the Requirements UML Model is con-
structed indirectly by creating one or more Use Case Diagram(s), a Global System
States Diagram in the form of a UML state machine diagram, as well as Use Case De-
tails Diagrams, which are developed either as a UML activity diagrams, as depicted
by Figure 6.10, sequence, or state machine diagrams, for those use cases, which are
not alternatively described by narrative textual descriptions.

Use Cases - External Relationships The structure of the Requirements UML Model
is rather straightforward. It is basically determined by those artifacts, being contributed
by the Use Case Diagram, which is usually the first diagram being developed during
Requirements Modeling. As outlined by Figure 7.1, a Component, representing the
system, all external Actors, as well as all Dependencies (between Actors) and those
Associations originating from them, are directly contained by the root element of
the Requirements UML Model, which is a Model.

All other artifacts are directly or indirectly contained by the system Component. That
is, Use Cases may be directly contained, or indirectly via Packages, which might
be introduced to group Use Cases and related elements. They thus also contain all
internal Actors, Associations between internal Actors and Use Cases, and all
Dependencies originating from a nested element (Actor or Use Case). Packages
can contain other Packages so that an arbitrarily nested hierarchical structure can be
gained. Include, Extend, and Generalization relationships, which are modeled
between Use Cases, are directly contained by the Use Case, serving as source of the
relationship.

Use Cases - Internal Details The key artifacts, being contributed by the Use Case
Details Diagrams differ, dependent on the behavioral formalism that is applied. In
case of an activity diagram, as depicted by Figure 6.10, the main artifact, being con-
tributed, is of course an Activity, which is - as depicted by Figure 7.1 - associated
as owned Behavior to the respective Use Case. It usually contains a single Initial
and Final Node, as well as a couple of named Opaque Actions, which are used to

113

Figure
7.1:

E
xam

ples
of

K
ey

A
rtifacts

contained
in

a
M

eD
U

SA
R

equirem
ents

U
M

L
M

odel

114

represent individual steps within the system-actor interaction, which is detailedly de-
scribed. Decision Nodes and Merge Nodes, in combination with Control Flows
are used to model the different scenarios subsumed by the Use Case. To depict, which
scenario might occur under which conditions, Guards can be attached to those Con-
trol Flows, originating from a Decision Node. Within the Guards, arbitrary boolean
conditions can be specified. One option within such an expression might be to use
an Opaque Expression, which might refer to a global system state by means of the
oclInState OCL expression, as it is exemplarily shown in Figure 6.10. This situa-
tion is represented within Figure 7.1 accordingly.

Global System States The key artifact contributed via the Global System States Di-
agram is a State Machine, which is - as depicted by Figure 7.1 - directly contained
by the system Component as its owned Behavior. As the State Machine is meant to
only reflect the different global system states and transitions between them, its detail
level may be kept rather low. That is, neither Triggers (with Guards) nor Effects
have to be specified.

7.1.2 Analysis UML Model

The structure of the Analysis UML Model is affected by the contributions of those
UML object diagrams, which are developed during Context Modeling and Information
Modeling, those UML communication and sequence diagrams, being developed dur-
ing Inter-Object Collaboration Modeling, as well as those behavior diagrams (activity,
state machine), being developed during Intra-Object Behavior Modeling. While the
root element of the Analysis UML Model is of course again a Model, its structure is
not as hierarchical as that of the Requirements UML Model. That is, the Instance
Specifications (used to denote objects as well as links) and the Dependencies, be-
ing contributed by the Context Diagrams and Information Diagrams, are for example
directly contained in the Model, rather than being grouped into Packages, as outlined
by Figure 7.2.

Collaborative (Inter-Object) Behavior The Interactions, which are the key el-
ements contributed via the Inter-Object Collaboration Diagrams, as well as all Be-
haviors (State Machines, Activities, Interactions), being contributed via the
Intra-Object Behavior Diagrams are also directly contained within the Model, as in-
dicated by Figure 7.2. This is, because - due to the characteristic of MeDUSA to be
instance-driven - no Behavioral Classifiers that could serve as containers have
been identified at the time those diagrams are developed.

Within the Interactions, being contributed via the Inter-Object Collaboration Dia-
grams, Lifelines are used to represent the individual analysis objects, and Messages
are modeled between them accordingly via Message Occurrence Specifications,
which on the one hand serve as Message Ends, and on the other hand cover the re-
spective Lifeline. As there is no enclosing Behaviored Classifier to own the

115

Figure
7.2:

E
xam

ples
of

K
ey

A
rtifacts

contained
in

a
M

eD
U

SA
A

nalysis
U

M
L

M
odel

116

Interaction, those Lifelines and Messages are not associated to certain structural
elements, too. That is, Lifelines do not reference represented Properties and Mes-
sages do not specify Connectors, even if this could be modeled.

Internal (Intra-Object) Behavior The artifacts, being contributed by the Intra-
Object Behavior Diagram, of course differ dependent on the respective behavioral
formalism, which is applied. In case of a State Machine, States and Transitions
may be named as the most significant contributed elements. A Transition between
States usually requires a Trigger and causes a certain Effect, which is an arbitrary
Behavior, being executed when the Transition is taken.

Signals are used as a means to integrate both, the internal and the external view on
the behavior of an analysis object, so literally seen, they represent the messages that
an analysis object might understand. That is, on the one hand they are referenced
by the sending and receiving Message Ends of the Messages, being represented as
Message Occurrence Specifications in those Interactions that depict inter-
object collaboration behavior, and thus serve as Signatures of those Messages. On
the other hand they might be referenced from within the State Machine or Activity,
which is used to model intra-object behavior. As outlined by Figure 7.2 exemplarily
in case of a State Machine, the reaction of an object to the receipt of such a Signal
may be the transition into a new State, what is modeled by specifying it as the Event
of a respective Trigger (via a Receive Signal Event). The fact that the sending of
Messages is triggered from within the internal behavior of an object, may be modeled
by specifying a Send Signal Action as part of the Effect of a Transition, as
shown in Figure 7.2.

It has to be pointed out that, while the UML defines that a Signal ”triggers a reac-
tion in the receiver in an asynchronous way”, this is not the intended meaning in a
MeDUSA Analysis UML Model. In fact, the usage of a Signal should not indicate
any details about the synchronism or asynchronism of a message. While the UML
proposes to use Signals to denote asynchronous messages, and Operations to de-
note arbitrary ones, within a MeDUSA Analysis UML Model this differentiation is not
applied, as Operations cannot be consistently modeled. This is, because in difference
to Signals, which are themselves Classifiers, Operations are just Behavioral
Features, and as such have to be owned by a respective Classifier, which is due
to the instance-drivenness of the method, not yet designed within the Analysis UML
Model. Therefore, Signals, being directly contained by the Model, are used, to depict
both, synchronous as well as asynchronous messages.

As Signals are used within a MeDUSA Analysis UML Model and Operations are
used within a MeDUSA Design UML Model, both referring to the same concept,
namely the response of an analysis respectively design object to the receipt of a re-
spective message. The term Message will thus be consistently used in the following to
refer to both concepts for the sake of clarity2.

2This is also reflected by a respective Stereotype in the MeDUSA Analysis UML Profile and Design
UML Profile, introduced in Section 7.2

117

7.1.3 Design UML Model

Similar to the external and internal view on the behavior of an individual analysis ob-
ject, as it is captured by the Inter-Object Collaboration Diagrams and Intra-Object
Behavior Diagrams, the internal decomposition and the external interfaces of an in-
dividual subsystem, as well as the structural and behavioral relationships established
between different subsystems, are captured during Architectural Design Modeling and
Detailed Design Modeling.

As subsystems - in the context of MeDUSA - are regarded to be fully self-encapsulated
architectural building blocks with only explicit context dependencies, the internal de-
composition of a subsystem is well decoupled from its externally visible structural and
behavioral properties, which are relevant to integrate the subsystems. Thus, as far as
the externally visible interfaces of a subsystem have been fixed, as it is done during
Architectural Design Modeling, the internal decomposition of the different subsystems
may then be developed independently during Detailed Design Modeling. Because of
this, the Design UML Model - unlike the Requirements UML Model and Analysis UML
Model - may be developed as a fragmented model, where each subsystem is specified
in a subsystem-specific model fragment, and the integration of the individual subsys-
tems is described inside a system-related model fragment. It is thus reasonable to
depict the structure of the Design UML Model along the different model fragments
that build up the overall model.

Subsystem Model-Fragment

Structural Specification of a Subsystem’s Internal Decomposition The initial con-
tribution to a subsystem-specific model fragment is of course added via the Initial and
Consolidated Structural Subsystem Design Diagrams. That is, as depicted by Figure
7.3, a Component representing the subsystem, as well as externally visible Ports with
their respective Types, being modeled as Classes, are created this way, as well as
the internally composed Parts, owned by the subsystem Component. Even while the
Consolidated Structural Subsystem Design Diagram is developed as a revision of the
Initial Structural Subsystem Design Diagram, its detail level is conceptually the same,
in a sense that the same kind of UML model elements are contributed.

Structural Specification of a Subsystem’s External Interfaces While Types for
the internally composed Parts are not developed before Detailed Design Modeling,
the specification of Classes as Types for the identified Ports is already done during
Architectural Design Modeling. The reason for this is that they are needed to specify
the required and provided Interfaces, which are exposed by a Port. Those In-
terfaces, together with the Operations that they comprise, are contributed via the
Initial and Consolidated Structural Subsystem Interface Design Diagrams, as depicted
as well by Figure 7.3. As in case of the Initial and Consolidated Structural Subsystem
Design Diagrams, the Consolidated Structural Subsystem Interface Design Diagram

118

is a revision of the Initial Structural Subsystem Interface Design Diagram. In contrast
to above mentioned diagrams however, additional artifacts are contributed by the con-
solidated revision of the diagram, namely Parameters of Operations together with
their respective Types, which are mostly Data Types.

The fact that an Interface is exposed as required or provided by a Port is deter-
mined in this context, by whether the Port’s Type specifies an Interface Realiza-
tion, as outlined in Figure 7.3, or Usage (not depicted in Figure 7.3) towards the
respective Interface. It has to be emphasized that - to achieve the goal of com-
plete self-encapsulation - all Interfaces have to be modeled from the viewpoint of
the individual subsystem, so that the specified Interfaces are also directly contained
by the subsystem Component, and no Interfaces of other subsystem-related model
fragments are referenced.

Behavioral Specification of a Subsystem’s External Interfaces The behavioral as-
pects of the externally visible properties of each subsystem are specified via the Initial
and Consolidated Behavioral Subsystem Interface Design Diagrams. Here, one or
more Protocol State Machines are developed. In case behavior that affects more
than one Port is depicted, the respective Protocol State Machine is owned directly
by the subsystem Component, as depicted within Figure 7.3. In case a single Port is
addressed, the respective Protocol State Machine is owned by the Port’s Type.
Similar to the Intra-Object Behavior Diagram, being developed during Analysis Mod-
eling, the integration between the behavioral and structural view on the subsystem’s
externally visible Interfaces is achieved by specifying Triggers for the Protocol
Transitions of the respective Protocol State Machine. Effects are not modeled
for Protocol State Machines, as defined by the UML.

Similar to the Analysis UML Model, where Signals and respective Receive Sig-
nal Events and Send Signal Actions are used to integrate the different behav-
ioral views, Operations and respective Receive Operation Events are uses ac-
cordingly to integrate the behavioral protocol of the subsystem’s Interfaces with
their structural specifications. Note that according to the UML, an Operation may be
used to depict both, a synchronous call as well as an asynchronous one. As the mes-
sages arriving at a subsystem are specified as Operations in its provided Interfaces,
those Operations can be directly referenced, and Signals, which were used in the
Analysis UML Model for this purpose, do not have to be modeled within the Design
UML Model. As far as messages arriving at a subsystem’s provided Interface occur
as Triggers for a Protocol Transition within such a Protocol State Machine,
a respective Receive Operation Event is modeled, referencing the respective Op-
eration of the Interface, as depicted exemplarily within Figure 7.3.

Behavioral Specification of a Subsystem’s Internal Decomposition The specifi-
cation of the internal behavior of each subsystem, as captured via the Initial and Con-
solidated Behavioral Subsystem Design Diagrams, is basically achieved by adding
respective Interactions as Owned Behavior to the subsystem Component. Life-

119

lines are used to represent the internally composed Parts as well as Ports of the
subsystem. That is, in difference to those sequence diagrams, being developed during
Analysis Modeling, Lifelines now specify a certain Property, which they represent,
and Messages reference a corresponding Connector.

Messages arriving at a Port from the external environment of the subsystem are de-
noted by a formal Gate, from which a Message is then modeled to the Lifeline that
represents this Port. All Messages arriving at a Port, even if originating from within
the internal decomposition of a subsystem, have to specify respective Send Oper-
ation Events and Receive Operation Events to refer to the corresponding Op-
eration of the Port’s exposed Interfaces. Those Send Operation and Receive
Operation Events are specified as Events of the Message Occurrence Speci-
fications, which in turn serve as Message Ends of the Messages, as outlined by
Figure 7.3. This is similar to what was modeled via the Inter-Object Collaboration
Diagrams during Analysis Modeling in terms of Send Signal Events and Receive
Signal Events. For those Messages however, targeting a Lifeline of an internal
Part, this is not possible to refer to a corresponding Operation, as the Types of
those Parts are not designed earlier than during Detailed Design Modeling. It has
to be pointed out that this indeed is a violation of the well-formedness rules (i.e. the
static semantics) of the UML (each Message Occurrence Specification indeed
has to specify an Event, and each Send Operation Event and Receive Operation
Event indeed has to reference a respective Operation). However, it is regarded to be
only a temporal violation, as establishing those references is regarded to be subject to
the Detailed Design Modeling, so that after the execution of this task, the Design UML
Model is then consistent again.

The difference between the Initial and the Consolidated Behavioral Subsystem Design
Diagrams is similar to that between the Initial and Consolidated Behavioral Subsystem
Interface Design Diagrams. That is, arguments are additionally specified, so that the
overall detail level is increased. However, in contrast to the Consolidated Behavioral
Subsystem Interface Design Diagram, where another behavioral formalism is applied,
here Instance Values and associated Instance Specifications are used instead
of Input Pins.

Detailed Structural and Behavioral Specification of a Subsystem The Detailed
Structural Design of a subsystem’s internal decomposition is modeled in terms of
Structural Detailed Design Diagrams. Here, besides those Classes typing the Parts
of a subsystem’s internal decomposition, which were already mentioned, Associa-
tions are designed, corresponding to the Connectors being modeled via the Initial
and Structural Subsystem Design Diagrams. Their Association Ends, Properties
being referenced as Defining Ends of the related Connector Ends, are modeled si-
multaneously as Owned Attributes of the involved Classes and as Member Ends of
the respective Association.

120

Fi
gu

re
7.

3:
E

xa
m

pl
es

of
K

ey
A

rt
if

ac
ts

co
nt

ai
ne

d
in

th
e

Su
bs

ys
te

m
fr

ag
m

en
to

f
a

M
eD

U
SA

D
es

ig
n

U
M

L
M

od
el

121

The Detailed Behavioral Design is captured in terms of a State Machine or a couple
of Activities, being developed to depict internal behavior of important design ob-
jects, dependent on the concrete type of the Behavioral Detailed Design Diagram,
which is employed for this purpose. In case a State Machine is used to depict
the overall behavior of a design object, it is modeled as Classifier Behavior, i.e.
Owned Behavior of the Class designed for that object during Detailed Structural
Design Modeling. An example for this is depicted by Figure 7.3. In case one or more
Activities are employed to describe certain behavioral aspects, they are modeled as
Methods, i.e. behavioral specifications, of the Classes’ Owned Operations.

Further integration between the structural and behavioral specifications of an individ-
ual design object is achieved by referencing structural and behavioral features of the
respective Class from within the State Machine or Activity. Receive Opera-
tion Events and Call Behavior Actions may for example be used as Triggers
and Effects of Transitions within a State Machine, referencing respective Oper-
ations. Read Object Link End Actions may be employed to access the Struc-
tural Features of an Operation’s owning Class in case an Activity is used. It
may however also be the case that no further integration is modeled, which holds for
example if Opaque Behaviors are used to specify detailed behavior (e.g. as Trig-
gers or Effects of Transitions within a State Machine).

System Model-Fragment

The system-related model fragment, whose structure is exemplarily depicted by Figure
7.4, basically contains those artifacts needed to integrate the different subsystems to
an overall system. Its central element, directly contained by the root Model, of course
is a representation of the system itself, for which purpose a Component is employed.
Subsystems are represented by different model elements, dependent on whether the
structural or behavioral view on the system is depicted.

Structural Specification of System Decomposition From a structural perspective,
as it is captured by the Structural System Architecture Diagram, which is a UML com-
ponent diagram, the system is regarded to be a composite structure, where subsystems
are thus represented as composed Properties, that is Parts. This is very similar
to how the internal decomposition of each subsystem is modeled by means of Ini-
tial and Consolidated Structural Subsystem Design Diagrams. The only difference is
that there Properties represented objects, while here indeed subsystem instances, are
represented.

Accordingly, structural relationships are depicted by means of Connectors between
the respective Properties. In difference to the Initial and Consolidated Structural
Subsystem Design Diagrams, which developed as UML composite structure diagrams,
here Connectors are explicitly denoted as assembly or delegation Connectors (via
the Connector Kind). They are thus differently represented in the diagrams as well
(the so called ball-and-socket notation is employed for assembly connectors to de-

122

pict that the relationship is established via the provided and required interfaces of the
subsystem Components, as shown in Figure 6.27). Similar to the internal decompo-
sition of a subsystem, Associations are developed as Types of the Connectors. In
contrast to those Associations, being developed as part of the Detailed Structural
Design however, all Association Ends are directly owned by the Association it-
self and not by the Port’s typing Classes. The reason for this is that to preserve
self-encapsulation of the subsystems, a direct reference of a Port’s Class to that of
another subsystem’s Port’s Type is not desirable.

The integration between the system-specific and subsystem-specific model fragments
is realized via those Parts, which serve as representation of the subsystems in the
system’s internal decomposition. Being Typed Elements, those Parts refer to the
subsystem Component, they represent, as their Type. Further, as depicted by Figure
7.4, all Connectors, being established between those Parts indeed refer to the re-
spective Ports of the represented subsystem as involved Roles.

Behavioral Specification of System Decomposition The behavioral view on the
system architecture, as developed by means of the Behavioral System Architecture
Diagram, basically contributes those artifacts related to UML sequence diagrams, i.e.
Interactions, Lifelines, and Messages, similar to the Initial and Consolidated
Behavioral Subsystem Design Diagrams.

As in case of the Initial and Consolidated Behavioral Subsystem Design Diagrams and
the Initial and Consolidated Structural Subsystem Design Diagrams, integration with
the structural view is realized by specifying the represents properties of the Life-
lines to refer to those Properties, representing the subsystem (instances), and by
establishing references of all modeled Messages to those Connectors, via which they
are exchanged. Further, integration towards the subsystem specific model fragments is
achieved by referencing the Operations, being defined by the provided and required
Interfaces of the subsystem Component’s Ports, via Send Operation Events and
Receive Operation Events from the message Ends (which are specified by means
of Message Occurrence Specifications), as depicted by Figure 7.4.

In contrast to the Initial and Consolidated Behavioral Subsystem Design Interfaces,
Gates are not represented within the Behavioral System Architecture Diagrams. The
reason for this is that all Triggers are encapsulated by respective trigger objects,
which are composed by the different subsystems, so that on the system level, all be-
havior actually originates from a respective subsystem (as there is no need for any
external triggers).

123

Figure
7.4:

E
xam

ples
of

K
ey

A
rtifacts

contained
in

the
System

fragm
entof

a
M

eD
U

SA
D

esign
U

M
L

M
odel

124

7.2 MeDUSA UML Profiles

As stated before, MeDUSA, and ViPER, its supporting tool, which is introduced in de-
tail in the following chapter, are based on the UML as their underlying modeling lan-
guage. Having originated from a unification of the OOSE, OMT, and OOD notations,
the UML pretty much covers all basic concepts needed by the class-based MeDUSA
method. However, the UML is not unrestrictedly applicable as notation for MeDUSA.
By having originated from object-oriented approaches, where structural modeling was
indeed pretty much performed on the level of classes, the UML was designed around
the classifier3 concept, and classifier instances - such as objects - are represented dif-
ferently dependent on the respective structural or behavioral formalism that is applied,
as properties, instance specifications, lifelines, input pins, output pins, or even others.

The result is a discrepancy in concepts between the instance-driven MeDUSA method
and its underlying Classifier-based notation. Objects, which are more or less the cen-
tral concept within MeDUSA are not directly mapped to a single UML concept, so
that within MeDUSA’s UML models they have to be represented by various model-
ing elements of different kinds. However, as repeatedly laid out, a methodology is
only formed, if method(s), language(s), and tool(s) are seamlessly integrated by com-
mon concepts. What contributes to this as well is that the classification of actors and
objects according to the MeDUSA Actor Taxonomy and MeDUSA Object Taxonomy re-
spectively, can also not be adequately represented by the UML, as it does of course not
reflect those MeDUSA specific categorizations. An extension of the UML by means
of its build-in profile extension mechanism, thus is the best option to overcome these
unattractive problems and guarantee a seamless integration.

A Profile defines a set of Stereotypes, which can be used to stereotype, i.e. clas-
sify, model elements (one speaks of the stereotype to be applied). Formally, a stereo-
type is defined as ”a kind of [Meta-]Class that extends [Meta-]Classes through Ex-
tensions” [OMG07d]. That is, if a stereotype is defined to extend a meta-class, (an
instance of) the stereotype can be applied to any instance of the respective meta-class.
Stereotypes can further contain attributes, whose instance values are then referred to
as tagged values. The major benefit of the profile extension mechanism is that it is
a lightweight mechanism, which can be applied without loosing standard conformity.
That is, because - in difference to the mechanisms offered by the Meta-Object Facility
(MOF) [OMG06b] [OMG07c], used for the definition of the UML meta-model itself,
the profile extension mechanism is not a ”first-class extension mechanism”. That is it
”does not allow for modifying existing metamodels”, but is more understood to be ”a
straightforward mechanism for adapting an existing metamodel with constructs that
are specific to a particular domain [..]” [OMG07d]. UML models, to which a profile
is applied, can thus still be developed with standard UML tools, while certain domain
specific tools can extract and process the information, additionally kept in the model.

3Classifier is a super concept of Class and denotes a ”classification of instances” (cf. [OMG07d]).

125

Besides better aligning the concept worlds of MeDUSA and the UML, the definition
of MeDUSA specific UML profiles thus further allows to populate MeDUSA UML
models with all additional information, which are needed for example for the real-
time analysis that is continuously performed throughout the method, as well as with
information, being additionally needed as input to a code generation tool.

7.2.1 Requirements UML Profile

As outlined before, the MeDUSA Requirements UML Profile, depicted by Figure 7.5,
serves the primary purpose of reflecting the MeDUSA Actor Taxonomy, in order to
enable modeling of non-functional timing and concurrency constraints, which are not
expressible by means of the UML4. It thus defines an Actor Stereotype, which is
specialized according to the MeDUSA Actor Taxonomy into Trigger, Interface,
and Constraint Actor stereotypes.

In case of Trigger Actors, which are the single initiators of use cases and may never
occur as secondary actors, it is reasonable to specify details about the timely occur-
rence of triggers. That is, in case of Timer Actors, a period may be specified, and
further, whether the timing events occur only singular or on a regular basis (acyclic
vs. cyclic). For Eventer Actors a minimum inter-arrival time of two adjacent events
or a maximum arrival rate may be specified, in case the events occur in a bounded
or bursty manner. If the occurrence of events is only describable by some statistical
function, it is regarded to be unbounded. In case it cannot be anticipated at all, it is
denoted as irregular. As a Trigger Actor may be the initiator of several associated
use cases, priorities and deadlines of the triggered behavior are formalized by means
of an Initiation stereotype, which is applied to each association between a Trigger
Actor and related use cases.

Interface Actors in turn never occur as primary actors, as laid out before. They
represent resources, which are accessed by one or more use cases. In case a hardware
device or software system, which is represented as an Interface Actor, can only be
accessed in a mutually exclusive way, this can be reflected by a respective tagged value
within the corresponding stereotype. In either case, as it is reasonable to denote the
duration of access that is attributed to a respective use case, an Access stereotype is
defined, which has to be applied to all associations between use cases and Interface
Actors.

To specify concurrency constraints in terms of synchronization or interference of con-
currently executing use cases, a Constraint Actor may be employed. As depicted
within Figure 7.5, such an actor may be denoted to depict a synchronization between
two concurrently executed use cases in terms of some bidirectional communication, or
some sort of message or data transfer (send/receive, produce/consume, or write/read),
which may cause some synchronization or interference between the affected use cases
(cf. [Rit08]).

4Neither the UML itself nor the upcoming UML Profile for MARTE [OMG07a] offer respective
expressiveness, as sketched in [NL07b]

126

Fi
gu

re
7.

5:
M

eD
U

SA
R

eq
ui

re
m

en
ts

Pr
ofi

le

127

Besides having the possibility to specify and document respective real-time related
requirements within a Requirements UML Model, the Requirements UML Profile fur-
ther enables the execution of a Preliminary Real-Time Analysis, as proposed by the
homonymously named MeDUSA discipline. For such an analysis, the execution time
of each use case, i.e. the worst case execution time of all scenarios subsumed by it, has
to be estimated and specified. A real-time analysis may then be performed as described
within Section 6.2.2.6 (compare also [Rit08]).

7.2.2 Analysis UML Profile

Similar to how the MeDUSA Requirements UML Profile supports the classification
of actors as specified by the MeDUSA Actor Taxonomy, the Analysis UML Profile
supports the classification of objects according to the MeDUSA Object Taxonomy by
specifying a corresponding hierarchy of Object stereotypes, which is depicted by Fig-
ure 7.6.

Figure 7.6: MeDUSA Analysis Profile

As there is - due to above outlined discrepancy in concepts between MeDUSA and the
UML - no singular concept to represent an analysis object within an Analysis UML
Model, the Object stereotype defines extensions to those UML meta-classes, which
are used to depict objects within MeDUSA UML models, namely instance specifica-
tions, properties, input pins and output pins. To clarify that signals are used within a
MeDUSA Analysis UML Model to denote messages, a respective Message stereotype
is defined by the profile for the sake of clarity.

In contrast to the Requirements UML Profile, where a Constraint Actor stereotype
is provided to address synchronization and interference issues, those issues are now
addressed by means of respective messages. That is, reply messages, as subsumed

128

by a Rendezvous Actor can now be explicitly modeled as messages. To be able to
specify the initiation of concurrently executing behavior and to denote shared access
to resources, respective Initiate and Access Message stereotypes are nevertheless
supported.

As the Analysis UML Profile has to enable an Interim Real-Time Analysis, execution
times have to be provided as well. However, braking down the overall estimation for
the Use Cases, they may now be attributed to individual Messages.

7.2.3 Design UML Profile

Similar to the MeDUSA Analysis UML Profile, the primary objective of the MeDUSA
Design UML Profile is to support the classification of design objects according to the
MeDUSA Object Taxonomy.

Figure 7.7: MeDUSA Design Profile

As indicated by Figure 7.7, unlike analysis objects, design objects are represented
by properties (within the Structural Subsystem Design Diagram) rather than instance
specifications. While design objects are further represented by lifelines within the Be-
havioral Subsystem Design Diagrams, the corresponding Object stereotype does not
have to extend the UML meta-class Lifeline, as all lifelines specify a corresponding
property, which they represent, and to which in turn the stereotype may be applied.
That is, the property itself rather than the Object stereotype serves to integrate the
different representations (within the Analysis UML Model this is objective of the re-
spective Object stereotype, as properties are not specified within it). As messages
are represented by operations within a Design UML Model, the respective Message
stereotype is accordingly defined as an extension to the meta-class Operation rather
than the meta-class Signal, as it is the case within the Analysis UML Profile.

129

Besides this, the Design UML Profile pretty much reflects the same properties than
the Analysis UML Profile, as far as information, relevant to a Consolidated Real-Time
Analysis is concerned. This is because both, the Interim as well as the Consolidated
Real-Time Analysis, are technically performed in the same manner, only differentiated
by the accuracy of the estimated values, which are used within the computations.

7.3 MeDUSA UML-to-ANSI-C Code Generation Schema

Only few methodical approaches explicitly address the transformation of models into
source code. COMET [Gom00] for example, the direct predecessor of MeDUSA, does
not address code generation at all. Similarly ROOM, the second major influencing
approach, only provides a small example on how the implementation of a ROOM
model may be performed within C++ [SGW94]. In fact, as far as publications related to
model-based code generation can be found, they can mostly be related to the technical
documentation of some modeling tool or some technical code generation framework.
As a profound methodological integration between todays available methods and tools
can mostly not be found (cf. Section 3.4), a discrepancy between what is offered
by currently available modeling tools in terms of code generation and what is actually
required from the viewpoint of the employed development method, is often observable.

In the context of UML-based ANSI-C code generation, as it is addressed within this
methodology, the major problem is not only above quoted discrepancy, but indeed the
fact, that the respective ANSI-C target language is to the very most extend simply not
regarded at all by most of the available UML modeling tools. Java and C++ are the
predominant programming languages, which have to be covered from a marketing per-
spective, and ANSI-C indeed seems to be of interest only in some marginal domains
(even if the state-of-the-practice, as quoted within Section 3.3 seems to speak another
language). In fact, out of the set of currently available commercial UML modeling
tools, those actually supporting the generation of ANSI conformant C code, may just
be a fistful. Telelogic’s top dog Rhapsody in C has to be named, and Poseidon Em-
bedded Edition, a tool jointly developed by Gentleware and Method Park may also be
quoted as a positive example with its built-in OO>C code generator. However, besides
the two, there does not seem to be much that is worth to be mentioned (cf. [FNL08]).

Having the defined goal of methodological integration and completeness, it is clear
that within the MeDUSA-ViPER methodology, code generation has to be explicitly ad-
dressed in a way that no discrepancy between method and supporting tool, but instead
a close integration is resultant. From a logical viewpoint, this involves the definition
of a code transformation schema, which adequately reflects MeDUSA’s requirements.
From a technical perspective, it subsumes the realization of respective code generation
tool as part of ViPER. While the latter will be accordingly addressed within the con-
text of the ViPER tool in Chapter 8, the logical transformation schema, which is based
on the code generation schema underlying the OO>C code generator (cf. [Gei02] and
[Gen05]), as well as on own experiences (cf. [Fun06] and [Kev07]), will be outlined
in the following.

130

7.3.1 General Transformation Strategy

The logical transformation of UML design models into ANSI-C source code may con-
ceptually be regarded to involve two main concerns. On the one hand, the (possibly
context dependent) transformation of UML model elements into syntactical ANSI-C
language elements has to be addressed, and on the other hand, the logical organiza-
tion of the resulting syntactical language elements into translation units, i.e. source
code files. A seamless transition, as it is intended here, has to ensure that traceabil-
ity is preserved in terms of both aspects. That is, a developer has to be enabled to
easily follow the logical mapping of the individual model elements to syntactical lan-
guage constructs, and it furthermore has to be ensured that the resulting source code
fragments can be easily located within the translation unit structure.

Concerning both aspects, a general conformity between the Type concept, which is
incorporated into both languages, can be taken advantage of. That is, within a UML
input models, classifiers (which are actually types), as components, classes, interfaces,
or associations, as well state machines, or interactions are the central model elements,
around which a transformation may be logically organized. Transforming each classi-
fier, contained in a Design UML Model, into a corresponding ANSI-C type, these types
may then be also chosen to infer the logical organization of the resulting translation
units.

While transforming classifiers into types seems to be a quite straightforward approach
from a broad perspective, the specification of a generally applicable concrete transfor-
mation strategy, which is suited for arbitrary UML input models is a hard and tedious
work, due to the overall expressiveness and complexity of the UML. Even when lim-
iting transformation to a certain subset of classifiers, e.g. to the structurally relevant
ones, as done in [Fun06], a generic transformation approach is only hard to manage.
That is, due to the large number of different usage scenarios, a classifier may be em-
ployed in, either the transformation gets arbitrary complex, as it has to handle a lot of
distinct cases, or the resultant source code gets quite complex, in case it is intended to
be unaware of a concrete usage scenario and thus generally applicable. If for example
the source code for a class is intended to be generated independent on certain assump-
tions about its usage in a respective input model, it has to reflect that a class may be
used as simple type of an attribute or operation parameter, as type of a port, or even as
a structured and encapsulated classifier with a complex internal structure.

Nevertheless, as the structure of a MeDUSA Design UML Model has been clearly
defined (cf. Section 7.1), a transformation strategy may take this into account, so
that neither the transformation schema, nor the resultant source code gets unnecessary
complex. That is, by reflecting only the applied usages of classifiers within a MeDUSA
Design UML Model, the transformation strategy may be restricted so that it is easier
to understand and manage, and the resultant generated source code in turn gains an
enhanced quality in terms of readability as well as performance, because it does not
have to preserve a general applicability.

131

7.3.2 Classifiers within a MeDUSA Design UML Model

As already stated before, the code generation may be organized around the classifiers,
which are employed in a MeDUSA Design UML Model. As a starting point, Figure
7.8 outlines all classifiers5 defined by the UML, and highlights those, which are used
in the context of a MeDUSA Design UML Model.

Out of these, the concrete (i.e. non abstract) classifiers that have to be transferred are:
• Primitive Type

• Enumeration

• Data Type

• Class (from Kernel, from Com-
munications)

• Interface

• Association

• Component

• State Machine

• Protocol State Machine

• Activity

• Interaction

• Opaque Behavior

The differentiation of the class concept into its three merge increments, as they are
defined within the UML language units Structures, Communications, and Compos-
ite Structures, is of course artificial, as these increments are only used internally for
the definition of the single Class concept, which then subsumes the properties and
characteristics of all three. However, the transformation of the internal structure and
the externally visible properties of a structured and encapsulated (structured) class re-
quires a dedicated transformation, which is avoidable in case of a non-structured class,
whose transformation is pretty much comparable to that of a simple data type, only
that additional information from potentially specified owned behavior has to be evalu-
ated. As within a MeDUSA Design UML Model, (structured) classes are never used,
as in fact, components are the single structured and encapsulated classifiers employed
by the method, having the possibility to refer to non-structured classes explicitly, as
done in the following, thus helps to simplify the explanation of the transformation
significantly.

According to the comments provided in Section 7.1.3, within a Design UML Model
above mentioned classifiers are used as depicted by Table 7.1. The list of course
implies that a classifier is not used in different contexts simultaneously, which is a
reasonable assumptions in case of a MeDUSA Design UML Model. The usage of a
(non-structured) class as the type of a part within a subsystem’s internal decomposition
and at the same time as the type of a port for example, is neither necessary nor practi-
cal. The herein presented transformation strategy is thus based on the assumption that
classifiers are only used in one of the outlined usage scenarios at a time.

5As the definition of the UML meta-model is heavily based on the concept of Package Merge, which
- according to [OMG07d] - is ”a directed relationship between two packages that indicates that the con-
tents of the two packages are to be combined [...] in the sense that the source element conceptually adds
the characteristics of the target element to its own characteristics resulting in an element that combines
the characteristics of both.”, Figure 7.8 also outlines the individual merge increments of a respective
Classifier.

132

Fi
gu

re
7.

8:
U

M
L

C
la

ss
ifi

er
s

H
ie

ra
rc

hy
,a

cc
or

di
ng

to
[O

M
G

07
d]

133

Component • Specification of the system, singleton Structured and Encapsulated
Classifier with internal structure and explicit external interfaces, di-
rectly contained by the system model fragment

• Specification of a subsystem, singleton Structured and Encapsu-
lated Classifier with internal structure and explicit external inter-
faces, directly contained by the subsystem model fragment, and as Type
of a Part, representing a subsystem (instance) in the internal decompo-
sition of (Non-Structured)the system Component

(Non-Structured)
Class

• Type of a Part, representing an object in the internal decomposition of
a subsystem Component

• Type of Port, to specify (part of) the external interface of a subsystem
Component

• Type of an Attribute or Operation Parameter

Interface • Exposed required or provided Interface of a Port, i.e. realized or
used interface of a Port’s typing (Non-Structured) Class

Association • Type of a Connector in the internal decomposition of a subsystem Com-
ponent, i.e. between (Non-Structured) Classes used as types of
internally composed Parts and Ports

• Type of a Connector in the decomposition of the system Component

Primitive Type, Enu-
meration, Data Type

• Type of an Attribute or Operation Parameter

Protocol State Ma-
chine

• Owned Behavior of a subsystem Component or a Port’s typing (Non-
Structured) Class, as behavioral specification of (parts of) the exter-
nally visible interfaces of a subsystem Component

Interaction • Owned Behavior of a system or subsystem Component, as behavioral
specification of its decomposition

State Machine, Activ-
ity

• Owned Behavior of a Part’s typing Class, as specification of (inter-
nal) object behavior.

Opaque Behavior • Effect of a Transition in the State Machine based specification of
(part of the) object behavior.

• Behavior of Call Behavior Action in the Activity based specifi-
cation of (part of the) object behavior.

Table 7.1: Usage of Classifiers within a MeDUSA Design UML Model

134

7.3.3 Generating Folders and Translation Units

As already stated in [Fun06], it is practical to arrange the generation of a file system
folder structure according to the coarse structure of the input model itself, as this way,
ANSI-C representations of the UML model artifacts can be easily identified. As it
can be inferred from the instance specifications provided in Section 7.1, a MeDUSA
Design UML Model usually manifests itself as a set of components, representing the
system as well as its subsystems, which are either contained in an integrated, single
model file or within a set of distributed model fragments. Note that in either case,
a direct containment relationship between the system component, which is in either
case contained by the root model, and the subsystem components is not established,
as the logical containment between the system and its subsystems is indeed modeled
indirectly by specifying a composite internal structure for the system in terms of parts,
which are typed by the respective subsystem components (cf. Figure 6.27). As the
coarse structure of a Design UML Model is thus organized along the set of system and
subsystem components, and as those components - in their role as packaging compo-
nents - directly or indirectly contain all other elements, a file system folder structure
may be best organized along the contained components.

Figure 7.9: General Transformation of Classifiers into Translation Units

Based on it, all classifiers, including above mentioned components, but with the excep-
tion of primitive types and enumerations, which can be directly mapped to respective
ANSI-C constructs, may then be transferred into a set of three translation units, con-
taining the declaration of a respective ANSI-C type, related functions and macros (cf.
[Gen05] and [Gei02]).

As depicted by Figure 7.9, those are a forward declaration file (_fdef.h), a header
file (.h), and a source file (.c). The header file contains the declaration of the ANSI-C
type, the classifier is transformed into, as well as the declaration of related macros and
functions. The forward declaration file contains a forward declaration of the respective
type, which is needed in case a recursive reference is required within its declaration.
The source file finally contains the implementation of all functions, which of course
depends on the respective classifier that is transformed and will thus be outlined indi-
vidually in the following.

In this context, it has to be mentioned that, while the generation of a file system
folder structure along the contained components is basically pretty much straight for-
ward, the namespace-related characteristics of a component, namely the ability to pro-
vide a means for resolving composite names for its contained named elements (cf.

135

[OMG07d]), cannot be preserved, due to a lack of the concept in the ANSI-C language.
Therefore the names of all syntactical ANSI-C elements have to be a fully qualified
names, being prefixed by the concatenated names of all enclosing namespaces.

7.3.4 Generation of Syntactic Elements

The generation of syntactical ANSI-C language elements for the respective classifiers
will be investigated in detail in the following. While it has already been mentioned
that primitive types and enumerations somehow play an outstanding role within the
transformation, what is why their transformation is addressed directly in advance, it
has to be further anticipated that indeed not all of the aforementioned classifiers are
actually transformed into a corresponding ANSI-C type. That is, due to reasons of
performance and simplicity, associations and interfaces are for example only trans-
formed indirectly, in the context of those classifiers, being affected by them. Interfaces
are thus only indirectly transformed in the context of those classes, which are used as
types of ports, associations are accordingly only transformed indirectly in the context
of the associated classes. The same holds for opaque behaviors, which are used within
a MeDUSA Design UML Model to specify guards and effects of a transition within a
state machine, or to depict a set of instructions within an activity. They also do not
have to be transferred into an own ANSI-C type but can here be transferred into code
implicitly in the context of the state machines or activity respectively.

Transformation of Primitive Types

Both, the UML as well as the ANSI-C language support the concept of primitive types,
which suggests that a transformation of UML primitive types into their ANSI-C equiv-
alents is pretty much straight-forward. However, this is not the case. In fact, the UML
supports only four predefined primitive types, namely Integer, Boolean, String,
and Unlimited Natural, which were designed for its internal use, and which thus
do not directly correspond to those primitive types of ANSI-C. Unlimited naturals are
for example not covered within ANSI-C, while concepts to represent floating point
numbers or individual characters are for instance not covered by the UML.

Therefore, using the predefined primitive types of the UML within a MeDUSA De-
sign UML Model does not seem to be appropriate, as important implementation details
could not be specified this way. Instead, as proposed by the UML specification itself,
it is desirable to ”provide [...] own libraries of data types to be used when model-
ing with the UML” [OMG07d]. What was already proposed in terms of a library of
domain specific data types when describing the structure of MeDUSA’s UML models
in Section 7.1, can thus be as well applied to the handling of primitive types. To be
concrete, a UML library as depicted in Figure 7.10, which defines UML equivalents
of the built-in ANSI-C primitive types, may be rather used during modeling, and those
primitive types, predefined by the UML, may thus be omitted.

136

Figure 7.10: ANSI-C Primitive Types UML-Library

The transformation of those primitive types, defined by above sketched library is then
pretty much straight-forward. In fact, as all these primitive types actually directly
correspond to built-in ANSI-C types, no generation of types is needed at all. Instead,
the name of the type only has to be used when generating the ANSI-C representation
of each typed element, that is attribute, operation, or parameter, which specifies it.

Transformation of Enumerations

As the ANSI-C language supports enumeration constants, mapping enumerations
is pretty much straight-forward. That is, as denoted by Figure 7.11b for the Pro-
cessValueOutputMode example depicted by Figure 7.11a, an enumeration may be
directly transformed into a respective enum declaration, where all UML enumeration
literals are directly mapped to corresponding enumeration values.

(a) Instance Specification: Enumeration with Owned Literals

Figure 7.11: Example - Transformation of Enumeration

Because no recursive declaration is allowed and because no additional definitions are
subsumed by the transformation of an enumeration, a forward declaration and source
file, as generally needed for all other classifiers, is indeed not needed in case of an
enumeration, so they play a rather outstanding role to this extend.

137

/***
* File: ProcessValueOutputMode.h
***/
...

/* Enumeration Declaration */
enum CurrentOutput_ProcessValueOutputMode {
4-20-Mode,
4-12-20-Mode

};

...

(b) Generated Code: Corresponding Struct Declaration

Figure 7.11: Example - Transformation of Enumeration

General Transformation of Data Types and (Non-Structured) Classes

The ANSI-C equivalent chosen for all classes and data types, as well as for all other
classifiers, is a struct, whose name has to match the fully qualified name of the
classifier. In case of the Coordinator example Class, depicted by Figure 7.12a, a
struct could for instance be generated as depicted by Figure 7.12b.

(a) Instance Specification: Simple Class with Attributes and Operations

Figure 7.12: Example - Transformation of Data Type and (Non-Structured) Class

The creation and destruction of struct instances is realized - inspired by how its is
done in the context of object-oriented languages - by dedicated constructor and de-
structor functions, which are parameterized for this purpose with a respective struct
pointer, as depicted by Figure 7.12b. Even if not explicitly specified, a classifier is
assumed to have at least an implicit default constructor and destructor, so respective
functions are always created together with the struct declaration.

138

/***
* File: Coordinator_fdef.h
***/
...

/* Classifier Struct Forward Declaration */
struct _CurrentOutput_Coordinator;

#define Example_System_CurrentOutput_Coordinator \
struct _CurrentOutput_Coordinator

...

/***
* File: Coordinator.h
***/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_Coordinator {
...

};

/* Constructors and Destructors */
void CurrentOutput_Coordinator_create(CurrentOutput_Coordinator* self);

void CurrentOutput_Coordinator_destroy(CurrentOutput_Coordinator* self);

...

/***
* File: Coordinator.c
***/
...

void CurrentOutput_Coordinator_create(CurrentOutput_Coordinator* self) {
...

}

void CurrentOutput_Coordinator_destroy(CurrentOutput_Coordinator* self) {
...

}

...

(b) Generated Code: Corresponding Struct and Constructor & Destructor Function Declarations

Figure 7.12: Example - Transformation of Data Type and (Non-Structured) Class

Within the declaration of the struct, the attributes of a classifier are directly trans-
formed into nested declarations of struct members, as depicted by Figure 7.12c.
While the type and multiplicity of the attributes can be directly represented by declar-
ing an array member of a corresponding type, the visibility of an attribute cannot be
directly transferred, as access to the members of a struct is always public. It can thus
only be emulated by some sort of usage convention. That is, for each attribute that is
publicly visible6, a respective selector function can be defined, which - by convention
- guards access to the property. That is, all attributes should only be accessed via the
respective selector function and not directly by accessing the struct.

The transformation of the classifier’s operations is done in a straight-forward manner
by transferring them into respective functions, as shown in Figure 7.12d. In contrast to
object-oriented programming languages, where the encapsulation principle is directly
incorporated into the class concept, so that operations and related variables are en-

6A clean differentiation of the different UML defined visibility kinds, i.e. public, protected, package,
or private is not realizable, so all attributes of other than private visibility are regarded to be public

139

/***
* File: Coordinator.h
***/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_Coordinator {
/* Owned Attributes */
PhysicalQuantities_ElectricCurrent actualCurrent[1];
...

};

/* Attribute Selectors */
PhysicalQuantities_ElectricCurrent*
CurrentOutput_Coordinator_actualCurrrent(CurrentOutput_Coordinator* self);

...

/***
* File: Coordinator.c
***/
...

/* Attribute Selectors Implementation*/
PhysicalQuantities_ElectricCurrent*
CurrentOutput_Coordinator_actualCurrent(CurrentOutput_Coordinator* self) {
return *self->actualCurrent;

}

...

(c) Generated Code: Member and Selector Function Declarations, corresponding to Owned Attributes

/***
* File: Coordinator.h
***/
...

/* Owned Operations */
ERROR_CODE CurrentOutput_Coordinator_outputProcessValue(
CurrentOutput_Coordinator* self,
PhysicalQuantities_PercentageFlow inPercentageFlow);

ERROR_CODE CurrentOutput_Coordinator_outputAlarm(
CurrentOutput_Coordinator* self,
Diagnostics_Alarm inAlarm);

...

/***
* File: Coordinator.c
***/
...

/* Owned Operations Implementation */
ERROR_CODE CurrentOutput_Coordinator_outputProcessValue(
CurrentOutput_Coordinator* self,
PhysicalQuantities_PercentageFlow inPercentageFlow) {
...

}

ERROR_CODE CurrentOutput_Coordinator_outputAlarm(
CurrentOutput_Coordinator* self,
Diagnostics_Alarm inAlarm) {
...

}

...

(d) Generated Code: Function Declarations for Owned Operations

Figure 7.12: Example - Transformation of Data Type and (Non-Structured) Class

capsulated in a single unit, in the context of a procedural programming language as
C, functions and related variables are pretty much unrelated. As a consequence, each

140

generated function has to be parameterized with the struct instance, whose data
is being accessed, as only thereby the context of the function call can be clearly
determined. Each non static Operation is thus transformed into a function, which
defines its owning Classifier’s struct representation as a first parameter. All other
parameters of the corresponding function are then created to match those of the rep-
resented Operation. In case of non primitive Parameter Types, pointers have to
be used, as shown in Figure 7.12d, as a call-by-reference concept is not supported
in other cases, and parameters would otherwise be passed in by-value instead. Simi-
lar to attributes, the visibility of an operation cannot be adequately represented within
ANSI-C. However, a differentiation of public and private operations can be realized by
declaring the corresponding functions within the header file or source file respectively,
again treating all non-private operations implicitly as public.

The transformation of classifiers usually also leads the generation of a number of pri-
vate as well as technically motivated support functions, which are actually not ac-
counted as part of the transformed classifier’s public interface. To overcome this, a
general programming interface that matches the classifier’s public interface, has to be
offered. A facade, which only contains the interface related functions and hides all
technical support functions, as well as those functions, representing non public opera-
tions, is desirable. As outlined by Figure 7.12e, such a facade can be easily realized as
a macro facade (cf. [Gen05] and [Gei02]), which consists of macro definitions, serv-
ing as shortcuts to the publicly visible functions, and thus ensures that no resources
are wasted, as the pre-processor will replace each macro usage with the respective
call to the referenced public function. The macros can be generally split into three
groups, namely shortcuts to the constructors and destructors, which are prefixed CRE-
ATE and DESTROY, shortcuts to the selectors of the public attributes, being prefixed as
ATTRIBUTE, as well as shortcuts to the public operations, prefixed as OPERATION.

/***
* File: Coordinator.h
***/
...

/* Macro Facade */
#define CREATE_CurrentOutput_Coordinator(self) \
CurrentOutput_Coordinator_create(self);

#define DESTROY_CurrentOutput_Coordinator(self) \
CurrentOutput_Coordinator_destroy(self);

#define ATTRIBUTE_CurrentOutput_Coordinator_actualCurrent(self) \
CurrentOutput_Coordinator_actualCurrent(self);

#define OPERATION_CurrentOutput_Coordinator_outputProcessValue(self, inPercentageFlow) \
CurrentOutput_Coordinator_outputProcessValue(self, inPercentageFlow)

#define OPERATION_CurrentOutput_Coordinator_outputAlarm(self, inAlarm) \
CurrentOutput_Coordinator_outputAlarm(self, inAlarm)

...

(e) Generated Code: Macro Facade as Public Classifier Interface

Figure 7.12: Example - Transformation of Data Type and (Non-Structured) Class

141

Additions for (Non-Structured) Classes typing Parts, Implicit Transformation of
Associations as Part of a Subsystem’s Internal Decomposition

In contrast to those classes, which are used as types of simple attributes or operation
parameters, those used to type parts within the internal decomposition of a subsystem
component, which do thus indeed represent objects and not just simple values, further-
more have to reflect that their instances are structurally related to other parts or ports.
In correspondence to the general transformation principles, which were outlined be-
fore, those associations, which are used as types of connectors within a subsystem’s
internal decomposition, are not transferred into corresponding ANSI-C types, but are
only indirectly created in the context of the respective associated classes, due to rea-
sons of simplicity and performance.

(a) Instance Specification: A Class typing a Part (Subsystem Decomposition)

/***
* File: Coordinator.h
***/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_Coordinator {
...
/* Association Ends */
CurrentOutput_ProcessValueOutputPort processValueOutputPort[1];
CurrentOutput_ActualCurrentDetermination actualCurrentDetermination[1];
...
};

...

(b) Generated Code: Member Declarations corresponding to Association Ends

Figure 7.13: Example - Transformation of (Non-Structured) Class typing Part

As depicted by Figure 7.13 in case of the Coordinator example class, this is real-
ized by adding respective member declarations, representing the respective ends of all
outgoing associations, to the struct declarations of the associated classes. The initial-
ization of these members, that is the wiring of the interconnected parts and ports, has
to be done from within the initialization of the enclosing subsystem component, and
will as such be described in detail in the context of the transformation of subsystem
components.

142

Additions for (Non-Structured) Classes typing Ports, Implicit Transformation of
External Interfaces and Associations within the System Internal Decomposition

As required interfaces are directly realized by the port’s typing class, that is the class
offers corresponding operations to that of the interface, all interface operations can be
directly transformed into respective functions within the port’s type. The implementa-
tion of these functions, as depicted by Figure 7.14, can be generated to simply delegate
all calls to either the enclosing component’s instance or to an internal part, dependent
on whether the port is a behavior port or not7.

As those classes, being used as types of ports can - as far as associations towards the
internal decomposition of the owning subsystem component is concerned - be trans-
ferred into ANSI-C code in the same manner as those classes typing parts, this can - in
case of non-behavior ports - be realized by accessing the respective struct members,
which represent outgoing association ends. In case a port is a behavior port, i.e. it
forwards any requests to its enclosing subsystem component, the class used as its type
does not have any associations to parts within the internal decomposition. In such a
case, the struct generated for the port’s typing class instead has to declare a member
to refer to the enclosing subsystem component instance.

Similar as in case of provided interfaces, all operations defined by a required interface,
have to be offered by the port’s typing class as well. While this sounds astonishing at
first, it gets rather obvious when envisioning that the ports serve as sort of a facade,
which guards all calls from the internal decomposition of a subsystem component to its
external environment, as due to this, the port’s type has to offer respective operations
that can be called from internal parts for this purpose.

While each Operation of a required Interface may thus be transformed into a func-
tion in a way similar to as it is done for Operations of a provided Interface, the
generated implementation of course has to differ, as it has to actually realize the wiring
to a respective provided Interface in the external environment of the subsystem Com-
ponent. Here, handling those associations, which are used as types of connectors
within the system’s internal decomposition in terms of above specified transformation
(using struct members to represent the association ends) would not be adequate, as
this would result in a strong coupling of the subsystem components, violating the self
encapsulation property, which is indeed critical for their reuse.

Instead, as wiring between subsystems has to be performed only indirectly in terms of
their required and provided Interfaces, the generated source code has to adequately
represent this indirection as well. That is, the implementation of each required opera-
tion has to delegate its calls to a respective target implementation of the matching pro-
vided interface, as specified within the system’s internal decomposition, thereby guar-
anteeing the needed indirection, which is necessary to preserve the self-encapsulation
property of the subsystem Component.

7According to [OMG07d], ”a port has the ability to specify that any requests arriving at this port
are handled by the behavior of the instance of the owning classifier, rather than being forwarded to any
contained instances, if any.” Such ports are referred to as Behavior Ports.

143

(a) Instance Specification: Class typing Port (Provided Interface)

/***
* File: ProcessValueOutputPort.c
***/
...

ERROR_CODE CurrentOutput_ProcessValueOutputPort_outputProcessValue(
CurrentOutput_ProcessValueOutputPort* self,
PhysicalQuantities_PercentageFlow* inPercentageFlow){
return CurrentOuput_Coordinator_outputProcessValue(self->coordinator, inPercentageFlow);

}
...

(b) Generated Code: Function Declarations corresponding to Provided Interfaces

Figure 7.14: Example - Transformation of (Non-Structured) Class typing Port (Pro-
vided Interface)

For this purpose, a set of function pointers, representing the required interface opera-
tions, as well as a pointer, referencing the target implementation of the interface, on
which the functions may be invoked, are additionally generated into the port’s typing
class, as depicted by Figure 7.15b. If these function pointers and the implementation
pointer are correctly initialized to point to the respective target implementations, which
is done in the context of the enclosing system component’s initialization and will thus
be documented in the context of transformation of components, the implementation of
the interface functions within the port’s class may then delegate their calls by using the
function pointers, as depicted by Figure 7.15b.

144

(a) Instance Specification: Instance Specification: Class typing Port (Required Interface)

/***
* File: PWMOutputPort.h
***/
...
/* Classifier Struct Declaration */
struct _CurrentOutput_PWMOutputPort {
...
/* Required Interfaces */
void* iPWMOutput;
ERROR_CODE (* iPWMOutput_outputPWMSignal)(void* iPWMOutput, PhysicalQuantities_ElectricCurrent inCurrent);
...

};

...

/***
* File: PWMOutputPort.c
***/
...
ERROR_CODE CurrentOutput_PWMOutputPort_outputPWMSignal(
CurrentOutput_PWMOutputPort* self,
PhysicalQuantities_ElectricCurrent* inCurrent){
return (self->iPWMOutput_outputPWMSignal)(self->iPWMOutput, inCurrent);

}

...

(b) Generated Code: Function Pointer and Struct Pointer Member Declarations corresponding to Re-
quired Interfaces

Figure 7.15: Example - Transformation of (Non-Structured) Class typing Port (Re-
quired Interface)

145

Transformation of Components

Within a MeDUSA Design UML Model, components are used in two ways, namely to
represent the system as well as its subsystems. While both scenarios have in common
that components are used in their role as encapsulated and structured classifiers, there
are slight differences. The system component does for example not own any ports,
as the system’s external interfaces are in fact encapsulated by respective trigger and
interface objects (subsumed as parts by a respective subsystem component). Further,
the system component’s internal structure manifests itself in terms of parts, whose
types are components, so they indeed represent subsystems rather than simple objects.
In contrast to this, subsystem components own ports, which describe their externally
visible interfaces, as well as parts, now indeed representing design objects, so they are
typed by simple non-structured classes.

Besides having to represent the composed parts and ports, which is done by means of
respective struct members, similar to as it is done with attributes in terms of non-
structured classes, the code, generated for a component thus further has to reflect that
the wiring of its composed properties is done differently, depending on whether the
component represents the overall system or just one of its subsystems. That is, as
outlined before, parts composed by a subsystem component are directly connected to
each other via their respective association ends, while parts composed by the system
component are indirectly wired via their exposed interfaces, as described before.

That is, in terms of a subsystem component, initializing the respective struct mem-
bers, representing the association ends within the ports’ and parts’ struct, have to be
initialized as depicted by Figure 7.16. In case of the system component, the situation is
comparable but yet different. Again, struct members, which represent its composed
parts, which are now component instances, have to be initialized. However, wiring now
has to ensure that the function pointers and the implementation pointer, repre-
senting the required interfaces of the components ports, have to be initialized with the
respective struct instances and functions of the respective opposite ports, which
offer the compatible provided interfaces, as outlined by Figures 7.17a and 7.17b.

146

(a) Instance Specification: Subsystem Component

/***
* File: CurrentOutput.h
***/
...

/* Classifier Struct Declaration */
struct _CurrentOutput {
/* Parts */
CurrentOutput_Coordinator coordinator[1];
...
/* Ports */
CurrentOutput_ProcessValueOutputPort processValueOutputPort[1];
...

};

...

/***
* File: CurrentOutput.c
***/
...

void CurrentOutput_create(CurrentOutput_Coordinator* self) {
/* Create Parts */
CREATE_CurrentOutput_Coordinator(&self->coordinator[0]);
...
/* Create Ports */
CREATE_CurrentOutput_ProcessValueOutputPort(&self->processValueOutputPort[0]);
...
/* Wiring */
self->coordinator[0].processValueOutputPort[0] = &self->processValueOutputPort[0];
self->processValueOutputPort[0].coordinator[0] = &self->coordinator[0];
...

}

...

(b) Generated Code: Struct Member Declarations for Parts & Ports, Wiring

Figure 7.16: Example - Transformation of subsystem Component

147

(a)
Instance

Specification:
System

C
om

ponent

Figure
7.17:

E
xam

ple
-

T
ransform

ation
of

system
C

om
ponent

148

/***
* File: ExampleSystem.h
***/
...

/* Classifier Struct Declaration */
struct _ExampleSystem {
/* Parts (Subsystems) */
CurrentOutput currentOutput[1];
MSPCommunicationInterface mspCommunicationInterface[1];
...
};

...

/***
* File: ExampleSystem.c
***/
...

void ExampleSystem_create(ExampleSystem* self) {
/* Create Parts (Subsystems) */
CREATE_CurrentOutput(&self->currentOutput[0]);
CREATE_MSPCommunicationInterface(&self->mspCommunicationInterface[0]);
...

/* Wiring (Required Interfaces) */
self->currentOutput[0].pwmOutputPort[0].iPWMOutputPort =
&self->mspCommunicationInterface[0].outputPort[0];

self->currentOutput[0].pwmOutputPort[0].iPWMOutputPort_outputPWMSignal =
&MSPCommunicationInterface_OutputPort_outputPWMSignal();

...
}

...

(b) Generated Code: Struct Member Declarations for Parts, Wiring of Parts within Constructor Imple-
mentation

Figure 7.17: Example - Transformation of system Component

149

General Transformation of State Machines

There are several possibilities to transform a state machine into respective ANSI-C
code, reaching from simple solutions using nested switch statements up to profound,
optimized solutions based on compressed function pointer tables (cf. [Gei02]).
While there are significant differences in the performance and readability of the gener-
ated source code, the basic principle behind all of them is to generate a data structure
to hold the current state of the state machine, together with a set of functions, which
represent the state machine’s transitions as well as their guards and effects.

(a) Instance Specification: State Machine

Figure 7.18: Example - Transformation of a State Machine

Based on this, a simple transformation of a state machine may thus be performed
as depicted by Figures 7.18a, 7.18b and 7.18c. That is, as with all other previously
outlined classifiers, a struct is defined, containing a member to hold the current state
of the state machine. All states, as well as all events, being referenced from triggers of
the state machine’s transitions are defined as symbolic constants within the header
file. Further, a single function is defined to trigger a transition of the state machine via
a respective event.

The actual state machine logic is captured in terms of a transition table, which might be
realized as a two-dimensional array of function pointers. It specifies which transition
can be taken in a respective state on the occurrence of a respective event by containing
a function pointer to a respective transition function (one function is created for each

150

/***
* File: ActualCurrentDetermination_InternalBehavior.h
***/

/* (Flattened) States */
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

STATE_Initialized_UseProcessValueOrAlarmCurrent 0x001
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

STATE_Initialized_UseSimulatedCurrent 0x002
...

/* Events */
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

RECEIVE_setSimulationModeEnabled 0x001
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

RECEIVE_setSimulationCurrent 0x002
...

/* Classifier Struct Declaration */
struct _CurrentOutput_ActualCurrentDetermination_InternalBehavior{
/* Current State */
int state;
...

}

ERROR_CODE CurrentOutput_ActualCurrentDetermination_InternalBehavior_onEvent(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self,
int event,
void* parameters[]);

(b) Generated Code: Macro Definitions corresponding to States and Events, Corresponding Struct Dec-
laration

Figure 7.18: Example - Transformation of a State Machine

transition), or null, if no transition is triggered by a respective event in a certain state.
The transition function being referenced in turn has to call the related guard and effect
functions and has to change the state of the state machine, if necessary. Therefore it
has to be parameterized with a pointer to the state machine struct, in which context it
is to be executed.

Querying a state machine’s current state is possible via access to the respective struct
member, declared for this purpose, similar to how an attribute may be accessed by
its generated selector function. Initialization of the state machine is performed in its
generated constructor, as in case of all other classifiers.

151

/***
* File: ActualCurrentDetermination_InternalBehavior.c
***/

/* Guards */
ERROR_CODE GUARD_1(void* parameters[]){
// inEnabled == TRUE
...

}
...

/* Effects */
ERROR_CODE EFFECT_1(void* parameters[]){
// simulated current = inCurrent;
...

}
...

/* Transitions */
ERROR_CODE TRANSITION_1(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self, void* parameters[]){
/* Check Guard */
// no guard

/* Execute Effect */
EFFECT_1(parameters);

/* Change State */
//no state change

return EVENT_CONSUMED;
}
...

ERROR_CODE TRANSITION_5(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self, void* parameters[]){
/* Check Guard */
if(!GUARD_1(parameters))
return GUARD_NOT_PASSED;

/* Execute Effect */
// no effect

/* Change State */
self->state =
CurrentOutput_ActualCurrentDetermination_InternalBehavior_STATE_Initialized_UseSimulatedCurrent;

return EVENT_CONSUMED;
}
...

/* Transition Table */
ERROR_CODE (* transitions)(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self,
void* parameters[]) [NUM_STATES][NUM_EVENTS] = {
{ TRANSITION_1, TRANSITION_2, TRANSITION_3, TRANSITION_4},
{ TRANSITION_5, TRANSITION_6, TRANSITION_7, TRANSITION_8}

}

void CurrentOutput_ActualCurrentDetermination_InternalBehavior_create(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self){
self->state =
CurrentOutput_ActualCurrentDetermination_InternalBehavior_STATE_Initialized_UseProcessValueOrAlarmCurrent;

}

ERROR_CODE CurrentOutput_ActualCurrentDetermination_InternalBehavior_onEvent(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self,
int event, void* parameters[]){
if(transitions[self->actualState][event] != NULL){
return transitions[self->actualState][event](self, parameters);

}
else{
return NO_TRANSITION;

}
}
...

(c) Generated Code: Function Implementations corresponding to Guards, Effects, and Transitions, Dec-
laration of State-Transition Table as Function Pointer Array and Declaration of State Transition Function

Figure 7.18: Example - Transformation of a State Machine

152

Additions for State Machines used as Behavioral Specification of a Design Object

If a state machine is employed as complete specification of the internal behavior of a
design object, additional code has to be generated to integrate the state machine code
with the one, generated for the class, which types the respective object. That is, as
the state machine serves as a complete behavioral specification of the respective class,
the implementation of all its operations may be generated so that each call is indeed
delegated to the associated state machine. In turn, the state machine has to understand
all these call events, indicating the receipt of a respective operation, which are offered
by the associated class.

(a) Instance Specification: State Machine as Internal Behavior

Figure 7.19: Example - Transformation of a State Machine as Internal Behavior Spec-
ification

As indicated by Figure 7.19b for the example outlined in Figure 7.19a, a member,
pointing to the state machine implementation has to be added to the struct of the class,
whose internal behavior is being specified, and this member has to be initialized from
within the constructor function for that class. The implementation of each function,
generated for the operations of the class, then has to delegate all calls to the state
machine, as indicated by the Figure 7.19b, passing over the corresponding event, as
well as all parameter values of the call.

In case structural or behavioral features of the owning class instance have to be ac-
cessed from within the guard and effect functions of the state machine, the state ma-
chine instance in turn has to be (reverse) linked to the owning class instance. The struct
generated for the state machine therefore has to contain a respective member as well.
Its initialization may also be done from within the constructor of the owning class.

153

/***
* File: ActualCurrentDetermination.h
***/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_ActualCurrentDetermination {
...
/* Owned Behavior */
CurrentOutput_ActualCurrentDetermination_InternalBehavior ownedBehavior[1];

}
...

/***
* File: ActualCurrentDetermination.c
***/
...

void CurrentOutput_ActualCurrentDetermination_create(
CurrentOutput_ActualCurrentDetermination* self){
...

/* Initialize Owned Behavior */
CurrentOutput_ActualCurrentDetermination_InternalBehavior_create(&self->ownedBehavior[0]);

}

ERROR_CODE CurrentOutput_ActualCurrentDetermination_setSimulationCurrent(
CurrentOutput_ActualCurrentDetermination* self,
PhysicalQuantities_ElectricCurrent* inCurrent){

/* Call Owned Behavior */
void* parameters[1];
... // allocate
parameters[0] = inCurrent;

CurrentOutput_ActualCurrentDetermination_InternalBehavior_onEvent(
self->ownedBehavior[0],
CurrentOutput_ActualCurrentDetermination_InternalBehavior_RECEIVE_setSimulationCurrent,
parameters);

}

...

(b) Generated Code: Struct Member Declaration and Function Implementation within Owning Behav-
iored Classifier

Figure 7.19: Example - Transformation of a State Machine as Internal Behavior Spec-
ification

154

Additions for Protocol State Machines as Behavioral Specification of a Subsys-
tem’s External Interface

A protocol state machine is used to specify the valid interactions of a subsystem com-
ponent from an external perspective. It may be modeled as either owned behavior of
the overall subsystem component (in case several ports are affected), for a single port,
or even for a single interface.

(a) Instance Specification: Protocol State Machine as Interaction Protocol

Figure 7.20: Example - Transformation of a State Machine as Interaction Protocol
Specification

While the source code generated for a protocol state machine is more or less identical
to that of a behavior state machine (a protocol state machine however does not specify
any effects), its integration with the port’s class is of course different. That is, as
shown in Figure 7.20, the implementation of those functions, generated to represent
the operations of the port’s class (or more precise those specified by all interfaces,
realized by that class) accordingly have to be generated so that protocol conformance
is checked before delegating all externally arriving calls to the subsystem component’s
internal decomposition. This also holds in case a protocol state machine is specified
as protocol of a single (provided) interface, as those are only indirectly transformed in
the context of the class, which is used as type of the port, as outlined before.

155

/***
* File: ProcessValueOutputPort.h
***/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_ProcessValueOutputPort {
...
/* Protocol State Machine */
CurrentOutput_InteractionProtocol protocol[1];

};

...

/***
* File: ProcessValueOutputPort.c
***/
...

ERROR_CODE CurrentOutput_ProcessValueOutputPort_outputProcessValue(
CurrentOutput_ProcessValueOutputPort* self,
PhysicalQuantities_PercentageFlow* inPercentageFlow){

/* Check Protocol State Machine */
void* parameters[1];
... // allocate
parameters[0] = inPercentageFlow;

int protocolConformance = CurrentOutput_InteractionProtocol_onEvent(
self->protocol[0],
CurrentOutput_InteractionProtocol_RECEIVE_outputProcessValue,
parameters);

/* Delegate Call */
if(protocolConformance == EVENT_CONSUMED){
return CurrentOuput_Coordinator_outputProcessValue(self->coordinator, inPercentageFlow);

}
else{
return protocolConformance;

}
}

...

(b) Generated Code: Struct Member Declaration and Function Implementations within Port’s Type

Figure 7.20: Example - Transformation of a State Machine as Interaction Protocol
Specification

Initialization of the respective protocol struct member within the port’s class has to
be handled either by the port’s class or by the enclosing component, dependent on how
the protocol state machine is used. That is, in case the protocol state machine affects
several of the subsystem’s ports, it is modeled as owned behavior of the component,
so a reference to the single shared protocol state machine instance, associated to the
subsystem, has to be passed over to the struct instances, which represent its ports. In
case the protocol state machine is specified as protocol of a single port or interface, it
may be initialized from within the constructor of the port’s typing class instead.

Transformation of Activities

While a state machine is used for several purposes, activities, being modeled via the
Behavioral Detailed Design Diagrams, are used within a MeDUSA Design UML
Model only to specify internal object behavior. That is, to be precise, they are as-

156

sociated as method to the operations of an object’s class. While the UML allows to
specify an activity at an abstraction level comparable to that of source code, so detailed
that an operation may be fully specified by it, within MeDUSA, this is not employed.
That is, activities are usually only used to denote the basic control flow of a certain al-
gorithm (inside an application-logic object), not specifying each individual instruction
in detail.

While generating complete functional code for an activity would be rather straight-
forward, as most of the comprised actions are directly transferable into ANSI-C state-
ments, because of the incompleteness of such a specification, its generation does not
make sense within MeDUSA. That is, while it would be easily possible, it is yet im-
practical. The reason therefore is that, to guarantee robustness of the generated code
against re-generation, it would have to be anticipated, where a Subsystem Implementer
would have to manually add code (those section would have to be guarded to ensure
they are not overwritten during re-generation; compare [Fun06] for details). As this,
due to the incompleteness of the specification, could be an arbitrary location within
the generated statements, the overall generated code would have to be polluted with a
lot of such guards, and would thus be only hard to read and maintain.

Therefore, in the context of MeDUSA, code generation from activities is not covered
and those being developed during Detailed Behavioral Design Modeling are thus re-
garded to serve for specification and documentation purposes, rather than as input to
an automatic code generation tool.

Generation of Interactions

The same holds for interactions, which are developed within MeDUSA to depict col-
laborative behavior within the system and subsystem decompositions respectively. For
the same reasons as in case of activities, that is because the specification of individual
object behavior, which could be inferred from them, is not complete (as only operation
calls are reflected, but no additional details), they are thus regarded to be used solely
for specification and documentation purposes as well. In this role, they further serve
as some sort of proof of concept, as they depict that the system respectively subsystem
immanent behavior corresponds to the respective structural specifications. A genera-
tion of source code from the interactions contained in a Design UML Model is thus
also not covered within MeDUSA.

157

158

Chapter 8

Tool - ViPER

ViPER (Visual Tooling Platform for Model-Based Engineering) [ViPERc] is a tooling
platform to leverage model-based engineering. It is based on Eclipse [Eclipse] tech-
nology and offers support for UML-based visual modeling, UML-based ANSI-C code
generation, extended support for editing and simulating of detailed narrative use case
descriptions, as well as built-in dedicated methodical support for MeDUSA. ViPER
thus forms the third integral part of the herein presented methodology (cf. Section
5.1).

Subsequently, the tool will be investigated in detail. This will be done first from a
coarse-grained architectural perspective, introducing all major components1 and nam-
ing their respective end-user visible features. Second, ViPER MetiS, the feature, which
delivers dedicated methodical support for MeDUSA, will be investigated in more de-
tail, including an in-depth discussion on some of its technical realization aspects as
well.

8.1 The ViPER Integrated Development Environment

ViPER, as already outlined, is a model-based engineering platform, offering support
for visual modeling, model transformation and code generation. It is realized as an
Integrated Development Environment (IDE), which amongst others comprises a com-
plete Eclipse SDK [Eclipse]. As outlined by Figure 8.1, the Eclipse SDK - and thus
ViPER as well - contains the Eclipse Platform, as well as the Java Development Tool-
ing (JDT) and Plug-in Development Environment (PDE) features, which deliver an
integrated development environment for Java-based development in general, as well
as Eclipse plug-in development in particular.

1The Eclipse plug-in model [GB03], on which the ViPER IDE is based, refers to those top-level
components as features, so this term will be rather used in the following.

159

As the ViPER IDE additionally bundles the Eclipse C/C++ Development Tooling
(CDT) [CDT] feature, it can further be regarded as a fully-featured integrated devel-
opment environment for C/C++ development, including dedicated editors, compilers,
and debuggers. Furthermore, tool support for generic model-based engineering, in-
cluding model validation, model-to-model transformation, as well as model-to-text
generation is offered by integrating the contributions of the the Eclipse Generative
Modeling Technologies (GMT) project [GMT].

Figure 8.1: Eclipse SDK Architecture (cf. [DFK+04])

Besides these and some other third-party integrations, the ViPER IDE itself con-
tributes graphical UML modeling support, UML-based ANSI-C code generation, edit-
ing and simulation of narrative use case descriptions, as well as methodical support for
MeDUSA. This is realized by respective features2 of the ViPER IDE, namely:

• ViPER UML2

• ViPER NaUTiluS (Narrative Use Case Description Toolkit for Evaluation and
Simulation)

• ViPER MetiS (MeDUSA Methodical Support)

Additionally contained is the ViPER Platform feature, which does not deliver end-user
visible features but provides common base classes and frameworks, needed for the
realization of above outlined features.

2In the context of the Eclipse plug-in model, a feature bundles a set of plug-ins.

160

Figure 8.2: ViPER IDE Architecture

The resulting overall ViPER IDE architecture is depicted by Figure 8.2. It shows that
additionally to those four features, the ViPER IDE bundles a plug-in, which is used
to define the ViPER IDE Rich Client Product (RCP) [ML05], plug-ins to centralize
logging and to provide IDE-wide documentation, as well as a feature to bundle all
third-party contributions, including the Eclipse SDK.

ViPER Platform The ViPER Platform, whose plug-in architecture is depicted by
Figure 8.3, forms the basis of the ViPER IDE by offering basic functionality, needed
for the realization of all higher-level IDE features. It does not offer any directly end-
user visible functionality, but it delivers basic utility classes, as well as two white-box
frameworks, namely the ViPER Platform Visual Modeling Framework (VMF) and the
ViPER Platform Model Transformation Framework (MTF).

161

Figure 8.3: ViPER IDE Platform Plug-in Architecture

ViPER Platform VMF is a framework to support the development of graphical editors
for arbitrary data models, based on technology offered by the Eclipse Graphical Edit-
ing Framework (GEF) [GEF] and the Eclipse Modeling Framework (EMF) [EMF]. It
is as such the underlying framework upon which the graphical UML editing capabil-
ities of the ViPER IDE are realized. To some extent, it is comparable to the Eclipse
Graphical Modeling Framework (GMF) [GMF]. However, Eclipse GMF uses some
sort of black-box approach, while ViPER Platform VMF was explicitly designed as a
white-box framework.

ViPER Platform MTF in turn supports the development of model-to-model transfor-
mation and model-to-text generation wizards based on technology offered by the ope-
nArchitectureWare project [GMT]. It thus forms the basis, upon which the UML-to-
ANSI-C code generation, built into the ViPER IDE, is realized.

ViPER UML2 The ViPER UML2 feature bundles all UML-related capabilities of the
ViPER IDE. Besides the UML2 Core feature, which similar to the Platform Core fea-
ture delivers common base and utility classes, it comprises, as depicted by Figure 8.4,
the ViPER UML2 Visual Modeling Environment (VME), which supports the graphical
editing of UML diagrams and models, as well as the ViPER UML2 Code Generators
(CodeGen).

The ViPER UML2 VME feature is the reference implementation of the ViPER Plat-
form VMF framework, using an EMF-based implementation of the UML meta-model,
as provided by the Eclipse UML2 project [MDT]. It thus provides an editor and related
model and diagram creation wizards to graphically edit UML diagrams, conformant
to the current language standard version ([OMG07c]). Currently, editing of package,
class, object, component, composite structure, as well as use case, state machine, ac-
tivity, communication and sequence diagrams is supported, while not in all cases, the

162

Figure 8.4: ViPER IDE UML2 Plug-in Architecture

full set of modeling capabilities, as defined by the UML, is already offered. The gen-
eral look & feel, as well as the user guidance of the provided UML editor, which is
depicted by the screenshot provided in Figure 8.5, is pretty much determined by the
underlying GEF framework. That is, it is quite comparable to other GEF-based editors,
like the Rational IBM Software Development Platform for instance.

The ViPER UML2 CodeGen feature offers UML-to-ANSI-C code generation. It is re-
alized as the reference implementation of the ViPER Platform MTF framework and
delivers generation wizards, out of which one is exemplarily depicted by Figure 8.6.
Currently, a generic, platform-independent code generation, which evaluates only the
structural information, captured in a UML model (cf. [Fun06]), as well as a more so-
phisticated, platform-specific code generation (for the Renesas M16C family), which
additionally offers basic support for timing and concurrency issues (cf. [Kev07]).

163

Figure 8.5: ViPER UML2 VME (Screenshot)

(a) Code Generation Context Menu (b) Code Generation Wizard

Figure 8.6: ViPER UML2 CodeGen (Screenshot)

164

ViPER NaUTiluS ViPER Narrative Use Case Description Toolkit for Evaluation
and Simulation (NaUTiluS) is a toolkit to support the modeling and simulation of
narrative use case descriptions. It is organized, as depicted by Figure 8.7, into two
features, namely ViPER NaUTiluS Core and ViPER NaUTiluS Simulation.

Figure 8.7: ViPER IDE NaUTiluS Plug-in Architecture

The NaUTiluS Core offers support for creation and manipulation of narrative use case
descriptions based on a notation, initially proposed by Bittner & Spence [BS03] and
refined and improved at the Research Group Software Construction, which captures
use case details by describing them as flow of events (cf. [WNHL08]). The NaUTiluS
Core feature offers a form-based editor together with some supporting wizards and
views, depicted by Figure 8.8, to support this.

In terms of ViPER NaUTiluS Simulation, a prototypical simulation environment for
user-system interactions, based on narrative use case descriptions is provided [Leh08].
It allows to interactively step through the different scenarios, subsumed in the detailed
descriptions, by means of a simulation recorder, which is also capable playing back
individual simulation traces, and which offers a set of additional supporting views
to provide detailed information about individual simulation traces, as well as on the
overall simulation capabilities of a set of narrative descriptions.

In the future, it is further planned to enrich ViPER NaUTiluS with capabilities (ViPER
NaUTiluS Evaluation) to allow a detailed analysis and evaluation of use case models
(including detailed narrative descriptions). This should include the evaluation of qual-
ity properties by means of dedicated metrics, as well as support for refactorings on use
case models based on those evaluation results.

165

Figure 8.8: ViPER NaUTiluS (Screenshot)

8.2 ViPER MetiS- MeDUSA Methodical Support

ViPER MetiS offers dedicated methodical support for MeDUSA. This includes a brows-
able hypertext documentation of the MeDUSA definition, being integrated into the
help system of the ViPER IDE, and wizards to support the execution of individual
MeDUSA tasks. Integration between those task wizards and the browsable hypertext
documentation is provided by so called cheat sheets (cf. Figure 8.16), which pro-
vide guidance in the step-by-step execution of the MeDUSA workflow (or parts of
it) within the context of a concrete development project. A cheat sheet may be un-
derstood as some sort of instruction sheet, which outlines all MeDUSA tasks in their
respective timely order. It offers context-sensitive help by referencing respective en-
tries within the hypertext definition and additionally offers the possibility to directly
invoke respective task wizards.

ViPER MetiS further offers implementations for the MeDUSA UML profiles, outlined
in Section 7.2, together with a set of MeDUSA specific model validation rules, used
to ensure conformance of MeDUSA UML models with respect to the model structures
outlined in Section 7.1

166

8.2.1 ViPER MetiS Plug-in Architecture

According to the realized end-user visible features, the plug-in architecture of ViPER
MetiS comprises the plug-ins MetiS Profiles, MetiS ModelConstraints, MetiS Defini-
tion, MetiS TaskWizards3, and MetiS Cheatsheets.

Figure 8.9: ViPER MetiS Plug-in Architecture

As outlined by Figure 8.9, the plug-ins MetiS Infrastructure and MetiS Integration
have to be named to complete the picture. As denoted by its name, MetiS Infrastruc-
ture defines general infrastructure in terms of a MeDUSA project nature and MeDUSA
specific preference settings. MetiS Integration serves to integrate the different MetiS
plug-ins within the ViPER IDE workbench, by offering a respective workbench per-
spective, as well as a dedicated project creation wizard and a user interface to edit
those preferences, defined by MetiS Infrastructure. However, as both plug-ins do in-
deed realize rather non innovative technical details, they are not investigated in detail
in the following. The same holds for the MetiS Profiles plug-in, which simply bun-
dles an Eclipse based realization of those MeDUSA profiles, introduced in Section
7.2, as well as the MetiS Model Constraints plug-in, which delivers a set of validation
constraints and resolutions, realized by means of the EMF validation framework (cf.
[EMF]).

The remaining plug-ins, namely ViPER Definition, ViPER Task Wizards, and ViPER
Cheatsheets will be introduced adjacently, as they indeed realize dedicated methodical
support. This introduction will include a detailed description of the user visible end
features, each plug-in provides, as well as a short discussion on its technical realiza-
tion. A more in-depth discussion on the conception and technical realization of the
respective plug-ins may for example be found in [Her07] and [ViPERc].

3As outlined by Figure 8.9, the MetiS Taskwizards plug-in is actually split into four plug-ins, namely
MetiS TaskWizards, which provides a white-box framework for the realization of dedicated task wizards,
as well as one plug-in for each currently supported discipline of MeDUSA, namely MetiS TaskWizards Ar-
chitecturalDesign, MetiS TaskWizards Implementation, and MetiS TaskWizards RealTimeAnalysis. Here,
for the sake of simplicity, MetiS TaskWizards will be used to refer to this overall set of plug-ins.

167

8.2.2 ViPER MetiS Definition

As indicated by Figure 8.10, the ViPER MetiS Definition plug-in provides a browsable
hypertext documenation of the complete MeDUSA definition, as captured in [NL08],
quite similar to as it is done for the IBM Rational Unified Process within the IBM
Rational Software Development Platform (cf. Section 5.2.2).

Figure 8.10: ViPER MetiS Definition (Screenshot) - Integration into Help System

MetiS Definition thus provides basic methodical support, as it enables a developer to
always directly access the MeDUSA definition from within the ViPER IDE. Being
realized in form of a hypertext documentation, the quick retrieval of information, as
it is likely required when consulting the definition during active work with the tool, is
pretty much facilitated by the enhanced navigation and search capabilities, which are
offered by the Eclipse help system, into which the documentation is integrated.

Technical Realization

The hypertext documents, which contain the MeDUSA definition, are of course not
handcraftet, but can be generated automatically from a MeDUSA UMA method li-
brary (cf. Section 6.2.1) by using the respective HTML publishing functionality of the
Eclipse Process Framework (EPF) Composer tool [EPF]. The integration of the pub-
lished HTML pages into the Eclipse respectively ViPER IDE help system is however
not directly supported by the EPF Composer.

168

This can be achieved by offering a table of contents XML-file, which is exemplarily
depicted by Figure 8.11. It has to be contributed to the respective toc extension point
of the org.eclipse.help plug-in and registers the top-level HTML pages of the method
definition within the contents browser of the help system, so that direct accessibility of
the documentation is achieved.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?NLS TYPE="org.eclipse.help.toc"?>

<toc label="MeDUSA">
<topic
href="/sc.viper.metis.definition/html/medusa_concepts/customcategories/introduction_CA894658.html"
label="Introduction">

<topic
href="/sc.viper.metis.definition/html/medusa_concepts/guidances/supportingmaterials/

introduction_2BA636D3.html"
label="Introduction" />

<topic
href="/sc.viper.metis.definition/html/medusa_concepts/guidances/examples/

example_system_4D4F0766.html"
label="MeDUSA Example System" />

</topic>
...

</toc>

Figure 8.11: ViPER MetiS Definition - Help toc File (generated)

As MeDUSA is a living method, and as therefore its definition is likely to change over
time, maintaining such a toc file manually would be impractical, and errorprone as
well. Therefore, a ViPER specific extension to the EPF Composer tool was developed
in terms of the ViPER Method Support Framework (MSF). It extends the publishing
functionality of the EPF tool by generating a respective toc file directly together with
the HTML pages of the method definition, and - as it is not specifically dependent on
MeDUSA - may be generically applied to generate respective files for arbitrary UMA-
based method definitions. As it is not an essential part of the ViPER MetiS feature, but
is only used within its development and maintenance, it will not be regarded further
within this work. The interested reader may refer to [Her07] as well as [ViPERc] to
find an in-depth documentation of ViPER MSF.

8.2.3 ViPER MetiS Task Wizards

The ViPER MetiS TaskWizards plug-ins deliver dedicated wizards to support the exe-
cution of selected MeDUSA tasks. Being a model-based construction method, all tasks
defined by MeDUSA can generally be classified into tasks related to model manipula-
tion, model-to-model transformation, as well as model-to-text generation. Modeling,
i.e. model manipulation, is a rather creative activity, which is probably best supported
by means of flexible graphical editors and additional supporting tools, as they are
provided by the ViPER UML2 VME feature. Transformations as well as generations
however offer an inherent automization potential and can - due to the linearity and
goal-driveness of their execution - be probably best supported by means of dedicated
wizards, which prescribe a general control flow and user-guidance in terms of their
dialog pages.

169

(a) Task Wizard Description Page (b) Task Wizard (Precondition) Validation Page

(c) Task Wizard Generation Sources And Options
Selection Page

(d) Task Wizard Generation Processing Page

Figure 8.12: ViPER MetiS Code Generation Wizard (Screenshots)

In line with these insights, the ViPER MetiS Task Wizards aims at providing dedicated
wizards for model transformation respectively model generation tasks4. Currently,
wizards to support the Subsystem Identification as well as the Code Generation task
(outlined by Figure 8.12) are provided, thus demonstrating exemplarily how dedicated
support for each kind of wizard may be realized. Wizards to support the different

4It may be mentioned that from a technical viewpoint modeling may as well be regarded as a model
transformation, having the same input and output models. To this extend, modeling tasks, which offer a
certain automation potential, could as well be supported by a respective model transformation wizard.

170

kinds of Real-Time Analysis are currently being developed (cf. [Rit08]). As indicated
by Figure 8.12 in case of the Code Generation task wizard, each wizard supports the
execution of a respective MeDUSA task by guiding the user through its wizard pages.
While some of the pages are of course specific to the respective task that is supported,
some pages are indeed common to all wizards.

That is, all wizards offer a description page, as depicted by Figure 8.12a, as their
starting page. It offers a short general description of the supported MeDUSA task, as
well as a possibility to specify input and output models (in case of a transformation
task), or output folders (in case of a generation task). This starting page is always
followed by a Validation Page, as it is depicted by Figure 8.12b, which is used to
check preconditions on the selected models, which have to be guaranteed to allow
the execution of the respective wizard. The validation page does not only present
the validation results to the end-user, but - where applicable - it also offers automatic
resolutions in case conditions are violated.

Having evaluated all preconditions successfully, the user may then proceed to the task-
specific wizard pages. Within the Code Generation wizard, a page to choose the gen-
eration input and to select certain generation options (cf. Figure 8.12c), as well as a
page to output processing results (cf. Figure 8.12d) may be named. In case a wizard
specifies postconditions, the wizard is always concluded by a Validation Page to check
those postconditions. It has to be mentioned that this is mandatory in the case of trans-
formation wizards, where - due to the possibility of their iterative execution on a set of
models - at least all preconditions have to be fulfilled as postconditions as well.

Technical Realization

Due to technical implementation issues, the ViPER MetiS Task Wizards is not realized
as a single plug-in, but actually split into the following:

• ViPER MetiS Task Wizards

• ViPER MetiS Task Wizards - Architectural Design

• ViPER MetiS Task Wizards - Implementation

• ViPER MetiS Task Wizards - Real-Time Analysis

While the three last mentioned plug-ins deliver those concrete task wizards, supporting
the already named tasks of the respective MeDUSA disciplines, the ViPER MetiS Task
Wizards plug-in itself delivers a white-box framework to support the implementation
of arbitrary transformation respectively generation task wizards.

Amongst others, it provides generic support for the loading and saving of models,
which serve as input and output of a respective task, for the evaluation of specified pre-
and post-conditions on those models, for executing and reverting changes on them,

171

Figure 8.13: Detailed Class Design of the ViPER MetiS Task Wizard core Package

as well as for tracking all applied changes, which is needed to support the correct
iterative execution of a respective wizard. It is split into three basic packages, namely
core, transformation, and generation. The core package, which is depicted in
Figure 8.13, defines the abstract TaskWizard and TaskWizardPage classes, which
serve as the base classes for all task wizards and their respective wizard pages. The
core package also provides concrete implementations of those wizard pages, which
are commonly used in all wizards, namely the TaskWizardDescriptionPage and the
TaskWizardValidationPage.

The abstract TaskWizard base class ensures that a common control flow in terms of
a defined order of wizard pages is inherent to all MetiS task wizards. This is realized
by means of the addPages template method, which defines a hook method, namely
createTaskSpecificWizardPages to control that all task specific pages are added
between the validation pages used to check the pre- and postconditions. The TaskWiz-
ard class further implements control of the back, next, finish, and cancel buttons, of-

172

fered on each wizard page. While the enabled state of those buttons may be influenced
by a respective wizard page via its page status, the application and reverting of all
model changes, being performed through an individual wizard page, does not have to
be handled by the page itself, but is transparently done within the performCancel and
performFinish template methods within the TaskWizard class.

This is achieved, by enforcing that all model manipulations of a TaskWizardPage have
to be executed as Commands on a CommandStack, which is shared by all TaskWizard-
Pages. The CommandStack in turn delegates the execution of all commands to an
underlying OperationHistory5 , which is controlled by a TaskWizardExecution-
Context, associated to each TaskWizard. It maintains an own undo context for each
wizard page so that all changes, which are applied from within a respective page,
can be easily and transparently reverted, when navigating to a previous page or when
performing a cancel operation, without any awareness of the respective TaskWizard-
Pages.

Access to the CommandStack, shared by all TaskWizardPages is provided by a so
called TaskLogic, associated to each TaskWizard, which is intended to be subclassed
to provide the respective (application) logic of the supported task. That is, while the
control logic is thus directly built into the TaskWizard, and while all user interface re-
lated aspects are covered by the TaskWizardPages, the task specific logic is meant to
be separated. The TaskLogic therefore has direct access to an underlying TaskCon-
figuration, which keeps task specific configuration information, as the locations of
all used input and output models, as well as the pre- and postconditions that have to be
checked on those models. It also handles the loading and saving of those models.

Generation and transformation related specializations of the TaskWizard and Task-
WizardPage base classes, as well as their related TaskConfigurations, are real-
ized by respective subclasses within the generation and transformation packages,
which are depicted by Figure 8.14.

As in terms of a GenerationTaskWizard a respective output folder has to be specified,
a specialization of the TaskWizardDescriptionPage, denoted as GenerationTask-
DescriptionPage is provided, which offers the possibility to specify a respective file
system path for this purpose. Additionally, a specialization of TaskConfiguration,
namely GenerationTaskConfiguration is provided, which realizes the backup of
the folder contents prior to the wizard execution, as well as the restoring of this con-
tents in case of a cancellation or failure of the generation.

A TransformationTaskWizard in turn needs to ensure traceability in terms of which
model elements of a respective input model were transformed into which model el-
ements of a related output model. This is necessary, as the iterative execution of a
wizard on the same set of models (which may have changed in the meantime) has to
reflect already committed user decisions of previous wizard executions. As an example
consider the Subsystem Identification task, which is concerned with transferring analy-

5The Operation History is a concept built into the Eclipse platform to realize a unified undo and
redo handling.

173

Figure
8.14:

D
etailed

C
lass

D
esign

of
V

iPE
R

M
etiS

Task
W

izard
-

G
eneration

&
T

ransform
ation

W
izard

174

Figure 8.15: ViPER MetiS TaskWizards Traceability Meta-Model

sis objects into design objects, and with grouping those design objects into subsystems.
While there is no direct model relationship between the Analysis UML Model, serving
as input model, and the Design UML Model, serving as output model, the task wizard
has to recognize, which analysis objects were already mapped to which design objects
during an earlier execution of the wizard, so that the user does not have to redo any
mappings already specified.

The abstract TransformationTaskWizard class accounts for this by offering support
for tracing all model changes, applied during the execution of the wizard. it therefore
maintains a respective traceability model, in which it can store all relevant traceability
information. Such a traceability model is automatically created by the related Trans-
formationTaskConfiguration of the wizard within a private folder of the respective
project, in which the selected input and output models of the wizard reside6, and is
loaded and stored automatically, together with the specified input and output models.

The meta-model, defining the structure of all traceability models, is depicted by Figure
8.15. Its central concept is that of a mapping, which is understood to be an arbitrary
relation between a set of source and target objects. Mappings may be grouped under
two aspects. A step is used to group logically related mappings, which refer to possible
unrelated sets of source and target objects but logically belong to the same model
manipulation and thus occur at the same point in time. A trace in turn is used to
group chronologically adjacent mappings. A trace thus allows to trace the course of
a set of source objects through a temporal sequence of adjacent model manipulations.
Due to limited space, the traceability model will not be further elaborated here. The
reader may refer to [Her07] for a more in-depth discussion on the model, including
a demonstrative example of its application within the Subsystem Identification task
wizard.

6The TransformationTaskWizardDescriptionPage subclasses its TaskWizardDescription-
Page base class in order to confirm the restriction that all specified input and output models actually
reside within the same project. This is needed, because traceability information between those models
could otherwise not be consistently managed.

175

8.2.4 ViPER MetiS Cheatsheets Plug-In

While the MetiS Definition plug-in offers a broad but rather static view of the MeDUSA
method definition, and while the MetiS Task Wizards plug-ins deliver support, which
is rather dynamic, but limited to the execution of a single respective task, the MetiS
Cheatsheets plug-in integrates both aspects by offering support for a guided step-by-
step execution of the MeDUSA Workflow. That is, it provides so called cheat sheets,
which are sort of non-modal interactive help dialogs that - according to [CR06] - ”are
designed to walk you through a series of steps to complete a task and automatically
launch any required tools.”.

Figure 8.16: ViPER MetiS Cheatsheets (Screenshot)

As depicted by Figure 8.16, the MetiS Cheatsheets plug-in offers a composite cheat
sheet that contains task groups and tasks according to what is defined by the MeDUSA
method operations. It thus allows a user to step through the different tasks of the
MeDUSA method, as defined by the MeDUSA Workflow, performing possible itera-
tions as well. Integration with those help pages, offered by MetiS Definition plug-in
is achieved by offering browsable links (the question marks, which are visible besides
each task within Figure 8.16), via which the description of the respective task is di-
rectly accessible. Integration with those dedicated task wizards, offered by the MetiS
Task Wizards plug-ins, is achieved by offering the possibility to start the execution of
a respective wizard from within the cheat sheet, as exemplarily depicted by Figure
8.16, where the Interim Real-Time Analysis task wizard may be directly executed from
within the respective cheat sheet entry.

176

Technical Realization

Technically, cheat sheets are specified by means of an XML-file, which has to be
registered to the respective cheatSheetContent extension point of the org.eclipse.-
ui.cheatsheets plug-in. For illustration purposes, parts of the composite cheat sheet,
which realizes the MeDUSA Workflow, is depicted by Figure 8.17.

<?xml version="1.0" encoding="UTF-8"?>
<compositeCheatsheet name="MeDUSA Workflow">

<taskGroup kind="sequence" name="MeDUSA Workflow" skip="false">
<taskGroup kind="sequence" name="Requirements Phase" skip="false">

<taskGroup kind="sequence" name="Requirements Iterations" skip="false">
<task kind="cheatsheet" name="Requirements Workflow Pattern" skip="false">

<param name="path" value="requirements.xml">
</param>
<param name="showIntro" value="true">
</param>

</task>
</taskGroup>

</taskGroup>
...

</taskGroup>
...

</taskGroup>
...

</compositeCheatsheet>

Figure 8.17: ViPER MetiS CheatSheets - MeDUSA Workflow Composite Cheatsheet

Of course, as in case of the MeDUSA definition, crafting those cheat sheets by hand
would be tedious work. Therefore, the already introduced ViPER MSF framework
was additionally enhanced with a generation capability, which offers support for the
generation of respective cheat sheets for a given UMA method library (or, to be more
precise, for each workflow or delivery process defined within it).

The ViPER MSF framework supports the integration between those cheat sheets and
the electronic MeDUSA definition, by embedding links to the generated help pages
directly into the generated cheat sheets. Integrating those wizards, offered by the MetiS
Task Wizards plug-ins, is realized by specifying a unique wizard identifier as a tool
mentor within the UMA definition of the method, which is then evaluated by the ViPER
VMF framework’s cheat sheet export functionality in a sense, that a corresponding
command to start execution of the wizard, is generated directly into the corresponding
cheat sheet file as well. Further information on the detailed technical realization within
the ViPER MSF framework can be found in [Her07] as well as [ViPERc].

8.2.5 Adoptions & Innovations

As with MeDUSA, ViPER in general - as well as ViPER MetiS in particular - incor-
porates various already approved concepts, which have found their permanent place
in todays modeling tools. Especially the UML related modeling and code generation
capabilities, which are offered by ViPER UML2 are based on commonly applied and
industry approved technology and does only bear limited potential for actual novelties.

177

Regarding the methodical support that is built-in the situation is similar, as a single
prominent outstanding novelty may most likely not be found. It is rather the combina-
tion of approved concepts together with some slight partial improvements that make up
most of its value. Task wizards, as they are offered by ViPER MetiS, can be for instance
be pretty much compared to those Activity Agents offered by the Jaczone Waypointer
tool. However, the possibility to reflect already performed user decisions through im-
proved traceability, which is essential for their usability within an iteratively executed
method like MeDUSA, or the possibility to explicitly depict pre- and postconditions
and the ability to automatically resolve most of the identified violations, may be re-
garded as innovations.

To draw a conclusion, one may thus state that the most significant contribution of the
ViPER tool regarding its methodical support for MeDUSA may indeed not be seen in
very innovative partial solutions. Indeed the real value lies within the seamless integra-
tion of methodical support within an overall integrated development environment, as
this can - as already indicated in Section 5.2.2 - not be found in todays modeling tools.
Even if the concepts of offering a navigable documentation of a method definition,
or the offering of dedicated wizards to support certain tasks within the execution of a
method can be found within existing tools (cf. for instance the Method Browser within
the Rational Software Development Platform as well as the Activity Agents within the
Jaczone Waypointer), their seamless integration, as it is demonstrated by ViPER MetiS,
may be regarded as an innovation.

178

Part III

Evaluation & Conclusion

179

Chapter 9

Evaluation of MeDUSA

9.1 Continuous Evaluation - A Living Method

From its initial conception in early 2005, MeDUSA has gone a long way. Having
started as a slight enhancement to the COMET method [Gom00], incorporating sev-
eral experiences gained from the application of COMET in pilot projects, conducted at
ABB Automation Products GmbH, MeDUSA has grown - at latest with its first pub-
lication in 2007 [NL07a] - into an independent and self contained method. Practical
experiences as well as evaluation results have been continuously incorporated into the
method since, what does in particular hold for the second, completely revised revision
of MeDUSA, whose reference manual has been published in 2008 [NL08]. It is - with
some slight changes, which have already been incorporated since its publication - also
the one documented herein (cf. Chapter 6).

Before naming some general evaluation experiences, which are applicable to all of
MeDUSA’s revisions to some extend, and before quoting some recent evaluation re-
sults, which have been gathered with the application of MeDUSA’s Second Edition in
a pilot project, it is thus quite revealing to investigate MeDUSA’s course from its initial
conception up to the publication of its Second Edition, as most practical experiences
and evaluation results, gathered over the time, have been directly incorporated into the
method.

9.1.1 Initial (Pre-Published) Edition - 2005/2006

The application of the object-oriented COMET method, MeDUSA’s direct predeces-
sor, in some field studies within ABB Automation Products GmbH [NMSL04] demon-
strated a general applicability of COMET, but also unveiled some severe shortcomings
within the regarded application domain, which finally lead to the insight that a cus-
tomized method would indeed be needed, capable to face the very special technical
and organizational constraints within the industrial automation application area.

181

Figure 9.1: MeDUSA Pre-Published Edition - Workflow

Being itself the result of several iterations (cf. historic outline in Section 3.1), COMET
was nevertheless considered to be a very concise and systematic method, which could
serve as a good starting point for customizations and adoptions. Especially its use case
driven approach seemed to be very promising and was directly incorporated as one
of the key characteristics of MeDUSA. COMET’s object-oriented nature however was
considered to be a major hindrance for its application within the industrial automa-
tion domain, as a seamless transition from an object-oriented design into a procedural
implementation is only hard to achieve.

Class-Based & Instance-Driven vs. Object-Oriented The initial, yet unpublished
version of MEDUSA1, whose general workflow is depicted in Figure 9.1, reflects this
by what has been referred to in Section 6.3 as its instance-driven nature. That is, while
COMET had employed static modeling on the classifier level to depict the context
and data of the software system, MeDUSA made use of instance-based modeling by
means of object diagrams for this purpose. Performing Analysis Modeling completely
in terms of modeling objects, the instance-driven nature of MeDUSA thus ensured
that classifiers were not employed earlier than during Architectural Design Modeling,
so that object-oriented concepts were not enforced and a seamless transition into a
procedural implementation could now be guaranteed.

Based on Second Generation of UML Closely related to this is the fact that, being
based on UML 1.5 and thus employing class diagrams to specify the (structural) archi-
tectural design, COMET does not achieve a clear and explicit definition of the context
dependencies of a respective subsystem, so that a distributed development of subsys-
tems, as well as their reuse are hindered. Being based on the then upcoming UML 2.0

1Also not officially published, documentation about the initial (pre-published) version of MeDUSA,
can for example be found in [Fun06].

182

standard [OMG05c], MeDUSA was designed to use the newly introduced composite
structure diagrams for this purpose, which had been earlier identified as an adequate
means to address those problems (cf. [NLS+05]). By explicitly specifying all re-
quired as well as provided interfaces, a subsystem can be specified with all its context
dependencies, so that it can be independently developed - and reused. Furthermore,
as composite structure diagrams allow to specify an internal subsystem decomposi-
tion in terms of aggregated objects (rather than classes), class modeling could now
be postponed to the Detailed Design Modeling phase, thus contributing as well to the
instance-driven nature of the method.

9.1.2 First (Published) Edition - 2007

With its initial publication [NL07a], as Method for UML2-based Design of Embed-
ded Software Applications, the MeDUSA definition was formalized by means of the
SPEM standard (cf. Section 6.2.1), splitting it into a specification of method content
and method operations, which seems to be beneficial not only from documentation
perspective but also facilitates the understandability and learnability of the method.

Real-Time Aware Taxonomies Regarding contents, the first of two major changes
is the introduction of a revised MeDUSA Actor Taxonomy, which explicitly separates
trigger actors from interface actors, as well as a related MeDUSA Object Taxonomy,
which incorporates this division as well. While COMET had already known the con-
cept of timer actors (and objects), eventer actors were not explicitly identified and
represented, so that a clear separation of those event sources, triggering concurrent
system behavior, and those external software and hardware interfaces, serving as mere
(passive) communication interfaces, could not be achieved. With the clear division into
active and passive actors respectively objects, incorporated into the First Edition, tim-
ing and concurrency constraints could then be specified already during Requirements
Modeling and Analysis Modeling2.

Early Task Design Closely related to this is the second major change, namely the
shifting of former Task Design Modeling from Detailed Design Modeling into respec-
tive tasks in the Analysis Modeling and Architectural Design Modeling phases, as in-
dicated by Figure 9.2. While this does not seem to be a major novelty from the first
sight, it is very formative for MeDUSA, as it exposes the importance of real-time and
concurrency requirements and stresses the necessity of addressing those aspects early
(cf. [NL07b]). Even if no real-time analysis was performed during Requirements Mod-
eling yet, as it is now incorporated into MeDUSA, addressing those constraints already
during Analysis Modeling could be regarded as a major improvement with respect to
MeDUSA’s initial unpublished version, were Task Design Modeling was done as part
of Detailed Design Modeling.

2Note that modeling of synchronization and interference issues within the Requirements UML Model
was regarded to be an open issue at that time (cf. [NL07b]).

183

(a)
R

equirem
ents

M
odeling

(b)
A

nalysis
M

odeling
(c)

A
rchitecturalD

esign
M

odeling
(d)

D
etailed

D
esign

M
odeling

Figure
9.2:

M
eD

U
SA

FirstE
dition

-
W

orkflow
Patterns

184

9.1.3 Second (Published) Edition - 2008

The Second Edition of MeDUSA actually is a complete revision rather than a simple
bug-fixing update of the First Edition. Besides several minor changes, which were in-
corporated to improve the understandability and practical applicability of the method
(which will not be discussed here in detail), the most immanent change is that of
the MeDUSA acronym into Method for UML2-based Construction of Embedded &
Real-Time Software. While the reformulation of the development target from software
applications into software points to a mere clarification of terms3, the other termino-
logical differences actually symbolize some major changes that were incorporated.

Software Construction vs. Software Design Changing the denomination from de-
sign method into construction method indicates that - according to the goal of Method-
ological Completeness, as it is formulated in Section 4.3 - all tasks related to Im-
plementation are now also explicitly covered by MeDUSA. That is, it was not only
decided to include those tasks into the MeDUSA definition, but in particular the map-
ping of design concepts into ANSI-C source code equivalents is now being explicitly
addressed by the MeDUSA Code Generation Schema (cf. Section 7.3).

Continuous Real-Time Analysis The explicit naming of real-time software as target
domain indicates what has become one of the major features and sets MeDUSA apart
from other software engineering methods in the domain, namely the explicit and con-
tinuous modeling and analysis of real-time constraints4 . That is, in contrast to earlier
versions, a real-time analysis is now continuously performed throughout the method
execution, from the early Requirements Modeling up to the late Architectural Design,
what can actually be regarded as a major novelty.

Narrative Modeling of Use Case Details Based on further research experiences,
gained since MeDUSA’s initial publication related to use case modeling, a new format
for narrative, textual use case descriptions, which is based on a notation proposed in
[WNHL08] and [HLNW09], has been adopted to Use Case Details Modeling.

Architectural vs. Detailed Design Further, the separation of concerns between Ar-
chitectural Design Modeling and Detailed Design Modeling was redefined by merging
the consolidation of the passive design objects, which was up to then subsumed by the
Subsystem Design Modeling task within Detailed Design Modeling, with the consol-
idation of the active design objects, which was formerly performed in terms of Task

3In the regarded application domain, true application or true system software is rather unlikely and
an actual software system is most likely be a mixture of both. The denomination was thus changed to
indicate that both types of software (or even mixtures) are actually within MeDUSA’s scope.

4Note that some research experiences related to modeling and analysis of timing and concurrency
constraints, which are documented herein, have been incorporated after the publication of the Second
Edition (cf. [Rit08])

185

Design Consolidation within Architectural Design Modeling. There are two major
reasons for this rather impacting change.

At first, the result of the consolidation of active design objects was - according to
the definition of the Task Design Consolidation - actually not documented within a
distinct work product. Instead the Task Design Consolidation task prescribed a task
and schedulability report to document the results of the subsequently performed real-
time analysis as its single work products; the consolidating of active design objects
was thus somehow subsumed by a re-iteration of the Subsystem Identification, which
was initiated by the outcome of the real-time analysis, performed within Task Design
Consolidation, so indeed, a clarification was pretty much required.

Second, the separation between consolidating the active (i.e. trigger) and passive (i.e.
non-trigger) design objects seems to be artificial, after having gained experience with
the practical application of the method. It was adopted directly from COMET and
was actually retained within MeDUSA, motivated by the idea to develop as much as
possible in a distributed, parallel manner. That is, having the consolidation of the
passive design objects within the responsibility of the respective subsystem designers,
this work could actually be performed in parallel, independent for each subsystem. A
major drawback inherent to this separation however was that those tasks, which were
performed between the Subsystem Identification and the consolidation of active and
passive design objects within Task Design Consolidation and Subsystem Design Mod-
eling, often had to be re-iterated after the subsystems internal decomposition had been
consolidated, because this consolidation often led to changes within the subsystem di-
vision itself; it might for example be the case that a design object is decided to be split
apart, moving one of the newly obtained fragments into a new subsystem, so that the
subsystem interface may indeed be affected as well.

Reduced Modeling Overhead within Architectural Design Another aspect that
contributes to the practical applicability of the method is the load of work products
that has to be produced. In MeDUSA’s First Edition, the Subsystem Identification task
defined four distinct (intermediate) work products for each individual subsystem, and
the Subsystem Design Modeling defined another two; while the outcome of consolidat-
ing the active objects was indeed not even documented, as stated above. In MeDUSA’s
recent version, where Subsystem Consolidation is performed directly after Subsystem
Identification, the work results of consolidating the active and passive design objects
is clearly and explicitly documented within four consolidated work products. On the
other hand, the four intermediate work products, defined as outcome of Subsystem
Identification might be omitted, if an experienced System Architect may decide to de-
velop consolidated versions of the diagrams directly.

Improved Consistency of Detailed Design Besides having moved the consolida-
tion of the passive design objects into Subsystem Consolidation within Architectural
Design Modeling, Detailed Design Modeling was subject to another change. That is,
while a structural detailed design had been developed as part of Class Design Model-

186

ing, a corresponding detailed design for the behavioral aspects had not been defined
by MeDUSA’s first edition. While internal object behavior has always been captured
during Intra-Object Behavior Modeling, this had never been updated to incorporate
any changes imposed by the consolidation of active and passive design objects, so no
up-to-date detailed behavioral design specification could be given as input to adjacent
code generation and implementation tasks. The second edition of MeDUSA reflects
this by introducing a Behavioral Detailed Design Modeling task, while renaming Class
Design Modeling into Structural Detailed Design Modeling respectively.

9.2 Practical Evaluation Results of the Second Edition

It is clear that - not least because of the timely closeness to its publication - a deep and
intense evaluation of the current Second Edition of MeDUSA has not been conducted.
However, an initial pilot project has been initiated at ABB Automation Products GmbH
with this intention. First experiences, gathered from this, will be discussed in the
following.

Understandability and Applicability What has been stressed as positive by all par-
ticipating developers is the systematics and consistency of the method. In particular the
now clear definition of how to map design concepts to ANSI-C constructs has found
broad acceptance, as it improves the applicability of the method and helps to create
confidence and trust in having models as the predominant engineering artifacts. This
is especially of importance to those developers, which are not familiar with model-
based engineering.

The concise definition of the employed model structures by means of instance speci-
fications contributes to this as well, it also helps to sharpen the awareness that not the
produced UML diagrams but the underlying models are the predominant work prod-
ucts. It has further been appreciated that MeDUSA restricts itself to an essential set of
UML diagram types, and within those to a restricted use of the offered UML concepts.
This simplifies learnability and ensures a better applicability, especially for those de-
velopers not already familiar with the UML. The intense use of taxonomies, which is
prescribed by MeDUSA, has as well found broad acceptance, as it supports to break
down the problem scope in a systematic way, guided by embedded & real-time related
concepts. This has been assessed as a major contribution with respect to the practical
applicability of the method.

187

Learnability and Seamlessness What experience has shown additionally in the con-
text of the MeDUSA Object Taxonomy is that inexperienced developers tend to iden-
tify at first too many analysis objects when applying the taxonomy, resulting in a very
clustered Analysis UML Model. Especially entity objects are often modeled too fine
grained, often representing only single primitive values and no data capsules. While
this seems to be a problem related to a lack of experience at the first glance, it is
as well a clear indicator that the paradigm shift between the data-function oriented
view, imposed by the producedural implementation languages, developers tradition-
ally face in their everyday work, and the class-based design that is developed by means
of MeDUSA. Problems with the demarcation of entity and application-logic objects,
which have been observable, seem to be another indicator for problems related to this
paradigm shift.

Naturally, this raises the question of how good the seamless transition from detailed
design into the procedural implementation, which has been formulated as a central goal
for the method (cf. Section 4.3) is indeed achieved. Here, it has to be stated that a class-
based design, as facilitated by MeDUSA can indeed be seamlessly transferred into
a procedural implemenation, what can be demonstrated by the straight-forwardness
and simplicity of the MeDUSA Code Generation Schema. However, while a seamless
transition from design into source code can be achieved, the backflow seems to be
more demanding. That is, learning to break down the problem domain into objects
rather than data and functions is indeed - as outlined before - a severe paradigm shift
that has to be learned. On the other hand, this increased learning effort offers the
advantage of having a systematic, concise and traceable way of proceeding from a
set of requirements, which has been gathered in terms of use cases, to a sustainable
and adequate design. Possibly, additional guidelines and metrics could be offered to
support developers in fulfilling the paradigm shift quicker and easier.

Adequacy and Operability A question that has often been raised is whether the
bottom-up development approach, which has been incorporated into MeDUSA is ad-
equate for development in the targeted application domain. Traditionally, developers
in the respective domain had adopted some sort of top-down development approach.
Having defined a coarse grained architecture on the basis of the given requirements,
the individual subsystems had then been developed independently. This procedure had
several significant drawbacks. At first it showed that because a concise system archi-
tecture had not been defined, as interfaces between vaguely defined subsystems had
not been specified explicitly, and as further no behavioral specification for the overall
system was formulated, massive integration problems occurred with great certainty.
The same holds for performance problems, which were not noticed before integrating
the overall system. Further, as the approach did not derive the system architecture from
the requirements in a systematic and concise way, traceability of design decisions was
always hard to achieve.

The bottom-up approach, as it is proposed by MeDUSA, in turn emphasizes the impor-
tance of a systematic procedure, by performing Requirements Modeling and Analysis
Modeling to derive a system architecture in a concise way, following full traceabil-

188

ity of all design decisions. While this procedure does appeal through its systematics,
it has the drawback that distributed development is enabled at a relatively late point
in time, not sooner as after having defined the system architecture by completing the
Architectural Design Modeling. But indeed, the point in time, where the system archi-
tecture has been consistently defined, is the single point in time, at which successful
distributed development may at first be started, as only based on a concise system ar-
chitecture definition, a successful integration can later be achieved. In turn, if the sys-
tem architecture is not developed systematically based on the given requirements, then
it will most likely not remain stable, so that a successful integration is again not possi-
ble. In the domain of embedded & real-time systems, having stringent non-functional
requirements, it seems that within the tradeoff between maximizing the contingent of
distributed development and minimizing the risk of later integration problems, the later
has to be prioritized.

A question closely related to this is how deeply Requirements Modeling and Analysis
Modeling have to be performed for those parts of the software system, which are def-
initely covered by existing subsystems. In a top-down procedure this problem does of
course not arise, as an existing subsystem has to be integrated with its existing inter-
faces into the the overall system architecture. The problem of its integration however
still holds. Even worse, no resilient judgement about the adequacy of an existing sub-
system can be made in the context of a top-down procedure, as there is no basis to as-
sess the adequacy of a given subsystem to fulfill the given requirements. On the other
hand, if Requirements Modeling and Analysis Modeling are consistently performed,
the subsystems’ interfaces, via which they are integrated to an overall system architec-
ture, are systematically derived. The integration of an existing subsystem can thus be
regarded as a constraint to the dividing and consolidation of objects, as it is performed
during Subsystem Identification and Subsystem Consolidation respectively. This way,
the adequacy of a given subsystem can be judged and necessary adoptions or cus-
tomizations can be thoroughly derived. Above raised question can thus be answered
as follows: Requirements Modeling and Analysis Modeling should be performed also
for those parts of the overall system, which are intended to be covered by existing
subsystems.

While being thus controversially discussed, a bottom-up development approach, as it
is incorporated into MeDUSA thus seems to be adequate within the given application
domain. While being especially useful for projects, where the problem domain is not
yet completely understood, this approach of course may introduce some overhead,
an experienced developer, completely aware of the problem domain, would like to
avoid. However, having the given rather stringent non-functional constraints, a smooth
integration and a complete traceability of all performed design decisions seems to be
ultimately of higher importance.

Conclusion The results of the preliminary evaluation may thus be interpreted as fol-
lows: due to its systematics and its elaborateness, a good understandability and ap-
plicability, as well as a good learnability may be unambigously stated to MeDUSA.
And not least because of its detailedness with respect to the included model instance

189

specifications and code generation schema, a general suitability with respect to seam-
lessness and operability may as well be attributed to it. Two major hindrances however
can be identified. The first is the rather impacting paradigm shift, which is imposed
by MeDUSA with respect to traditional software engineering practices within the tar-
get application domain. The second is the discrepance between MeDUSA’s bottom-up
procedure and the traditionally implied top-down approaches. Nevertheless, with re-
spect to the formulated goals (cf. Section 4.3), both discrepancies seem to be somehow
unavoidable, as the traditional engineering paradigms and procedures have revealed
themselves to be unappropriate on the long term.

190

Chapter 10

Assessment of ViPER

To assess a software system in terms of its quality, a model as defined by Boehm
[BBL76] or by the IEC/ISO 9126 [IEC01] standard can serve as a good guidance for
a systematic and structured evaluation.

�C
���������
��
������I	���

�	�
�����

���	���

��
�����������

���	��

�	��
������

����������

��
	��

��	�
�
��������
���� �������

���������

����������

	�����
��������

����������

���������

�

���
� �����

	������

����������

�������� ���
����	���
	
�����
���

���������
����������

����������

�����������

�
�����

��
�����

����
��������

����������

����
�����

���
��������

����C��
����
������������

���
�����

����������

�	��
������
 ���������
 	������
 ��������� ����
��������
 ���
�����

Figure 10.1: Quality Characteristics according to IEC/ISO 9126 (cf. [IEC01])

The IEC/ISO 9126 quality model for instance, which is depicted by Figure 10.1,
defines six key quality characteristics, namely Functionality, Reliability, Usability,
Efficiency, Maintainability and Portability, together with a set of sub-characteristics
for each of them, which allows to break down the evaluation of a software to an-
swering the question of conformity to the respective characteristics respectively sub-
characteristics. However, in the context of ViPER this might not lead to satisfying
results.

One reason therefore is that ViPER is strongly based on Eclipse [Eclipse] as well as
Eclipse-related technology, so that the compliance to several of those quality charac-
teristics is indeed strongly influenced by the underlying platform and the employed
frameworks. The usability of the UML graphical editing capabilities is for example

191

determined to a large extend from what is offered by the underlying GEF framework
[GEF], which is used for its realization. The same holds for other characteristics as
well. The performance of the code generators is for instance strongly based on what
is achieved by the underlying openArchitectureWare [GMT] transformation engine.
Portability is of course strongly imposed by the underlying Eclispe platform.

Further, as ViPER is a research prototype, which is continuously enhanced to evaluate
recent research experiences and to demonstrate the applicability of new technologies
and ideas, a coherent set of requirements, against which compliance could be evalu-
ated, has never been explicitly formulated. The tool also has never been intended to
reach product quality, so that it is of course hard to assess and evaluate ViPER, using
the same quality criteria and benchmarks, as they have been defined for commercially
available software, in particular with respect to functionality and reliability. Addition-
ally, most of the defined quality characteristics of the ISO 9126 standard seem to be
hard to assess in an objective and quantifyable manner.

Due to this, an itemization of the compliance of ViPER to each defined characteristic,
providing a more or less subjective estimation on each, is not provided here. Instead,
as most of the relevant quality characteristics, not being directly inferrable from the
underlying frameworks, are strongly affected by the software’s inner quality, i.e. its
logical architecture and detailed structure, an in-depth investigation of ViPER’s archi-
tecture and source code structure is provided, which is regarded to be more enlighten-
ing; it also has the nice property that it can be evaluated in a relatively objective way
using defined and approved coupling and cohesion metrics (which of course have to be
interpreted, so even this bears some inherent subjectivism). As the development pro-
cess, which is applied to develop a software system, may as well give good guidance
to assess some of the quality characteristics of the resulting software, the process and
its supporting infrastructure, applied to the development of ViPER, are also shortly
characterized afterwards.

10.1 Software Structure & Complexity Evaluation

Having started in July 2004 as a mere experiment to evaluate Eclipse related EMF
and GEF technologies in the form of a simple UML state machine diagram editor,
which was bundled into a single plug-in and accounted for about 3800 lines of source
code, ViPER has grown into a rich and extensive tooling environment in the following
years. It up to now bundles 44 plug-ins and subsumes more than 200,000 lines of code,
incorporating the contributions of 12 developers (scientific staff as well as students)
over the years.

Table 10.1 provides detailed indications on current sizings for the different features,
subsumed by the ViPER IDE1. All figures were measured using the SonarJ Architect
tool [Jan07], which was also used to define and check the logical architecture.

1The figures presented reflect the state of the ViPER IDE version 1.0.0 RC2, integration build
I200808181247.

192

Size Metric Platform UML2 NaUTiluS MetiS Total
(Number of) Core VMF MTF Core VME CodeGen Core Simulation

Lines of Codea 5878 32906 1354 2243 49640 46980 38690 7866 15263 200820
(generated) - (14408) - - - (45692) (24900) (3703) - 88703
Statements 2248 12924 560 1057 23229 24512 15842 3083 6392 89847
(generated) - (6122) - - - (23918) (10261) (1433) - 41734
Types 126 507 24 57 697 318 632 202 266 4240
Abstract Types 39 169 8 1 51 90 88 32 36 506
Impl. Typesb 105 369 24 56 654 235 567 177 247 2434
Methods 665 3316 123 207 2829 3741 3864 872 1611 17228
Impl. Methodsc 614 2760 111 205 2827 2990 567 766 1439 12279

aLines of code that are not a blank or comment line, regardless of the number of statements
bTypes with Implementation
cMethods with Implementation

Table 10.1: ViPER IDE - Size Metrics Evaluation Results

According to it, the ViPER IDE source code base measures 200,820 lines of Java code,
comprising 89,847 Java statements (of course not including any third-party contribu-
tions). Out of those, 88,703 lines of code respectively 41,734 statements are related to
source code, which is generated from EMF-based meta-models, leaving a portion of
112,117 lines of handcraftet code.

It has to be mentioned that those figures of course only count for java source code
and do thus not take into account non-java languages, as the xTend and xPand script
languages (cf. [GMT]), which are used within ViPER UML2 CodeGen or ViPER MetiS
to realize the built-in code generators, or even grammar files, which are used within
ViPER UML2 VME to specify the contained parsers. However, with a resultant average
size of 2774 lines of code per plug-in (not counting those plug-ins containing only
generated source code), modularity of the ViPER IDE java source code base may be
regarded as quite adequate at this point.

While not interpreting those figures further, they may give good guidance on the rather
large complexity of the tool, even if only accounting the manually crafted lines of code.
This may be further illustrated by taking those 112,117 manually crafted lines of code
as input to a COCOMO II [BHM+00] cost and effort estimation. Assuming nominal
values for COCOMO’s scale and cost drivers, a calculation with the COCOMO II
model yields the following results:

Effort: 528.4 Person-Month
Duration: 26.9 Month

Average Staffing: 19.6 Persons

They impressively show that - being a mere research prototype - the ViPER IDE may
indeed be regarded as a quite complex piece of software. Comparing the calculated
effort and estimations to the actually spent effort, may give another slight indication on
the fact that it would be unappropriate to compare its quality characteristics compliance
to that of commercially developed software.

193

Nevertheless, while cutting back on functionality, usability or even efficiency, obtain-
ing a clear and concise software structure has always been facilitated within the ViPER
project to achieve maintainability and portability. Therefore, the logical architecture of
the ViPER IDE has been thoroughly defined. As depicted by Figure 10.2, this has been
done by means of the SonarJ Architect tool. While Eclipse’s built-in plug-in depen-
dency mechanisms also offers means to define a logical architecture based on plug-in
and feature dependencies, such a separate definition is a reasonable means, as it allows
to define the logical architecture in a more explicit manner; feature and plug-in de-
pendencies within Eclipse have to be specified for each plug-in and feature separately,
so that the overall architecture is indeed only specified indirectly by the combination
of all inter-dependencies. Using a tool like the SonarJ Architect it is further possible
to check conformity of source code to a specified logical software architecture and to
assess a given logical architecture by means of metrics.

Figure 10.2: ViPER IDE Architecture Definition within SonarJ

Evaluating the ViPER IDE source code by means of the SonarJ Architect tool, it can be
directly inferred that there are no architecture violations, meaning that the ViPER IDE
source code base does indeed comply to the logical architecture specified within Figure
10.2. That is, being stereotyped as public, those features bundled by the ViPER IDE
ThirdParty umbrella feature may be accessed in an arbitrary way. For all non-public
features, dependencies are explicitly specified, meaning that a dependency arrow indi-
cates that types of the supplier feature may be accessed from the client feature2.

2It has to be mentioned that those legal dependencies between the ViPER MetiS feature and the ViPER
NaUTiluS features are actually not established on the level of source code yet, as there as no MeDUSA

194

Coupling & Cohesion Assessing the logical architecture - and thus its realizing
source code - can be done by evaluation of coupling and cohesion metrics. The re-
sults of such an evaluation are depicted within Table 10.1. The measured relational
cohesion indicates the cohesion between all types within a given assembly, by measur-
ing the average number of internal relationships per type. While a very low relational
cohesion might indicate that cohesion within an assembly is too low, a high relational
cohesion might point to a too high coupling between the types of the assembly. In
[Mar06] a value between 1.5 and 4.0 is regarded to be good, while values outside this
range are regarded to be potentially problematic.

Coupling & Cohesion Platform UML2 NaUTiluS MetiS
Core VMF MTF Core VME CodeGen Core Simulation

Relational Cohesiona 1.57 4.21 2.42 1.25 2.07 7.98 4.25 2.79 2.8
Afferent Couplingb 302 364 19 38 2 2 58 0 0
Efferent Couplingc 267 565 93 146 527 275 496 407 411
Abstractnessd 0.31 0.33 0.33 0.02 0.07 0.28 0.14 0.16 0.14
Instabilitye 0.47 0.61 0.83 0.79 1.0 0.99 0.9 1.0 1.0

aThe ratio of the number of internal type relationships to number of types within this assembly
bThe number of types outside this assembly that depend on types within this assembly
cThe number of types inside this assembly that depend on types outside this assembly
dThe ratio of the number of abstract types to the number of total types within this assembly
eThe ratio of efferent coupling to total coupling (efferent coupling + afferent coupling)

Table 10.2: ViPER IDE - Coupling & Cohesion Metrics Evaluation Results

Applying those guidelines to the ViPER IDE source code, a too strong relational cohe-
sion within the ViPER UML2 CodeGen, ViPER Platform VMF, and ViPER NaUTiluS
Core, as well as a slightly too low relational cohesion within the ViPER UML2 Core
feature may be noticed. Investigating this in detail unveils that the rather strong cou-
pling within the ViPER UML2 CodeGen feature is caused by the high relative cohesion
(8.53) of the source code generated automatically for the EMF-based ANSI-C inter-
mediate model that is used for its realization (cf. [FNL08] for details), which makes up
97% of the overall source code or respectively 92% of the comprised types. The same
holds for the ViPER NaUTiluS Core plug-in, which contains two generated EMF mod-
els, out of which the largest one, which makes up 17799 lines of code, has a relatively
high relative cohesion of 4.54, as well as for ViPER Platform VMF, which contains an
EMF model with similar properties (14408 lines of code, relational cohesion of 4.49).
The rather low relative cohesion within the ViPER UML2 VME can be explained with
the fact that this feature somehow acts as sort of a class library, bundling a lot of rather
unrelated utility classes. Conclusively all three indications do indeed seem to be false
positives in a sense that they do not point to actual weaknesses in terms of cohesion.

Abstractness & Instability To detect assemblies which are hard to maintain, ab-
stractness and instability may be measured. While abstractness should give a guidance
on the extensability of an assembly (a completely abstract package is best extensible),

specific task wizard that integrates the functionality of ViPER NaUTiluS. However, as it is intended to
develop respective MeDUSA support in the future, the definition of the logical architecture does already
reflect this.

195

instability intends to infer the resilience of an assembly to change by investigating its
outgoing dependencies (if an assembly does not rely on any other assemblies, it is
regarded to be totally stable).

While both metrics themselves can only give limited guidance to assess the maintain-
ability of an assembly, their combination can lead to more reasonable results. Based
on the provided definitions of abstractness and instability, one can conclude that com-
pletely concrete and stable assemblies (A=0, I=0) are hard to maintain, because they
are hard to extend and a lot of other assemblies depend on them, while completely
abstract and instable assemblies (A=1, I=1) are potentially useless, because they offer
mostly abstract functionality and not many other assemblies rely on them. It is thus de-
sirable to design assemblies that achieve a good balance between their abstractness and
stability, staying thus out of the zone of pain and the zone of uselessness (cf. [Mar94]).
An assembly is therefore regarded to be adequately balanced if its distance to the main
sequence, which is a straight line connecting the points (I=0, A=1) and (I=1,A=0), is
rather low.

0 1

Instability

0

1

Abstraction

� � �
Platform Core

Platform VMF Platform MTF

�
�

�

UML2 Core UML2 VME

UML2 CodeGen

� �NaUTiluS Core NaUTiluS Simulation�
MetiS

...........
...........

...........
...........

...........
...........

............
...........

...........
............

...........
............

...........
............

...........
...........

............
...........

............
...........

...........
............

...........
............

...........
...........

............
...........

............
...........

............
...........

...........
............

...........
............

...........
...........

............
...........

............
...........

............
...........

...........
............

...........
............

...........
...........

............
...........

............
.

Main Sequence

� � �

�
�

�

� ��

Figure 10.3: Abstraction-Instability Graph for ViPER IDE Features

Figure 10.1 shows the relation between abstraction and instability for all features of the
ViPER IDE. It demonstrates that all ViPER IDE features are more or less adequately
balanced, having only slight distances to the main sequence. Naturally, the ViPER
Platform features have the highest abstraction, as they provide abstract base classes,
which are used within the other features, while those features that deliver end-user
functionality are inherently more concrete. The features having the highest distance
to the main sequence are ViPER Platform Core (-0.22), ViPER UML2 Core (-0.19),
and ViPER UML2 CodeGen (0.28). While the rather too low abstraction of the ViPER
UML2 Core feature can again be explained with the fact that it basically bundles a
library of concrete utility classes, the rather too high abstraction of the ViPER UML2
CodeGen feature can be explained again with the properties of the EMF generated
code that it comprises (all abstract types within the feature are actually generated).

196

The unbalance of ViPER Platform Core feature interestingly points to a minor weak-
ness within its design. Indeed ViPER Platform Core, which is the single bottom plug-
in within the logical architecture of the ViPER IDE, bundles several unrelated utility
classes, which are concrete, and which are used throughout the ViPER IDE. Moving
those utility classes into separate public features in the style of ViPER EMF and VIPER
GEF, the abstractness of ViPER Platform Core could be increased with respect to its
instability, thus improving its balance. It thus seems that, due to its role as a bottom
feature, the ViPER Platform Core feature is being misused - at least to some extend
- as some sort of collecting tray for globally used utility classes. Nevertheless, a real
problem in terms of maintainability does not seem to be related to this, as those classes
are relatively unrelated and could be easily moved apart.

10.2 Development Process & Infrastructure Characteriza-
tion

The ViPER IDE as well as all other related components are developed by means of an
agile development process - pretty much inspired by the Eclipse development process
[GW05]. In an university setting, as it is faced here, this seems to be an adequate
procedure for a number of reasons. At first, most of the functionality, which is to be
realized, is actually related to current research experience, so that on the one hand re-
quirements are not immanently clear in advance, while on the other hand direct and
fast feedback is required for the sake of evaluation. Both demands for a certain flexi-
bility within the applied development process. Further, the schedules of the involved
developers cannot always be rigidly planned, as the minority of developers is actually
employed as full-time scientific staff, and large contributions are performed by student
workers or respective diploma or master thesis students. Last, as a certain education
aspect, which is inherent to a master or diploma thesis work, is also not neglectable, the
application of agile techniques like pair programming have proven to be very useful as
well.

Development of the ViPER IDE is based on milestone release cycles of four to eight
weeks, dependent on the current team formation. This may be strongly fluctuant,
due to the relatively large number of involved diploma and master thesis students,
who attend the project only for a limited period of time. Milestone planning is done
within a weekly conducted project meeting, attended by all participating developers
(scientific staff and involved students). An appraisal of the weekly integration build,
being headlessly built in advance to the meeting, is also conducted in this context.
All project related documentation, including the development plan and coding or style
conventions, is maintained online within a MediaWiki installation [ViPERc], so it can
be accessed and maintained easily. Detailed planning of features, as well as tracking
of bugs and change requests is as well performed online, organized by means of a
dedicated Bugzilla installation [ViPERa]. Mailing lists are also used to coordinate the
flow of information within the community.

197

The development of the ViPER IDE further is strongly based upon the principles of
continuous integration and continuous testing. For this purpose a headless build sys-
tem has been established in terms of the related ViPER IDE RelEng project component
(cf. [ViPERc]). It executes nightly snapshot as well as weekly integration builds,
based on the respective contents of the ViPER source code repository. The code base
is compiled, assembled, and published on a respective ViPER download site [ViPERb],
together with detailed build results. The build system further checks conformity of the
source code base to predefined style guidelines and detects violations to predefined
access restrictions. It further executes automated JUnit tests [GB99] and measures the
achieved code coverage. The results of all checks and tests are as well published on the
ViPER download site together with the build results, in the form of a quick overview
for the overall platform, as depicted by Figure 10.4, as well as a short summary and a
detailed report for each plug-in.

Figure 10.4: ViPER Download Site (Screenshot)

Currently, the ViPER IDE Tests project component, which bundles all ViPER IDE re-
lated test cases, comprises 318 JUnit test cases, which yield a source code coverage of
34% on the level of classes, 26% on the method level, and 26% on the line level. It
is naturally clear that this rather low coverage may not be regarded as sufficient. In-
vestigating it in detail, it can be stated that it is caused to the most extend by a lack of
automated test cases for those parts related to the code generation (which affectsViPER
MTF and ViPER UML2 CodeGen), as well as those parts related to graphical edit-
ing (which affects ViPER Platform VMF, ViPER UML2 VME, and ViPER NaUTiluS).
While in the case of code generation this is explainable because of human resource

198

limitations (the respective functionaliy has been developed - and tested manually -
before continuous automated testing was established within the ViPER project, and
automated test cases have not been developed afterwards), in the case of graphical ed-
itors, the lack of automated JUnit tests is because of technical difficulties. Effort has
been spent to evaluate the applicability of an Eclipse TPTP provided automated GUI
recording tool (compare [TPTP]), which could be applied to test respective function-
ality more adequate [Sim08]. While a general feasibility could be demonstrated, the
recorded test cases are not sufficiently robust to test GEF applications (all actions cur-
rently have to be recorded in a position-based manner so that small changes to the GUI
layout causes the complete test suite to be stale), so its integration into the continuous
testing environment has - due to the high effort that is related - been postponed until
more stable test cases can be captured (contributions to enhance the GEF-testing ca-
pabilities of the auto GUI recording tool have been submitted to the TPTP project but
have not been integrated yet).

While thus being far from optimal, the applied development process, and in particular
the supporting development infrastructure are regarded to be approved and mature. It
is believed that its effect on the quality of the ViPER tool is strongly positive and that
realizing a development project of equal size and complexity would otherwise not be
possible in an university setting, as it is faced here.

199

200

Chapter 11

An Appraisal of Achieved Results

11.1 Goal Attainment

Having evaluated MeDUSA and ViPER individually, it is about time to investigate, to
which extend the goals, formulated in Section 4.3, may be regarded as accomplished.

Methodological Integrity The basic goal of the herein presented approach has been
formulated within Section 4.3 as that of Methodological Integrity, which was under-
stood to denote the delivery of ”an overall software construction methodological ap-
proach in terms of a concise method, an appropriate notation, and adequate tool sup-
port, being all related by common concepts and principles.”.

Having quite intensely demonstrated and evaluated all parts of the methodology in the
preceding chapters, it might be stated that fulfillment of this central goal may be cer-
tified to the largest extend. As outlined already before, MeDUSA, in contrast to its
predecessors COMET or ROOM, or even other state-of-the-art approaches, was ex-
plicitly designed as a construction method to meet the defined sub-goal of Methodical
Completeness. By explicitly covering all Implementation tasks, and by providing a
detailed code generation schema for the predominant implementation language within
the target domain, namely ANSI-C, the method explicitly covers all software construc-
tion steps, from the early requirements modeling up to the resulting implementation.

By offering graphical UML editors as well as textual (use case) editors to support
the modeling related tasks of MeDUSA, by providing customizable and flexible code
generators, and not last by incorporating dedicated methodical support, the ViPER tool
- even if its functionality is yet limited - demonstrates that Methodological Integration,
the second formulated sub-goal, can as well be achieved, but only if method and tools
are integrated via common concepts and principles. The principle of MeDUSA to be
use case-driven, is for instance also incorporated into the ViPER IDE, in particular
by offering extended support for specifying use case details and for the simulation

201

of use case models, as offered by ViPER NaUTiluS. The class-based characteristic
of MeDUSA, is not last reflected by offering customizable and flexible ANSI-C code
generators, as well as a full C/C++ development environment. The close integration
that is achieved by means of methodical support, as offered by ViPER MetiS, strongly
contributes to this as well, even while still providing limited support for some tasks of
the MeDUSA method yet.

Constraint-Adequateness Adequacy with respect to technical and organizational
constraints was formulated within Section 4.3 as the second major goal to the herein
presented approach, as without explicit Constraint-Adequateness, applicability within
the target domain is not achievable.

To meet to the very special technical constraints, which are predominantly imposed by
those strong resource constraints, being faced in the context of small embedded & real-
time systems, MeDUSA was explicitly designed to be a class-based method (compare
characterization provided in Section 6.3). That is, by not facilitating object-oriented or
even component-based technology, a resource preserving implementation within the
ANSI-C target language is possible.

Meeting the technical constraints is further facilitated by explicitly investigating tim-
ing and concurrency constraints. That is, the taxonomies and their implementing UML
profiles provided by MeDUSA enable the explicit modeling of timing and concurrency
constraints, not only during Analysis Modeling and Architectural Design Modeling, but
as well during Requirements Modeling. A continuous real-time analysis, as it is incor-
porated into the MeDUSA method as well contributes to this. That is, by explicitly
modeling timing and concurrency constraints, and by analyzing their adherence con-
tinuously, an adequate design, appropriately reflecting the technical restriction within
the domain, can be developed.

The organizational adequacy of the herein presented approach has to be reflected a bit
more critical. That is, while the employment of a standardized modeling language al-
lows to use market available modeling tools, the learning effort and related economical
effort, caused by its introduction, may not be underestimated. That is, as experiences
with the practical application of MeDUSA within several pilot projects unveiled, ac-
cessibility to such a high abstraction language is not straight-forward for most of the
domain experts, which are educated in the application of procedural implementation
languages or even machine code, and which thus have to perform a paradigm shift
when adopting a model-based engineering approach, as it is facilitated herein.

It may as well be discussed - regarding organizational adequacy - how well distributed
development is facilitated by the presented approach. As already stated before (cf.
Section 9.2), this question is closely related to the discussion on whether a bottom-
up development procedure, as facilitated by MeDUSA, or a top-down development
approach is applied. As it has been discussed in detail before, the bottom-up procedure,
which is regarded to be best adequate, has the drawback of restricting the amount
of fully distributed development to the Detailed Design and Implementation phases.

202

However, while from the viewpoint of organizational adequacy this might be regarded
as a sort of drawback, the necessity of a feasible design and a seamless integration
seem to outweigh the reduced parallelization potential.

11.2 Conclusion & Outlook

To sum it up, a general attainability of the goals, formulated within Section 4.3 may be
certified. While an ultimate practical evaluation of the MeDUSA method in an indus-
trial size project is still outstanding, and while the functionality of the ViPER tool is
yet restricted, also in terms of its currently offered dedicated methodical support, the
MeDUSA-ViPER methodology seems to be a quite promising approach. It was explic-
itly designed to meet the special characteristics, inherent to the software construction
of embedded & real-time systems within marginal application areas as the industrial
automation. And while there are some slight drawbacks regarding the organizational
adequacy of the presented approach, it demonstrates that technical constraint adequacy
and methodological integrity and completeness can be achieved.

As such, the MeDUSA-ViPER approach demonstrates that modern, model-based en-
gineering technology and techniques can as well be introduced to those rather marginal
application areas. In fact, if model-based engineering is methodologically integrated
and regards the application area specific constraints, it is probably the superior de-
velopment paradigm due to its increased systematics and traceability, as well as its
increased potential in terms of reasoning and analyzability. What has however to be
clearly stated is that - even if advantages of such a model-based engineering approach
are convincing and non deniable - its introduction may at first be rather costly, as the
introduction of a new development paradigm is not achievable without spending con-
siderable effort. Stamina and patience may thus be necessary when introducing such
an approach. Earnings may on the other hand be outstandingly capacious.

While the MeDUSA-ViPER methodology, presented in this thesis, has already gath-
ered some fundamental ground, further work remains to be done. For MeDUSA, eval-
uation in an industrial size development project would be the logical next step, after
the current evaluation within a rather small size pilot project has been concluded. Re-
garding ViPER, improvements could in particular be incorporated by extending the
dedicated methodical support. Here, research effort within the Research Group is cur-
rently spent on the integration of automated real-time analysis capabilities [Rit08],
which is regarded to be of outstanding importance in the context of embedded & real-
time systems.

Despite the continued development of MeDUSA and ViPER, further research may in
particular be identifiably with respect to languages and tools. Especially improvements
to further enhance the traceability and analyzability of the employed models is a very
promising research field. The simulation and debugging of models may be predom-
inantly named in this context, which could significantly improve the overall quality
of the employed models, and would allow to infer earlier and more concise feedback

203

about the design decisions, being made. It would further help to improve acceptance
of higher abstracting modeling languages and would facilitate to move most of the
validation effort from implementation into earlier lifecycle phases.

The inception of domain specific languages and frameworks can as well be named in
this context. While the OMG has already spent some effort on languages and pro-
files, targeting the rather broad domain of embedded & real-time systems as a whole
(cf. [OMG07b] or [OMG07a]), languages and frameworks dedicated to certain spe-
cific application areas can only seldomly be found. While first efforts are observable
within the key application areas - for instance AUTOSAR or AADL (cf. Section 3.2.1)
- marginal application areas as the industrial automation have up to now been mostly
disregarded. Especially with respect to the very special organizational constraints be-
ing faced there, the integration of domain specific concepts could however bring a
significant improvement in terms of accessibility and learnability.

Regarding methodical aspects, further research will have to be spent on investigating
also those software engineering disciplines, apart from software construction. Espe-
cially software quality management of embedded & real-time systems is a field that
bears a lot of research potential. Testing may be regarded as the most challenging field
in this context, as it is also strongly affected by the very special technical constraints
that are being faced in the respective domain.

Despite broadening the scope with respect to the covered software engineering dis-
ciplines, further research will also have to be spent in terms of delivering profound
processes for the overall device development. So called Systems Engineering, the
integration of software, mechanical, and electronical hardware engineering in an in-
terdisciplinary manner actually is a broad field of activity. While it has already been a
question for quite long (first approaches related to systems engineering may already be
found in the 1950’s and 1960’s, as elaborated within Section 3.2.1), real breakthrough
approaches may not be named. However, it seems that - not last because of the recent
incentive of the OMG related to their systems modeling language (SysML) [OMG07b]
- this research area seems to have significantly gained new momentum.

204

Bibliography

[ABB+02] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver
Laitenberger, Rolan Laqua, Dirk Muthig, Barbara Paech, Jürgen Wüst,
and Jörg Zettel. Component-based Product Line Engineering with UML.
Addison Wesley, 2002.

[ABGP05] C. Atkinson, C. Bunse, H.-G. Gross, and C. Peper, editors. Component-
Based Software Development for Embedded Systems - An Overview of
Current Research Trends. Springer Verlag, 2005.

[AHD04] The American Heritage Dictionary of the English Language, Fourth Edi-
tion. Houghton Mifflin Company, 2004. http://www.bartleby.com/
61 (accessed: September 17, 2008).

[AHL+03] Hedley Apperly, Ralph Hofman, Steve Latchem, Barry Maybank, Barry
McGibbon, David Piper, and Chris Simons. Service- and Component-
based Development: Using Select Perspective and UML. Addison Wes-
ley, 2003.

[AKZ96] Maher Awad, Juha Kuusela, and Jürgen Ziegler. Object-Oriented Tech-
nology for Real-Time Systems. Prentice Hall, 1996.

[Amb02] Scott W. Ambler. Agile Modeling - Effective Practices for Extreme Pro-
gramming and the Unified Process. John Wiley & Sons, 2002.

[ATE07] The ATESST Consortium. Advancing Traffic Efficiency and Safety
through Software Technology - Project Overview, 2007. http://www.
atesst.org/home/liblocal/docs/ATESST_Overview_2007Q1.pdf
(accessed: September 17, 2008).

[Bar] Michael Barr. Embedded Systems Glossary. http://www.netrino.
com/Embedded-Systems/Glossary (accessed: September 17, 2008).

[Bau75] Friedrich Ludwig Bauer. Software Engineering. Springer Verlag, 1975.

[BBL76] Barry W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evalua-
tion of Software Quality. In Proceedings of the 2nd International Con-
ference on Software Engineering, pages 592–605, San Francisco, CA,
USA, 1976.

205

[BBR+05] Andreas Bauer, Manfred Broy, Jan Romberg, Bernhard Schätz, Peter
Braun, Ulrich Freund, Nuria Mata, Robert Sandner, and Dirk Ziegen-
bein. AutoMoDe - Notations, Methods, and Tools for Model-Based
Development of Automotive Software. SAE document number 2005-
01-1281, 2005. http://www.validas.de/pub/SAE-05AE-268.pdf
(accessed: September 17, 2008).

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice (Second Edition). Addison Wesley, 2003.

[Bec00] Kent Beck. Extreme Programming Explained - Embrace Change. Ad-
dison Wesley, 2000.

[BFK+99] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud. PuLSE: A Methodology to Develop Soft-
ware Product Lines. In Proceedings of the 1999 Symposium on Soft-
ware Reusability (SSR99), pages 122–131, Los Angeles, CA, USA, May
1999.

[BHM+00] B. W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A.W. Brown, S. Chulani, and C. Abts. Software Cost Es-
timation with COCOMO II. Prentice Hall, 2000.

[BJR96] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling
Language for Object-Oriented Development. Rational Software Corpo-
ration, Documentation Set, Version 0.9, 1996.

[Boo86] Grady Booch. Object-Oriented Development. IEEE Transactions on
Software Engineering, 12(2):211–221, February 1986.

[Boo91] Grady Booch. Object-Oriented Design with Applications. Addison Wes-
ley, 1991.

[Boo94] Grady Booch. Object-Oriented Design with Applications (Second Edi-
tion). Addison Wesley, 1994.

[Bos00] Jan Bosch. Design & Use of Software Architectures. Addison Wesley,
2000.

[BR95] Grady Booch and James Rumbaugh. Unified Method for Object-
Oriented Development, Version 0.8. Technical report, Rational Software
Corporation, 1995.

[BS03] Kurt Bittner and Ian Spence. Use Case Modeling. Addison Wesley,
2003.

[BW94] Alan Burns and Andy Wellings. HRT-HOOD: A Structured Design
Method for Hard Real-Time Systems. Real-Time Systems Journal, 6:73–
114, 1994.

206

[CAB+93] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena
Gilchrist, Fiona Hayes, and Paul Jeremaes. Object Oriented Develop-
ment - The Fusion Method. Prentice Hall, 1993.

[Can01] Murray Cantor. RUP SE: The Rational Unified Process for
Systems Engineering. The Rational Edge, November 2001.
http://www.ibm.com/developerworks/rational/library/
content/RationalEdge/nov01/RUPSENov01.pdf (accessed:
September 17, 2008).

[CD00] John Cheesman and John Daniels. UML Components - A Simple Process
for Specifying Component-based Software. Addison Wesley, 2000.

[CDT] Eclipse C/C++ Development Tooling (CDT) project site. http://www.
eclipse.org/cdt (accessed: September 17, 2008).

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming - Methods, Tools, and Applications. Addison Wesley, 2000.

[Che67] Harold Chestnut. Systems Engineering Methods. John Wiley & Sons,
1967.

[CLL99] Peter Coad, Eric Lefebrve, and Eric De Luca. Java Modeling in Color
with UML. Prentice Hall, 1999.

[CN02] Paul Clemens and Linda Northrop. Software Product Lines - Practices
and Patterns. Addison Wesley, 2002.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison Wesley, 2000.

[CR06] Eric Clayberg and Dan Rubel. Eclipse - Building Commercial-Quality
Plug-ins (Second Edition). Addison Wesley, December 2006.

[CY91] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice
Hall, 1991.

[CY92] Peter Coad and Edward Yourdon. Object-Oriented Design. Prentice
Hall, 1992.

[DDH72] Ole-Johan Dahl, Edsger W. Dijkstra, and C.A.R. Hoare. Structured Pro-
gramming. Academic Press, 1972.

[DeM79] Tom DeMarco. Structured Analysis and System Specification. Prentice
Hall, 1979.

[DFK+04] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat
McCarthy. The Java Developer’s Guide to Eclipse (Second Edition).
Addison Wesley, 2004.

[Dis04] Pierre Dissaux. Using the AADL for mission critical software de-
velopment. In Proceedings of 2nd European Congress on Embedded
Real Time Software (ERTS), Toulouse, France, January 2004. http:
//www.ellidiss.com/erts04.pdf (accessed: September 17, 2008).

207

[Do08] Bui Trung Huy Do. Development of a Sequence Diagram Editor
for the ViPER Platform, 2008. Diploma Thesis (German), RWTH
Aachen University, http://www.swc.rwth-aachen.de/lufgi/
teaching/theses/completed/Huy_Do_Thesis_Report.pdf (ac-
cessed: September 17, 2008).

[Dou99a] Bruce Powel Douglass. Doing Hard Time - Developing Real-T-ime Sys-
tems with UML, Objects, Frameworks, and Patterns. Addison Wesley,
1999.

[Dou99b] Bruce Powel Douglass. Real Time UML - Developing Efficient Objects
for Embedded Systems (Second Edition). Addison Wesley, 1999.

[Dou07] Bruce Powel Douglass. Real-Time UML Workshop for Embedded Sys-
tems. Elsevier Newnes, 2007.

[DW98] Desmond D’Souza and Alan Cameron Wills. Objects, Components, and
Frameworks with UML - The Catalysis Approach. Addison Wesley,
1998.

[Eclipse] Eclipse project site. http://www.eclipse.org (accessed: September
17, 2008).

[EKW92] David W. Embley, Barry D. Kurtz, and Scott N. Woodfield. Object Ori-
ented Systems Analysis - A Model-Driven Approach. Yourdon Press,
Prentice Hall, 1992.

[EMF] Eclipse Modeling Framework (EMF) project site. http://www.
eclipse.org/emf (accessed: September 17, 2008).

[EPF] Eclipse Process Framework (EPF) project site. http://www.eclipse.
org/epf (accessed: September 17, 2008).

[ESL05] ESL Now! Online Survey, July 2005. http://www.esl-now.com/
pdfs/survey_results.pdf (accessed: September 17, 2008).

[Fav05] Jean-Marie Favre. Foundations of Meta-Pyramids: Languages vs. Meta-
models – Episode II: Story of Thotus the Baboon. In Jean Bezivin and
Reiko Heckel, editors, Language Engineering for Model-Driven Soft-
ware Development, number 04101 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005.

[Fav06] Jean-Marie Favre. Megamodelling and Etymology. In James R. Cordy,
Ralf Lämmel, and Andreas Winter, editors, Transformation Techniques
in Software Engineering, number 05161 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany, 2006.

208

[FBH+06] Helmut Fennel, Stefan Bunzel, Harald Heinecke, et al. Achieve-
ments and Exploitation of the AUTOSAR Development Partner-
ship. In Proceedings of Convergence 2006, Detroit, MI, USA, Oc-
tober 2006. http://www.autosar.org/download/AUTOSAR_Paper_
Convergence_2006.pdf (accessed: September 17, 2008).

[Fei07] Peter H. Feiler. AADL in Industrial Pilot Use and Re-
search. Presentation at the 1st International Workshop on
Aerospace Software Engineering (AeroSE 07), May 2007.
http://crisys.cs.umn.edu/icse-workshop/Presentations/
(2)AADL-Users-Feiler-52007.pdf (accessed: September 17, 2008).

[FG+04] Patrick Farail, Pierre Gaufillet, et al. The COTRE Project: How to
Model and Verify Real Time Architecture? In Proceedings of 2nd Euro-
pean Congress on Embedded Real Time Software (ERTS), pages 55–64,
Toulouse, France, January 2004. http://www.laas.fr/COTRE/work/
output/cotre-erts.pdf (accessed: September 17, 2008).

[FNL08] Mathias Funk, Alexander Nyßen, and Horst Lichter. FROM UML TO
ANSI-C - An Eclipse-Based Code Generation Framework. In Proceed-
ings of 3rd International Conference on Software and Data Technologies
(ICSOFT), pages 12–19, Porto, Portugal, August 2008.

[Fun06] Mathias Funk. Generating Efficient C-Code from UML2 Structure
Diagrams, 2006. Diploma Thesis (German), RWTH Aachen Univer-
sity, http://www.swc.rwth-aachen.de/lufgi/teaching/theses/
completed/Mathias_Funk_Thesis_Report.pdf (accessed: Septem-
ber 17, 2008).

[Gan06] Jack Ganssle. The Embedded Muse 132, August 2006. http://www.
ganssle.com/tem/tem132.pdf (accessed: September 17, 2008).

[Gav02] Anastasius Gavras. MODA-TEL - An IST project on Model Driven
Architectures for Telecommunications System Development and Oper-
ation. Presentation to the audience of the joint Telecom and MARS
task forces during the OMG TC meeting in Helsinki, September/Octo-
ber 2002. http://www.omg.org/docs/telecom/02-10-01.pdf (ac-
cessed: September 17, 2008).

[GB99] Erich Gamma and Kent Beck. JUnit - A Cook’s Tour,
May 1999. http://junit.sourceforge.net/doc/cookstour/
cookstour.htm (accessed: September 17, 2008).

[GB03] Erich Gamma and Kent Beck. Contributing to Eclipse - Principles, Pat-
terns, and Plug-Ins. Addison Wesley, October 2003.

[GEF] Eclipse Graphical Editing Framework (GEF) project site. http://www.
eclipse.org/gef.

209

[Gei02] Martin Geier. Codegenerierung aus UML nach ANSI-C für kleine Em-
bedded Systeme. Course material, Lecture on UML für verlässliche mo-
bile und eingebettete Systeme, University of Erlangen-Nuremberg, Ger-
many, December 2002. http://www3.informatik.uni-erlangen.
de/Lehre/UMLEmbSys/WS2002/folien/12-oo2c.pdf (accessed:
September 17, 2008).

[Gen05] Gentleware AG. Poseidon for UML Embedded Edition - ANSI C Tuto-
rial, March 2005. http://www.gentleware.com/fileadmin/media/
pdfs/tutorials/EmbeddedTutorial.pdf (accessed: September 17,
2008).

[GHH+04] H. Grothey, C. Habersetzer, M. Hiatt, W. Hogrefe, M. Kirchner,
G. Lütkepohl, W. Marchewka, U. Mecke, M. Ohm, F. Otto, K.-H.
Rackebrandt, M. Schönsee, D. Sievert, A. Thöne, and H.-J. Wegener.
Praxis der industriellen Durchflussmessung. ABB Automation Products
GmbH, Göttingen, 2004.

[GHSY97] Ian Graham, Brian Henderson-Sellers, and H. Younessi. The OPEN
Process Specification. Addison Wesley, 1997.

[GM57] Harry H. Goode and Robert E. Machol. System Engineering: An Intro-
duction to the Design of Large-scale Systems. McGraw-Hill, 1957.

[GMF] Eclipse Graphical Modeling Fframework (GMF) project site. http:
//www.eclipse.org/gmf (accessed: September 17, 2008).

[GMT] Eclipse Generative Modeling Technologies (GMT) project site. http:
//www.eclipse.org/gmt (accessed: September 17, 2008).

[Gom84] Hassan Gomaa. A Software Design Method for Real Time Systems.
Communications ACM, 29(9):938–949, September 1984.

[Gom93] Hassan Gomaa. Software Design Methods for Concurrent and Real-
Time Systems. Addison Wesley, 1993.

[Gom00] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Ap-
plications with UML. Addison Wesley, 2000.

[GPB04] James Grenning, Johan Peeters, and Carsten Behring. Agile Develop-
ment for Embedded Software. In Proceedings of 4th Conference on
Extreme Programming and Agile Methods (XP/Agile Universe), pages
194–195, Calgary, Canada, 2004.

[Gra91] Ian Graham. Object-oriented Methods. Addison Wesley, 1991.

[Gra95] Ian Graham. Migrating to Object Technology. Addison Wesley, 1995.

[Gro03] DoD Architecture Framework Working Group. DoD Ar-
chitecture Framework Version 1.0 Deskbook, August 2003.
https://acc.dau.mil/GetAttachment.aspx?id=31667&pname=
file&aid=28906&lang=en-US (accessed: September 17, 2008).

210

[GS79] Chris Gane and Trish Sarson. Structured System Analysis: Tools and
Techniques. Prentice Hall, 1979.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories - Assembling Applications With Patterns, Models, Frame-
works, and Tools. John Wiley & Sons, 2004.

[GW05] Erich Gamma and John Wiegand. The Eclipse Way - Pro-
cesses that Adapt. Presentation at EclipseCon 2005, March
2005. http://www.eclipsecon.org/2005/presentations/
econ2005-eclipse-way.pdf (accessed: September 17, 2008).

[Hal62] A. D. Hall. A Methodology for Systems Engineering. Princeton, NJ: Van
Nostrand, 1962.

[Har88] David Harel. On Visual Formalisms. Communication of the ACM,
31(5):514–530, May 1988.

[Hau05] Peter Haumer. IBM Rational Method Composer - Part 1: Key Concepts.
The Rational Edge, December 2005. www.ibm.com/developerworks/
rational/library/dec05/haumer/index.html (accessed: Septem-
ber 17, 2008).

[Hau06] Peter Haumer. IBM Rational Method Composer - Part 2: Au-
thoring method content and processes. The Rational Edge, January
2006. www.ibm.com/developerworks/rational/library/jan06/
haumer/index.html (accessed: September 17, 2008).

[Her07] Marcel Hermanns. Extending the ViPER Environment with Method-
Based Support for MeDUSA, 2007. Diploma Thesis (German), RWTH
Aachen University, http://www.swc.rwth-aachen.de/lufgi/
teaching/theses/completed/Marcel_Hermanns_Thesis_Report.
pdf (accessed: September 17, 2008).

[HG96] David Harel and Eran Gery. Executable Object Modeling with Stat-
echarts. In Proceedings 18th Conference on Software Engineering,
Berlin, March 1996.

[HLNW09] Veit Hoffmann, Horst Lichter, Alexander Nyßen, and Andreas Walter.
Towards the Integration of UML- and Textual Use Case Modeling. In
Journal of Object Technology, Mai-June 2009. to be published.

[Hof06] Hans-Peter Hoffmann. SysML-Based Systems Engineering Using a
Model-Driven Development Approach. In Proceedings of INCOSE
2006 International Symposium, Orlanda, Florida, July 2006.

[HP88] Derek Hatley and Imtiaz Pirbhai. Strategies for Real Time System Spec-
ification. Dorset House, New York, 1988.

[HR02] Peter Hruschka and Chris Rupp. Agile Softwareentwicklung für Embed-
ded Real-Time Systems mit der UML. Hanser Verlag, 2002.

211

[HS01] Brian Henderson-Sellers. An OPEN Process for Component-Based De-
velopment. In George T. Heineman and William T. Councill, editors,
Component-Based Software Engineering - Putting the Pieces Together.
Addison Wesley, 2001.

[HSE94] Brian Henderson-Sellers and Julian Edwards. Book Two of Object-
Oriented Knowledge: The Working Object. Prentice Hall, 1994.

[Hum89] W. S. Humphrey. The Software Engineering Process: Definition and
Scope. ACM SIGSOFT Software Engineering Notes, 14(4), June 1989.

[IEC98] International Electrotechnical Commission (IEC). ISO/IEC 61508:
Functional safety of electrical/electronic/programmable electronic
safety-related systems, version 1.0, 1998.

[IEC01] International Electrotechnical Commission (IEC). ISO/IEC 9126: Soft-
ware engineering - Product quality, 2001.

[IEEE91] IEEE Std 610.12-1990: Standard Glossary of Software Engineering Ter-
minology, 1991.

[IEEE04] Guide to the Software Engineering Body of Knowledge (2004
Version), 2004. http://www.swebok.org/ironman/pdf/SWEBOK_
Guide_2004.pdf (accessed: September 17, 2008).

[Ikr08] Muhammad Tauseef Ikram. UML2 Interaction Modeling Capabili-
ties for the ViPER Platform, 2008. Master Thesis, RWTH Aachen
University, http://www.swc.rwth-aachen.de/lufgi/teaching/
theses/completed/Tauseef_Ikram_Thesis_Report.pdf (ac-
cessed: September 17, 2008).

[ITU99] International Telecommunication Union. ITU-T Recommendation Z.100
(11/99): Specification and Description Language (SDL), November
1999.

[ITU02] International Telecommunication Union. ITU-T Recommendation X.680
(07/2002): Abstract Syntax Notation One (ASN.1), Specification of Ba-
sic Notation, July 2002.

[ITU04] International Telecommunication Union. ITU-T Recommendation Z.120
(04/2004): Message Sequence Chart (MSC), April 2004.

[J+07] M. Jersak et al. Timing model and methodology for AU-
TOSAR. Elektronik Automotive, October 2007. http:
//www.elektroniknet.de/home/automotive/autosar/english/
timing-model-and-methodology-for-autosar (accessed: Septem-
ber 17, 2008).

[Jac75] Michael A. Jackson. Principles of Program Design. Academic Press,
London, 1975.

[Jac83] Michael A. Jackson. System Development. Prentice Hall, 1983.

212

[Jac87] Ivar Jacobson. Object-oriented development in an industrial environ-
ment. In OOPSLA ’87: Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 183–191, New
York, NY, USA, 1987. ACM Press.

[Jac96] Ivar Jacobson. Time for a cease-fire in the methods war. Journal
of Object-Oriented Programming, Guest Editorial, 6(4), July/August
1996.

[Jac04] Ivar Jacobson. Use cases - Yesterday, today, and tomorrow. Software
and System Modeling, 3(3):210–220, 2004.

[Jac08] Ivar Jacobson International. Jaczone Waypointer 6.0 User Guide, Febru-
ary 2008. bundled with the Jaczone Waypointer 6.0 evaluation ver-
sion, obtainable from http://www.ivarjacobson.com/products/
waypointer.cfm (accessed: September 17, 2008).

[Jan07] Matt Jane. Monitoring quality - Dealing with structural erosion in
software development. eStrategies Europe, Mai 2007. http://www.
hello2morrow.de/download/estrategies.pdf (accessed: Septem-
ber 17, 2008).

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Soft-
ware Development Process. Addison Wesley, 1999.

[JCJv92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Över-
gaard. Object-Oriented Software Engineering - A Use Case Driven Ap-
proach. Addison Wesley, ACM Press, 1992.

[KD06] Timo Käkölä and Juan Carlos Dueñas, editors. Software Product Lines:
Research Issues in Engineering and Management. Springer Verlag,
2006.

[Kev07] Özgür Kevinç. Enhancing the ViPER Code-Generator by Concurrency
and Timing, 2007. Diploma Thesis (German), RWTH Aachen Univer-
sity, http://www.swc.rwth-aachen.de/lufgi/teaching/theses/
completed/Oezguer_Kevinc_Thesis_Report.pdf (accessed:
September 17, 2008).

[Kop97] Hermann Kopetz. Real-Time Systems - Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers, 1997.

[Leh08] Mark Lehmacher. Eine Simulationsumgebung für struk-
turierte natürlichsprachliche Anwendungsfallbeschreibungen,
2008. Diploma Thesis (German), RWTH Aachen University,
http://www.swc.rwth-aachen.de/lufgi/teaching/theses/
completed/Mark_Lehmacher_Report.pdf (accessed: September 17,
2008).

[LFM00] Howard Lykins, Sanford Friedenthal, and Abraham Meilich. Adapting
UML for an Object-Oriented Systems Engineering Method (OOSEM).

213

In Proceedings of INCOSE 2000 International Symposium, Minneapo-
lis, MN, USA, July 2000. http://www.omg.org/docs/syseng/
01-09-05.pdf (accessed: September 17, 2008).

[LL07] Jochen Ludewig and Horst Lichter. Software Engineering - Grundlagen,
Menschen, Prozesse, Techniken. dpunkt.verlag, 2007.

[Lun02] Jan Lunze. What is a Hybrid System ? In Sebastian Engell, Goran
Frehse, and Eckehard Schnieder, editors, Modelling, Analysis, and De-
sign of Hybrid Systems, LNCIS 279, pages 3–14. Springer Verlag, 2002.

[Mar94] Robert Martin. OO Design Quality Metrics - An Analysis of Dependen-
cies, October 1994. http://www.objectmentor.com/resources/
articles/oodmetrc.pdf (accessed: September 17, 2008).

[Mar03] Peter Marwedel. Embedded System Design. Kluwer Academic Press,
2003.

[Mar06] Robert C. Martin. Agile Software Development: Principles, Patterns,
and Practices in C#. Prentice Hall, 2006.

[MB02] Stephen J. Mellor and Marc J. Balcer. Executable UML - A Foundation
for Model-Driven Archicture. Addison Wesley, 2002.

[MDT] Eclipse Model Development Tools (MDT) project site. http://www.
eclipse.org/mdt (accessed: September 17, 2008).

[MeDUSA] Method for UML2-based Construction of Embedded & Real-Time Soft-
ware (MeDUSA) - project site. http://www.medusa.sc (accessed:
September 17, 2008).

[MG92] Erik Mettala and Marc H. Graham. The Domain Specific Software
Architecture Program. Technical report, Software Engineering In-
stitute, June 1992. http://www.sei.cmu.edu/pub/documents/92.
reports/pdf/sr09.92.pdf (accessed: September 17, 2008).

[Mik07] Tommi Mikkonen. Programming Mobile Devices: An Introduction for
Practitioners. John Wiley & Sons, February 2007.

[MIS94] The Motor Industry Software Reliability Association (MISRA). ISO/TR
15497: Development Guidelines for Vehicle Based Software, November
1994.

[ML05] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform :
Designing, Coding, and Packaging Java Applications. Addison Wesley,
Oktober 2005.

[MO92] James Martin and James J. Odell. Object Oriented Analysis & Design.
Prentice Hall, 1992.

214

[MSZ01] Peter Müller, Christian Stich, and Christian Zeidler. Components @
Work: Component Technology for Embedded Systems. In Proceedings
of 27th International Workshop on Component-Based Software Engi-
neering, EUROMICRO, 2001.

[NL07a] Alexander Nyßen and Horst Lichter. MeDUSA - Method
for UML2-based Design of Embedded Software Applications.
Technical Report AIB-2007-07, RWTH Aachen University, May
2007. http://aib.informatik.rwth-aachen.de/2007/2007-07.
pdf (accessed: September 17, 2008).

[NL07b] Alexander Nyßen and Horst Lichter. Use Case Modeling for Embed-
ded Software Systems - Deficiencies & Workarounds. In M. Gehrke,
H. Giese, and J. Stroop, editors, Preproceedings of the 4th Workshop on
Object-oriented Modeling of Embedded Real-Time Systems (OMER4),
30.-31. October 2007, HNF Musuems Forum, Paderborn, Germany,
2007.

[NL08] Alexander Nyßen and Horst Lichter. The MeDUSA Reference Man-
ual, Second Edition. Technical Report AIB-2008-07, RWTH Aachen
University, July 2008. http://aib.informatik.rwth-aachen.de/
2008/2008-07.pdf (accessed: September 17, 2008).

[NLS+05] Alexander Nyßen, Horst Lichter, Jan Suchotzki, Peter Müller, and An-
dreas Stelter. UML2-basierte Architekturmodellierung kleiner einge-
betteter Systeme - Erfahrungen einer Feldstudie. In Klein, Rumpe, and
Schätz, editors, Tagungsband des Dagstuhl-Workshops Modellbasierte
Entwicklung eingebetteter Systeme (MBEES), Technischer Bericht, TU
Braunschweig, Dagstuhl, Germany, 2005. TUBS-SSE-2005-01.

[NMSL04] Alexander Nyßen, Peter Müller, Jan Suchotzki, and Horst Lichter. Er-
fahrungen bei der systematischen Entwicklung kleiner eingebetteter
Systeme mit der COMET-Methode. In Proceedings of Modellierung
2004, Lecture Notes in Informatics (LNI), volume P-45, pages 229–234,
Marburg, Germany, March 2004.

[Oes01] Bernd Oestereich. Developing Software with UML - Object-Oriented
Analysis and Design in Practice (Second Edition). Addison Wesley,
2001.

[OMG95] The Common Object Request Broker: Architecture and Specification
- Revision 2.0. OMG Formal Document 97-02-25, July 1995. http:
//www.omg.org/docs/formal/97-02-25.pdf (accessed: September
17, 2008).

[OMG97] UML Semantics v. 1.1. OMG document ad/97-08-04, 1997. http:
//www.omg.org/docs/ad/97-08-04.pdf (accessed: September 17,
2008).

[OMG01] Model Driven Architecture (MDA), July 2001. http://www.omg.org/
docs/ormsc/01-07-01.pdf(accessed: September 17, 2008).

215

[OMG02] UML Profile for Schedulability, Performance, and Time Specification.
OMG Final Adopted Specification ptc/02-03-02, March 2002. http:
//www.omg.org/docs/ptc/02-03-02.pdf (accessed: September 17,
2008).

[OMG03] MDA Guide version 1.0.1, June 2003. http://www.omg.org/docs/
omg/03-06-01.pdf (accessed: September 17, 2008).

[OMG05a] Software Process Engineering Metamodel Specification, Version 1.1.
OMG Formal Document formal/05-01-06, January 2005. http:
//www.omg.org/docs/formal/05-01-06.pdf (accessed: September
17, 2008).

[OMG05b] UML Profile for Schedulability, Performance, and Time v1.0. OMG
Formal Document 05-01-02, September 2005. http://www.omg.org/
docs/formal/05-01-02.pdf (accessed: September 17, 2008).

[OMG05c] UML Superstructure Specification, v2.0. OMG Formal Document 05-
07-04, July 2005. http://www.omg.org/docs/formal/05-07-04.
pdf (accessed: September 17, 2008).

[OMG06a] Common Object Request Broker Architecture - For Embedded. OMG
Document 06-05-01, May 2006. http://www.omg.org/docs/ptc/
06-05-01.pdf (accessed: September 17, 2008).

[OMG06b] Meta Object Facility (MOF) Core Specification. OMG Formal Docu-
ment 06-01-01, January 2006. http://www.omg.org/docs/formal/
06-01-01.pdf (accessed: September 17, 2008).

[OMG07a] A UML Profile for MARTE, Beta 1. OMG Document 07-08-04,
August 2007. http://www.omg.org/docs/ptc/07-08-04.pdf (ac-
cessed: September 17, 2008).

[OMG07b] OMG Systems Modeling Language (OMG SysML) Specification. OMG
Proposed Available Specification 07-02-04, February 2007. http:
//www.omg.org/docs/ptc/07-02-04.pdf (accessed: September 17,
2008).

[OMG07c] UML Infrastructure Specification, Version 2.1.2. OMG Formal Doc-
ument 07-11-04, November 2007. http://www.omg.org/docs/
formal/07-11-04.pdf (accessed: September 17, 2008).

[OMG07d] UML Superstructure Specification, Version 2.1.2. OMG Formal
Document 07-11-02, November 2007. http://www.omg.org/docs/
formal/07-11-02.pdf (accessed: September 17, 2008).

[OMG08] Software & Systems Process Engineering Meta-Model Specification,
Version 2.0. OMG Document formal/08-04-01, April 2008. http:
//www.omg.org/docs/formal/08-04-01.pdf (accessed: September
17, 2008).

216

[Orr78] Kenneth T. Orr. Structured Systems Development. Prentice Hall, 1978.

[Par72] David Parnas. On the Criteria for Decomposing a System into Modules.
Communications of the ACM, 15(12), December 1972.

[Par76] David Parnas. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering, 2(1), March 1976.

[RBP+91] James Rumbaugh, Michael J. Blaha, William Premerlani, Frederick
Eddy, and William Lorenson. Object-Oriented Modeling and Design.
Prentice Hall, 1991.

[RG92] Kenneth S. Rubin and Adele Goldberg. Object Behaviour Analysis.
Communications of the ACM, 35(9):48–62, September 1992.

[Rit08] Philip Ritzkopf. Extending the ViPER IDE with methodical support
for Use Case-based real-time analysis, 2008. Diploma Thesis, RWTH
Aachen University, to be published.

[Rob92] Peter J. Robinson. HOOD: Hierarchical Object Oriented Design. Pren-
tice Hall, 1992.

[Rom06] David Roman. By the Numbers - Software: What Gets Embedded. Elec-
tronic Engineering Times, April 2006. http://i.cmpnet.com/eet/
news/06/04/1418pg32_lay.pdf (accessed: September 17, 2008).

[RS99] Doug Rosenberg and Kendall Scott. Use Case Driven Object Modeling
with UML - A Practical Approach. Addison Wesley, 1999.

[RWL96] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working with Ob-
jects: The OOram Software Engineering Method. Manning Publica-
tions, 1996.

[Sch04] Bernhard Schätz. Model-Based Development of Embedded Software
Beyond UML. Position Paper at Workshop on Model-Based Develop-
ment of Computer Based Systems: Appropriateness, Consistency and
Integration of Models, 11th IEEE Symposium and Workshops on Engi-
neering of Computer-Based Systems (ECBS’04) Brno, Czech Republic,
May 2004.

[Sel03a] Bran Selic. Modeling Real-Time System Architectures. Presen-
tation at the EmSys Summer School, Salzburg, Austria, June/July
2003. http://www.softwareresearch.net/site/other/EmSys03/
docs/09.Selic.pdf (accessed: September 17, 2008).

[Sel03b] Bran Selic. Models, Software Models and UML. Kluwer Academic
Publishers, 2003.

[Sel06] Bran Selic. Model-Driven Development: Its Essence and Opportunities.
In Proceddings of the Ninth IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing (ISORC),
pages 313–319, Gyeongju, Korea, 2006.

217

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

[Sim86] Hugo Simpson. The MASCOT Method. IEE/BCS Software Engineering
Journal, 1(3):103–120, 1986.

[Sim08] Supaporn Simcharoen. Development of a TPTP-based GUI-Test Suite
for the ViPER Integrated Development Environment, 2008. Master The-
sis, RWTH Aachen University.

[SM88] Sally Shlaer and Stephen J. Mellor. Object Oriented Systems Analysis.
Prentice Hall, 1988.

[SM92] Sally Shlaer and Stephen J. Mellor. Object Lifecycles - Modeling the
World in States. Prentice Hall, 1992.

[SM97] Sally Shlaer and Stephen J. Mellor. Recursive Design of an Application-
Independent Architecture. IEEE Software, 14(1), January 1997.

[SR98] Bran Selic and James Rumbaugh. Using UML for Modeling
Complex Real-Time Systems, 1998. http://www.ibm.com/
developerworks/rational/library/content/03July/1000/
1155/1155_umlmodeling.pdf (accessed: September 17, 2008).

[Sta97] Jennifer Ann Margaret Stapleton. DSDM: The Method in Practice. Ad-
dison Wesley, 1997.

[Sub07] SAE AADL Subcomittee. AADL Annex - Behavior Language Com-
pliance and Application Program Interface, March 2007. http://
la.sei.cmu.edu/aadl/documents/Behaviour_Annex1.6.pdf (ac-
cessed: September 17, 2008).

[TEF+03] T. Thurner, J. Eisenmann, U. Freund, R. Geiger, M Haneberg, U Virnich,
and S. Voget. Das EAST-EEA Projekt: Eine middlewarebasierte Soft-
warearchitektur für vernetzte Kfz-Steuergeräte. In Proceedings of VDI-
Kongress Elektronik im Kraftfahrzeug, volume 1789 of VDI-Berichte,
Baden-Baden, 2003.

[TGRT06] Yann Tanguy, Sébastien Gérard, Ansgar Radermacher, and François Ter-
rier. Model Driven Engineering for Real Time Embedded Systems. In
Proceedings of the 3rd European Congress on Embedded Real Time
Software (ERTS), Toulouse, France, January 2006.

[TK04] Maarit Tihinen and Pasi Kuvaja. Embedded Software Develop-
ment - State of the Practice. Presentation at the MOOSE Semi-
nar, Oulu, Finland, October 2004. http://virtual.vtt.fi/moose/
docs/oulu/embedded_sw_development_tihinen_kuvaja.pdf (ac-
cessed: September 17, 2008).

[TPTP] Eclipse Test & Performance Tools Platform (TPTP) project site. http:
//www.eclipse.org/tptp (accessed: September 17, 2008).

218

[vdLSR07] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action - The Best Industrial Practice in Product Line
Engineering. Springer Verlag, 2007.

[ViPERa] Visual Tooling Platform for Model-Based Engineering - bug-tracking
site. http://bugs.viper.sc (accessed: September 17, 2008).

[ViPERb] Visual Tooling Platform for Model-Based Engineering - download site.
http://downloads.viper.sc (accessed: September 17, 2008).

[ViPERc] Visual Tooling Platform for Model-Based Engineering - project site.
http://www.viper.sc (accessed: September 17, 2008).

[vS02] Rini van Solingen. Integrating Software Engineering Technolo-
gies for Embedded Systems Development. In M. Oivo and
S. Komi-Sirviö, editors, Proceedings of PROFES 2002, LNCS
2559, pages 466–474, Rovaniemi, Finland, 2002. Springer Ver-
lag. http://virtual.vtt.fi/virtual/proj1/projects/moose/
docs/solingen_in_template_springer.pdf (accessed: September
17, 2008).

[vS04] Rini van Solingen. State of the practice in European embedded
software engineering. Keynote presentation at MOOSE Seminar,
Helsinki, Finland, June 2004. http://virtual.vtt.fi/moose/
docs/seminar2004/state\%20of\%20the\%20practice\%20_\%
20rini\%20van\%20solingen.pdf (accessed: September 17, 2008).

[vvKM00] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. IEEE
Computer, 33(3):78–85, March 2000.

[Wal07] Andreas Walter. A Use Case Modeling Tool for the ViPER-Platform,
2007. Diploma Thesis (German), RWTH Aachen University,
http://www.swc.rwth-aachen.de/lufgi/teaching/theses/
completed/Andreas_Walter_Thesis_Report.pdf (accessed:
September 17, 2008).

[WBWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing
Object-Oriented Software. Prentice Hall, 1990.

[Weg87] Peter Wegner. Dimensions of object-based language design. In OOP-
SLA ’87: Conference proceedings on Object-oriented programming sys-
tems, languages and applications, pages 168–182, New York, NY, USA,
1987. ACM Press.

[Wei06] Tim Weilkiens. Systems Engineering mit SysML/UML. dpunkt.verlag,
2006.

[Wir71] Niklaus Wirth. Program Development by Stepwise Refinement. Com-
munications of the ACM, 14(4):221–227, 1971.

219

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product Line Engi-
neering: A Family Based Software Engineering Process. Addison Wes-
ley, 1999.

[WL06] Daniel Waddington and Patrick Lardieri. Model-Centric Software De-
velopment. In IEEE Computer, number 39 in 2, pages 28–30, February
2006.

[WM85] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-
Time Systems, volume 1, 2, and 3. Yourdon Press, New York, 1985.

[WNHL08] Andreas Walter, Alexander Nyßen, Veit Hoffmann, and Horst Lichter.
Werkzeugunterstützung für textbasierte Use Case Modellierung. In
K. Herrmann and B. Bruegge, editors, Proceedings of Software Engi-
neering 2008, GI Lecture Notes in Informatics (LNI), volume 121, 2008.

[Won93] William Wong. Plug & Play Programming - An Object-Oriented Con-
struction Kit. M & T Books, New York, NY, 1993.

[YC79] Edward Yourdon and Larry L. Constantine. Structured Design: Fun-
damentals of a Discipline of Computer Program and Systems Design.
Prentice Hall, 1979.

220

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.
A complete list of reports dating back to 1987 is available from http://aib.
informatik.rwth-aachen.de/. To obtain copies consult the above URL or
send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,
52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are ex-

pressively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 –

2nd International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on

Functional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink:

An Offensive Approach to Teaching Information Security: “Aachen
Summer School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Infor-
mation

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:
Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully

Mixed Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisit-
ing Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Fea-
tures”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Aug-
mented LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Re-
visited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöck-
ing: Decision Making Based on Approximate and Smoothed Pareto
Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tamper-
ing with Motes: Real-World Physical Attacks on Wireless Sensor Net-
works

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Gener-

ated by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith:
Divide-and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set
interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan
Kowalewski: Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Im-
proving Interfaces for Searching and Navigating Continuous Audio
Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical
Programs

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle
Strout, Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F:
A Modular, Open-Source Tool for Automatic Differentiation of Fortran
Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent pro-
grams

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-
mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete
2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control
2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems
2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko
Röglin, and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René :Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the
AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory
of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,
Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-07 Alexander Nyßen, Horst Lichter:: The MeDUSA Reference Manual,
Second Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem
on Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-
fixed-endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Split-
table Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers
2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves
2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study
2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving
2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

Curriculum Vitae

Alexander Nyßen
Born March 7th, 1978, in Heinsberg (Rhld.), Germany
Unmarried

Secondary Education & Military Service

08/1988 - 06/1997 Kreisgymnasium Heinsberg

11/1997 - 08/1998 Basic Military Service, Gerolstein

Studies & Student Employment

10/1998 - 12/2002 Studies in Computer Science
RWTH Aachen University

05/2000 - 01/2003 Student Employee
Datus AG, Aachen

Doctoral Studies & Employment

02/2003 - 01/2009 Doctoral Studies in Computer Science
RWTH Aachen University

02/2003 - 12/2008 Scientific Staff
Research Group Software Construction
RWTH Aachen University

since 02/2009 Software Engineer and IT Consultant
Itemis AG, Lünen

