
Aachen
Department of Computer Science

Technical Report

Automated Termination Analysis

for Logic Programs with Cut

Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder,

Alexander Serebrenik, René Thiemann

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2010-10

RWTH Aachen · Department of Computer Science · April 2010

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

1

Automated Termination Analysis for Logic
Programs with Cut∗

PETER SCHNEIDER-KAMP
Dept. of Mathematics and Computer Science, University of Southern Denmark, Denmark

JÜRGEN GIESL, THOMAS STRÖDER
LuFG Informatik 2, RWTH Aachen University, Germany

ALEXANDER SEREBRENIK
Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands

RENÉ THIEMANN
Institute of Computer Science, University of Innsbruck, Austria

Abstract

Termination is an important and well-studied property for logic programs. However, al-
most all approaches for automated termination analysis focus on definite logic programs,
whereas real-world Prolog programs typically use the cut operator. We introduce a novel
pre-processing method which automatically transforms Prolog programs into logic pro-
grams without cuts, where termination of the cut-free program implies termination of
the original program. Hence after this pre-processing, any technique for proving termina-
tion of definite logic programs can be applied. We implemented this pre-processing in our
termination prover AProVE and evaluated it successfully with extensive experiments.

KEYWORDS: automated termination analysis, cut, definite logic programs

1 Introduction

Automated termination analysis for logic programs has been widely studied, see,
e.g., (Bruynooghe et al. 2007; Codish et al. 2005; De Schreye and Decorte 1994;
Mesnard and Serebrenik 2007; Nguyen et al. 2010; Schneider-Kamp et al. 2009;
Serebrenik and De Schreye 2005). Still, virtually all existing techniques only prove
universal1 termination of definite logic programs, which do not use the cut “!”. An
exception is (Marchiori 1996), which transforms “safely typed” logic programs to
term rewrite systems (TRSs). However, the resulting TRSs are complex and since

∗ Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant GI 274/5-2, the DFG
Research Training Group 1298 (AlgoSyn), and the Danish Natural Science Research Council.

1 Universal termination means that all answers are found after a finite number of derivation
steps. Unfortunately, up to now there was hardly any automated technique to prove the at least
equally interesting property of existential termination (i.e., finite failure or the first answer is
found after a finite number of derivation steps). Note that if one can handle the cut then one
also immediately obtains a method to prove existential termination. The reason is that a query
Q is existentially terminating iff Q, ! is universally terminating.

2 P. Schneider-Kamp et al.

there is no implementation of (Marchiori 1996), it is unclear whether they can be
handled by existing TRS termination tools. Moreover, (Marchiori 1996)’s method
does not allow arbitrary cuts (e.g., it does not operate on programs like Ex. 1).

In the present paper, we introduce a novel approach which shows that universal
termination of logic programs with cuts can indeed be proved automatically for
(typically infinite) classes of queries. This solves an important open problem in
automated termination analysis of logic programs.

Example 1
We want to prove termination of the following program for the class of queries
{div(t1, t2, t3) | t1, t2 are ground}. Since we only regard programs without pre-defined
predicates, the program contains clauses defining predicates for failure and equality.
So the atom failure(a) always fails and corresponds to Prolog’s pre-defined “fail”.

div(X, 0, Z) ← !, failure(a). (1)

div(0, Y, Z) ← !, eq(Z, 0). (2)

div(X, Y, s(Z)) ← sub(X, Y, U), div(U, Y, Z). (3)

failure(b). (4)

eq(X, X). (5)

sub(0, Y, 0). (6)

sub(X, 0, X). (7)

sub(s(X), s(Y), Z) ← sub(X, Y, Z). (8)

Any termination analyzer that ignores the cut fails, as div(0, 0, Z) would lead to
the subtraction of 0 and start an infinite derivation using Clause (3). So due to the
cut, (universal) termination effectively depends on the order of the clauses.

There are already several static analysis techniques for logic programming with
cut, e.g., (Filé and Rossi 1993; Mogensen 1996), which are based on abstract inter-
pretation (Cousot and Cousot 1992; Le Charlier et al. 1994; Spoto and Levi 1998).
However, these works do not capture termination as an observable and none of
these results targets termination analysis explicitly. While we also rely on the idea
of abstraction, our approach does not operate directly on the abstraction. Instead,
we synthesize a cut-free logic program from the abstraction, such that termination
of the derived program implies termination of the original one. Thus, we can benefit
from the large body of existing work on termination analysis for cut-free programs.
Our approach is inspired by our previous successful technique for termination anal-
ysis of Haskell programs (Giesl et al. 2006), which in turn was inspired by related
approaches to program optimization (Sørensen and Glück 1995).

In Sect. 2, we introduce the required notions and present a set of simple inference
rules that characterize logic programming with cut for concrete queries. In Sect. 3
we extend these inference rules to handle classes of queries. Using these rules we can
automatically build so-called termination graphs, cf. Sect. 4. Then, Sect. 5 shows
how to generate a new cut-free logic program from such a graph automatically.

Of course, one can transform any Turing-complete formalism like logic program-
ming with cuts into another Turing-complete formalism like cut-free logic program-
ming. But the challenge is to develop a transformation such that termination of
the resulting programs is easy to analyze by existing termination tools. Our imple-
mentation and extensive experiments in Sect. 6 show that with our approach, the
resulting cut-free program is usually easy to handle by existing tools.

Automated Termination Analysis for Logic Programs with Cut 3

2 Concrete Derivations

See e.g. (Apt 1997) for the basics of logic programming. We distinguish between
individual cuts to make their scope explicit. So a signature Σ contains all predicate
and function symbols and all labeled versions of the cut {!m/0 | m ∈ N}. For
simplicity we just consider terms T (Σ,V) and no atoms, i.e., we do not distinguish
between predicate and function symbols. To ease the presentation, in the paper we
exclude terms with cuts !m as proper subterms. A clause is a pair H ← B where
the head H is from T (Σ,V) and the body B is a sequence of terms from T (Σ,V).
Let Goal(Σ,V) be the set of all such sequences, where 2 is the empty goal.

A program P (possibly with cut) is a finite sequence of clauses. Slice(P, t) are all
clauses for t’s predicate, i.e., Slice(P, p(t1, ..., tn)) = {c | c = “p(s1, ..., sn)← B” ∈ P}.

A substitution σ is a function V → T (Σ,V) and we often denote its application
to a term t by tσ instead of σ(t). As usual, Dom(σ) = {X | Xσ 6= X} and
Range(σ) = {Xσ | X ∈ Dom(σ)}. The restriction of σ to V ′ ⊆ V is σ|V′(X) = σ(X)
if X ∈ V ′, and σ|V′(X) = X otherwise. A substitution σ is the most general unifier
(mgu) of s and t iff sσ = tσ and, whenever sγ = tγ for some γ, there exists a δ such
that Xγ = Xσδ for all X ∈ V(s) ∪ V(t). If s and t have no mgu, we write s 6∼ t.
Finally, to denote the term resulting from replacing all occurrences of a function
symbol f in a term t by another function symbol g, we write t[f/g].

Now we recapitulate the operational semantics of logic programming with cut.
Compared to other formulations like (Andrews 2003; Billaud 1990; de Vink 1989;
Kulas and Beierle 2000; Spoto 2000), the advantage of our formalization is that it
is particularly suitable for an extension to classes of queries in Sect. 3 and 4, and
for synthesizing cut-free programs in Sect. 5. A formal proof on the correspondence
of our inference rules to the semantics of the Prolog ISO standard (Deransart et al.
1996) can be found in (Ströder 2010).

Our semantics is given by 7 inference rules. They operate on states which repre-
sent the current goal, and also the backtrack information that is needed to describe
the effect of cuts. The backtrack information is given by a sequence of goals which
are optionally labeled by the program clause that has to be applied to the goal
next. Moreover, our states also contain explicit marks for the scope of a cut.

Definition 1 (Concrete State)
A concrete state is a sequence of elements from Goal(Σ,V) ∪ (Goal(Σ,V)× N× N) ∪
{?n | n ∈ N}, where elements are separated by “|”. State(Σ,V) is the set of all concrete
states.

So an element of a state can be Q ∈ Goal(Σ,V); or a labeled goal Qim ∈
Goal(Σ,V)×N×N representing that we must apply the i-th program clause to Q
next, where m determines how a cut introduced by the body of the i-th clause will
be labeled; or ?m. Here, ?m serves as a marker to denote the end of the scope of
cuts !m labeled with m. Whenever a cut !m is reached, all elements preceding ?m
are discarded.

Now we express derivations in logic programming with cut by seven rules. Here,
S and S′ are concrete states and the goal Q may also be 2 (then “t, Q” is t).

4 P. Schneider-Kamp et al.

Definition 2 (Semantics with Concrete Inference Rules)

2 | S
S

(Suc)
?m | S

S
(Fail)

!m, Q | S | ?m | S′

Q | ?m | S′
(Cut)

where
S con-
tains
no ?m

!m, Q | S
Q

(Cut)
where
S con-
tains
no ?m

t, Q | S
(t, Q)i1m | . . . | (t, Q)ikm | ?m | S

(Case)

where t is neither a cut nor a variable, m
is greater than all previous marks, and
Slice(P, t) = {ci1 , . . . , cik} with i1 <
. . . < ik

(t, Q)im | S
B′iσ,Qσ | S

(Eval)

where
ci = Hi ← Bi,
mgu(t,Hi)=σ,
B′i = Bi[! / !m].

(t, Q)im | S
S

(Backtrack)
where
ci = Hi ← Bi
and t 6∼ Hi.

The Suc rule stands for “success” and it is applicable if the first goal of our
sequence could be proved. As we handle universal termination, we then have to
backtrack to the next goal in the sequence. Fail means that for the current m-th
case analysis, there are no further backtracking possibilities. This rule is applicable
if ?m is the first element of our backtracking sequence. But the whole derivation
does not have to fail, since the state S may still contain further alternative goals
which have to be examined.

To make the backtracking possibilities explicit, the resolution of a program clause
with the first atom t of the current goal is split into two operations. The Case

analysis determines which clauses could be applied to t by slicing the program
according to t’s root symbol. It replaces the current goal (t, Q) by a goal labeled
with the index i1 of the first such clause and adds copies of (t, Q) labeled by
the indices i2, . . . , ik of the other potentially applicable clauses as backtracking
possibilities. Note that here, the top-down clause selection rule is taken into account.
Additionally, these goals are labeled by a fresh mark m ∈ N that is greater than all
previous marks, and ?m is added at the end of the new backtracking goals to denote

div(0, 0, Z) div(0, 0, Z)11 | div(0, 0, Z)21 | div(0, 0, Z)31 | ?1
Case

!1, failure(a) | div(0, 0, Z)21 | div(0, 0, Z)31 | ?1

Eval

id

failure(a) | ?1
Cut

failure(a)42 | ?2 | ?1

Case

?2 | ?1
Backtrack

?1
Fail

ε
Fail

the scope of cuts. For instance,
consider the program of Ex. 1 and
the query div(0, 0, Z). This query
is represented by the concrete
state consisting of just the goal
div(0, 0, Z). Here, we obtain the se-
quence depicted at the side. The
Case rule results in a state which represents a case analysis where we first try
to apply the first div-clause (1). When backtracking later on, we use clauses (2) and
(3).

For a goal (t, Q)im, if t unifies with the head Hi of the corresponding clause, we
apply Eval. This rule replaces t by the body Bi of the clause and applies the mgu
σ to the result. When depicting rule applications as trees, the corresponding edge is
labeled with σ|V(t). All cuts occurring in Bi are labeled with m. The reason is that
if one reaches such a cut, then all further alternative goals up to ?m are discarded.

If t does not unify with Hi, we apply the Backtrack rule. Then, Clause i cannot
be used and we just backtrack to the next possibility in our backtracking sequence.

Automated Termination Analysis for Logic Programs with Cut 5

Finally, there are two Cut rules. The first rule removes all backtracking infor-
mation on the level m where the cut was introduced. Since the explicit scope is
represented by !m and ?m, we have turned the cut into a local operation depending
solely on the current state. Note that ?m must not be deleted as the current goal
Q could still lead to another cut !m. The second Cut rule is used if ?m is missing
(e.g., if a cut !m is already in the initial query). Later on, such states can also result
from the additional Parallel inference rule which will be introduced in Sect. 4.
We treat such states as if ?m were added at the end of the backtracking sequence.

So to apply the cut !1 in our example, we remove all subsequent elements in the
list up to ?1. So we remove the backtracking goals div(0, 0, Z)2

1 and div(0, 0, Z)3
1 and

obtain the state failure(a)4
2 | ?1, which eventually fails. Note that due to the cut, we

did not have to backtrack using the other div-clauses.
Note that these rules do not overlap, i.e., there is at most one rule that can be

applied to any state. The only case where no rule is applicable is when the state is
the empty sequence (denoted ε) or when the first goal starts with a variable.

The rules of Def. 2 define the semantics of logic programs with cut using states.
They can also be used to define the semantics using derivations between goals:
there is a derivation from the goal Q to Q′ in the program P (denoted Q `∗P,θ Q′)
iff repeated application of our rules can transform the state2 Q to a state of the
form Q

′ | S for some S, and Q′ results from Q
′

by removing all labels. Moreover,
θ = θ1θ2 . . . θn where θ1, . . . , θn are the mgu’s used in those applications of the
Eval rule that led to Q

′
. We call θ|V(Q) the corresponding answer substitution. If

θ is not of interest, we write `P instead of `P,θ.
Consequently, our inference rules can be used for termination proofs: If there is an

infinite derivation (w.r.t. `P) starting in some goal Q, then there is also an infinite
sequence of inference rule applications starting in the state Q, i.e., Q is a “non-
terminating state”. Note that we distinguish derivations in logic programming (i.e.,
Q `P Q′ for goals Q and Q′) from sequences of states that result from application
of the inference rules in Def. 2. If a state S can be transformed into a state S′ by
such an inference rule, we speak of a “state-derivation”.

3 Abstract Derivations

To represent classes of queries, we introduce abstract terms, i.e., terms containing
two kinds of variables. Let A be the set of abstract variables, where each T ∈ A
represents a fixed but arbitrary term. N consists of all “ordinary” variables in logic
programming. Then, as abstract terms we consider all terms from the set T (Σ,V)
where V = N]A. Concrete terms are terms from T (Σ,N), i.e., terms containing no
abstract variables. For any set V ′ ⊆ V, let V ′(t) be the variables from V ′ occurring
in the term t.

To determine by which terms an abstract variable may be instantiated, we add
a knowledge base KB = (G,U) to each state, where G ⊆ A and U ⊆ T (Σ,V) ×

2 If Q contains cuts, then the inference rules have to be applied to Q[!/!1] instead of Q.

6 P. Schneider-Kamp et al.

T (Σ,V). The variables in G may only be instantiated by ground terms. And (s, s′) ∈
U means that we are restricted to instantiations γ of the abstract variables where
sγ 6∼ s′γ, i.e., s and s′ may not become unifiable when instantiating them with γ.

Definition 3 (Abstract State)
The set of abstract states AState(Σ,N ,A) is a set of pairs (S; KB) of a concrete
state S ∈ State(Σ,N ∪A) and a knowledge base KB .

A substitution γ is a concretization of an abstract state if it respects the knowl-
edge base (G,U). So first, γ instantiates all abstract variables, i.e., Dom(γ) = A.
Second, when applying γ, the resulting term must be concrete, i.e., V(Range(γ)) ⊆
N . Third, abstract variables from G may only be replaced by ground terms, i.e.,
V(Range(γ|G)) = ∅. Fourth, for all pairs (s, s′) ∈ U , sγ and s′γ must not unify.

Definition 4 (Concretization)
A substitution γ is a concretization w.r.t. (G,U) iff Dom(γ) = A, V(Range(γ)) ⊆
N , V(Range(γ|G)) = ∅, and sγ 6∼ s′γ for all (s, s′) ∈ U . The set of concretizations of
an abstract state (S; KB) is Con(S; KB) = {Sγ | γ is a concretization w.r.t. KB}.

Example 2
Consider the abstract state which consists of the single goal sub(T1, T2, T3) and the
knowledge base ({T1, T2}, {(T1, T3)}), with Ti ∈ A for all i. So here G = {T1, T2} and
U only contains (T1, T3). This represents all concrete states sub(t1, t2, t3) where t1, t2
are ground terms and where t1 and t3 do not unify, i.e., t3 does not match t1. For ex-
ample, sub(0, 0, Z) is not represented as 0 and Z unify. In contrast, sub(s(0), s(0), 0)
and sub(0, 0, s(0)) are represented. Note that sub(s(0), s(0), 0) can be reduced to
sub(0, 0, 0) using Clause (8) from Ex. 1. But Clause (8) cannot be applied to all
concretizations. For example, the concrete state sub(0, 0, s(0)) is also represented
by our abstract state, but here no clause is applicable.

Ex. 2 demonstrates that we need to adapt our inference rules to reflect that
sometimes a clause can be applied only for some concretizations of the abstract
variables, and to exploit the information from the knowledge base of the abstract
state. We now adapt our inference rules to abstract states that represent sets of
concrete states. The invariant of our rules is that all states represented by the parent
node are terminating if all the states represented by its children are terminating.
(We now also permit rules leading to more than one child node.)

Definition 5 (Sound Rules)
An abstract state is called terminating iff all its concretizations are terminating.
A rule ρ : AState(Σ,N ,A) → 2AState(Σ,N ,A) is sound if (S; KB) is terminating
whenever all (S′; KB ′) ∈ ρ(S; KB) are terminating.

To prove the soundness of our adapted inference rules, we will ensure that they all
satisfy the following simulation property for every abstract state (S;KB) and each
of its concretizations Sγ ∈ Con(S;KB): If the concrete state Sγ can be transformed
into a concrete state R by a concrete inference rule, then the abstract state (S;KB)
can be transformed into an abstract state (S′;KB′), such that R is a concretization

Automated Termination Analysis for Logic Programs with Cut 7

of the state (S′;KB′), i.e., R ∈ Con(S′;KB′). Note that the simulation property
implies the soundness of the abstract rules. If (S;KB) were non-terminating, then
one of its concretizations Sγ ∈ Con(S;KB) would also be non-terminating. But
by the soundness of the concrete rules, then R (i.e., one of the concretizations
of (S′;KB′)) would be non-terminating as well, which implies non-termination of
(S′;KB′).

The rules Suc, Fail, Cut, and Case do not change the knowledge base and are,
thus, straightforward to adapt. Here, S | S′; KB stands for ((S | S′); KB).

Definition 6 (Abstract Inference Rules – Part 1 (Suc, Fail, Cut, Case))

2 | S; KB

S; KB
(Suc)

?m | S; KB

S; KB
(Fail)

!m, Q | S | ?m | S′; KB

Q | ?m | S′; KB
(Cut)

where S
contains
no ?m

!m, Q | S; KB

Q; KB
(Cut)

where S
contains
no ?m

t, Q | S; KB

(t, Q)i1m | . . . | (t, Q)ikm | ?m | S; KB
(Case)

where t is neither a cut nor a vari-
able, m is greater than all pre-
vious marks, and Slice(P, t) =
{ci1 , . . . , cik} with i1 < . . . < ik

For Suc, Fail, Cut and Case, again at most one of the rules is applicable.
For the concrete Eval and Backtrack rules, in Def. 2, we determined which of
these two rules to choose by trying to unify the first atom t with the head Hi of
the corresponding clause. But as demonstrated by Ex. 2, in the abstract case we
might need to apply Eval for some concretizations and Backtrack for others.
Backtrack can be used for all concretizations of our abstract state if t does
not unify with Hi or if their mgu contradicts U . This gives rise to the abstract
Backtrack rule in the following definition. When the abstract Backtrack rule is
not applicable, we still cannot be sure that tγ unifies with Hi for all concretizations
γ. Thus, we have an abstract Eval rule with two successor states that combines
both the concrete Eval and the concrete Backtrack rule.

Definition 7 (Abstract Inference Rules – Part 2 (Backtrack, Eval))

(t, Q)im | S; KB

S; KB
(Backtrack)

where ci = Hi ← Bi and there is no con-
cretization γ w.r.t. KB such that tγ ∼ Hi.

(t, Q)im | S; (G,U)

B′iσ,Qσ | Sσ|G ; (G′,Uσ|G) S; (G,U ∪ {(t,Hi)})
(Eval)

where ci = Hi ← Bi and mgu(t,Hi) = σ. W.l.o.g., V(σ(X)) only contains fresh
abstract variables for all X ∈ V. Moreover, G′ = A(Range(σ|G)) and B′i = Bi[!/!m].

Before explaining the Eval rule in detail, we illustrate the above definition with
a first example without variables. The example shows that although the abstract
Eval rule has a second child which corresponds to a backtrack step, the additional
abstract Backtrack rule is also needed. Otherwise, even if the clause Hi ← Bi
cannot be applied to any concretization of the current abstract goal (e.g., because

8 P. Schneider-Kamp et al.

of a cut), we would always have to generate two children with the Eval rule (one
for the successful application of the clause and one for backtracking). In this way,
instead of a short finite tree that ends with failure, we would obtain an infinite tree.

Example 3
To see this, consider the following program:

p ← !. (9) p ← p. (10)

Without the abstract Backtrack rule, we would obtain the following tree from
the initial state (p; (∅,∅)). Here, the edge to the left child of the Eval node is
marked by the corresponding mgu (which is the identity id in our example).

p; (∅,∅)

p9
1 | p

10
1 | ?1; (∅,∅)

Case

!1 | p10
1 | ?1; (∅,∅)

Evalid

p10
1 | ?1; (∅, {(p, p)})

Eval

2 | ?1; (∅,∅)

Cut

p | ?1; (∅, {(p, p)})

Evalid

?1; (∅, {(p, p)})

Eval

?1; (∅,∅)

Suc

p9
2 | p

10
2 | ?2 | ?1; (∅, {(p, p)})

Case

ε; (∅, {(p, p)})

Fail

ε; (∅,∅)

Fail

. . .

Evalid

. . .

Eval

Note that in the rightmost node marked with “. . . ”, one would again apply
the Eval rule etc. which would lead to an infinite tree. The reason is that in
the Eval rule one does not take into account that no concretization of the current
abstract goal would unify with any head of a program clause (since Eval disregards
the information in the set U which in our case states that p may not unify with
p; i.e., in our case there is no possible concretization of this abstract state). So
instead of the Eval rule, we should rather apply the Backtrack rule to the
state (p10

1 | ?1; (∅, {(p, p)})) which would result in the only child (?1; (∅, {(p, p)})).
Another step with the Fail rule would then give the final state (ε; (∅, {(p, p)})),
i.e., the resulting tree would be finite.

In the abstract Eval rule, the knowledge base is updated differently for the
successors corresponding to the concrete Eval and to the concrete Backtrack

rule. For all concretizations corresponding to the second successor of Eval, the
concretization of t does not unify with Hi. Hence, here we add the pair (t,Hi) to
the set U .

Now consider concretizations γ where tγ and Hi unify, i.e., concretizations γ

Automated Termination Analysis for Logic Programs with Cut 9

corresponding to the first successor of the Eval rule. Then for any T ∈ G, Tγ is a
ground instance of Tσ. Hence, we replace all T ∈ G by Tσ, i.e., we apply σ|G to U
and S. Now the new set G′ of abstract variables that may only be instantiated by
ground terms is A(Range(σ|G)). As before, t is replaced by the instantiated clause
body Bi where we label cuts with the number m of the current Case analysis.

In the Eval rule, w.l.o.g. we assume that mgu(t,Hi) renames (a) all abstract
variables and (b) also all non-abstract variables to fresh abstract variables. As
illustrated by the following two examples, this is needed to handle “sharing” effects
correctly, i.e., to handle concretizations which introduce multiple occurrences of
(concrete) variables.

Example 4
We first illustrate the need for (b), i.e., for the renaming of non-abstract variables
into fresh abstract variables. Consider the following program.

p(a). (11) p(b). (12) q(c) ← !. (13) q(X) ← q(X). (14)

Regard the abstract state ((p(T), q(X))11
1 ; (∅,∅)) with T ∈ A and X ∈ N . It

has the concretization (p(X), q(X))11
1 which results from instantiating the abstract

variable T with the concrete variable X. So now the instantiation of T “shares”
the variable X which was already present in the abstract state. Using the concrete
Eval rule, the state (p(X), q(X))11

1 can be transformed into q(a). However, if we did
not rename concrete variables, then the abstract Eval rule would only transform
the abstract state ((p(T), q(X))11

1 ; (∅,∅)) into (q(X); (∅,∅)). Now the simulation
property would be violated since q(a) is not a concretization of (q(X); (∅,∅)), as
concretizations may not instantiate non-abstract variables like X. In fact, the state
q(a) is non-terminating, whereas (q(X); (∅,∅)) is terminating and thus, the Eval

rule would no longer be sound. In contrast, when using unifiers that rename all
concrete variables to fresh abstract variables as in Def. 7, the abstract Eval rule
yields the state (q(T ′); (∅,∅)) where T ′ is a fresh abstract variable.

Example 5
Now we illustrate the need for (a), i.e., for the renaming of abstract variables. We
use the same program as in Ex. 4 and consider the abstract state ((p(X), q(T))11

1 |
(p(X), q(T))12

1 ; (∅,∅)). It has the concretization ((p(X), q(X))11
1 | (p(X), q(X))12

1)
which results from instantiating the abstract variable T with the concrete vari-
able X. So now also the two instantiations of T “share” the variable X. Since
these two instantiations belong to two different backtracking alternatives, it should
be possible to instantiate the variable X differently in these two alternatives.
Using the concrete Eval rule, the state ((p(X), q(X))11

1 | (p(X), q(X))12
1) can

be transformed into (q(a) | (p(X), q(X))12
1). However, if we did not rename ab-

stract variables, then the abstract Eval rule would transform the abstract state
((p(X), q(T))11

1 | (p(X), q(T))12
1 ; (∅,∅)) into (q(T) | (p(X), q(T))12

1 ; (∅,∅)). Now
the simulation property would be violated since (q(a) | (p(X), q(X))12

1) is not a
concretization of (q(T) | (p(X), q(T))12

1 ; (∅,∅)). To solve this problem, we use uni-
fiers that rename all abstract variables into fresh ones. Then the abstract Eval rule
would create the new abstract state (q(T ′) | (p(X), q(T))12

1 ; (∅,∅)) instead.

10 P. Schneider-Kamp et al.

With the rules of Def. 6 and 7, the simulation property is fulfilled. It guarantees
that any concrete state-derivation with the rules from Def. 2 can also be simulated
with the abstract rules from Definitions 6 and 7.

Now any concrete derivation with the rules from Def. 2 can also be simulated
with the abstract rules from Def. 6 and 7. But unfortunately, even for terminat-
ing goals, in general these rules yield an infinite tree. The reason is that there is
no bound on the size of terms represented by the abstract variables and hence,

p(T1); ({T1},∅)

p(T1)151 | ?1; ({T1},∅)

Case

?1; ({T1}, {(p(T1), p(s(X)))})

Eval

ε; ({T1}, {(p(T1), p(s(X)))})

Fail

p(T2) | ?1; ({T2},∅)

EvalT1/s(T2)

p(T2)152 | ?2 | ?1; ({T2},∅)

Case

?2 | ?1; ({T2}, {(p(T2), p(s(X)))})

Eval

p(T3) | ?2 | ?1; ({T3},∅)

EvalT2/s(T3)

. . .

Case

. . .

Fail

the abstract Eval rule can be
applied infinitely often.

Example 6
Consider the 1-rule program

p(s(X))← p(X). (15)

For queries of the form p(t)
where t is ground, the program
terminates. However, the tree
built using the abstract infer-
ence rules is obviously infinite.

4 From Trees to Graphs

To obtain a finite graph instead of an infinite tree, we now introduce an additional
Instance rule which allows us to connect the current state (S; KB) with a previ-
ous state (S′; KB ′), provided that the current state is an instance of the previous
state. In other words, every concretization of (S; KB) must be a concretization of
(S′; KB ′). Still, Instance is often not enough to obtain a finite graph.

Example 7
We extend Ex. 6 by the following additional fact.

p(X). (16)

For queries p(t) where t is ground, the program still terminates. If we start with
(p(T1); ({T1},∅)), then the Case rule results in the state (p(T1)15

1 | p(T1)16
1 | ?1;

({T1},∅)) and the Eval rule produces two new states, one of them being (p(T2) |
p(s(T2))16

1 | ?1; ({T2},∅)).
To simplify states, from now on we will eliminate so-called non-active marks ?m

which occur as first or as last element in states. Eliminating ?m from the beginning
of a state is possible, as Fail would also remove such a ?m. Eliminating ?m from
the end of a state is possible, as applying the first Cut rule to a state ending in ?m
is equivalent to applying the second Cut rule to the same state without ?m.

We will also reduce the knowledge base to just those abstract variables that
occur in the state and remove pairs (s, s′) from U where s 6∼ s′. Still, (p(T2) |
p(s(T2))16

1 ; ({T2},∅)) is not an instance of the previous state (p(T1); ({T1},∅)) due
to the added backtrack goal p(s(T2))16

1 . In other words, as soon as there is more than
one clause for some predicate p, then each application of the Case rule produces

Automated Termination Analysis for Logic Programs with Cut 11

p(T1); ({T1},∅)

p(T1)151 | p(T1)161 ; ({T1},∅)

Case

p(T1)161 ; ({T1},∅)
Parallel

p(T1)151 ; ({T1},∅)

Parallel

p(T2); ({T2},∅)

EvalT1/s(T2)

Instance

ε; (∅,∅)

Eval

2; (∅,∅)

Eval
T1/T2

ε; (∅,∅)

Eval

ε; (∅,∅)

Suc

an additional backtracking tar-
get. For this reason, the new
state is not an instance of any
previous state. Therefore, we
now introduce a Parallel rule
that allows us to split a back-
tracking sequence into separate
problems. Now we obtain the
graph on the right.

Clearly, Parallel may transform terminating into non-terminating states. For
example, in the program with the clause p ← p, the state (!1 | p; (∅,∅)) is ter-
minating, but the Parallel rule could transform it into (!1; (∅,∅)) and the non-
terminating state (p; (∅,∅)). But without further conditions, Parallel is not only
“incomplete”, but also unsound. Consider a state (!2 | !1 | ?2 | p; (∅,∅)) for the pro-
gram p← p. The state is not terminating, as !1 is not reachable. Thus, one eventu-
ally evaluates p. But if one splits the state into (!2; (∅,∅)) and (!1 |?2 | p; (∅,∅)),
both new states terminate. So the problem is that due to the splitting of the back-
tracking sequence, we can suddenly reach the cut !1 that is unreachable in reality
and thereby we can cut away the non-terminating part p.

To solve this problem, in addition to the “active marks” (cf. Ex. 7) we introduce
the notion of active cuts. The active cuts of a state S are those m ∈ N where !m
occurs in S or where !m can be introduced by Eval applied to a labeled goal (t, q)im
occurring in S. Now the Parallel rule may only split a backtracking sequence into
two parts S and S′ if the active cuts of S and the active marks of S′ are disjoint.

Definition 8 (Abstract Inference Rules – Part 3 (Instance, Parallel))

S; (G,U)

S′; (G′,U ′)
(Instance) if there is a µ such that S = S′µ, µ|N is a variable

renaming, V(Tµ) ⊆ G for all T ∈ G′, and U ′µ ⊆ U .

S | S′; KB

S; KB S′; KB
(Parallel) if AC(S) ∩AM(S′) = ∅

p(T1); ({T1},∅)

p(T1)171 ; ({T1},∅)

Case

p(T2), q; ({T2},∅)

EvalT1/s(T2)

ε; (∅,∅)

Eval

p(T2)172 , q; ({T2},∅)

Case

ε; (∅,∅)

Eval

p(T3), q, q; ({T3},∅)

EvalT2/s(T3)

. . .

Case

The active cuts AC(S) are all m where !m is in S
or (t, q)im is in S and ci’s body has a cut. The active
marks AM(S) are all m where S = S′ | ?m | S′′ and
S′ 6= ε 6= S′′.

Example 8
However, there are still examples where the graph
cannot be “closed”. Consider the program

p(s(X))← p(X), q. (17) q. (18)

For queries p(t) where t is ground, the program
again terminates. With Def. 6, 7, and 8, we obtain
the infinite tree on the right. It never encounters

12 P. Schneider-Kamp et al.

an instance of a previous state, since each resolution with Clause (17) adds a q to
the goal.

Thus, we introduce a final abstract Split rule to split a state (t, Q; KB) into
(t; KB) and a state (Qµ; KB ′), where µ approximates the answer substitutions for
t. The edge from (t, Q; KB) to (Qµ; KB ′) is labeled with µ|V(t)∪V(Q). To simplify
the Split rule, we only define it for backtracking sequences of one element. To
obtain such a sequence, we can use the Parallel rule.

Definition 9 (Abstract Inference Rules – Part 4 (Split))

t, Q; (G,U)

t; (G,U) Qµ; (G′,Uµ)
(Split)

where µ replaces all variables from V\G
by fresh abstract variables and G′ = G∪
ApproxGnd(t, µ).

Here, ApproxGnd is defined as follows. We assume that we have a groundness
analysis function GroundP : Σ × 2N → 2N, see, e.g., (Howe and King 2003). If p
is an n-ary predicate, {i1, . . . , im} ⊆ {1, . . . , n}, and GroundP(p, {i1, . . . , im}) =
{j1, . . . , jk}, then any successful derivation p(t1, . . . , tn) `∗P,θ 2 where ti1 , . . . , tim
are ground will lead to an answer substitution θ such that tj1θ, . . . , tjkθ are ground.
So GroundP approximates which positions of p will become ground if the “input”
positions i1, . . . , im are ground. Now if t = p(t1, . . . , tn) is an abstract term where
ti1 , . . . , tim are ground in every concretization (i.e., all their variables are from G),
then ApproxGnd(t, µ) returns the µ-renamings of all abstract variables that will
be ground in every successful derivation starting from a concretization of t. Thus,
ApproxGnd(t, µ) contains the abstract variables of tj1µ, . . . , tjkµ. So formally

ApproxGnd(p(t1, . . . , tn), µ) = {A(tjµ) | j ∈ GroundP(p, {i | V(ti) ⊆ G})}

Example 9
To illustrate Def. 9, regard the program of Ex. 1 and the state (sub(T5, T6, T8),
div(T8, T6, T7); ({T5, T6},U)) with T5, T6, T7, T8 ∈ A. (This state will occur in the
termination proof of div, cf. Ex. 10.) We have G = {T5, T6} and hence if sub(t1, t2, t3)
is sub(T5, T6, T8), then GroundP(sub, {i | V(ti) ⊆ G}) = GroundP(sub, {1, 2}) =
{1, 2, 3}. In other words, if the first two arguments of sub are ground and the
derivation is successful, then the answer substitution also instantiates the third ar-
gument to a ground term. Since µ only renames variables outside of G, we have µ =

p(T1); ({T1},∅)

p(T1)171 ; ({T1},∅)

Case

ε; (∅,∅)
Eval

p(T2), q; ({T2},∅)

EvalT1/s(T2)

p(T2); ({T2},∅)

Split

Instance

q; (∅,∅)
Split

id

q182 ; (∅,∅)

Case

ε; (∅,∅)

Eval

2; (∅,∅)

Evalid

ε; (∅,∅)
Suc

{T7/T9, T8/T10}.
SoApproxGnd(sub(T5, T6, T8), µ) =
{A(t1µ),A(t2µ),A(t3µ)} = {T5µ,

T6µ, T8µ} = {T5, T6, T10}. So the
Split rule transforms the current
state to (sub(T5, T6, T8); ({T5, T6},U))
and (div(T10, T6, T9); ({T5, T6, T10},
Uµ)) where one can eliminate T5 from
the new groundness set G′.

With the additional Split rule, we
can always obtain finite graphs in-
stead of infinite trees. (This will be

Automated Termination Analysis for Logic Programs with Cut 13

proved in Thm. 2.) Thus, no further rules are needed. As depicted on the previous
page, now we can also close the graph for Ex. 8’s program.

Thm. 1 proves the soundness of all our abstract inference rules. In other words,
if all children of a node are terminating, then the node is terminating as well.

Theorem 1 (Soundness of the Abstract Inference Rules)
The inference rules from Def. 6, 7, 8, and 9 are sound.3

5 From Termination Graphs to Logic Programs

Now we introduce termination graphs as a subclass of the graphs obtained by Def. 6,
7, 8, 9. Then we show how to extract cut-free programs from termination graphs.

Definition 10 (Termination Graph)
A finite graph built from an initial state (S; KB) using Def. 6, 7, 8, and 9 is a
termination graph iff there is no cycle consisting only of Instance edges and all
leaves are of the form (ε; KB ′) or (X,Q | S; KB ′) with X ∈ V. If there are no leaves
of the form (X,Q | S; KB ′), then the graph is “proper”.

We want to generate clauses for the loops in the termination graph and show their
termination. Thus, there should be no cycles consisting only of Instance edges, as
they would lead to trivially non-terminating clauses. Moreover, the only leaves of
the graph may be nodes where no inference rule is applicable anymore (i.e., the
graph must be “fully expanded”). Hence, leaves can only be nodes where the state
consists only of the empty backtracking sequence ε or where the first goal of the
backtracking sequences starts with a variable. For example, the graph at the end of
Sect. 4 is a termination graph. Thm. 2 shows that termination graphs can always
be obtained automatically.

Theorem 2 (Existence of Termination Graphs)
For any program P and abstract state (S; KB), there exists a termination graph.

Example 10
For the program from Ex. 1 we obtain the termination graph on the next page.
Here, U = {(div(T5, T6, T3), div(X, 0, Z)), (div(T5, T6, T3), div(0, Y, Z))} results from
exploiting the cuts. U implies that neither T6 nor T5 unify with 0. Thus, only Clause
(8) is applicable to evaluate the state in Node d. This is crucial for termination,
because in d, sub’s result T8 is always smaller than sub’s input argument T5 and
therefore, div’s first argument in Node c is smaller than div’s first argument in Node
a.

3 For all proofs, we refer to the appendix.

14 P. Schneider-Kamp et al.

div(T1, T2, T3); ({T1, T2},∅)a

div(T1, T2, T3)11 | div(T1, T2, T3)21 | div(T1, T2, T3)31; ({T1, T2},∅)

Case

!1, fail | div(T4, 0, T3)21 | div(T4, 0, T3)31;
({T4},∅)

Eval

T1/T4, T2/0, T3/T5

fail; (∅,∅)

Cut

ε; (∅,∅)

Case

div(T1, T2, T3)21 | div(T1, T2, T3)31;
({T1, T2}, {(div(T1, T2, T3), div(X, 0, Z))})

Eval

!1, eq(T5, 0) | div(0, T4, T3)31;
({T4}, {(div(0, T4, T3), div(X, 0, Z))})

Eval
T1/0, T2/T4, T3/T5

eq(T5, 0); (∅,∅)

Cut

eq(T5, 0)54; (∅,∅)

Case

2; (∅,∅)b

Eval

T5/0

ε; (∅,∅)

Suc

ε; (∅,∅)

Eval

div(T1, T2, T3)31; ({T1, T2}, {(div(T1, T2, T3),
div(X, 0, Z)), (div(T1, T2, T3), div(0, Y, Z))})

Eval

sub(T5, T6, T8), div(T8, T6, T7); ({T5, T6},U)

Eval

T1/T5, T2/T6, T3/s(T7)

ε; (∅,∅)

Eval

sub(T5, T6, T8); ({T5, T6},U)d

Split

div(T10, T6, T9); ({T6, T10},U
′)c

Split
T7/T9, T8/T10

Instance

sub(T5, T6, T8)62 | sub(T5, T6, T8)72 | sub(T5, T6, T8)82; ({T5, T6},U)

Case

sub(T5, T6, T8)72 | sub(T5, T6, T8)82; ({T5, T6},U)

Backtrack

sub(T5, T6, T8)82; ({T5, T6},U)
Backtrack

sub(T9, T10, T11); ({T9, T10},∅)e

Eval

T5/s(T9), T6/s(T10), T8/T11

ε; (∅,∅)

Eval

sub(T9, T10, T11)63 | sub(T9, T10, T11)73 | sub(T9, T10, T11)83; ({T9, T10},∅)

Case

sub(T9, T10, T11)63; ({T9, T10},∅)

Parallel

sub(T9, T10, T11)73 | sub(T9, T10, T11)83; ({T9, T10},∅)

Parallel

2; (∅,∅)f

Eval

T9/0, T10/T12, T11/0
ε; (∅,∅)

Eval

sub(T9, T10, T11)73; ({T9, T10},∅)

Parallel

sub(T9, T10, T11)83; ({T9, T10},∅)

Parallel

ε; (∅,∅)

Suc

2; (∅,∅)g

Eval

T9/T12, T10/0,
T11/T12

ε; (∅,∅)

Eval

sub(T12, T13, T14); ({T12, T13},∅)h

Eval

T9/s(T12), T10/s(T13), T11/T14

Instance

ε; (∅,∅)

Eval

ε; (∅,∅)
Suc

Remember that our goal is to show termination of the initial state of the graph.
Since the graph only has leaves (ε; KB) that are obviously terminating, by sound-
ness of the inference rules, it remains to prove that there is no state-derivation
which would correspond to an infinite traversal of the cycles in the graph. So in
our example, we have to show that the Instance edges for div and sub cannot be
traversed infinitely often.

We now synthesize a cut-free program from the termination graph. This program
has the following property: if there is a state-derivation from a concretization of one
state to a concretization of another state which may be crucial for non-termination,
then there is a corresponding derivation in the obtained cut-free program.

Automated Termination Analysis for Logic Programs with Cut 15

More precisely, we build clauses for all clause paths. For a termination graph
G, let Instance(G) denote all nodes of G to which the rule Instance has been
applied (i.e., c and h in our example). The sets Split(G) and Suc(G) are defined
analogously. For any node n, let Succ(i, n) denote the i-th child of n. Clause paths
are paths in the graph that start in the root node, in the successor node of an
Instance node, or in the left child of a Split node and that end in a Suc or
Instance node or in the left child of an Instance or Split node.

Definition 11 (Clause Path)
A path π = n1 . . . nk in G is a clause path iff k > 1 and

• n1 ∈ Succ(1, Instance(G) ∪ Split(G)) or n1 is the root of G,
• nk ∈ Suc(G) ∪ Instance(G) ∪ Succ(1, Instance(G) ∪ Split(G)),
• for all 1 ≤ j < k, we have nj 6∈ Instance(G), and
• for all 1 < j < k, we have nj 6∈ Succ(1, Instance(G) ∪ Split(G)).

Since we only want finitely many clause paths, they may not traverse Instance

edges. Clause paths may also not follow left successors of Instance or Split.
Instead, we create new clause paths starting at these nodes. In our example, we
have clause paths from a to b, a to c, a to d, d to e, e to f, e to g, and e to h.

To obtain a cut-free logic program, we construct one clause for each clause path
π = n1 . . . nk. The head of the new clause corresponds to n1 where we apply the
relevant substitutions between n1 and nk. The last body atom corresponds to nk.
The intermediate body atoms correspond to those nodes that are left children of
those ni which are from Split(G). Note that we apply the relevant substitutions
between ni and nk to the respective intermediate body atom as well.

In our example, the path from a to b is labeled by the substitution σ = {T1/0,

T2/T4, T3/0, T5/0}. Hence, we obtain the fact diva(T1, T2, T3)σ = diva(0, T4, 0). We
always use a new predicate symbol when translating a node into an atom of a new
clause (i.e., diva is fresh). Instance nodes are the only exception. There, we use
the same predicate symbol both for the Instance node and its successor.

For the path from a to c, we have the substitution σ′ = {T1/T5, T2/T6, T3/s(T9),
T7/T9, T8/T10}. Right children of Split nodes can only be reached if the goal
in the left Split-child was successful. So sub(T5, T6, T8)σ′ must be derived to
2 before the derivation can continue with div. Thus, we obtain the new clause
diva(T5, T6, s(T9))← subd(T5, T6, T10), diva(T10, T6, T9). Note that we used the same
symbol diva for both occurrences of div as they are linked by an Instance edge.

Continuing in this way, we obtain the following logic program for which we have
to show termination w.r.t. the set of queries {diva(t1, t2, t3) | t1, t2 are ground}, as
specified by the knowledge base in the root node a.

diva(0, T4, 0).
diva(T5, T6, s(T9)) ← subd(T5, T6, T10), diva(T10, T6, T9). (19)
diva(T5, T6, s(T7)) ← subd(T5, T6, T8).

subd(s(T9), s(T10), T11) ← sube(T9, T10, T11).
sube(0, T12, 0).

sube(T12, 0, T12).
sube(s(T12), s(T13), T14) ← sube(T12, T13, T14).

16 P. Schneider-Kamp et al.

Virtually all existing methods and tools for proving termination of logic programs
succeed on this definite logic program. Hence, by our pre-processing technique,
termination of programs with cut like Ex. 1 can be proved automatically.

In general, to convert a node n into an atom, we use a function Ren. Ren(n) has
the form pn(X1, . . . , Xn) where pn is a fresh predicate symbol for the node n (except
if n is an Instance node) and X1, . . . , Xn are all variables in n. This renaming
allows us to use different predicate symbols for different nodes. For example, the
cut-free logic program above would not terminate if we identified subd and sube.
The reason is that subd only succeeds if its first and second argument start with
“s”. Hence, if the intermediate body atom subd(T5, T6, T10) of Clause (19) succeeds,
then the “number T10” will always be strictly smaller than the “number T5”. Thus,
the first argument in the recursive call of div will be smaller than the first argument
in the head of (19). In contrast, sube is the ordinary subtraction predicate where
the first or second argument can also be 0. Finally, Ren allows us to represent a
whole state by just one atom, even if this state consists of a non-atomic goal or a
backtracking sequence with several elements.

The only remaining problem is that paths may contain evaluations for several
alternative backtracking goals of the same case analysis. Substitutions that corre-
spond to “earlier” alternatives must not be regarded when instantiating the head
of the new clause. The reason is that backtracking undoes the substitutions of pre-
vious evaluations. Thus, we collect the substitutions on the path starting with the

p(T1)a

p(T1)201 | p(T1)211

Case

q(T2) | p(T1)211

EvalT1/f(T2)

p(T1)211

Eval

. . .
q(T2)222 | p(T1)211

Case

2 | p(T1)211b

EvalT2/a

p(T1)211

Eval

. . .
p(T1)211

Suc

r(T3)

EvalT1/g(T3)

ε

Eval

r(T3)233

Case

2c

EvalT3/b

ε

Eval

ε

Suc

substitution applied last. Here, we always keep track of
the mark d corresponding to the last Eval node. Substi-
tutions that belong to earlier alternatives of the current
case analysis are disregarded when constructing the new
cut-free program. These earlier alternatives can be iden-
tified easily, since they have marks m with m ≥ d.
Example 8
Consider the following program and the termination
graph for the state (p(T1); (∅,∅)) on the side. Here, we
omitted the knowledge bases to ease readability.

p(f(X)) ← q(X). (20)

p(g(X)) ← r(X). (21)

q(a). (22)

r(b). (23)

This graph contains clause paths from a to b and from
a to c. For every clause path, we collect the relevant sub-
stitutions step by step, starting from the end of the path.
So for the first clause path we start with {T2/a}. This sub-
stitution results from an Eval node for the goal q(T2)22

2

with mark d = 2. Hence, for the first clause path we only
collect further substitutions that result from Eval nodes
with marks smaller than d = 2. Since the next substitu-
tion {T1/f(T2)} results from an Eval node with mark 1,
we finally obtain {T1/f(T2)} ◦ {T2/a} which leads to the
fact p(f(a)) in the resulting logic program. For the second

Automated Termination Analysis for Logic Programs with Cut 17

clause path from a to c, we start with {T3/b} which results from an Eval node
with mark d = 3. When moving upwards in the tree, the substitution {T1/g(T3)}
also has to be collected, since it results from an Eval node with mark 1. Thus,
we now set d = 1. When moving upwards, we reach further substitutions, but they
result from Eval nodes with marks 2 and 1. These substitutions are not collected,
since they correspond to earlier alternatives of this case analysis. Hence, we just
obtain the substitution {T1/g(T3)}◦{T3/b} for the second clause path, which yields
the fact p(g(b)) in the resulting logic program.

If we disregarded the marks when collecting substitutions, the second clause path
would result in {T1/f(T2)}◦{T2/a}◦{T1/g(T3)}◦{T3/b} instead. But then we would
get the same fact p(f(a)) as from the first clause path. So the new logic program
would not simulate all derivations represented in the termination graph.

Now we formally define the cut-free logic program PG and the corresponding
class of queries QG resulting from a termination graph G. If PG is terminating for
all queries from QG, then the root state of G is terminating w.r.t. the original logic
program (possibly containing cuts).

Definition 12 (Logic Programs and Queries from Termination Graph)
Let G be a termination graph whose root n is (p(T1, ..., Tm), ({Ti1 , ..., Tik},∅)). We
define PG =

⋃
π clause path in G Clause(π) and QG = {pn(t1, ..., tm) | ti1 , ..., tik

are ground}. Here, pn is a new predicate which results from translating the node n
into a clause. For a path π = n1...nk, let Clause(π) = Ren(n1)σπ,∞ ← Iπ, Ren(nk).
For n ∈ Suc(G), Ren(n) is 2 and for n ∈ Instance(G), it is Ren(Succ(1, n))µ
where µ is the substitution associated with the Instance node n. Otherwise,
Ren(n) is pn(V(n)) where pn is a fresh predicate symbol and V(S; KB) = V(S).

Finally, σπ,d with d ∈ N ∪ {∞} and Iπ are defined as follows. Here for a path
π = n1 . . . nj , the substitutions µ and σ are the labels on the outgoing edge of
nj−1 ∈ Split(G) and nj−1 ∈ Eval(G), respectively, and the mark m results from
the corresponding node nj−1 = ((t, Q)im|S; KB).

σn1...nj ,d =

8>>>>>><>>>>>>:

id if j = 1

σn1...nj−1,d µ if nj−1 ∈ Split(G), nj = Succ(2, nj−1)

σn1...nj−1,m σ if nj−1 ∈ Eval(G), nj = Succ(1, nj−1), and d > m

σn1...nj−1,d σ|G if nj−1 ∈ Eval(G), nj = Succ(1, nj−1), and d ≤ m
σn1...nj−1,d otherwise

Inj ...nk =

8><>:
2 if j = k

Ren(Succ(1, nj))σnj ...nk,∞, Inj+1...nk if nj ∈ Split(G), nj+1 = Succ(2, nj)

Inj+1...nk otherwise

So if nj−1 is a Split node, then one has to “collect” the corresponding substitu-
tion µ when constructing the overall substitution σn1...nj ,d for the path. If nj−1 is
an Eval node for the m-th case analysis and nj is its left successor, then the con-
struction of σn1...nj ,d depends on whether we have already collected a corresponding
substitution for the current case analysis m. If m is smaller than the mark d for
the last case analysis which contributed to the substitution, then the corresponding

18 P. Schneider-Kamp et al.

substitution σ of the Eval rule is collected and d is set to m. Otherwise (if d ≤ m),
one only collects the part σ|G of the substitution that concerns those abstract vari-
ables that stand for ground terms. The definition of the intermediate body atoms
Iπ ensures that derivations in PG only reach the second child of a Split node if
the first child of the Split node could successfully be proved.

Thm. 3 proves the soundness of our approach. So termination of the cut-free
program PG implies termination of the original program P.

Theorem 3 (Soundness)
Let G be a proper termination graph for P whose root is (p(T1, ..., Tm), ({Ti1 , ..., Tik},
∅)). If PG terminates for all queries in QG, then all concretizations of G’s root
state have only finite state-derivations. In other words, then all queries from the
set {p(t1, . . . , tm) | ti1 , . . . , tik are ground} terminate w.r.t. P.

The reverse direction of Thm. 3 does not hold. The following example demon-
strates that our pre-processing is not termination-preserving.

Example 12
Consider the logic program P consisting of the following clauses:

q(X)← p(X), !. (24) p(0). (25) p(s(X))← p(X). (26)

We regard the class of all queries q(t) for arbitrary terms t. The query q(t) leads
to the goal p(t), !. After finitely many resolution steps with Clause (26) that each
remove one s-symbol from t, there are two possibilities. First, the derivation can
fail because we reach some function symbol in t that is different from 0 and s.
Second, we reach 0 or a variable and, consequently, the cut. Thus, P terminates for
all queries q(t). We obtain the following termination graph G.

q(T1); (∅,∅)a

q(T1)241 ; (∅,∅)

Case

p(T2), !1; (∅,∅)
b

EvalT1/T2

ε; (∅,∅)

Eval

(p(T2), !1)252 | (p(T2), !1)262 ; (∅,∅)

Case

!1 | (p(T2), !1)262 ; (∅,∅)
Eval

T2/0

2; (∅,∅)c

Cut

ε; (∅,∅)

Suc

(p(T2), !1)262 ; (∅, {(p(T2), p(0))})

Eval

p(T3), !1; (∅, {(p(T2), p(0))})d

EvalT2/s(T3)

Instance

ε; (∅,∅)

Eval

The clause paths are the paths from a to b, from b to c, and from b to d. The

Automated Termination Analysis for Logic Programs with Cut 19

cut-free program PG resulting from the termination graph G is

qa(T2)← pb(T2) pb(0). pb(s(T3))← pb(T3).

The class of queries QG that we have to analyze for termination are all queries
of the form qa(t). But, for instance, the query qa(X) does not terminate in the
program PG. The problem here is that the unification information U is disregarded
when constructing the clauses of the cut-free program. This information states
that the second pb-clause can only be used if the argument of pb does not unify
with 0. If one took this information into account, then the resulting program PG
would terminate. However, expressing this information in terms of program clauses
would lead to much more complex resulting programs which would often make their
termination proof much harder or even impossible with current automated tools.

6 Experiments and Conclusions

We introduced a pre-processing method to eliminate cuts. Afterwards, any tech-
nique for proving universal termination of logic programming can be applied. Thus,
termination of logic programs with cuts can now be analyzed automatically.

We implemented this pre-processing in our tool AProVE (Giesl et al. 2006) and
performed extensive experiments which show that now we can indeed prove termi-
nation of typical logic programs with cut fully automatically. The implementation
is not only successful for programs like Ex. 1, but also for programs using oper-
ators like negation as failure or if then else which can be expressed using cuts.
While AProVE was already one of the most powerful termination tools for definite
logic programs (Schneider-Kamp et al. 2009), our pre-processing method strictly in-
creases its power. For our experiments, we used the Termination Problem Database
(TPDB) of the annual International Termination Competition.4 Since up to now,
no tool had special support for cuts, the previous versions of the TPDB did not
contain any programs with cuts. Therefore, we took existing cut-free examples from
the TPDB and added cuts in a natural way. In this way, we extended the TPDB by
104 typical programs with cuts (directory LP/CUT). Of these, 10 are known to be
non-terminating. Up to now, termination tools treated cuts by simply ignoring them
and by trying to prove termination of the program that results from removing the
cuts. This is a sensible approach, since cuts are not always needed for termination.
Indeed, a version of AProVE that ignores cuts and does not use our pre-processing
can show termination of 10 of the 94 potentially terminating examples. Other
existing termination tools would not yield much better results, since AProVE is
already the most powerful tool for definite logic programming (as shown by the
experiments in (Schneider-Kamp et al. 2009)) and since most of the remaining 84
examples do not terminate anymore if one removes the cut. In contrast, with our
new pre-processing, AProVE proves termination of 78 examples (i.e., 83% of the po-
tentially terminating examples). This shows that our contributions are crucial for
termination analysis of logic programs with cuts. Nevertheless, there is of course

4 http://termination-portal.org/wiki/Termination_Competition

http://termination-portal.org/wiki/Termination_Competition

20 P. Schneider-Kamp et al.

room for further improvements (e.g., one could develop alternative techniques to
generate cut-free clauses from the termination graph in order to improve the per-
formance on examples which encode existential termination). To experiment with
our implementation and for further details, we refer to

http://aprove.informatik.rwth-aachen.de/eval/Cut/

Acknowledgements. We thank the referees for many helpful remarks.

References

Andrews, J. H. 2003. The witness properties and the semantics of the Prolog cut.
TPLP 3, 1, 1–59.

Apt, K. R. 1997. From Logic Programming to Prolog. Prentice Hall, London.

Billaud, M. 1990. Simple operational and denotational semantics for Prolog with cut.
Theor. Comp. Sc. 71, 2, 193–208.

Bruynooghe, M., Codish, M., Gallagher, J. P., Genaim, S., and Vanhoof, W.
2007. Termination analysis of logic programs through combination of type-based norms.
ACM TOPLAS 29, 2.

Codish, M., Lagoon, V., and Stuckey, P. J. 2005. Testing for termination with
monotonicity constraints. In ICLP ’05. LNCS 3668. 326–340.

Cousot, P. and Cousot, R. 1992. Abstract interpretation and application to logic
programs. J. Log. Prog. 13, 2-3, 103–179.

De Schreye, D. and Decorte, S. 1994. Termination of logic programs: The never-
ending story. J. Log. Prog. 19,20, 199–260.

de Vink, E. P. 1989. Comparative semantics for Prolog with cut. Sci. Comp. Prog. 13, 1,
237–264.

Deransart, P., Ed-Dbali, A., and Cervoni, L. 1996. Prolog: The Standard. Springer,
New York.

Filé, G. and Rossi, S. 1993. Static analysis of Prolog with cut. In LPAR ’93. LNAI 698.
134–145.

Giesl, J., Schneider-Kamp, P., and Thiemann, R. 2006. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In IJCAR ’06. LNAI 4130. 281–
286.

Giesl, J., Swiderski, S., Schneider-Kamp, P., and Thiemann, R. 2006. Automated
termination analysis for Haskell: From term rewriting to programming languages. In
RTA ’06. LNCS 4098. 297–312.

Howe, J. M. and King, A. 2003. Efficient groundness analysis in Prolog. TPLP 3, 1,
95–124.

Kulas, M. and Beierle, C. 2000. Defining standard Prolog in rewriting logic. In
WRLA ’00. ENTCS 36.

Le Charlier, B., Rossi, S., and Van Hentenryck, P. 1994. An abstract interpretation
framework which accurately handles Prolog search-rule and the cut. In ILPS ’94. MIT
Press, 157–171.

Marchiori, M. 1996. Proving existential termination of normal logic programs. In
AMAST ’96. LNCS 1101. 375–390.

Mesnard, F. and Serebrenik, A. 2007. Recurrence with affine level mappings is P-time
decidable for CLP(R). TPLP 8, 1, 111–119.

http://aprove.informatik.rwth-aachen.de/eval/Cut/

Automated Termination Analysis for Logic Programs with Cut 21

Mogensen, T. Æ. 1996. A semantics-based determinacy analysis for Prolog with cut. In
Ershov Memorial Conference. LNCS 1181. 374–385.

Nguyen, M. T., De Schreye, D., Giesl, J., and Schneider-Kamp, P. 2010. Polytool:
Polynomial interpretations as a basis for termination analysis of logic programs. TPLP .
To appear.

Schneider-Kamp, P., Giesl, J., Serebrenik, A., and Thiemann, R. 2009. Automated
termination proofs for logic programs by term rewriting. ACM TOCL 11, 1.

Serebrenik, A. and De Schreye, D. 2005. On termination of meta-programs.
TPLP 5, 3, 355–390.

Sørensen, M. H. and Glück, R. 1995. An algorithm of generalization in positive
supercompilation. In ILPS ’95. MIT Press, 465–479.

Spoto, F. and Levi, G. 1998. Abstract interpretation of Prolog programs. In
AMAST ’98. LNCS 1548. 455–470.

Spoto, F. 2000. Operational and goal-independent denotational semantics for Prolog with
cut. J. Log. Prog. 42, 1, 1–46.

Ströder, T. 2010. Towards termination analysis of real Prolog programs. Diploma Thesis,
RWTH Aachen. http://aprove.informatik.rwth-aachen.de/eval/Cut/.

http://aprove.informatik.rwth-aachen.de/eval/Cut/

22 P. Schneider-Kamp et al.

Appendix A Proof of Theorem 1

We prove Theorem 1 by showing the Lemmas 1-5. In the Lemmas 1 and 2, to prove
soundness we show the stronger property that the adapted abstract rules fulfill the
simulation property, i.e., that each concrete state-derivation step is captured by one
of the adapted abstract rules.

Lemma 1 (Soundness of Suc, Fail, Cut, and Case)
The rules Suc, Fail, Cut, and Case from Def. 6 are sound.

Proof
For Suc we need to show that for all concretizations 2 | Sγ ∈ Con(2 | S;KB) we
reach a state Sγ ∈ Con(S;KB) by the concrete Suc rule. Assume that we have
a concrete state-derivation from 2 | Sγ ∈ Con(2 | S;KB). The only rule from
Def. 2 that is applicable is the concrete Suc rule. Thus, this derivation must start
with a step from 2 | Sγ to Sγ. As γ is a concretization w.r.t. KB, we have that
Sγ ∈ Con(S;KB), which concludes our proof for Suc.

Likewise, for the first Cut rule we have to show that for all concretizations
!m, Qγ | Sγ | ?m | S′γ ∈ Con(!m, Q | S | ?m | S′;KB) where S contains no ?m we
reach a state Qγ | ?m | S′γ ∈ Con(Q | ?m | S′;KB) by the first concrete Cut rule.
To this end, note that the first step in the derivation of !m, Qγ | Sγ | ?m | S′γ has to
be an application of the first concrete Cut rule resulting in Qγ | ?m | S′γ. As KB
remains unchanged, we immediately obtain Qγ | ?m | S′γ ∈ Con(Q | ?m | S′;KB).
For the second Cut rule, assume that we have a state-derivation from !m, Qγ | Sγ
and S does not contain ?m. Hence, Sγ also does not contain ?m. Then, the only
applicable concrete rule is the second Cut rule. We obtain Qγ ∈ Con(Q;KB) as
we did not change the knowledge base.

For the Case rule, assume that we have a state-derivation from tγ,Qγ | Sγ ∈
Con(t, Q | S;KB). The only applicable concrete rule is Case, which results in
(tγ,Qγ)i1m | . . . | (tγ,Qγ)ikm | ?m | Sγ. As we did not change KB, this concrete state
is an element of Con((t, Q)i1m | . . . | (t, Q)ikm | ?m | S;KB).

For Fail, assume that we have a state-derivation from ?m | Sγ ∈ Con(?m |
S;KB). The only applicable concrete rule is Fail, which results in Sγ. As we did
not change KB, this concrete state is an element of Con(S;KB).

Lemma 2 (Soundness of Backtrack and Eval)
The rules Backtrack and Eval from Def. 7 are sound. Additionally, for Eval, for
every concretization γ w.r.t. (G,U) with mgu(tγ,Hi) = σ′ there is a concretization
γ′ w.r.t. (G′,Uσ|G) such that γσ′ = σγ′, γ = σ|Gγ′ and γ|A(t)∪A(Q)∪A(S)∪G∪A(U) =
γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

Proof
For Backtrack, assume that there is a state-derivation from (tγ,Qγ)im | Sγ ∈
Con((t, Q)im | S; (G,U)). By definition, there is no concretization γ′ such that tγ′ ∼
Hi. In particular, we have that tγ 6∼ Hi and, therefore, the only applicable concrete

Automated Termination Analysis for Logic Programs with Cut 23

rule is Backtrack, which results in Sγ. As we did not change KB, this concrete
state is an element of Con(S;KB).

For Eval, assume that we have a concrete state-derivation from (tγ,Qγ)im | Sγ ∈
Con((t, Q)im | S; (G,U)). There are two cases depending on whether tγ and Hi unify.

First, if tγ does not unify with Hi, the only applicable concrete rule is Back-

track and we obtain Sγ. From tγ 6∼ Hi, V(Hi) ⊆ N , and Dom(γ) = A, we
know that Hiγ = Hi and, therefore, tγ 6∼ Hiγ and γ is a concretization w.r.t.
(G,U ∪ {(t,Hi)}). Thus, Sγ ∈ Con(S; (G,U ∪ {(t,Hi)})).

Second, if tγ ∼ Hi, the only applicable concrete rule is Eval. From Hiγ = Hi we
know that tγ ∼ Hiγ and thus t also unifies with Hi. Let mgu(tγ,Hi) = σ′′. Then
using Hiγ = Hi shows that γσ′′ is a unifier of t and Hi. As mgu(t,Hi) = σ there is
a substitution σ′′′ such that γσ′′ = σσ′′′. W.l.o.g., we demand that V(Range(σ′′))
are fresh variables from N .

By application of the concrete Eval rule we obtain B′iσ
′′, Qγσ′′ | Sγ where

B′i = Bi[!/!m]. We are, thus, left to show that B′iσ
′′, Qγσ′′ | Sγ ∈ Con(B′iσ,Qσ |

Sσ|G ; (G′,Uσ|G)), i.e., that there is a concretization γ′ w.r.t. (G′,Uσ|G) such that
B′iσ

′′ = B′iσγ
′, Qγσ′′ = Qσγ′, and Sγ = Sσ|Gγ′.

We define γ′(T) = σ′′′(T) for T ∈ A(Range(σ)) and γ′(T) = γ(T) for T ∈
A \ A(Range(σ)). As Range(σ) contains only fresh variables, we clearly have that
γ|A(t)∪A(Q)∪A(S)∪G∪A(U) = γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

We start by showing that γ′ is a concretization w.r.t. (G′,Uσ|G), i.e., Dom(γ′) =
A, V(Range(γ′)) ⊆ N , V(Range(γ′|G′)) = ∅, and

∧
(r,r′)∈Uσ|G rγ

′ 6∼ r′γ′.
As γ′ is only defined for A, we trivially have Dom(γ′) ⊆ A. For the other di-

rection, assume that there is some T ∈ A such that γ′(T) = T . As γ is a con-
cretization we know by the definition of γ′ that then T = γ′(T) = σ′′′(T) and
T ∈ A(Range(σ)). But then T occurs in A(Range(σσ′′′)) which by the defini-
tion of σ′′ is the same as A(Range(γσ′′)). This yields the desired contradiction as
A(Range(γσ′′)) = ∅ since γ is a concretization and σ′′ also does not introduce
variables of A.

To show that V(Range(γ′)) ⊆ N , we perform a case analysis w.r.t. the partition
A = A(Range(σ))] (A \ (A(Range(σ))). For the case that T ∈ A(Range(σ)) we

have A(Tγ′)
Def.γ′

= A(Tσ′′′)
T 6∈Dom(σ)

= A(Tσσ′′′)
Def.σ′′′

= A(Tγσ′′)
V(Range(σ′′))⊆N

=

A(Tγ)
V(Range(γ))⊆N

= ∅. For T ∈ A \ (A(Range(σ))) we have A(Tγ′)
Def.γ′

= A(Tγ)
V(Range(γ))⊆N

= ∅.
Now we show V(Range(γ′|G′)) = ∅. For T ∈ G′ we conclude T ∈ A(Range(σ|G))

and thus, we have V(Tγ′) = V(Tσ′′′). For all T ′ ∈ Dom(σ|G), V(T ′σσ′′′)
Def.σ′′′

=

V(T ′γσ′′) T
′∈G= ∅. Thus, V(Tγ′) = ∅.

Finally, we have
∧

(r,r′)∈Uσ|G rγ
′ 6∼ r′γ′ =

∧
(s,s′)∈U sσ|Gγ′ 6∼ s′σ|Gγ′ =

∧
(s,s′)∈U

sγ 6∼ s′γ as Tσ|Gγ′ = Tγ for all abstract variables T ∈ A(U) by definition of γ′. To
see this, consider the partition A(U) = (A(U) \Dom(σ|G))] (A(U) ∩Dom(σ|G)).

If T ∈ A(U) \Dom(σ|G) we have Tγ
Def.γ′

= Tγ′
T 6∈Dom(σ|G)

= Tσ|Gγ′. If T ∈ A(U) ∩
Dom(σ|G) we have Tγ T∈G= Tγσ′′

Def.σ′′′

= Tσσ′′′
T∈G= Tσ|Gσ′′′

Def.γ′

= Tσ|Gγ′.
Now, we are left to show that B′iσ

′′ = B′iσγ
′, Qγσ′′ = Qσγ′, and Sγ = Sσ|Gγ′.

24 P. Schneider-Kamp et al.

Then γσ′ = σγ′ and γ = σ|Gγ′ follows from the fact that we only defined γ′

differently from γ for variables in the range of σ.
For S there are two cases according to the partition A(S) = (A(S)\Dom(σ|G))]

(A(S)∩Dom(σ|G)). Analogous to the analysis forA(U) above, we have Tγ = Tσ|Gγ′
for both cases. With Dom(γ) = A, Dom(γ′) = A, and Dom(σ|G) ⊆ G ⊆ A we
obtain Sγ = Sσ|Gγ′.

For B′i we have V(B′i) = N (B′i) and for all x ∈ N (B′i) we obtain: xσ′′
Dom(γ)=A

=

xγσ′′
Def.σ′′′

= xσσ′′′
x∈Dom(σ)∧Def.γ′

= xσγ′. Thus, B′iσ
′′ = B′iσγ

′.

Now, for Q let T ∈ V(Q). As T ∈ Dom(σ), we have Tγσ′′
Def.σ′′′

= Tσσ′′′
Def.γ′

=
Tσγ′. Thus, we obtain Qγσ′′ = Qσγ′.

For the remaining Lemmas 3, 4, and 5 we cannot use the simulation property
to prove soundness. Instead, we use a proof by contrapositive, i.e., we show that
if any concretization of an abstract state has an infinite concrete state-derivation,
then some successor of the abstract state has an infinite concrete state-derivation.

Lemma 3 (Soundness of Instance)

The rule Instance from Def. 8 is sound. Additionally, for every concretization γ

w.r.t. (G,U) there is a concretization γ′ w.r.t. (G′,U ′) such that Sγ = S′γ′µ|N .

Proof

Assume we have an infinite concrete state-derivation starting from Sγ ∈
Con(S; (G,U)). We show that there is a substitution γ′ such that S′γ′ ∈
Con(S′; (G′,U ′)) and S′γ′ has an infinite concrete state-derivation.

As µ|N is a variable renaming, there is a µ−1 such that µ|Nµ−1 = µ−1µ|N = id.
Let γ′ = µγµ−1. Clearly, as S′µ = S and µ−1 is a variable renaming, S′γ′ = Sγµ−1

has an infinite concrete state-derivation. Additionally, we have that S′γ′µ|N =
Sγµ−1µ|N = Sγ. We are left to show that γ′ is a concretization w.r.t. (G′,U ′).

For x ∈ N we have xµ ∈ N and, thus, xγ′
Def.γ′

= xµγµ−1 xµ∈N
= xµµ−1 Def.µ−1

= x,
i.e., Dom(γ′) = A. From the definition of µ−1 we obtain V(Range(µ−1)) ⊆ N .
Together with V(Range(γ)) ⊆ N and Dom(γ) = A we have V(Range(γ′)) =
V(Range(µγµ−1) ⊆ N .

We know that for all T ∈ G′, V(Tµ) ⊆ G. Further, as γ is a concretization w.r.t.
(G,U) we know that for all T ∈ G, V(Range(γ|G)) = ∅. Thus, for all T ∈ G′, we have

V(Tγ′)
Def.γ′

= V(Tµγµ−1) = V(Tµγ) = ∅ and, therefore, V(Range(γ′|G′)) = ∅.
Finally, from

∧
(s,s′)∈U sγ 6∼ s′γ and U ′µ ⊆ U , we know that

∧
(s,s′)∈U ′µ sγ 6∼ s′γ

which is equivalent to
∧

(s,s′)∈U ′ sµγ 6∼ s′µγ. As µ−1 is a variable renaming, trivially∧
(s,s′)∈U ′ sµγµ

−1 6∼ s′µγµ−1 and, consequently,
∧

(s,s′)∈U ′ sγ
′ 6∼ s′γ′.

This concludes our proof as γ′ = µγµ−1 satisfies all conditions of a concretization
w.r.t. (G′,U ′).

Automated Termination Analysis for Logic Programs with Cut 25

Lemma 4 (Soundness of Parallel)
The rule Parallel from Def. 8 is sound. Additionally, for every concretization γ

w.r.t. KB we have that if the concrete state-derivation for Sγ | S′γ reaches a state
of the form “. . . | S′γ′” for some concretization γ′ w.r.t. KB, then γ′ = γ.

Proof
Assume that Sγ | S′γ ∈ Con(S | S′;KB) has an infinite concrete state-derivation.
There are three cases. If Sγ has an infinite concrete state-derivation, we immediately
have that Sγ ∈ Con(S;KB) has an infinite concrete state-derivation. If Sγ does not
have an infinite concrete state-derivation and, after finitely many steps, we reach the
state S′γ, we have that S′γ ∈ Con(S′;KB) has an infinite concrete state-derivation.
Finally, if Sγ has no infinite concrete state-derivation, but we do not reach S′γ, we
know that S′ must be of the form S′′ | ?m | S′′′ with S′′ 6= ε and in the concrete
state-derivation of Sγ | S′γ we apply the Cut rule to !m, Q | S′′′′γ | S′′γ |?m | S′′′γ,
i.e., m ∈ AC(S). As Sγ | S′γ has an infinite concrete state-derivation, we get
S′′′ 6= ε. But S′′ 6= ε 6= S′′′ implies m ∈ AM(S′). Thus we have a contradiction to
AC(S)∩AM(S′) = ∅. In particular, we do not reach a state of the form “. . . | S′γ′”
for some concretization γ′ w.r.t. KB such that γ′ 6= γ.

Lemma 5 (Soundness of Split)
The rule Split from Def. 9 is sound. Additionally, for every concretization γ w.r.t.
(G,U) and for every answer substitution µ′ of a successful concrete state-derivation
for tγ, there is a concretization γ′ w.r.t. (G′,Uµ) such that γµ′ = µγ′ and
γ|A(t)∪A(Q)∪G∪A(U) = γ′|A(t)∪A(Q)∪G∪A(U).

Proof
Assume that tγ,Qγ ∈ Con(t, Q; (G,U)) has an infinite concrete state-derivation.
There are two cases. If tγ has an infinite concrete state-derivation, we immediately
have that tγ ∈ Con(t; (G,U)) has an infinite concrete state-derivation. If tγ does
not have an infinite concrete state-derivation and we did not reach a state of the
form Qγµ′ | S′γ for some answer substitution µ′ and state S′, we would reach
the state ε, which contradicts our assumption that tγ,Qγ has an infinite concrete
state-derivation. Therefore, if tγ does not have an infinite concrete state-derivation,
we reach states of the form Qγµ′ | S′γ for answer substitutions µ′ and states S′.
If all Qγµ′ did not have an infinite concrete state-derivation, this would contradict
our assumption that tγ,Qγ has an infinite concrete state-derivation. Thus, there
must be a state Qγµ′ that has an infinite concrete state-derivation. We now show
that there is a concretization γ′ such that γµ′ = µγ′ for all answer substitutions µ′

corresponding to a successful concrete state-derivation of tγ. Then, in particular,
we have an infinite concrete state-derivation from Qµγ′ ∈ Con(Qµ; (G′,Uµ)).

The answer substitution µ′ can potentially instantiate any non-ground term in
Qγ. We define γ′ in such a way that γµ′ = µγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q).
This is always possible because all variables in Range(µ) are fresh. Then, clearly,
Qγµ′ = Qµγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q). We are left to show that γ′ is a
concretization w.r.t. (G′,Uµ). As we only need to define γ′ for abstract variables,

26 P. Schneider-Kamp et al.

clearly Dom(γ′) = A. From V(Range(µ′)) ⊆ N and V(Range(γ)) ⊆ N we know
that V(Range(γ′)) ⊆ N . We perform a case analysis based on the partition G′ = G]
(ApproxGnd(t, µ) \ G). For T ∈ G we have effectively defined Tγ′ = Tγ and, thus,
V(Tγ′) = V(Tγ) = ∅. For T ∈ ApproxGnd(t, µ) \ G by definition of ApproxGnd
and equality of γµ′ and µγ′ we know that Tγ′ is a ground term, i.e., V(Tγ′) = ∅.
For all (s, s′) ∈ U we have sγ 6∼ s′γ and, consequently sγµ′ 6∼ s′γµ′. But from
sγµ′ = sµγ′ and s′γµ′ = s′µγ′ we get sµγ′ 6∼ s′µγ′. Thus, for all (s′′, s′′′) ∈ Uµ, we
have s′′γ′ 6∼ s′′′γ′.

Proof of Theorem 1
The soundness of the inference rules from Definitions 6 and 7 follows from Lemmas 1
and 2, respectively. The soundness of the rules from Definition 8 follows from
Lemmas 3 and 5. Finally, soundness of the inference rule from Definition 9 follows
from Lemma 5.

Appendix B Proof of Theorem 2

Proof of Theorem 2
Let P be a program using the function symbols p1/k1, . . . , pn/kn ∈ Σ. W.l.o.g.
we consider a state consisting of only one unlabeled goal with only one term
p1(t1, . . . , tk1). We apply the Instance rule to generalize this state to a new
state such that the term has pairwise different abstract variables as arguments
and an empty knowledge base. Thus, we obtain the state p(T1, . . . , Tk1); (∅,∅).
Then we apply the Case rule and obtain a state having a number of labeled goals
(p1(T1, . . . , Tk1))im and a question mark ?m. We use the Parallel rule to sep-
arate all elements of this state and obtain a number of states consisting of only
one labeled goal (p1(T1, . . . , Tk1))im or the question mark ?m. We use the Fail rule
to evaluate ?m to the empty state ε. Then we apply Backtrack to evaluate as
many states as possible to the empty state as well. For the remaining states we
use the Eval rule and obtain a number of states having only one unlabeled goal
with a number of terms t1, . . . , tl. We use the Split rule repeatedly to separate all
terms in these goals and obtain a number of states consisting of only one unlabeled
goal with only one term tj . For all such states with tj = !m we apply the Cut

rule to obtain the empty state. For the remaining states with tj = pi(t′1, . . . , t
′
ki

)
for some i ∈ {1, . . . , n}, we use the Instance rule to a (possibly already existing)
state pi(T ′1, . . . , T

′
ki

); (∅,∅) in the graph with only one unlabeled goal having only
one term which has the same root symbol and pairwise different variables. The
remaining leaves are of a form like our first state, but with a different root symbol,
or consist of a variable only. As we only have a finite number of different function
symbols in the program, after performing the above procedure for at most n times,
the construction terminates and we obtain a termination graph for P as all leaves
are of the form ε; (∅,∅) or X; (∅,∅) for some X ∈ V.

Automated Termination Analysis for Logic Programs with Cut 27

Appendix C Proof of Theorem 3

Definition 13 (State Prefix, State Extension)
Let S be a state with S = S1 | · · · | Sk where ∀i ∈ {1, . . . , k} : Si is a single state
element. Let S′ be another state. S is a state prefix of S′ iff there is a bijection
f : N → N and S′ = S′1 | · · · | S′k | S′′ for some state S′′ where we have for all
i ∈ {1, . . . , k}:

• Si =?m implies S′i =?f(m)

• Si = 2 implies Si = S′i
• Si = Q implies S′i = Q′, Q′′ for a list of terms Q′′ where Q′ = Q[!i/!f(i)∀i ∈ N]
• Si = (Q)nm implies S′i = (Q′, Q′′)nf(m) for a list of terms Q′′ where Q′ =
Q[!i/!f(i)∀i ∈ N]

For two states S and S′, S′ is a state extension of S iff S is a state prefix of S′.

For the simulation of concrete state-derivations within the termination graph, we
need to follow not only linear paths, but tree paths. This is due to the splitting of
goals by the Split rule and to the backtracking we might encounter at Parallel

nodes. The following definition therefore gives us a structure for describing the way
of a concrete state-derivation through a termination graph.

Definition 14 (Tree Path)
For termination graph G = (V,E) we call a (possibly infinite) word π = (n0, v0, p0),
(n1, v1, p1), (n2, v2, p2), . . . over the set N × V × (N ∪ {none}) a tree path w.r.t. G
iff the following conditions are satisfied for all i, j ∈ N:

• p0 = none,
• ni = nj =⇒ i = j,
• pi = none =⇒ i = 0,
• pi ∈ {n0, n1, n2, . . . } if i > 0,
• ni = pj =⇒ (vi, vj) ∈ E and
• pi < ni

• there are indices i0, . . . , imi ∈ {n0, n1, n2, . . . } with imi = 0, i0 = i and
pir−1 = nir for all r ∈ {1, . . . ,mi}.

We call (ni, vi, pi) a leaf of π iff there is no (nj , vj , pj) ∈ π with pj = ni. For
(ni, vi, pi) and (nj , vj , pj) we call (ni, vi, pi) an ancestor of (nj , vj , pj) iff there are
indices i0, . . . , imi ∈ {n0, n1, n2, . . . } with imi = i, i0 = j and pir−1 = nir for all
r ∈ {1, . . . ,mi}.

To really follow a complete concrete state-derivation we would have to fork on
Parallel nodes, but as we will be interested in the relevant parts of the concrete
state-derivations for the reached states only, we may skip the failing branches due
to backtracking. Thus, the only nodes where we have to fork our tree path are
Split nodes.

28 P. Schneider-Kamp et al.

Lemma 6 (Success Tree for Concrete State-Derivations in Termination Graph)
Let Sγ ∈ Con(S;KB) with S;KB = n ∈ V for a termination graph G = (V,E)
and there is a concrete state-derivation with l steps from Sγ to a state S′′. Then
there is a node n′ ∈ V , a concretization γ′ and a variable renaming ρ on N with
n′ = S′;KB′, S′γ′ ∈ Con(S′;KB′), S′γ′ρ is a state prefix of S′′ and there is a tree
path π = (0, v0, p0), . . . , (k, vk, pk) w.r.t. G with the following properties:

• v0 = n

• for all i ∈ {0, . . . , k} there are concretizations γi and variable renamings ρi on
N such that the concrete state-derivation reaches a state extension of Siγiρi
in li ≤ l steps where vi = Si;KBi and Siγi ∈ Con(Si;KBi)

• for all leaves (i, vi, pi) of π with i 6= k we have vi ∈ Suc(G)
• for all (i, vi, pi) with more than one successor in π, we have vi ∈ Split(G)
• for all (i, vi, pi) with vi ∈ Split(G) and only one successor (j, vj , i) in π, we

have vj = Succ(1, vi)
• vk = n′

Proof
We perform the proof by induction over the lexicographic combination of first the
length l of the concrete state-derivation and second the edge relation of G′. Here,
G′ is like G except that it only contains outgoing edges of Instance-, Parallel-,
and Split-nodes. Note that this induction-relation is indeed well-founded as G′ is
an acyclic and finite graph. The reason is that when traversing nodes (S;KB) in G′

the number of terms in S cannot increase. Since this number is strictly decreased in
Parallel- and Split-nodes any infinite path in G′ must in the end only traverse
Instance-nodes. This is in contradiction to the definition of termination graph
which disallows cycles consisting only of Instance-nodes.

We first show that the lemma holds for nodes S;KB where one of the abstract
rules Instance, Parallel, or Split have been applied. Here, whenever we have
to define the concretization γ′ and the variable renaming ρ and if these are not
specified then γ′ = γ and ρ = id.

• If we applied the Instance rule to n, we have Succ(1, n) = S′;KB′ with S = S′µ.
From the soundness proof for Instance we know that there is a concretization γ′′

such that S′γ′′ ∈ Con(S′;KB′) and Sγ = S′γ′′µ|N . As µ|N is a variable renaming
we conclude that the concrete state-derivation from Sγ to a state extension of S′′

can be completely simulated by a corresponding concrete state-derivation from S′γ′′

to a state extension of S′′′ of length l where the only difference is the application
of µ|N . To be more precise, if Si is the i-th state in the concrete state-derivation
from Sγ to a state extension of S′′ then there also is an i-th state S′i in the concrete
state-derivation from S′γ′′ to a state extension of S′′′ and S′iµ|N = Si. Hence, we
can use the induction hypothesis for the latter concrete state-derivation to obtain
a tree path π′ with root S′;KB′. To obtain π from π′ we first modify all variable
renamings by additionally adding µ|N (ρi = ρ′iµ|N). Then we add the node S;KB
as new root and start the path with the edge from S;KB to S′,KB′.

Automated Termination Analysis for Logic Programs with Cut 29

• If we applied the Parallel rule to n, we reach two states S1;KB and S2;KB
where S = S1 | S2. There are two cases depending on whether the concrete state-
derivation reaches a state extension of S2γ. If the concrete state-derivation reaches
such a state, we use Succ(2, n) instead of n and insert the path from n to Succ(2, n)
before the tree path we obtain by the induction hypothesis for Succ(2, n). If the
concrete state-derivation does not reach such a state, we know from the soundness
proof of Parallel that a state prefix of S′′ must be reachable from S1γ and as we
clearly have that S1 is a state prefix of S, we use Succ(1, n) instead of n and insert
the path from n to Succ(1, n) before the tree path we obtain for Succ(1, n) by the
induction hypothesis.

• If we applied the Split rule to n, we know that S = t, Q, Succ(1, n) = t;KB and
Succ(2, n) = Qµ;KB′.
If the concrete state-derivation reaches a state extension of Qγµ′ for some answer
substitution µ′, we know from the soundness proof of Split that there is a con-
cretization γ′ w.r.t. KB′ such that Qγµ′ = Qµγ′. Additionally, we know that the
concrete state-derivation reaches a state extension of 2 from tγ. As this concrete
state-derivation is shorter than the one of (t, Q)γ we obtain a node n′′ ∈ Suc(G)
and a tree path π′ for Succ(1, n) by the induction hypothesis. Also, we obtain a
node n′′′ and a tree path π′′ for Succ(2, n) by the induction hypothesis for the
concrete state-derivation of (Qµ)γ′ to a state extension of S′′. Using γ′ and id for
Succ(2, n), we obtain the node n′ = n′′′ and the desired tree path π by using n as
the root with π′ as its left and π′′ as its right subtree path.
If the concrete state-derivation does not reach a state extension of Qγµ′ for any
answer substitution µ′, we know by the soundness proof of Split that a state prefix
of S′′ must be reachable from tγ within l steps. Hence, we can apply the induction
hypothesis and add (S;KB) as a new root with only one edge to (t;KB).

For l = 0 we know that Sγ = S′′ ∈ Con(S;KB). Thus, for γ0 = γ, ρ0 = id and
n′ = n we obtain π = (0, n, none) as the desired tree path. So, let l > 0. We now
perform a case analysis over the first concrete inference rule applied in the concrete
state-derivation where we can assume that none of the abstract rules Instance,
Parallel, or Split have been applied to the abstract state.

• For Case we have S = t, Q | Sr and the concrete state-derivation starts with
Sγ ` (t, Q)i1j γ | · · · | (t, Q)imj γ | Srγ. In the abstract setting it remains to analyze
an application of the Case rule to n where we reach the state n′′ = (t, Q)i1j | · · · |
(t, Q)imj | Sr;KB. By the induction hypothesis we obtain a node n′′′ and a tree path
π′ with the properties in Lemma 6 for n′′. We obtain the desired node n′ = n′′′ and
the tree path π by inserting the path from n to n′′ before π′.

• For Suc we have S = 2 | Sr and the concrete state-derivation reaches the state
Srγ. So the only applicable remaining abstract inference rule for n is Suc. Then we
reach the state Sr;KB. By the induction hypothesis we obtain a node n′ and a tree
path π′ with the properties in Lemma 6 for Sr;KB. Thus, we obtain the desired
node n′ and the tree path π by inserting the path from n to Sr;KB before π′.

• For Fail and Cut the proof is analogous to the case where the Suc rule is the first
rule in the concrete state-derivation.

30 P. Schneider-Kamp et al.

• For Eval we have S = (t, Q)ij | Sr and the concrete state-derivation reaches the
state B′iσ

′′, Qγσ′′ | Srγ as defined in the Eval rule. We know that the only remain-
ing applicable abstract inference rule for n is Eval. Then we have Succ(1, n) =
B′iσ,Qσ | Srσ|G ;KB′. From the soundness proof of Eval we know that there is a
concretization γ′′ w.r.t. KB′ with B′iσγ

′′, Qσγ′′ | Srσ|Gγ′′ = B′iσ
′′, Qγσ′′ | Srγ. By

the induction hypothesis we obtain a node n′ and a tree path π′ with the properties
in Lemma 6 for B′iσ,Qσ | Srσ|G ;KB′. Thus, we obtain the desired node n′ and the
tree path π by inserting the path from n to B′iσ,Qσ | Srσ|G ;KB′ before π′ using
γ′′ and id for B′iσ,Qσ | Srσ|G ;KB′.

• For Backtrack we have S = (t, Q)ij | Sr and the concrete state-derivation reaches
the state Srγ. Thus, the only remaining applicable abstract inference rules for n
are Eval and Backtrack.
If we applied the Eval rule we have Succ(2, n) = Sr;KB′ as defined in Eval where
we know by the soundness proof of Eval that γ is a concretization w.r.t. KB′. By
the induction hypothesis we obtain a node n′ and a tree path π′ with the properties
in Lemma 6 for Sr;KB′. Thus, we obtain the desired node n′ and the tree path π

by inserting the path from n to Sr;KB′ before π′ using γ and id for Sr;KB′.
If we applied the Backtrack rule we have Succ(1, n) = Sr;KB′ and, hence, the
same case for Succ(1, n) here as for Succ(2, n) in the case of Eval.

Lemma 7 (Single Concretization)
Given a path π = n1 . . . nk with nj /∈ Instance(G) for all j ∈ {1, . . . , k − 1}
and a concrete state-derivation such that there are variable renamings ρ1, . . . , ρk
and concretizations γ1, . . . , γk w.r.t. KB1, . . . ,KBk where ni = Si;KBi for all
i ∈ {1, . . . , k} and the concrete state-derivation goes from a state extension of
S1γ1ρ1 to a state extension of Skγkρk by reaching state extensions of all Siγiρi,
then there is a variable renaming ρ and a concretization γ w.r.t. all knowledge bases
KBi such that Siγiρi = Siγρ.

Proof
We perform the proof by induction over the length k of the path π.

For k = 1 we have n1 = nk and only one variable renaming and concretization
γ1ρ1 = γρ. Hence, the lemma trivially holds.

For k > 1 we can assume the lemma holds for paths of length at most k − 1. By
inspection of all abstract inference rules other than Instance we know that only
fresh abstract variables are introduced by these rules. We perform a case analysis
over n1 and n2.

• If n1 ∈ Split(G) and n2 = Succ(2, n1), i.e., we traverse the right child of a Split

node, we have n1 = t, Q;KB and n2 = Qµ;KB′ as defined in the Split rule. By
the induction hypothesis we obtain a variable renaming ρ and a concretization γ′

w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ. In particular, we have

Qµγ2ρ2 = Qµγ′ρ. By Lemma 5 and the fact that the concrete state-derivation
reaches a state extension of Qµγ2ρ2 from a state extension of (t, Q)γ1ρ1 with

Automated Termination Analysis for Logic Programs with Cut 31

some answer substitution µ′, we obtain γ1ρ1µ
′ = µγ2ρ2 with γ1|A(t)∪A(Q)∪A(KB) =

γ2|A(t)∪A(Q)∪A(KB) and ρ1 = ρ2. Since only fresh abstract variables are introduced
along π, we have for all abstract variables T ∈ (A(t)∪A(Q)∪A(KB)) \ (A(Qµ)∪
A(KB′)) that T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by
Tγ = Tγ1 for T ∈ (A(t)∪A(Q)∪A(KB))\(A(Qµ)∪A(KB′)) and Tγ = Tγ′ other-
wise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ

′ρ

for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables occurring in
the knowledge bases KBj , we clearly have that γ is a concretization w.r.t. KBj .
Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also
a concretization w.r.t. KB1.

• If n1 ∈ Eval(G) and n2 = Succ(1, n1), i.e., we traverse the left child of an Eval

node, we have n1 = (t, Q)cm | S;KB and n2 = B′cσ,Qσ | Sσ|G ;KB′ as defined in
the Eval rule. By the induction hypothesis we obtain a variable renaming ρ and
a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ

′ρ. In
particular, we have B′cσγ2ρ2, Qσγ2ρ2 | Sσ|Gγ2ρ2 = B′cσγ

′ρ,Qσγ′ρ | Sσ|Gγ′ρ. By
Lemma 2 and the fact that the concrete state-derivation reaches a state extension
of B′cσγ2ρ2, Qσγ2ρ2 | Sσ|Gγ2ρ2 from a state extension of (t, Q)cmγ1ρ1 | Sγ1ρ1 with
answer substitution σ′, we obtain γ1ρ1σ

′ = σγ2ρ2 with γ1|A(t)∪A(Q)∪A(S)∪A(KB) =
γ2|A(t)∪A(Q)∪A(S)∪A(KB) and ρ1 = ρ2. Since only fresh abstract variables are in-
troduced along π, we have for all abstract variables T ∈ (A(t) ∪ A(Q) ∪ A(S) ∪
A(KB)) \ (A(B′cσ) ∪ A(Qσ) ∪ A(Sσ|G) ∪ A(KB′)) that T /∈ A(Sj) ∪ A(KBj).
Hence, we can define the concretization γ by Tγ = Tγ1 for T ∈ (A(t) ∪ A(Q) ∪
A(S)∪A(KB))\ (A(B′cσ)∪A(Qσ)∪A(Sσ|G)∪A(KB′)) and Tγ = Tγ′ otherwise.
Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ

′ρ

for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables occurring in
the knowledge bases KBj , we clearly have that γ is a concretization w.r.t. KBj .
Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also
a concretization w.r.t. KB1.

• For all other cases we know that γ1ρ1 = γ2ρ2. Hence, the lemma follows by the
induction hypothesis.

Lemma 8 (Answer Substitutions are Instances of Clause Path Substitutions)
Given a path π = n1 . . . nk with nj /∈ Instance(G) for all j ∈ {1, . . . , k − 1}
and a concrete state-derivation such that there is a variable renaming ρ and a
concretization γ w.r.t. KB1, . . . ,KBk where ni = Si;KBi for all i ∈ {1, . . . , k}
and the concrete state-derivation goes from a state extension of S1γρ to a state
extension of Skγρ with answer substitution δ by reaching state extensions of all
Siγρ, then σπ,∞γρ = γρδ and Skγρδ = Skγρ.

Proof
We perform the proof by induction over the length k of the path π.

For k = 1 we have n1 = nk and the empty answer substitution δ = id = σn1,∞.
Hence, the lemma trivially holds.

32 P. Schneider-Kamp et al.

For k > 1 we can assume the lemma holds for paths of length at most k− 1. We
perform a case analysis over n1 and n2.

• If n1 ∈ Split(G) and n2 = Succ(2, n1), i.e., we traverse the right child of a Split

node, we have n1 = t, Q;KB and n2 = Qµ;KB′ as defined in the Split rule. By
the induction hypothesis we obtain σn2...nk,∞γρ = γρδ′′ where δ′′ is the answer
substitution of the concrete state-derivation from a state extension of Qµγρ to a
state extension of Skγρ and Skγρδ

′′ = Skγρ. For the answer substitution µ′ of the
concrete state-derivation from a state extension of (t, Q)γρ to a state extension of
Qµγρ we know by Lemma 5 that γρµ′ = µγρ. Therefore, we have γρδ = γρµ′δ′′ =
µγρδ′′ = µσn2...nk,∞γρ = σπ,∞γρ. Furthermore, we know that µ is idempotent
as all variables in the range of µ are fresh. As we applied µ to S2 already and
we know by inspection of the abstract inference rules other than Instance that
only fresh variables are introduced along π, we obtain Skµ = Sk. Hence, we have
Skγρδ = Skγρµ

′δ′′ = Skµγρδ
′′ = Skγρδ

′′ = Skγρ.
• If n1 ∈ Eval(G) and n2 = Succ(1, n1), i.e., we traverse the left child of an Eval

node, we have n1 = (t, Q)cm | S;KB and n2 = B′cσ,Qσ | Sσ|G ;KB′ as defined in
the Eval rule. By the induction hypothesis we obtain σn2...nk,∞γρ = γρδ′′ where
δ′′ is the answer substitution of the concrete state-derivation from a state extension
of B′cσγρ,Qσγρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ

′′ = Skγρ. For
the answer substitution σ′ of the concrete state-derivation from a state extension of
(t, Q)cmγρ | Sγρ to a state extension of B′cσγρ,Qσγρ | Sσ|Gγρ we know by Lemma 2
that γρσ′ = σγρ and γρ = σ|Gγρ. Furthermore, we know that σ is idempotent as
the range of σ contains only fresh variables. Now there are two cases depending
on whether σπ,∞ starts with σ or σ|G . In the first case we know by definition of
σπ,∞ that we do not have a node nj ∈ Eval(G) with j ∈ {2, . . . , k − 1} with
a scope less or equal than m. Since the scopes are ascendingly ordered, we know
that the concrete state-derivation did not backtrack the substitution σ′. Hence, we
obtain γρδ = γρσ′δ′′ = σγρδ′′ = σσn2...nk,∞γρ = σπ,∞γρ. Additionally, we already
applied σ to S2. As we know by inspection of all abstract inference rules other than
Instance that only fresh variables are introduced along π, we obtain Skσ = Sk by
σ being idempotent. Hence, we have Skγρδ = Skγρσ

′δ′′ = Skσγρδ
′′ = Skγρδ

′′ =
Skγρ. In the second case we know by definition of σπ,∞ that we do have a node
nj ∈ Eval(G) with j ∈ {2, . . . , k − 1} with a scope less or equal than m. Since
the scopes are ascendingly ordered, we know that the concrete state-derivation did
backtrack the substitution σ′ and we have the same answer substitution δ′′ for
the complete concrete state-derivation. This amounts to γρδ = γρδ′′ = σGγρδ

′′ =
σGσn2...nk,∞γρ = σπ,∞γρ. Moreover, we obtain Skγρδ = Skγρδ

′′ = Skγρ.
• For all other cases we know that the concrete state-derivation has the empty answer

substitution from the state extension of S1γρ to the state extension of S2γρ. By
the induction hypothesis we obtain σn2...nk,∞γρ = γρδ′′ where δ′′ is the answer
substitution of the concrete state-derivation from a state extension of S2γρ to a state
extension of Skγρ and Skγρδ′′ = Skγρ. Then we have γρδ = γρδ′′ = σn2...nk,∞γρ =
σπ,∞γρ and Skγρδ = Skγρδ

′′ = Skγρ.

Automated Termination Analysis for Logic Programs with Cut 33

Lemma 9 (Simulation of Concrete State-Derivations using P(G))
If γ0 is a concretization w.r.t. KB0 such that there is a concrete state-derivation
from S0γ0ρ0 to a state extension of Skγkρk, where γi and ρi are taken of the success
tree for the concrete state-derivation according to Lemma 6, and if S0;KB0 ∈
Succ(1, Instance(G)∪Split(G)) or S0;KB0 is the root of G, and if Sk ∈ Suc(G)∪
Instance(G), then Ren(n0)γ0ρ0 `∗P(G) Ren(nk)γkρk. Moreover, if k > 0 then there
is at least one `P(G)-step in this derivation.

Proof
As we have built the success tree w.r.t. Lemma 6 we know that there is a tree path
π = (0, n0, none), (1, n1, p1), . . . , (k, nk, pk) with the following properties:

• n0 = S0;KB0

• for all i ∈ {0, . . . , k} there are concretizations γi and variable renamings ρi on N
such that the concrete state-derivation reaches a state extension of Siγiρi where
ni = Si;KBi

• for all (i, ni, pi) with more than one successor in π, we have ni ∈ Split(G)
• for all (i, ni, pi) with ni ∈ Split(G) and only one successor (j, nj , i) in π, we have
nj = Succ(1, ni)

• for all leaves (i, ni, pi) of π where i 6= k we have ni ∈ Suc(G)
• nk ∈ Suc(G) ∪ Instance(G)

To prove the lemma we first define some auxiliary notions: right(π) is the right-
most (linear) path n0 . . . nk in π. Moreover, for a linear path n0 . . . nk, cl(n0 . . . nk)
is the prefix n0 . . . nk′ of that path such that n0 . . . nk′ is nearly a clause path. It
must satisfy all conditions of the definition of a clause path except that the length
may be 1 and that there is no condition on the initial node. Throughout this proof
we write ` instead of `P(G). Moreover, we often write Sk instead of Sk;KBk.

To prove the lemma we show the following essential property.

Ren(n0)γ0ρ0 `Ren(n0)σcl(right(π)),∞←Icl(right(π)),Ren(nk′)
`∗ Ren(nk)γkρk. (C1)

Note from (C1) we can directly conclude the lemma: if k = 0 then we do not
even have to use (C1). Otherwise, if k > 0 then by the requirement of the lemma
that S0;KB0 is the root node or it is in Succ(1,Split(G) ∪ Instance(G)) we
know that cl(right(π)) is a clause path. Thus, the clause Ren(n0)σcl(right(π)),∞ ←
Icl(right(π)),Ren(nk′) is from PG and the lemma follows directly from (C1).

Now, we prove (C1) by induction on π where we do not demand that n0 is the
root of G or that n0 ∈ Succ(1,Split(G) ∪ Instance(G)).

First, if k = 0 then we obtain Ren(n0)γ0ρ0 `Ren(n0)←Ren(n0) Ren(n0)γ0ρ0.
Note, that cl(right(π)) = n0, and hence, the generated clause is indeed Ren(n0)←
Ren(n0).

Otherwise, π contains at least two nodes. Then right(π) = n0n1 . . . nk. Let
cl(right(π)) = n0 . . . nk′ =: π′.

If n0 ∈ Parallel(G), n0 = S1 | S2, and S2 is not reached in the concrete state-
derivation then by the construction of π we know that n1 = Succ(1, n0), γ0 = γ1,
ρ0 = ρ1, and the concrete state-derivation is of the form (S1 | S2)γ0ρ0 `∗ Skγkρk |

34 P. Schneider-Kamp et al.

S′ where already S1γ0 `∗ Skγkρk;S′′ for some state S′′ (which is shorter than S′).
Hence, for the subtree of π with n1 as root we can apply the induction hypothesis to
obtain Ren(n1)γ1ρ1 `Ren(n1)σn1...nk′ ,∞

←In1...nk′
,Ren(nk′)

`∗ Ren(nk)γkρk. But since
n1 ∈ Parallel(G) we know that σπ′,∞ = σn1...nk′ ,∞ and Iπ′ = In1...nk′ . Therefore,
Ren(n1)γ0ρ0 `Ren(n1)σπ′,∞←Iπ′ ,Ren(nk′)

`∗ Skγkρk. Moreover, we can easily replace
Ren(n1) by Ren(n0) in the above derivation and are done.

In the other case for n0 being a Parallel-node we know that n1 = Succ(2, n0)
and the concrete state-derivation is of the form (S1 | S2)γ0ρ0 `∗ S′′ ` Skγkρk | S′
where S′′ is a state-extension of S2γ2ρ2, and where already S2γ2ρ2 can be derived
to a state-extension of Skγkρk by the same steps. Then one can again apply the
induction hypothesis and continue as in the previous case.

The cases n0 ∈ Suc(G)∪Fail(G)∪Cut(G)∪Backtrack(G)∪Case(G) are handled
in the same way as for the parallel node. If n0 ∈ Split(G) and n1 = Succ(1, n0) or
if n0 ∈ Eval(G) and n1 = Succ(2, n0) the reasoning is also similar.

So, let us now consider n0 ∈ Split(G), n0 = t, Q, and n1 = Succ(2, n0) = Qµ.
Let n′′ = Succ(1, n0) = t and π′′ be the corresponding subtree of π where for
n′′ the substitutions γ′′ and ρ′′ are γ0 and ρ0, respectively. We conclude that
the concrete state-derivation is of the form (t, Q)γ0ρ0 `∗ (2, Qµ,Q′ | S′′)γ1ρ1 `
(Qµ,Q′ | S′′)γ1ρ1 `∗ Skγkρk | S′ where already Qµγ1ρ1 can be derived to a
state extension of Skγkρk. Moreover, the rightmost node n′′′ in π′′ is a success-
node. Note, that since n′′ ∈ Succ(1,Split(G)), we know that cl(right(π′′)) is a
proper clause path. Hence, the corresponding clause is contained in P(G). Thus,
by the induction hypothesis we obtain Ren(n′′)γ0ρ0 `∗ Ren(n′′′)γ′′′ρ′′′ = 2 and
since ρ0 is a variable renaming we also have Ren(n′′)γ0 `∗ 2. Moreover, for the
answer substitution δ corresponding to the evaluation of n0 the induction hypothe-
sis also yields Ren(n1)γ1ρ1 `Ren(n1)σn1...nk′ ,∞

←In1...nk′
,Ren(nk′)

`∗ Ren(nk)γkρk, i.e.,
(In1...nk′ ,Ren(nk′))δ = (In1...nk′ ,Ren(nk′)) `∗ Ren(nk)γkρk, because of Lemma 8.
Looking at the definition of I, we see that Iπ′ = Ren(n′′)σπ′In1...nk′ . Moreover, by
Lemma 7 and Lemma 8 we know that σπ′,∞γ0 = γ0δ As in the range of γ0 only
variables of N occur, w.l.o.g. δ only operates on N . We obtain

Ren(n0)γ0ρ0

`Ren(n0)σπ′,∞←Iπ′ ,Ren(nk′)
(Iπ′ ,Ren(nk′))γ0ρ0δ

= (Iπ′ ,Ren(nk′))γ0ρ0

= Ren(n′′)σπ′,∞γ0ρ0, (In1...nk′ ,Ren(nk′))γ0ρ0

= Ren(n′′)γ0ρ0δ, (In1...nk′ ,Ren(nk′))γ0ρ0

(ind.) `∗ (In1...nk′ ,Ren(nk′))γ0ρ0δ

= (In1...nk′ ,Ren(nk′))γ0ρ0

(ind.) `∗ Ren(nk)γkρk

For the next case we assume n0 ∈ Instance(G). Let n1 be the first successor from
n0 with n1 /∈ Instance(G). Then n1 = S, n0 = Sµ where µ is the composition
of all matching substitutions along the path from n0 to n1. This path must be
finite as we do not have cycles consisting only of Instance edges. Furthermore,

Automated Termination Analysis for Logic Programs with Cut 35

we know that Ren(n0) = Ren(n1)µ. Let π′′ be the subtree of π with root n1.
Then cl(right(π′′)) is a proper clause path. Hence, by the induction hypothesis we
obtain Ren(n1)γ1ρ1 `∗ Ren(nk)γkρk. Moreover, π′ = cl(right(π)) = n0 = nk′ .
Hence, the clause Ren(n0)σπ′,∞ ← Iπ′ ,Ren(nk′) is Ren(n0)← Ren(n0) as Iπ′ = 2

and σπ′,∞ = id. We also know Sµγ0ρ0 = n0γ0ρ0 = n1γ1ρ1 = Sγ1ρ1 and hence,
xµγ0ρ0 = xγ1ρ1 for all x ∈ V(S) = V(Ren(n1)). Putting all information together
yields the desired derivation.

Ren(n0)γ0ρ0

`Ren(n0)←Ren(n0) Ren(n0)γ0ρ0

= Ren(n1)µγ0ρ0

= Ren(n1)γ1ρ1

(ind.) `∗ Ren(nk)γkρk

Finally, we have to consider the case that n0 ∈ Eval(G) and n1 = Succ(1, n0).
Then n0 = (t, Q)im | S, n1 = B′iσ,Qσ | Sσ|G , π′ = n0n1 . . . nk′ , and Iπ′ =
In1...nk′ . Moreover, we obtain Ren(n1)γ1ρ1 `Ren(n1)σn1...nk′ ,∞

←In1...nk′
,Ren(nk′)

`∗
Ren(nk)γkρk from the induction hypothesis. Furthermore, σπ′,∞ = σn0n1...nk′ ,∞.
By Lemma 7 and Lemma 8 we obtain w.l.o.g. that γ0 = γ1 = γk′ , ρ0 = ρ1 = ρk′

and where σπ′,∞γ0ρ0 = γ0δ0ρ0 for the answer substitution δ0 of the concrete state-
derivation n0γ0ρ0 to the state extension of nk′γ0ρ0. Moreover, Skγ0ρ0δ0 = Skγ0ρ0.
From Lemma 2 we know that γ0ρ0 = σ|Gγ0ρ0 and γ0ρ0σ

′ = σγ0ρ0 where σ′ =
mgu(tγ0ρ0, Hi). Furthermore, by σπ′,∞γ0ρ0 = γ0ρ0δ0 we obtain the unifier δ0γ0ρ0

of σπ′,∞ and γ0ρ0. Hence,

Ren(n0)γ0ρ0

`Ren(n0)σπ′,∞←Iπ′ ,Ren(nk′)
(Iπ′ ,Ren(nk′))γ0ρ0δ0

= (Iπ′ ,Ren(nk′))γ0ρ0

= (In1...nk′ ,Ren(nk′))γ0ρ0

(ind.) `∗ Ren(nk)γkρk

Proof of Theorem 3
Assume that PG is terminating for all queries in QG, but that there is a concretiza-
tion Sγ ∈ Con(S;KB) from the root node n0 = (S;KB) of G that has an infinite
concrete state-derivation starting from Sγ. Then, according to Lemma 6 there is
an infinite tree path πtree where the rightmost path π = n0, n1, n2, . . . in πtree is
an infinite sequence of clause paths π0, π1, π2, . . . and there are indices l0, l1, l2, . . .
such that πm = nlm ,

According to Lemma 9, we have Ren(nlm)γlmρlm `+
PG Ren(nlm+1)γlm+1ρlm+1 for

all m. Thus, Ren(nl0)γl0ρl0 = Ren(n0)γ0ρ0 = Ren(n0)γ0 has an infinite derivation
w.r.t. PG. As Sγ0 ∈ Con(n0), PG is not terminating w.r.t. all queries from QG.
This contradicts our initial assumption and, thus, proves the theorem.

36 P. Schneider-Kamp et al.

Automated Termination Analysis for Logic Programs with Cut 37

Aachener Informatik-Berichte

This list contains all technical reports published during the past five
years. A complete list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above
URL or send your request to: Informatik-Bibliothek, RWTH Aachen,
Ahornstr. 55, 52056 Aachen, Email: (e-mail: biblio@informatik.rwth-aachen.de
)

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

http://aib.informatik.rwth-aachen.de/

38 P. Schneider-Kamp et al.

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-
berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

Automated Termination Analysis for Logic Programs with Cut 39

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

40 P. Schneider-Kamp et al.

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete
2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control
2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems
2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination
2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler
2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations
2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-
ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on
Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl
Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-
proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers
2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves
2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study
2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

Automated Termination Analysis for Logic Programs with Cut 41

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-
tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to
Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:
Quantitative Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded
Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-
tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model
and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-
erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing
Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-
dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm
Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the
Correctness of the Upper Bound of a Maximum Independent Set Algo-
rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The
Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in
Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games
2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)
2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems
2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs
2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata
2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies
2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time
2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering
2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

42 P. Schneider-Kamp et al.

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance
Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:
Automated Termination Analysis of Java Bytecode by Term Rewriting

∗ These reports are only available as a printed version.

Please contact (e-mail: biblio@informatik.rwth-aachen.de) to obtain copies.

