
Aachen
Department of Computer Science

Technical Report

Degrees of Lookahead

in Context-free Infinite Games

Wladimir Fridman, Christof Löding, and Martin Zimmermann

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2010-20

RWTH Aachen · Department of Computer Science · December 2010

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Degrees of Lookahead

in Context-free Infinite Games

Wladimir Fridman, Christof Löding, and Martin Zimmermann⋆

Lehrstuhl Informatik 7, RWTH Aachen University, Germany
{fridman,loeding,zimmermann}@automata.rwth-aachen.de

Abstract. We continue the investigation of delay games, infinite games in which
one player may postpone her moves for some time to obtain a lookahead on her
opponents moves. We show that the problem of determining the winner of such
a game is undecidable for context-free winning conditions. Furthermore, we show
that the necessary lookahead to win a context-free delay game cannot be bounded
by an elementary function.

1 Introduction

Many of todays problems in computer science are no longer concerned with pro-
grams that transform data and then terminate, but with non-terminating reactive
systems which have to interact with an (possibly) antagonistic environment for
an unbounded amount of time. The framework of infinite two-player games is a
powerful and flexible tool to verify and synthesize such systems [6]. The seminal
theorem of Büchi and Landweber [2] states that the winner of an infinite game
on a finite arena with a regular winning condition can be determined and a corre-
sponding finite-state winning strategy can be constructed effectively. Ever since,
this result was extended along different dimensions, e.g., the number of players,
the type of arena, the type of winning condition, the type of interaction between
the players (moves in alternation or concurrent), zero-sum or nonzero-sum, com-
plete or incomplete information.

In this work, we consider two of these dimensions, namely context-free win-
ning conditions and the possibility for one player to delay her moves. Walukiewicz
showed that games with deterministic context-free winning conditions can be
solved effectively [10]. On the other hand, Finkel showed that the problem of
determining the winner of a game with (non-deterministic) context-free winning
condition is undecidable [5]. Hence, in the following, when we write context-free
we mean deterministic context-free. In [7, 8], infinite games with delay are con-
sidered. In such a game, one of the players can postpone her moves for some
time, thereby obtaining a lookahead on the moves of her opponent. This allows
her to win some games which she loses without delay. On the other hand, there
are simple winning conditions that cannot be won with any finite delay. Hosch
and Landweber proved that a delay game with regular winning condition is won
by the player with lookahead if and only if she can win with (triply-exponential)
constant delay, i.e., the lookahead which is necessary to win is bounded [8]. This
result was improved by Holtmann, Kaiser, and Thomas [7] who showed that
doubly-exponential constant delay suffices and gave a streamlined proof of this

⋆ Supported by the project Games for Analysis and Synthesis of Interactive Computational
Systems (GASICS) of the European Science Foundation.

result. Also, they mention that constant delay does not always suffice to win a
delay game with a context-free winning condition. They ask whether the winner
of a delay game with context-free winning condition can be determined effectively
and what kind of delay functions are necessary to win.

We answer these questions for several classes of context-free winning condi-
tions. Firstly, by slightly extending the technique of Walukiewicz [10] it is easy to
see that determining the winner for a fixed constant delay function (i.e., there is
a bound d such that the lookahead is always less than d) is decidable. Then, we
show that determining whether there exists a delay function such that a given
player wins the game with this delay function is undecidable for context-free
winning conditions. We complement this by giving a criterion to determine when
this question is decidable if we restrict the set of possible delay functions. In-
tuitively, if there is no global bound on the lookahead attained by all functions
in the given set, then determining the winner is undecidable. If there is such a
bound, then it follows from the positive result mentioned above that the winner
can be determined effectively.

By closely inspecting the winning conditions constructed in the proofs, it
follows that these undecidability results already hold for winning conditions given
by visibly one-counter pushdown automata [1]. These are pushdown automata
that have a single stack symbol, i.e., their stack is essentially a counter which
can be incremented, decremented and tested for zero, and whose input letters
control the behavior of the stack, i.e., a letter either always triggers a push, pop,
or skip (the stack is not changed) transition. Visibly pushdown automata are a
popular choice to model recursive processes as their languages are closed under
all boolean operations (as opposed to context-free languages in general), they can
be determinized, and have good algorithmic properties (for a thorough discussion
see [1]).

Finally, we consider the delay necessary to win delay games with context-
free winning conditions. We present a winning condition that can be won with
finite delay, but not with any delay function that is bounded by an elementary
function, i.e., bounded by a k-fold exponential for some fixed k. Again, the win-
ning condition can be recognized by a one-counter automaton and by a visibly
pushdown automaton. However, it is not clear whether a similar result holds for
visibly one-counter pushdown automata.

Our results show that, unlike in the regular case, adding delay to context-
free games, significantly changes their algorithmic properties. Constant delay,
which is sufficient to win regular games, can always be encoded into the winning
condition, hence the classical algorithms to solve games without delay are still
applicable. However, in case of context-free games, where unbounded lookahead
is necessary, one cannot encode the delay into the winning condition while pre-
serving its context-freeness. This is a reason why these games are hard to handle
algorithmically.

This work is structured as follows: In Section 2, we introduce infinite games
with delay formally and present the types of pushdown automata we consider to
specify winning conditions. Then, in Section 3 we present the decidability and
undecidability results. The lower bound for the delay is presented in Section 4.
We conclude with some open questions in Section 5.

4

2 Definitions

The set of non-negative integers is denoted by N, and we define N+ = N \ {0}.
For an integer n > 0 let [n] denote the set {0, · · · , n − 1}. We define the k-fold
exponential function expk : N → N inductively by exp0(n) = n, and expk+1(n) =
2expk(n). An alphabet Σ is a non-empty finite set of letters; Σ∗ denotes the set
of finite words over Σ, Σn denotes the set of words over Σ of length n, and Σω

denotes the set of infinite words over Σ. The empty word is denoted by ε. For
α ∈ Σ∗ ∪Σω and n ∈ N we write α(n) for the n-th letter of α. For w ∈ Σ∗ and
a ∈ Σ, |w|a denotes the number of a’s in w.

Games with Delay. Given a delay function f : N → N+ and an ω-language
L ⊆ (ΣI ×ΣO)

ω, the game Γf (L) is played by two players (the input player I
and the output player O) in rounds i = 0, 1, 2, . . . as follows: in round i, Player I

picks a word ui ∈ Σ
f(i)
I , then Player O picks one letter vi ∈ ΣO. We refer to the

sequence (u0, v0), (u1, v1), (u2, v2), . . . as a play of Γf (L), which gives two infinite
words α = u0u1u2 · · · and β = v0v1v2 · · · . Player O wins the play if and only if
the induced word

(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)

· · · is in L.

Given a delay function f , a strategy for Player I is a mapping τI : Σ
∗
O → Σ∗

I

such that |τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗
I →

ΣO. Consider a play (u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is con-

sistent with τI , if ui = τI(v0 · · · vi−1) for every i; it is consistent with τO, if
vi = τO(u0 · · · ui) for every i. A strategy τ for Player p is winning for her, if
every play that is consistent with τ is won by Player p.

For a delay function f : N → N+ define its distance function df by df (i) =
∑i

j=0 f(j) − (i + 1). We say that f is a constant delay function with delay d,
if df (i) = d for all i, f is a linear delay function with delay k > 0, if df (i) =
(i+1)(k−1) for all i, and that f is an elementary delay function, if df ∈ O(expk)
for some fixed k. Given an ω-language L, we say that Player p wins the game

induced by L with constant, linear, elementary, or finite delay, if there exists a
constant, linear, elementary, or arbitrary delay function f : N → N+ such that
Player p has a winning strategy for Γf (L).

Pushdown Automata. A deterministic pushdown machine (DPDM) is a
tuple M = (Q,Σ, Γ, δ, qin,⊥) where Q is a finite set of states, Σ is an input
alphabet, Γ is a pushdown alphabet, ⊥ /∈ Γ is the initial pushdown symbol (let
Γ⊥ = Γ ∪ {⊥}), qin ∈ Q is the initial state, and δ : Q× (Σ ∪ {ε})×Γ⊥ → Q×Γ ∗

⊥

is a partial transition function satisfying for every q ∈ Q and every A ∈ Γ⊥:
Either δ(q, a,A) is defined for all a ∈ Σ and δ(q, ε,A) is undefined, or δ(q, ε,A)
is defined and δ(q, a,A) is undefined for all a ∈ Σ. We require that the initial
pushdown symbol ⊥ can neither be written on the stack nor be deleted from the
stack.

A stack content is a word from Γ ∗⊥, we assume the leftmost symbol to be
the top of the stack. A configuration is a pair (q, γ) consisting of a state q ∈ Q
and a stack content γ ∈ Γ ∗⊥. We write (q,Aγ)

a
7− (q′, γ′γ), if (q′, γ′) = δ(q, a,A)

for a ∈ Σ ∪ {ε}, γ, γ′ ∈ Γ ∗
⊥ and A ∈ Γ⊥.

For an ω-word α = α(0)α(1)α(2) · · · ∈ Σω an infinite sequence of configura-
tions ρ = (q0, γ0)(q1, γ1)(q2, γ2) · · · is an run of M on α if and only if (q0, γ0) =

(qin,⊥) and for all i ∈ N exists ai ∈ Σ ∪ {ε}, such that (qi, γi)
ai7− (qi+1, γi+1)

5

and a0a1a2 · · · = α. We define the set of states seen infinitely often in a run ρ as
Inf(ρ) = {q ∈ Q | ∀i ∈ N ∃j > i : ρ(j) = (q, γj) for some γj}.

A parity pushdown automaton (parity-DPDA) is a tupleA = (MA, col) where
MA is a DPDM and col : Q → [d] is a priority function assigning to each state
of MA a natural number. It accepts an ω-word α ∈ Σω if there exists a run ρ of
A on α, such that min{col(q) | q ∈ Inf(ρ)} is even. The set of ω-words accepted
by A is denoted by L(A).

One-counter and visibly automata. A DPDM is a one-counter DPDM, if
Γ is a singleton set. A visibly pushdown alphabet Σ = Σc∪Σr∪Σint is an alphabet
partitioned into three disjoint alphabets: Σc is a set of calls, Σr a set of returns,
Σint is a set of internal actions. A deterministic visibly pushdown machine is
a DPDM M = (Q,Σ, Γ, δ, qin,⊥) where Σ is a visibly pushdown alphabet and
the transition function is composed of three functions δ = δc ∪ δr ∪ δint where
δc : Q×Σc ×Γ⊥ → Q×Γ , δr : Q×Σr ×Γ → Q and δint : Q×Σint ×Γ⊥ → Q. A
deterministic visibly pushdown machine can be seen as a DPDM with transition
function δ′ by setting δ′(q, a,A) = (q′, A′A), if a ∈ Σc and δc(q, a,A) = (q′, A′),
δ′(q, a,A) = (q′, ε), if a ∈ Σr and δr(q, a,A) = q′, and δ′(q, a,A) = (q′, A),
if a ∈ Σint and δint(q, a,A) = q′. Note that a deterministic visibly pushdown
machine cannot process a letter from Σr, if its stack is empty.

A parity-DPDA is called visibly (parity-DVPA), one-counter (parity-D1CA),
or visibly one-counter (parity-DV1CA) respectively, if the underlying DPDM is
visibly, one-counter, or both.

3 Decision Problems

In this section, we consider various decision problems regarding delay games
with context-free winning conditions. We begin by showing that the winner for
a fixed bounded delay function can be decided. Then, we show that determining
whether Player O has a winning strategy for some finite delay is undecidable. As
a corollary we obtain that determining whether Player O has a winning strategy
for some constant or linear delay is undecidable. We conclude by giving a general
criterion to classify the sets F of delay functions for which it is decidable whether
Player O can win a given delay game with a function from F .

As we consider winning conditions L that are recognizable by a parity-DPDA,
Γf (L) can be modeled as a parity game on a countable arena with finitely many
priorities. Since parity games are determined [4, 9], we conclude that delay games
are also determined.

Remark 1. Let L be recognizable by a parity-DPDA and f : N → N+. Then,
Γf (L) is determined.

By applying the result of [10] and by encoding the delay into the winning condi-
tion the following theorem is obtained. Note that the property “{i | f(i) 6= 1} is
finite“ covers all constant delay functions f .

Theorem 1. The following problem is decidable:

Input: Parity-DPDA A and f : N → N+ such that {i | f(i) 6= 1} is finite.

Question: Does Player O win Γf (L(A))?

6

We continue with the undecidability results which are obtained by a reduction
from the halting problem for 2-register machines. A 2-register machine R is a list
(0: I0), . . . , (k−2: Ik−2), (k−1: STOP), where the first entry of a line (ℓ : Iℓ) is the
line number and the second one is the instruction, which is of the form INC(Xi),
DEC(Xi), or IF Xi=0 GOTO m where i ∈ {0, 1} is the number of a register and
m ∈ [k]. A configuration of R is a tuple (ℓ, n0, n1) where ℓ ∈ [k] is a line number
and n0, n1 ∈ N are the contents of the registers. The semantics are defined in the
obvious way with the convention that a decrease of a register holding a zero has
no effect. We say that R halts, if it reaches a configuration (k−1, n0, n1) for some
n0, n1 ∈ N when started with the initial configuration (0, 0, 0). It is well-known
that the halting problem for 2-register machines is undecidable.

Theorem 2. The following problem is undecidable:

Input: Parity-DPDA A.

Question: Does Player O win the game induced by L(A) with finite delay?

Proof. We proceed by a reduction from the halting problem for 2-register ma-
chines. Given such a machine R = (0: I0), . . . , (k − 2: Ik−2), (k − 1: STOP), we
encode a configuration (ℓ, n0, n1) by any word ℓw, where w ∈ {r0, r1}

∗ with
|w|r0 = n0 and |w|r1 = n1. Note that if ℓw encodes a configuration, then we have
|ℓ′w′| ≤ |ℓw|+ 1 for any encoding ℓ′w′ of the successor configuration.

Now, define Conf = [k](r0+r1)
∗, Conf0 = 0, and consider the following game

specification over the alphabets ΣI = {♯, r0, r1} ∪ [k] and ΣO = {N,E0, E1, L}:
Player I builds up a word of the form ♯Conf0(♯Conf)

ω (if he does not, he loses).
Consider such a word ♯c0♯c1♯c2♯ · · · with c0 = Conf0 and ci ∈ Conf for all i > 0.
In order to win, Player O has to find a pair cj , cj+1 such that cj+1 does not encode
the successor configuration of the configuration encoded by cj . To do this, she
indicates at each position where Player I has played a ♯ whether she believes that
the following two configurations are indeed successive configurations (by playing
the letter N) or whether she claims an error (by playing E0, E1, L indicating
that the first register, the second register, or the line number is not updated
correctly). At any other position, she may pick an arbitrary letter.

Figure 1 depicts the encoding of three configurations (here, ∗ denotes an
arbitrary letter). Assuming that line 3 contains INC(X0) and line 4 contains
DEC(X1), then the first update is correct, while the second one is not: The first
register is increased incorrectly, an error which is claimed by the letter E0 in
front of the second encoding.

(3,3,1)
︷ ︸︸ ︷

(4,4,1)
︷ ︸︸ ︷

(5,5,0)
︷ ︸︸ ︷

· · ·
♯ 3 r0 r0 r1 r0 ♯ 4 r1 r0 r0 r0 r0 ♯ 5 r0 r0 r0 r0 r0 ♯

· · ·
N ∗ ∗ ∗ ∗ ∗ E0 ∗ ∗ ∗ ∗ ∗ ∗ N ∗ ∗ ∗ ∗ ∗ ∗ N

Fig. 1. Part of a play encoding three configurations.

This winning condition can be recognized by a parity-DPDA AR: the au-
tomaton checks whether the the first component is a word in ♯Conf0(♯Conf)

ω. If
it encounters a letter

(

♯
E0

)

,
(

♯
E1

)

, or
(

♯
L

)

it has to check the next two encodings
ℓw♯ℓ′w′:

7

– case
(

♯
Ei

)

for i ∈ {0, 1}: AR has to verify |w|ri + s 6= |w′|ri , where s = 1, if
Iℓ = INC(Xi), s = −1, if Iℓ = DEC(Xi), and s = 0 otherwise.

– case
(

♯
L

)

: AR has to verify ℓ + 1 6= ℓ′, if Iℓ = INC(Xi), Iℓ = DEC(Xi), or
Iℓ = IF Xi=0 GOTO m and |w|ri > 0; and AR has to verify ℓ′ 6= m, if Iℓ =
IF Xi=0 GOTO m and |w|ri = 0.

All these tests can be implemented in terms of a parity-DPDA AR that accepts
a word if and only if the first component is not a word in ♯Conf0(♯Conf)

ω or if
an error is claimed correctly.

We show that R halts if and only if Player O wins the game induced by
L(AR) with finite delay.

Suppose R halts and consider the linear delay function f(i) = 6 for all i.
We claim that Player O has a winning strategy for Γf (L(AR)) that finds the
first error introduced by Player I. In round 0, Player I chooses 6 letters, which
are sufficient for Player O to check whether Player I has encoded the initial
configuration and its successor configuration, as the length of such an encoding
is bounded by 6. Now consider a round i > 0: if the i-th input letter is not a ♯,
then Player O can choose an arbitrary output letter. So suppose that it is a ♯
and that Player O has not yet signaled an error up to this position: Player I has
produced a word ♯x♯y of length 6(i+1) where |x| = i−1 and hence |y| = 5(i+1).
Let c and c′ denote the last encoding of a configuration in x and the first encoding
of a configuration in y, respectively. As Player O has not signaled an error at
the previous ♯, we know that c′ is well-defined and that it is an encoding of the
successor configuration of the configuration encoded by c. We have |c| ≤ |x| =
i− 1 and hence |c′| ≤ i. Thus, the successor configuration of c′ is encoded by at
most i+1 letters. As i+(i+1)+2 < 5(i+1) for all i > 0, in every round Player O
has enough information to detect an error, if one is introduced. This strategy is
indeed winning for Player O, as an error will eventually be introduced, since the
halting configuration has no successor.

Now suppose R does not halt. Player I has a winning strategy in Γf (L(AR))
for any function f by building up the word ♯c0♯c1♯c2♯ · · · , where c0, c1, c2, . . . are
encodings of the infinite run of R starting in the initial configuration. ⊓⊔

The game induced by L(AR) can be won by Player O with constant delay or
linear delay 6 if and only if R halts. Hence, we obtain the following corollary.

Corollary 1. The following problems are undecidable:

– Input: Parity-DPDA A.

Question: Does Player O win the game induced by L(A) with constant delay?

– Input: Parity-DPDA A and k ∈ N.

Question: Does Player O win the game induced by L(A) with linear delay

k?
– Input: Parity-DPDA A.

Question: Does Player O win the game induced by L(A) with linear delay?

By slightly modifying the game described above, one shows that all undecidability
results hold even for winning conditions presented by parity-DV1CA. To this end,
we supply Player O with additional letters C,R, Int and define Σc = ΣI × {C},
Σr = ΣI × {R}, and Σint = ΣI × {Int,N,L,E0, E1}, i.e., Player O controls

8

the behavior of the stack. As soon as she has answered a ♯ by one of the letters
E0, E1, L she has to use the letters C,R, Int to enable the automaton to compare
the respective parts of the following two encodings. If she fails to do so, she loses
immediately. Furthermore, all necessary tests can be implemented using a single
stack symbol.

To conclude this section, we give a general criterion to determine whether a
set F of delay functions allows to decide whether Player O wins a given delay
game with a function from F . We say that a set F of delay functions f : N → N+

is bounded, if there exists a d ∈ N such that for every f ∈ F and every i ∈ N we
have df (i) ≤ d, i.e., there is a global bound on the lookahead for Player O given
by the functions in F .

Theorem 3. The following problem is decidable if and only if F is a bounded

set of delay functions:

Input: Parity-DPDA A.

Question: Does there exist an f ∈ F such that Player O wins Γf (L(A))?

Proof. Consider a bounded set F of delay functions. We define a partial order
on delay functions as follows: f ≤ g if and only if df (i) ≤ dg(i) for all i, i.e., g
allows at any round at least as much lookahead as f does. Applying Dickson’s
Lemma [3] and the boundedness of F one shows that there exists a finite set
of maximal elements Fmax ⊆ F (a function f ∈ F is maximal if for all g ∈ F ,
f ≤ g implies f = g). We claim that there exists an f ∈ F such that Player O
wins Γf (L(A)) if and only if there exists an f ∈ Fmax such that Player O wins
Γf (L(A)). As Fmax is finite and every f ∈ Fmax satisfies ”{i | f(i) 6= 1} is finite”,
the latter property can be decided by Theorem 1.

The implication from right to left is trivially true, so assume there exists an
f ∈ F \ Fmax such that Player O wins Γf (L(A)). It follows that there exists a
function g ∈ Fmax such that f ≤ g, i.e., the function g admits Player O at least
as much lookahead as f . Hence, a winning strategy for Player O in Γf (L(A)) is
also a winning strategy for her in Γg(L(A)).

Now consider an unbounded set F of delay functions, i.e., for every d ∈ N

there exists an f ∈ F and an i ∈ N such that df (i) > d. We adapt the speci-
fication described in the proof of Theorem 2 by allowing Player O to postpone
the beginning of the simulation of a computation of R until she has attained
enough delay to inspect the complete halting computation of R (if there exists
one) before she has to indicate potential errors.

Given a 2-register machine R with k lines, define Conf0 and Conf as in
the proof of Theorem 2, and consider the following game specification over the
alphabets ΣI = {♯, r0, r1, $}∪ [k] and ΣO = {N,E0, E1, L, S, $}: Player I builds a
word of the form $∗Conf0(♯Conf)

ω or $ω. If he does not adhere to the format, he
loses. Player I may produce the word $ω if and only if Player O never plays the
letter S to start the simulation. If Player O has played the letter S, then Player I
has to play a word of the form $∗c0♯c1♯c2♯ · · · with c0 = Conf0 and ci ∈ Conf for
every i > 0. Again, in order to win, Player O has to find a pair cj , cj+1 such that
cj+1 does not encode the successor configuration of the configuration encoded
by cj . The mechanism to do so is similar to the one described in the proof of
Theorem 2. We denote the parity-DPDA recognizing this winning condition by
A′

R.

9

Suppose R halts after n computation steps. Then, the full computation of
R is encoded by at most d =

∑n+1
j=1 j letters. Let f ∈ F and i ∈ N such that

df (i) ≥ d. Player O has a winning strategy in Γf (L(A
′
R)). In the first i rounds,

she chooses $. If Player I has picked in a round j ≤ i+1 a word uj 6= $f(j), then
Player O wins by playing $ ad infinitum. Otherwise, she plays S in round i+ 1.
Hence, in order to win Player I has to start simulating R, say at position j > i.
As df is non-decreasing, Player O has at least d letters lookahead when picking
her letter in any round j′ ≥ j. As the machine halts, this lookahead enables her
to detect an error which Player I has to introduce, since the halting configuration
does not have a successor configuration.

If R does not halt, then Player I has a winning strategy in Γf (L(A
′
R)) for

every delay function f ∈ F : As long as Player O has not played S, pick $f(i) in
round i. As soon as she has played S, start producing the word ♯c0♯c1♯c2♯ · · · ,
where c0, c1, c2, . . . are encodings of the infinite run of R starting in the initial
configuration. ⊓⊔

Again, the winning condition described in the proof above can be recognized by
a parity-DV1CA. Hence, Theorem 3 holds even for such automata.

4 Lower Bounds on Delays

In this section we show that there exists a context-free winning condition L
such that Player O wins the game induced by L with finite, but non-elementary
delay. To this end, we adapt the idea of the previous section: Player I produces
blocks on which a successor relation is defined. To win, Player O has to find a
pair of consecutive blocks that are not in the successor relation and the game
specification forces Player I to produce such an error at some point. In contrast
to the specifications of the previous section, Player O does not signal a potential
error in front of the i-th block, but with her i-th bit. By ensuring that a valid
successor block is exponentially longer than its predecessor we obtain our result.

Theorem 4. There exists a parity-DPDA A such that Player O wins the game

induced by L(A) with finite delay, but for any elementary delay function f the

game Γf (L(A)) is won by Player I.

Proof. Let S♯ = {♯N , ♯D, ♯C} and S♭ = {♭N , ♭H} be two sets of signals for
Player I and define B = S♭0(S♭0

+)∗ and B0 = S♭0. We say that a block w =
♭00♭10

n1♭2 · · · ♭k−10
nk−1 ∈ B has k ♭-blocks.

Consider a word ♯0w0♯1w1♯2w2♯3 · · · where w0 ∈ B0 and wi ∈ B, ♯i ∈ S♯ for
all i. We say that a block wi = ♭00

n0♭10
n1♭2 · · · ♭k−10

nk−1 has a doubling error at
position j in the range 0 ≤ j ≤ k − 1 if nj+1 6= 2nj (note that n0 = 1 for every
wi ∈ B). We say that the doubling error at position j in block wi is signaled, if
♯i = ♯D, ♭j = ♭H , and ♭j′ = ♭N for all j′ < j. We say that two consecutive blocks
wi and wi+1 constitute a copy error, if |wi| 6= |wi+1|♭N + |wi+1|♭H (i.e., in the
absence of a copy error, wi+1 has |wi| ♭-blocks). For two blocks wi and wi+1 the
copy error is signaled, if ♯i = ♯C .

Figure 2 depicts the encoding of three blocks in the first component. The
blocks w1 and w2 constitute a copy error, as w2 only contains three ♭-blocks, and
not the required four (due to |w1| = 4). This error was signaled by the letter ♯C
in front of w1. Furthermore, the block w1 contains a doubling error.

10

w0

︷ ︸︸ ︷

w1

︷ ︸︸ ︷

w2

︷ ︸︸ ︷

♯N ♭N 0 ♯C ♭N 0 ♭N 0 ♯N ♭N 0 ♭N 0 0 ♭N 0 0 0 0 ♯N
· · ·

N ED N N H N N N N N N N N N N N N N N N

Fig. 2. A play prefix with three blocks w0, w1, and w2.

Consider the following game specification over the alphabetsΣI = {0}∪S♯∪S♭

and ΣO = {N,ED, EC ,H}: Player I builds a word α = ♯0w0♯1w1♯2w2♯3 · · · ∈
S♯B0(S♯B)ω while Player O produces a word β ∈ Σω

O. Player O uses her let-
ters to announce errors in α: if β(i) = EC , then she claims that the pair wi

and wi+1 contains a copy error. If β(i) = ED, then she claims that wi =
♭00

n0♭10
n1♭2 · · · ♭k−10

nk−1 contains a doubling error at a position j, which she
has to specify by answering ♭j by H (and answering every ♭j′ for j′ < j not by
H).

Going back to the example in Figure 2, we see that Player O has claimed the
doubling error in blocks w1 by choosing ED as second letter and has marked its
position by playing H in front if it.

A play of this game is winning for Player O if and only if the induced word
(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)

· · · satisfies

– α /∈ S♯B0(S♯B)ω (i.e., Player I does not adhere to the format), or

– there exists an i such that β(i) = ED, β(j) = N for all j < i, ♯j = ♯N
for all j < i, the ℓ-th ♭ of wi was answered by H (and ℓ is minimal with
this property) and wi contains a doubling error at position ℓ (i.e., Player O
detected a doubling error in block wi and Player I has not signaled an error
in front of a block wj for j < i. Note that the doubling error in block wi may
have been signaled by Player I), or

– there exists an i such that β(i) = EC , β(j) = N for all j < i, ♯j = ♯N for
all j < i, and the pair wi and wi+1 constitutes a copy error (i.e., Player O
detected a copy error in blocks wi and wi+1 and Player I has not signaled an
error in front of a block wj for j < i. Note that the copy error in the blocks
wi wi+1 may have been signaled by Player I in front of wi), or

– there exists an i such that ♯i = ♯D and ♯j = ♯N for all j < i, and β(j) = N
for all j ≤ i, and wi does not contain ♭H or the two blocks following the first
♭H do not constitute a doubling error (i.e., Player I has signaled a doubling
error but not indicated its position correctly), or

– there exists an i such that ♯i = ♯C and ♯j = ♯N for all j < i, and β(j) = N
for all j ≤ i, and the pair wi and wi+1 does not constitute a copy error (i.e.,
Player I has signaled a copy error without producing one), or

– ♯i = ♯N for all i (i.e., Player I has never signaled an error).

Hence, the play in Figure 2 is winning for Player O, as her correct claim precedes
the signal of Player I.

Let L = {ρ ∈ (ΣI × ΣO)
ω | ρ is winning for Player O}. We show that L can

be recognized by a parity-DPDA A: The automaton proceeds in four phases on an
ω-word ρ =

(α(0)
β(0)

)(α(1)
β(1)

)(α(2)
β(2)

)

· · · where α = ♯0w0♯1w1♯2w2♯3 · · · ∈ S♯B0(S♯B)ω.

In the first phase, it prepares its stack to be able to find the beginning of wi

when starting at letter ρ(i) as required in the second phase. To do so, it counts

11

the number of letters processed so far minus the number of letters from S♯ in the
first component. This phase is stopped as soon as a letter ♯C or ♯D in the first
component is read or a letter EC or ED in the second component is read. In the
first case, the automaton jumps to phase four, in the second it starts with phase
two.

The second phase starts if β(i) is EC or ED for the first time. Then, the
automaton uses the information on the stack to find the beginning of wi by
decreasing the stack every time a ♯N in the first component is processed. If
♯j = ♯C or ♯j = ♯D for j < i is processed, the automaton jumps to phase four.
Otherwise, phase two continues until the beginning of wi is reached. Then, A
continues with phase three.

In phase three, A checks whether the error indicated by β(i) occurs (for this
purpose, it stores β(i) at the beginning of phase two). If β(i) = EC , then it
checks whether wi and wi+1 constitute a copy error. If β(i) = ED, then it checks
whether wi contains a doubling error, which has to be indicated in the second
component by an H right before the error. If the first H does not indicate an
error correctly (or if none is read), then A rejects ρ. The automaton accepts in
phase three if and only if the error indicated by β(i) was found.

Finally, in phase four A checks whether the error indicated by ♯j occurs. If
♯j = ♯C , then it checks whether wj and wj+1 constitute a copy error. If ♯j = ♯D,
then it checks whether wj contains a doubling error, which is signaled properly
by placing a ♭H at the appropriate position. If the first ♭H does not indicate an
error correctly (or if wi does not contain a ♭H), then the doubling error was not
signaled and A accepts ρ. The automaton accepts in phase four if and only if the
error indicated by ♯j was not found.

Furthermore, A checks whether the first component is a word in S♯B0(S♯B)ω

and whether it contains at least one letter ♯C or ♯D. If it does not, then ρ is
accepted. All the tests described in phases three and four can be implemented
in terms of a parity-DPDA.

We continue by showing that Player O wins the game induced by L with finite
delay. To this end, note that the following holds true for two consecutive blocks
w and w′ not containing a copy or doubling error: |w′| = 2|w| + |w| − 1. Hence,
we define the auxiliary function g by g(0) = 2 and g(n + 1) = 2g(n) + g(n) − 1
for every n ≥ 0. Now, define the delay function f by f(0) = g(0) + g(1) + 3
and f(n) = g(n + 1) + 1 for every n > 0 (note that f is non-elementary). We
claim that Player O has a winning strategy for Γf (L): if Player I does not pick
♯0♭000♯1♭100♭1100♯2 in the first round, then he has committed some error within
his first two blocks, which can be claimed by Player O with v0. Now assume
he has produced a play prefix ♯0w0♯1w1♯2 · · · ♯iwi♯i+1 after round i − 1 without
introducing a doubling error in the blocks wj for all j < i and no copy error in
the pairs wj and wj+1 for all j < i. If he produces an x in the next round i that
is of the form w♯ such that wi and w do not constitute a copy error and if wi

does not contain a doubling error, then Player O picks vi = N . Otherwise, she
claims the error that occurs. This strategy is winning for Player O, as Player I
is not able to signal and produce an error that cannot be claimed by Player O.

Finally, consider an elementary delay function fe ∈ O(expk). Player I can
always play blocks without introducing errors until the length of the block wi

exceeds the lookahead
∑i

j=0 fe(j) − i of Player O. At such a position, Player O

12

has to make a claim about a block which Player I has not completed yet. So,
Player I signals a doubling error for this incomplete block. If Player O does not
claim a doubling error, then he can introduce a doubling error while completing
the block. Vice versa, if Player O claims the doubling error, then he does not
introduce a doubling error while completing the block. Then he continues to
stick to the input format. In both cases Player O loses, as her claims precede the
claims of Player I. ⊓⊔

Using ideas as presented in Section 3 one can show that the language L can even
be recognized by a parity-D1CA or by a parity-DVPA.

5 Conclusion

In this paper we continued the investigation of delay games. We showed that
determining the winner of context-free delay games is undecidable. This already
holds for the restricted class of visibly one-counter winning conditions. Also, we
presented a game that is won by Player O with finite delay, but the necessary
lookahead is non-elementary.

Our undecidability results hold even for visibly winning conditions where
Player O controls the behavior of the stack. An interesting open question is
whether the problem becomes decidable if Player I controls the behavior of the
stack. Also, linear delay is necessary in this case, but it is not clear whether it is
sufficient.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM, 56(3) (2009)
2. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans.

Amer. Math. Soc. 138, 295–311 (1969)
3. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct

prime factors. Amer. J. Math. 35(4), 413–422 (1913)
4. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended ab-

stract). In: FOCS 91. IEEE (1991)
5. Finkel, O.: Topological properties of omega context-free languages. Theor. Comput. Sci.,

262(1), 669–697 (2001)
6. Grädel, E., Thomas, W., Wilke, T. (eds): Automata, logics, and infinite Games. LNCS,

vol. 2500, Springer, Heidelberg (2002)
7. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite games. In:

Ong, L., (ed), FOSSACS 2010. LNCS, vol. 6014, pp. 252–266, Springer, Heidelberg (2010)
8. Hosch, F., Landweber, L.H.: Finite delay solutions for sequential conditions. In: Nivat, M.

(ed.), ICALP 1972, pp. 45–60. North-Holland, Amsterdam (1972)
9. Mostowski, A.W.: Games with forbidden positions. Technical report 78, University of

Gdańsk, Poland (1991)
10. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput., 164(2),

234–263 (2001)

13

14

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from http://aib.

informatik.rwth-aachen.de/. To obtain copies consult the above URL or

send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,

52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

15

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

16

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: AModular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

17

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

18

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

19

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

20

