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Abstract. McCormick Relaxations are special convex and concave under- and
overestimators which are used in the field of nonconvex global optimization. As
they are possibly nonsmooth at some points subgradients are used as derivative
information. Subgradients are natural extensions of usual derivatives. They may
be used to construct linear or piecewise linear relaxations. [Mitsos et al. 2009]
developed a corresponding method and the library libMC (written in C++) for
propagating relaxations and related subgradients using the tangent-linear mode
of Algorithmic Differentiation (also known as Automatic Differentiation) by op-
erator overloading. This paper extends [Mitsos et al. 2009] by providing libMC
functionality by source transformation in Fortran. The corresponding Fortran
module modMC is described. A research prototype of the NAG Fortran com-
piler has been extended with domain-specific inlining techniques to enable the
generation of tangent-linear McCormick code. Speedups by factors of up to four
with respect to the runtime of the respective libMC-based implementation can
be observed. These results are supported by a number of relevant applications.
To perform the numerical experiments, an interface between tangent-linear Mc-
Cormick code written in Fortran and the existing C++-implementation of the
branch-and-bound algorithm has been established.

1 Motivation and Context

Nonlinear programs (NLPs) with nonconvex objective function or constraints
typically result in multiple local extrema some of which are suboptimal. There are
various necessary and sufficient criteria to establish a local extremum, see e.g., [6],
which are relatively easy to test, and local, gradient-based methods employ these
criteria for termination. In other words, at termination, gradient-based methods
can identify if a local extremum has been obtained. In contrast, no direct criteria
exist for establishing a global optimum. Several heuristics exist to attempt global
optimization with local solvers, such as multistart, i.e., repeated application of a
local solver from different initial guesses. An alternative method, are gradient-free
methods, such as evolutionary algorithms. These methods do not rely on local
termination criteria, and as such have the potential of avoiding suboptimal local
solutions. However, neither gradient-based methods with heuristics, nor gradient-
free methods can guarantee that a global optimum has been obtained, at least not
at finite termination. This article focuses on compiler support for deterministic
global optimization, i.e., methods which can deterministically guarantee a global
solution. Throughout the article, round-off error is not considered.

Deterministic global optimization algorithms [28, 15] rely on lower bounds on
the optimal objective value, obtained via relaxations. A relaxation is an auxiliary
problem which is guaranteed to have a better objective value (lower for minimiza-
tion problems). For a relaxation to be useful for global optimization it must be



easier to solve than the original optimization problem. Popular relaxations of a
nonconvex NLP are convex NLPs, linear programs (LPs) and interval-extensions.

1.1 Relaxations

Consider a constrained NLP

f∗ = min
x
f(x)

s.t. g(x) ≤ 0 (1)

x ∈ X,

where X ⊂ Rn is an continuous bounded nonempty and convex set and f : X →
R and g : X → Rm. Without loss of generality a hyperbox is assumed for the
host set, i.e. X = [xL,xU ]. Note that the objective function f and constraints g
may be known explicitly or implicitly, e.g., through a computer code. This was
demonstrated by [21] for algorithms with an a priori known number of iterations.

A relaxation can be obtained by constructing the convex relaxations of the
objective function and constraints:

fu,∗ = min
x
fu(x)

s.t. gu(x) ≤ 0 (2)

x ∈ X.

The new functions fu and gu are convex relaxations of f and g, if they are
convex on X and satisfy fu(x) ≤ f(x), gu(x) ≤ g(x) for all x ∈ X. A similar
definition holds for concave relaxations. Any feasible point of (1) (a point that
satisfies the constraints) is also feasible in (2) and therefore fu,∗ ≤ f∗.

The construction of the convex relaxations is challenging. They must be cov-
erging, i.e., for any sequence (Xi)i∈N of subsets of the host set X with

Xi = [xi,L,xi,U ] and ||xi,U − xi,L|| → 0

we must have

max
x∈Xi

|fu(x)− f(x))| → 0

max
x∈Xi

max
j∈{1,2,...,m}

∣∣guj (x)− gj(x))
∣∣→ 0

Moreover convex relaxations should be cheap to evaluate.
A popular method is relaxation via the introduction of auxiliary variables

and subsequent linearization; this method is used in the global solver BARON
[28, 24, 29]. Another method are the α−BB and γ−BB relaxations [1, 2] which
are applicable to twice-continuous differentiable functions. This article focuses
on McCormick relaxations [17, 18].

McCormick relaxations are applicable to factorable functions, i.e., functions
defined by a finite recursive composition of binary sums, binary products and a
given library of univariate intrinsic functions [21]. Assuming that the library of
intrinsic functions has known convex and concave relaxations as well as function
enclosures, these relaxations are propagated by rules for the sum, product and
composition of functions.



1.2 Branch-and-Bound

In the absence of simple global optimality criteria, deterministic global opti-
mization algorithms must in some sense search the set of the optimization vari-
ables. Unlike mixed-integer linear programs, explicit enumeration is not possible.
Moreover, brute-force methods are not tractable for all but the simplest prob-
lems, and this has lead to the development of sophisticated algorithms, such as
branch-and-bound (B&B) [14], branch-and-reduce [23] and outer approximation
for mixed-integer nonlinear programs [16]. A thorough description of these algo-
rithms is given in various textbooks, e.g., [28, 15] and here only the basic concept
of a simple B&B is given.

B&B algorithms typically rely on an upper bound UBD ≥ f∗ and a lower
bound LBD ≤ f∗ and convergence is achieved when the difference between the
lower and upper bound is within a user-defined absolute tolerance 0 ≤ UBD −
LBD ≤ εa and/or relative tolerance 0 ≤ UBD−LBD

|UBD| ≤ εr. Note that the optimal

objective value f∗ is not known during the iterations of the algorithm, nor after
termination.

Since convergence of the convex relaxations is only achieved at the limit, B&B
represents the host set X via a partition, i.e., a collection of subsets Xi ⊂ X that
do not overlap (Xi ∩ Xk = ∅) and cover the host set (∪Xi = X). The subsets
are termed nodes, and represented in the B&B tree. The first element of the
B&B algorithm is branching, i.e., the refinement of the partition by subdividing
the selected node into children nodes. Typically, this is performed by bisecting a
variable. Note that in some algorithms multiple sets are branched simultaneously,
or multiple branches are created from a single set at one iteration. There are
several selection criteria, such as best-bound (selection of node with lowest lower
bound LBDi), breadth-first, or depth-first.

The second element of the B&B algorithm is bounding, i.e., the calculation
of an upper and lower bound of the optimization problem with the variables
restricted to the chosen node, UBDi and LBDi respectively. The lower bound
is obtained by the solution of the relaxation, while the upper bound can be
calculated by the local solution of the original optimization problem with the
variables restricted to the chosen node. At branching LBDi is inherited to the
children nodes.

The overall upper bound (or incumbent) can be updated every time a better
solution is found. Since a feasible point in a node is also feasible for the original
problem we have UBD = mini UBD

i. The overall lower bound is the best bound
LBD = mini LBD

i.
The third element of B&B is fathoming, i.e., elimination of the nodes with a

lower bound which is higher than the incumbent. If LBDi ≥ UBD then node i
cannot contain an optimal solution and need no longer be considered. There are
also heuristics employed, such as fathoming of nodes with a small diameter [25].
Another common trick is to fathom all the nodes with LBDi > UBD− εa, since
they cannot contain a significantly better solution than the incumbent.

In the worst case B&B algorithms have exponential complexity. Moreover,
since the relaxations may become weaker with increasing dimensionality of the
problem, the worst-case complexity can be even worse than exponential. Actual
computational times depend a lot on the properties of the instance, and in some
cases problems of engineering significance can be solved globally, e.g., [20].



In practice, often finding a global minimum is relatively easy and verifying
its optimality is computationally expensive. An important point is however, that
even before reaching εa convergence, the existing LBD is a certificate of opti-
mality, since it gives an estimate of how far the solution found could be from the
global optimum.

1.3 Subgradients

The application of Branch-and-Bound algorithms in our context include the cal-
culation of the above defined McCormick relaxations as well as some “derivative”
information of these. Since convex relaxations are possibly nonsmooth we use
subgradients instead of usual derivatives to avoid possible miscalculations based
on nondifferentiability. Subgradients are formally defined as follows:

Definition 1. Let f : X → R be function given on a convex set X ⊆ Rn and
f ′(x, d) := limt↓0

f(x+td)−f(x)
t denote the directional derivative of f at a point x

in direction d. Then the set

∂f(x) :=
{
s ∈ Rn | 〈s, d〉 ≤ f ′(x, d) ∀d ∈ Rn

}
is called the subdifferential of f at x. A vector s ∈ ∂f(x) is called a subgra-
dient of f at x.

[13] show that the subdifferential of any convex function is nonempty at any
point. If the function f is differentiable at x then the only subgradient is given
by the usual derivative of f at x. Hence subgradients are a natural extension of
usual derivatives. [21] show that the tangent-linear (or forward) mode of Algorith-
mic Differentiation (AD) [12] can be applied to the propagation of subgradients
of McCormick relaxations. The performance of the proposed C++-library libMC
turned out to be superior when compared with other state-of-the-art global op-
timization tools on some test problems with special structure.

The next section gives a short summary of libMC. In Chapter 2 we present the
corresponding new Fortran module modMC. Its superiority in terms of compu-
tational efficiency is demonstrated in Chapter 4. More significant improvements
are due to the transition to source transformation implemented as a special in-
lining algorithm in a research prototype of the NAG Fortran compiler that has
been introduced in a previous ACM TOMS article [22]. The inliner is described
in Chapter 3.

1.4 libMC: Tangent-Linear McCormick Relaxations by Overloading
in C++

We restrict the description of libMC to the essential facts. Refer to [21] and [9]
for more details.

libMC provides the data type (C++ class) McCormick, that calculates convex
and concave relaxations of factorable functions by means of operator overloading.
Subgradients of these relaxations with respect to each optimization variable are
propagated in parallel similar to standard forward mode AD.

The number of optimization variables npar is set via the McCormick member
function np(int npar). Optimization variables are typically initialized with the
constructor



McCormick (const double l, const double u, const double c, const int

ip=-1).

It creates a variable with bounds [l, u], value c, and unique index ip (0 ≤ ip <
npar). Intermediate values can either be initialized by the above constructor, the
constructor McCormick (const double c) (assigning the value c to the variable),
or by assigning a double or McCormick variable using the = operator. Interme-
diate variables’ indices are set to −1 indicating that they are not optimization
variables.

The binary operators addition, subtraction, multiplication and division as
well as the intrinsic functions exponential, logarithmic, power, square root, and
absolute value are implemented. As an example, the multiplication (∗) of a posi-
tive scalar s with a McCormick variable MCArg is discussed here. The correspond-
ing complete source code is available through [9]:

1 McCormick operator* ( const double s, const McCormick &MCArg ) {
2 if( MCArg._sizep != MCArg._np ) throw MC_Excp( MC_Excp::SIZE );
3 McCormick MCRes;
4 if ( s >= 0 ){
5

6 MCRes._l = s * MCArg._l;
7 MCRes._u = s * MCArg._u;
8

9 MCRes._cv = s * MCArg._cv;
10 MCRes._cc = s * MCArg._cc;
11

12 for( int ip=0; ip<MCRes._np; ip++ ){
13 MCRes._dcvdp[ip] = s * MCArg._dcvdp[ip];
14 MCRes._dccdp[ip] = s * MCArg._dccdp[ip];
15 }
16 }
17 else{
18 ...
19 }
20 }
21 return MCRes;
22 }

Listing 2.1. Excerpt from the scalar times McCormick operator

The operator ensures that the McCormick variable is acting on the correct
number of optimization variables in line 2. An exception is thrown otherwise. Two
cases must be distinguished: Multiplication with a positive scalar (if-branch) and
with a negative scalar (else-branch, omitted here) inverting the upper and lower
bounds. The McCormick variable returned as the result of the multiplication has
the interval bounds _l and _u (lines 6 and 7), the values of the relaxations _cv

and _cc (lines 9 and 10) and associated subgradients _dcvdp[ip] and _dccdp[ip

] with respect to the set of optimization variables (lines 12–15). The respective
member variables of MCArg are simply multiplied with s in this simple case. Refer
to [9] for more complex examples.



2 modMC: Tangent-Linear McCormick Relaxations and
Subgradients by Overloading in Fortran

This section covers modMC, a Fortran implementation of libMC. Relaxations
are calculated by overloading arithmetic operators and intrinsic functions for the
derived type McCormick. Subgradients are propagated along with the previously
introduced bounds and relaxations due to potential non-smoothness of the latter.
Support subroutines are provided for initialization, error handling, and to pro-
duce human-readable type instance printouts for debugging and documentation.

2.1 Compilation

modMC is distributed under the ECLIPSE PUBLIC LICENSE1. The latest ver-
sion can be downloaded as a compressed tar-archive containing the complete
source code from http://wiki.stce.rwth-aachen.de/modMC/. The build
process complies with the GNU Code Standards2 and is based on the GNU Au-
totools3. To compile modMC upon successful download, the following steps are
required:

1. Extract package contents using the tar command-line utility:

tar -xvj modmc-1.0.tar.bz2

2. Change into the directory created during package extraction. Note, that the
version number 1.0 may differ for the latest version available:

cd modmc-1.0

3. Run the configure command to determine local system settings and to select
an appropriate compiler:

./configure

Note: ./configure --help lists available options.
4. Compile modMC. Binaries are placed inside the src directory:

make

The following files are created: libmodmc.a contains the binary object code
and mccormick.mod contains the Fortran-specific interface description of
modMC. It is possible to compile a Fortran project that uses modMC without
actually installing modMC. The file mccormick.mod needs to be placed in-
side the project directory. The static library libmodmc.a must be provided
only at link time.

5. Optional. To use modMC in multiple projects (all using the same Fortran
compiler), a local installation can be generated:

su
make install
exit

su opens a new subshell with system administrator privileges; make install

performs a local installation of modMC; exit closes the previously spawned
subshell. If the sudo command is available, then the previous three lines can
be combined into

1 http://www.eclipse.org/legal/epl-v10.html
2 http://www.gnu.org/prep/standards/
3 http://www.gnu.org/software/autoconf/



sudo make install

After installation modMC is available to all users. The Fortran interface
description file mccormick.mod is installed into the include directory
defined during package configuration. Let program.f90 use the McCormick
data type and suppose that the GNU Fortran compiler gfortran is used. Then

gfortran program.f90 -lmodmc -I/usr/include/modmc

is a feasible build instruction. The compiler option -lmodmc advises gfortran
to link with the libmodmc.a library. The -I parameter defines an include
path to locate mccormick.mod. Default search paths may differ between
machines. The installation path of modMC is set via the --prefix command
line argument of the configure script.

2.2 Usage

Given a function implemented in Fortran, McCormick relaxations are easily ob-
tained by replacing floating-point types for optimization, output and intermedi-
ate variables with McCormick and initializations of optimization variables with
calls to the mccormick_init() subroutine, setting boundaries and a unique index
for each variable. Relaxations are automatically propagated through the program
flow.

program example
implicit none

integer, parameter :: n = 5
integer i
double precision, dimension(n) :: x
double precision y

do i = 1, n
x(i) = dble(i)

enddo

y = 0.0d0

do i = 1, n - 1
y = y + x(i) ** 2 - x(i + 1)

enddo

write (*,*) y
end program

Listing 2.2. Simple example program

Listing 2.2 shows a simple sample program implementing a multivariate scalar
function f : IRn → IR defined as

y = f(x) ≡
n−1∑
i=1

(
x2i − xi+1

)
for n = 5 and evaluated at xi = i. Execution yields �
16.0000000000000000� �



as output. Consider the following boundaries for the optimization variables x:

xi ∈
[
i

2
, 2n

]
, i = 1, . . . , n .

Listing 2.3 shows the modifications required to augment the original computation
with bounds, McCormick relaxations, and their subgradients with respect to the
optimization variables xi.

1 program example_mc
2 ! Load McCormick module.
3 use mccormick
4 implicit none
5

6 integer, parameter :: n = 5
7 integer i
8 ! Change type of parameters and objective.
9 type(mccormick_type), dimension(n) :: x

10 type(mccormick_type) y
11

12 ! Set the absolute number of parameters used
13 ! before initialization.
14 call mccormick_set_np (n)
15

16 ! Initialize parameters with lower and upper bounds;
17 ! set their initial values and assign unique index (here: i).
18 do i = 1, n
19 call mccormick_init (x(i), &
20 & dble(i) / 2.0d0, dble(2*n), dble(i), i)
21 enddo
22

23 ! The function implementation itself remains unchanged.
24 y = 0.0d0
25

26 do i = 1, n - 1
27 y = y + x(i) ** 2 - x(i + 1)
28 enddo
29

30 ! Call special output subroutine for McCormick variables.
31 call write (y)
32 end program

Listing 2.3. McCormick-enabled version of Listing 2.2

Modifications to the original program are only applied to type definitions and
initializations, including the specification of parameter bounds. The implementa-
tion of the function evaluation itself remains unchanged; McCormick relaxations
and their subgradients are implicitly propagated through the execution of the
function. The following output is generated: �

1 %MC-Value
2 \interval-extension[
3 -3.2500000000000000E+01, 3.9300000000000000E+02
4 ]
5 \relaxations[
6 1.6000000000000000E+01, 5.1000000000000000E+01
7 ]
8 \subgradient[
9 2.0000000000000000E+00, 1.0500000000000000E+01



10 3.0000000000000000E+00, 1.0000000000000000E+01
11 5.0000000000000000E+00, 1.0500000000000000E+01
12 7.0000000000000000E+00, 1.1000000000000000E+01
13 -1.0000000000000000E+00, -1.0000000000000000E+00
14 ]� �

The output contains the calculated relaxations of f , as well as the corresponding
subgradients. These values are accessible via the standard Fortran derived type
component separator:

1 ! Get the convex underestimator.
2 write (*,*) y%cv
3 ! Get the concave overestimator.
4 write (*,*) y%cv
5 ! Get the subgradients with respect to the 2nd variable.
6 write (*,*) y%dcvdp(2), y%dccdp(2)

Listing 2.4. Access to objective components in write(mccormick_type y)

Indices conform to Fortran standards and start with 1 (libMC indices start with
0 conforming to C++ standards). Indices within subgradients correspond to the
unique index assigned during parameter initialization and range between 1 and
n.

2.3 Implementation Details

The modMC library defines the new derived type McCormick shown in Listing 2.5.
All computations are based on instances of this structure and rely on the lower
and upper interval bounds l and u, the relaxations cv and cc and their subgra-
dients dcvdp and dccdp.

type mccormick_type
sequence
! size of subgradients
integer sizep
! lower bound
double precision l
! upper bound
double precision u
! convex underestimator
double precision cv
! concave overestimator
double precision cc
! subgradient of the convex underestimator
double precision, dimension(:), allocatable :: dcvdp
! subgradient of the concave overestimator
double precision, dimension(:), allocatable :: dccdp

end type mccormick_type

Listing 2.5. McCormick data type structure

The sizep component stores the number of optimization variables registered prior
to the initialization of a McCormick type instance. This information is essential
for the propagation of subgradients through the evaluation of the program as
each McCormick type instance needs to store two arrays of size sizep for the
subgradients of the convex underestimator and the concave overestimator with
respect to the optimization variables.



Several computations of relaxations with a different number of optimization
variables are possible. However, mixing McCormick type instances with subgradi-
ents of distinct sizes is not permitted. Therefore each operator or function needs
to check the sizep component of its arguments and report an error, if they do
not match. An example is shown in Listing 2.6. The internal mccormick_error()
subroutine handles implementation-specific errors and aborts program execution
with a detailed error message.

1 recursive function times_mc_mc (MCArg1, MCArg2) result (MCRes)
2 type(mccormick_type), intent(in) :: MCArg1, MCArg2
3 type(mccormick_type) :: MCRes
4

5 if (MCArg1%sizep.ne.MCArg2%sizep) &
6 then
7 call mccormick_error ( &
8 & ’times_mc_mc’, &
9 & ’MCArg1%sizep.ne.MCArg2%sizep’, &

10 & ’Argument sizes are not equal’)
11 endif
12

13 ...
14 end function

Listing 2.6. Excerpt from the multiplication operator for two arguments of type
McCormick: The sizes of the subgradients of both arguments need to match.

Listing 2.7 shows an example excerpt from the multiplication operator for a scalar
double precision variable and a second argument of type McCormick. Note the
obvious similarity with Listing 2.1. Additionally, modMC takes advantage of For-
tran specific features such as array arithmetic in lines 24 and 25.
Subgradients in McCormick type instances are declared as allocatable. Allocat-
able components are a widely supported extension to the Fortran standard and
have no direct impact on the practical use of modMC but yield greatly improved
efficiency over standard Fortran pointers. modMC also provides full support for
inliner side effects described in Section 3.5 and is able to gain an additional
boost by re-using allocated memory of intermediate variables inside of loops and
between variable scopes.

1 function times_dp_mc (s, MCArg) result (MCRes)
2 double precision , intent(in) :: s
3 type(mccormick_type), intent(in) :: MCArg
4 type(mccormick_type) :: MCRes
5

6 ! Initialize storage of subgradient
7 MCRes%sizep = MCArg%sizep
8

9 if (.not.allocated(MCArg%dcvdp)) then
10 allocate(MCRes%dcvdp(MCRes%sizep))
11 allocate(MCRes%dccdp(MCRes%sizep))
12 endif
13

14 if (s.ge.0.0d0) then
15 ! Compute bounds.
16 MCRes%l = s * MCArg%l
17 MCRes%u = s * MCArg%u
18

19 ! Compute McCormick relaxations.



20 MCRes%cv = s * MCArg%cv
21 MCRes%cc = s * MCArg%cc
22

23 ! Compute subgradient of McCormick relaxations.
24 MCRes%dcvdp = s * MCArg%dcvdp
25 MCRes%dccdp = s * MCArg%dccdp
26

27 else
28 ...
29 endif
30 end function

Listing 2.7. Excerpt from the multiplication operator for a scalar double

precision variable and a second argument of type McCormick

2.4 Interoperability

In larger projects, different problems are often solved using different program-
ming languages, either to benefit from language-specific features or due to per-
sonal preference. Mixed Language Programming often encounters several prob-
lems as described, for example, in [7]. modMC has been designed to allow ut-
most compatibility, based on the ability of modern Fortran compilers to generate
object code that allows easy interaction with other languages such as C. For ex-
ample, the symbol name of the overloaded multiplication operator in Listing 2.7
generated by the NAG Fortran compiler is _mccormick_MP_times_dp_mc, which
is easily callable from other languages.

To enable binary interoperability with other languages, the structure of the
McCormick type is declared as a sequence. This declaration guarantees that the
memory layout of McCormick type components match the order of their declara-
tions. Otherwise, a Fortran compiler might choose to optimize the type structure
by reordering components, leading to possibly incorrect memory accesses from a
foreign program. The well-defined memory layout allows the definition of equally
structured data types in other programming languages to directly interact with
modMC and its derived type instances.

3 Tangent-Linear McCormick Relaxations by Fortran Source
Transformation

This section describes extended compiler optimizations for modMC in a research-
prototype of the NAG Fortran Compiler based on a technique called inlining.

3.1 Inlining

In general, a Fortran program is separated into several modules and source files.
A module provides data types and methods shared by other source files. Dur-
ing compilation, all modules are processed and the compiler generates a library
and description file for each module. The module description file is used by all
other sources to determine data type structures and resolve method calls (e.g.
determine the specific method name for overloaded operators). An executable
program is generated by linking all sources into a single binary executable that
depends on the shared library files. Although such modular design reduces re-



program module
uses

compiler compiler

executable library
calls methods

Fig. 1. Default compilation process

dundant code, structures code, improves maintenance and enables techniques like
operator overloading, its main drawback is a general loss in runtime speed due
the overhead generated by calls to methods. Operator overloading in particular
is based on adding method calls for each operator used and results in a massive
decrease of runtime efficiency.

module.f90 compiler module.{o,mod}

program.f90 compiler a.out

Fig. 2. File usage during default compilation process

The NAG Fortran compiler is a multiple phase Fortran to C compiler. It
builds up a parse tree from the Fortran source and performs operations and
transformations directly on the obtained parse tree. A special inliner has been
developed to replace all occurrences of calls to known functions or procedures by
their original implementation. Overloaded operators are internally represented
by subroutine and function calls and are therefore included in the process. The
inliner itself provides two modes of operation and does not interfere with the
compilers’ default procedure.

3.2 Collector Mode

The collector mode scans source files and stores metadata required by the prop-
agation mode (see Section 3.3). It is usually applied once per module or source
file of each subroutine or function. All supported statements4 are stored in an
intermediate XML-based file format referred to a Inter Storage Module (ISM).
ISM files are recreated each time the module or subroutine source file is changed.
They are interchangeable between different platforms. ISM files contain a hier-
archical and complete description of all processed subroutines and functions.
Unsupported method calls are left in place and do not result in an error.

4 A supported statement is a call to a subroutine whose body the inliner is able to store and
reconstruct.



module.f90 compiler module.{o,mod}

module.ism

Fig. 3. Files processed and generated with the inliner’s collector mode enabled. An ISM file is
generated in addition to the default module object and interface definition files.

3.3 Propagation Mode

In propagation mode the given Fortran source files are scanned for occurrences of
subroutine or function calls recorded in the corresponding ISM file. Every match-
ing call is replaced by a dynamically generated intermediate parse tree recreated
from the stored description of its original method body. Method matching is es-

program.f90 compiler a.out

module.{ism,o,mod}

Fig. 4. Files processed and generated with the inliner propagation mode enabled; an additional
ISM file is required

tablished both based on specific5 method name comparison and on compatibility
tests of the method signature. Each method parameter is consecutively checked
against their stored counterparts for data type equality. All successful signature
matches are stored in an intermediate map. This map is used during the creation
of an intermediate parse tree from the stored description of its original method
body to replace local variables of the original method with their matching callee
counterpart. Temporary local variables are dynamically created in the current
scope. The inliner stores its recursion state to determine whether a new state-
ment is processed and re-uses local temporary variables for optimized runtime
behavior. Unmatched method calls are skipped and left unaltered. While un-
supported statements may result in a loss of optimization they conservatively
preserve the correctness of the program.

3.4 Recursive Expansion

An additional recursion parameter controls the upper limit on how many times
already inlined statements are at most re-scanned and probably are again ex-
panded by the inliner. Recursive expansions resolve dependencies between op-
erators and functions and flatten recursive functions up to the given recursion
limit. In general, a recursion limit between 1 and 3 is mostly sufficient. Using re-
cursive operators, the complexity of the generated code increases exponentially.
Consequently, standard compiler optimizations may require substantial memory
resources which may force the user to disable further optimizations.

5 A specific method name is the name of the resolved method call used for an overloaded
method or operator call.



3.5 Side Effects

In some cases, usage of the inliner produces side effects and needs special con-
sideration regarding the design of a module.

Derived Type Requirements During propagation, complex statements are
separated into smaller statements for each operation. This decomposition involves
the generation of temporary variables as discussed in Section 3.3. These variables
might be re-used within loops as shown in Listing 2.8 on lines 5 and 6.

1 ! Original. ! Augmented (intermediate).
2 type(user_type) :: a, b type(user_type) :: a, b, t
3

4 do i = 1, n do i = 1, n
5 t = a / b
6 z = (a / b) ** n z = t ** n
7 enddo enddo

Listing 2.8. Intermediate variable generation inside loops

A derived type must support assignments on possibly already initialized in-
stances, even if its originally intended use does not require this. This is especially
important for types using dynamically allocated memory as the mccormick_type

defined by modMC. Aside from this new requirement, well designed data types
might benefit from this behavior: Dynamically allocated memory can be re-used
with each iteration and therefore result in an even less memory load and run-
time improvement. The Fortran McCormick implementation supports re-using
variables with allocated memory blocks for subgradient storage and gains an
additional significant runtime speedup.

Private Members In Fortran modules may declare members private. Private
members are not exported in module description files and cannot be referenced
from outside the module. In order to enable the inliner to support as many
methods as possible, every method that should be exported needs to be declared
public, including every method or variable referenced by that method. To opti-
mize recursive expansion, the chain of referenced methods and variables should
be declared public up to a depth equal to the optimal recursion limit used.

3.6 Statistics

The inliner has been applied successfully to tangent-linear codes consisting of up
to 122,000 lines of Fortran code. Up to 68,764 segments were inlined resulting in
speedup of between 5 and 6. Slightly lower factors can be observed for tangent-
linear McCormick code due to the larger complexity of each overloaded method
call.

Inliner and Recursion Figure 3.6 shows a benchmark based on a low-resolution
heat conduction problem to be discussed in Section 4.2. Various build scenarios
are applied to repeated runs of the tangent-linear McCormick code. The test
programs were compiled with and without the inliner using different levels of
standard NAG Fortran compiler optimization and recursion depths. Preprocess-
ing by the inliner without recursion results in a speedup of between 1.42 (no
optimization) and 1.46 (-O4). Recursion level 2 raises this factor to 2.97.
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Compile Time The following table lists compile time statistics, including the
number of segments inlined and the size of the resulting binary for five different
compilations of the heat conduction example. Standard compilation denotes a
reference test case without inlining. The four inliner columns contain test results
using the inliner recursion up to a depth of 3. The number of segments inlined
equals the number of expansions performed by the compiler (including recursive
expansions) by replacing a method call with its re-created body. We list the
number of temporary variables generated and the total number of times new
local temporaries are re-used.

Standard Inliner Inliner 1 Inliner 2 Inliner 3

compilation time 0.40 s 1.89 s 7.11 s 32.67 s
769.88

s

segments inlined - 48 147 670 3784
temporaries generated - 9 47 255 1455
temporaries reused - 26 146 618 3410
C source (generated) 38 Ki 245 Ki 1.1 Mi 5.9 Mi 35 Mi
binary size in Bytes 368 Ki 436 Ki 688 Ki 1.9 Mi 8.8 Mi
runtime 1001 points 1.97 s 1.50 s 1.25 s 0.96 s 0.96 s

Table 1. Inliner compilation statistics

Finally, we report the size of the generated C source6 and binary file in Bytes
and the runtime of the compiled binary evaluating the objective function using
1001 discretization points. Any optimization level in conjunction with inliner
recursion depth ≥ 2 required more memory than our test machine (equipped

6 The NAG Fortran compiler used is a multiple phase Fortran to C compiler.



with 3 GiB of RAM and 16 GiB of swap space) was able to provide; hence -O0
was used. Runtime improvement stalled at a recursion depth of 3. A recursion
depth of 2 turned out to be advantageous for the heat conduction example and
will hence be used in further test setups to be presented in Section 4.2.

4 Results

In this Section, the architecture of the software developed to use modMC in com-
bination with a branch-and-bound solver is presented, followed by three examples
the software has been successfully applied to.

4.1 Software Architecture

This project is based on prior work on McCormick-based relaxations of algo-
rithms by [21]. The libMC library discussed in Section 1.4 and the implemen-
tation of the branch-and-bound algorithm in C++ used in [21] are provided.
As previously described in Section 1.2, the basic idea of branch-and-bound is
to bound the optimal objective value between an upper and a lower bound.
The optimization variables’ set is then partitioned (branching) and the bounds
are recalculated on this smaller interval. In the case of McCormick relaxations,
the bounds converge with the optimization variables’ bounds (by construction).
Throughout this article minimization problems are considered. Convergence is
checked by means of the user-defined absolute and relative tolerances εA and
εR. Let ub and lb be the current upper and lower bound, respectively, then the
bounds are considered to have converged if either ub−lb < εA or ub−lb

|ub| < εR. Note
that either tolerance leads to convergence and therefore one of the tolerances can
be set to zero by the user, thus enforcing the other convergence check.

The user provides a function for the lower bound and one for the upper bound.
The software calls these functions and provides the intervals within which the
optimization variables are to take their values. In the case of the upper bounding
function, the values of the optimization variables obtained by the lower bounding
problem are also passed to the function. It is up to the user to evaluate upper
and lower bounds within these functions. The method of interest in this paper is
by means of McCormick relaxations. The function for the lower bound uses the
McCormick data type for the optimization variables, the intermediate variables
and the objective function. To obtain a lower bound from this, there are numerous
possibilities. For example, a local solver can be used on the non-linear convex
relaxation of the objective function to find its global minimum. Other possibilities
are to use the subgradients of the relaxations to derive affine underestimators and
calculate their minimum or the usage of the natural interval extensions which
are propagated simultaneously throughout the calculation, see [21]. Throughout
the article the lower bound is calculated as maximum of the values obtained via
the latter two possibilities.

Now the importance of the choice of tolerances becomes clear: Assume that in
a non-convex minimization problem the upper bound ub has reached the global
minimum and is therefore the solution. As lb is a lower bound obtained via
relaxations, it underestimates the exact value and converges towards it. Thus,
although the solution has been found, the solver iterates until the lower bound



has converged to within the tolerances set by the user. Due to this, reducing the
tolerances does not always lead to a better approximation although the solver
requires more iterations.

In the following, the Fortran interface for the branch-and-bound solver de-
scribed above and the structure of the user-provided problem specification are
described.

The Fortran Interface The interface consists of four subroutines the user must
supply: getnpar(...) to get the number of optimization variables, init(...)

for initialization and ubp(...) and lbp(...) for the upper and lower bounding
procedures, respectively.

When executed, the software first acquires the number of optimization vari-
ables via getnpar to allocate arrays of the correct dimension for the optimization
variables’ values and their bounds. Next, the init procedure is called to load
data required by the bounding procedures, set the value and bounds of each
optimization variable and configure the branch-and-bound algorithm’s conver-
gence tolerances discussed in Subsection 4.1. To obtain an initial upper bound,
the upper bound procedure ubp is called. Finally, the branch-and-bound solver is
started, which induces calls to the upper and lower bounding functions ubp and
lbp. Upon convergence, the value of the objective function and the values of all
optimization variables are printed to clog.

The user must provide these four subroutines named exactly as they appear
here with the parameter lists matching the specification given below. The tasks
each subroutine is expected to execute are summarized below the explanation of
the parameters. Note that by default most Fortran compilers append an under-
score ( ) at the end of subroutines and functions. This behavior is expected and
required by the software.

1. getnpar(int& npar)

int& npar is to return the number of optimization variables, so that arrays
of the correct dimension can be allocated. Initially npar is set to zero by
the software.

Task: Set npar to the number of optimization parameters.

2. init(double* pl, double* pu, double* guess, double& epsilon_bb_a, double

& epsilon_bb_r)

double* pl is an array for the lower bound of each optimization variable.
The entry pl[ip] corresponds to the optimization variable with the unique
identifier ip and has to be set accordingly. The required memory is allo-
cated and initially all entries are arbitrarily set to zero by the software.

double* pu is an array for the upper bound of each optimization vari-
able. The entry pu[ip] corresponds to the optimization variable with
the unique identifier ip and has to be set accordingly. The required mem-
ory is allocated and initially all entries are arbitrarily set to zero by the
software.

double* guess is an array for the initial guess of each optimization variable’s
value. The entry guess[ip] corresponds to the optimization variable with
the unique identifier ip and has to be set accordingly. If no further in-
formation is available, often the arithmetic mean of the upper and lower



bound pu and pl is chosen. The required memory is allocated and initially
all entries are arbitrarily set to zero by the software.

double & epsilon_bb_a has to be set to the absolute tolerance of the branch-
and-bound solver (see Subsection 4.1). Initially, epsilon_bb_a is arbitrar-
ily set to 0.1.

double& epsilon_bb_r has to be set to the relative tolerance of the branch-
and-bound solver (see Subsection 4.1). Initially, epsilon_bb_r is arbitrar-
ily set to 0.1.

Tasks: initialize pl, pu, guess, epsilon_bb_a and epsilon_bb_r to the prob-
lem specific values. If necessary, run tasks that only need to be executed
once (e.g. read data from file, initialize shared variables etc.).

3. ubp(double* pl, double* pu, double* solval, double* solution)

double* pl is an array containing the current lower bound of each optimiza-
tion variable. Changing the values of pl has no effect and is discouraged.

double* pu is an array containing the current upper bound of each optimiza-
tion variable. Changing the values of pu has no effect and is discouraged.

double* solval is a scalar into which an upper bound has to be written.
double* solution is an array which contains the values of the optimization

variables obtained by lbp which are to be overwritten by the new values
of the optimization variables.

Tasks: The subroutine must calculate an upper bound for the problem within
the given bounds of the optimization variables and write the upper bound
and the values of the optimization variables to solval and solution,
respectively.

4. lbp(double* pl, double* pu, double* solval, double* solution)

double* pl is an array containing the current lower bound of each optimiza-
tion variable. Changing the values of pl has no effect and is discouraged.

double* pu is an array containing the current upper bound of each optimiza-
tion variable. Changing the values of pu has no effect and is discouraged.

double* solval is a scalar into which a lower bound has to be written.
double* solution is an array into which the new values of the optimiza-

tion variables have to be written. The required memory is allocated and
initially all entries are arbitrarily set to zero by the software.

Tasks: The subroutine must calculate a lower bound for the problem within
the given bounds of the optimization variables and write the lower bound
and the values of the optimization variables to solval and solution,
respectively.

4.2 Case Studies

In this Section, three examples using the Fortran interface of the branch-and-
bound algorithm and modMC are considered. They deal with heat conduction,
reaction kinetics and reverse osmosis. In the first two cases, a nonconvex pa-
rameter estimation is performed. As these examples are based on [21] and have
already been compared to the commercial code BARON, they will only be com-
pared to the existing implementations that use libMC. In the latter case, an
unconstrained optimization problem is solved and compared to BARON version
8.1.5 available through GAMS version 23.0.2. The commercial code BARON
[25] is a deterministic nonlinear program solver that uses a branch-and-reduce
algorithm.



1D Heat Equation An ordinary differential equation for one-dimensional heat
conduction

d2T

dx2
=
q0(x) + q1(x)T

p
, x ∈ [0, 1]

based on [21] is considered in this example. The boundary conditions are set to
T (x)|x=0 = 500 and T (x)|x=1 = 600 and the only unknown parameter is the
thermal conductivity p ∈ [0.01, 10]. The affine heat source term is characterized
by

q1(x) = 1 and q0(x) =

{
−35, 000 if x ∈ [0.5, 0.6]

5, 000, otherwise

Discretizing this boundary value problem by means of finite differences results in
a linear equation system. The measurement data that is to be approximated by
this model is generated for discretizations ranging from 100 to 25000 elements.
Using a different heat source term to generate the data than for the model results
in an imperfect match between the two and simulates the case that the model is
incorrect. To determine the optimal value for p, a least-squares error approach
is chosen.

The program used in [21] is rewritten in Fortran to use the developed soft-
ware. Both programs’ runtimes are measured for each discretization. To aver-
age out OS-dependent runtime-variations, the problem is solved 50 times in a
loop. Reading data is excluded from the timing, only the performance of the
branch-and-bound solver is measured. For both the Fortran and the C++ im-
plementation, compiler optimization is set to -O1 (to measure the different im-
plementations but not compiler optimization), using gcc version 4.3.1 and the
NAG Fortran compiler version 5.1. The respective runtime with full compiler
optimization -O3 compared to the current setting yields an additional speedup
of approximately 1.5 for the C++ version and approximately 1.9 for the Fortran
version without inliner. The scaling behavior with respect to the number of dis-
cretization points can be seen in Table 2 and Figure 6. It is worth noting that all
three programs yield identical results and perform the same number of iterations
for each discretization.

In this example, using the Fortran implementation with modMC results in
an average speedup of 1.5 over the libMC version. The inliner-enabled Fortran
implementation gains an addition speedup of factor 2.1 and results in an overall
speedup of factor 3.2 over the libMC version. All three implementations scale
approximately linearly with respect to the number of discretization points apart
from small fluctuations.

The discretization error in the generated data becomes negligible for dis-
cretizations of 500 elements and more, while coarser resolutions generate values
below the correct temperature. This can be seen in Figure 7. Figure 7 also shows
the corresponding solutions. All solutions overshoot on the peak between x = 0.5
and x = 0.6 due to the purposely incorrect model chosen for this example. As
the discretization error becomes negligible, the solutions also converge. The mis-
match due to the incorrect model remains between the data and the results.
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Discretization libMC modMC Inliner

101 0.0982 s 0.0675 s 0.0356 s
201 0.2396 s 0.1667 s 0.0868 s
301 0.3995 s 0.2692 s 0.1376 s
401 0.5218 s 0.3665 s 0.1869 s
501 0.6527 s 0.4688 s 0.2423 s
601 0.8495 s 0.5764 s 0.2976 s
701 1.0102 s 0.7006 s 0.3532 s
801 1.1573 s 0.8162 s 0.4152 s
901 1.3227 s 0.8741 s 0.4082 s

1001 1.5087 s 1.0140 s 0.4680 s
1201 1.9227 s 1.2149 s 0.5564 s
1401 2.1874 s 1.4212 s 0.6506 s
1601 2.6363 s 1.7183 s 0.7876 s
1801 2.8842 s 1.9316 s 0.8898 s
2001 3.1315 s 2.1107 s 0.9671 s
3001 5.0440 s 3.2869 s 1.5125 s
4001 6.7581 s 4.5422 s 2.0822 s
5001 9.4904 s 5.9644 s 2.7437 s

10001 20.4356 s 12.7373 s 5.7268 s
15001 30.6428 s 20.7603 s 8.9590 s
20001 43.7786 s 26.6504 s 11.9762 s
25001 56.0273 s 36.7148 s 15.8029 s

Table 2. Runtime comparison of libMC, modMC and modMC with inliner enabled for different
numbers of discretization-points using the 1D heat example



Kinetic Mechanism An example for chemical kinetics taken from [21], origi-
nally based on [30], [26] and [27], is considered. The resulting nonlinear ordinary
differential equation system is

dxA
dt

= k1xZxY − xO2

(
k2f + k3f

)
xA +

k2f
K2

xD +
k3f
K3

xB − k5x2A

dxZ
dt

= −k1xZxY ,
dxY
dt

= −k1sxZxY

dxD
dt

= k2fxAxO2 −
k2f
K2

xD,
dxB
dt

= k3fxAxO2 −
(
k3f
K3

+ k4

)
xB

with the initial conditions

xA(t)|t=0 = 0 xB(t)|t=0 = 0 xD(t)|t=0 = 0 xY (t)|t=0 = 0.4 xZ(t)|t=0 = 140

and the constants T = 273, K2 = 46e
6500
T , K3 = 2K2, k1 = 53, k1s = k1 ·

10−6, k5 = 0.0012 and xO2 = 0.002. Values for the unknown parameters k2f ∈
[10, 1200], k3f ∈ [10, 1200] and k4 ∈ [0.01, 40] are to be computed in such a
way, that the model represents data obtained through measurements in the
best possible manner. A least-squares error approach is chosen as optimiza-
tion criterion and the integration in the time-domain is performed by means
of the explicit Euler method with a constant step size dt. The output variable
xI = xA + 2

21xB + 2
21xD is measured.

The program used in [21] is rewritten in Fortran to use the developed software.
As the data originates from experimental measurements, only 200 measurements
with a resolution of dtdata = 0.01s are available. To scale the model, an nth of the
step size dtdata is used for the Euler method, dt = dtdata

n , and every nth step is
then compared to the measurements to calculate the squared error. Only integer
values n ∈ N are considered here to avoid interpolation between measured data
points. The effect of smaller step sizes on the solution can be seen in Figure 8,
using the optimal solution values for k2f , k3f and k4. It shows that although
the Euler method is only of first order, the discretization error is negligible in
comparison to the error due to the model. For step sizes dt < dtdata

5 the accuracy
of the computed values does not improve significantly. For decreasing step sizes,
the computed trajectory of xI(t, n) becomes flatter at the initial peak (see Figure
8). This is due to the explicit Euler method, that overshoots on concave parts of
functions like the initial peak and undershoots on convex parts, with larger step
sizes resulting in greater errors. As a result, the least-squares error increases for
decreasing values of dt as the gap between the measured data and the computed
values becomes larger.

Scaling the problem has a negative impact on performance with superlin-
ear growth in both number of iterations and runtime. Obviously, halving dtdata
results in double as many operations per solver iteration, as the Euler method
requires twice the number of iterations. Moreover, increasing the number of op-
erations results in weaker bounds. The reason for this is that for each operator
the bounds, depending on the variable bounds and the evaluation point, are re-
calculated. With every additional operation, the relaxations can only become
weaker, not tighter. Due to this, the convergence rate of the upper and lower
bound decreases, resulting in an increasing number of necessary solver iterations.
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This drawback is illustrated in Figure 9 regarding the runtime and in Figure 10
regarding the number of iterations, using absolute tolerances εA = 2, 000 and
εA = 1, 800 for the branch-and-bound solver. Both the runtime and the number
of iterations increase exponentially for decreasing step sizes dt.
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In most cases, increasing the accuracy of the integration results in identical
values for the parameters k2f , k3f and k4, thus underlining that the discretization
error is small compared to the error in the model. However the value of the
objective function, the least-squares error, grows larger for smaller values of dt,
due to the decreasing discretization error as explained above. For example, the
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Fig. 10. Number of iterations for different values of dt with the kinetic mechanism example

same values for the unknown parameters are obtained with an absolute tolerance
of 1,600 while the least-squares errors are 9,798, 11,639 and 12,256 for n = 1,
n = 2 and n = 3, respectively.

In the case of an absolute tolerance of 1,400, a better approximation is found
with n = 2 and n = 3 than with n = 1. The values of the optimization variables
are k2f = 902.5, k3f = 307.5 and k4 = 40.0 for n = 1 and k2f = 753.75,
k3f = 456.25 and k4 = 40.0 for n ∈ {2, 3}. Although they are very different
values, they lead to similar trajectories. The least-squares errors each decrease
by approximately 1% for n ∈ {2, 3}. However, the better approximation can also
be obtained by choosing an absolute tolerance of 1,000 and n = 1, reducing the
least-squares error by approximately 0.2%. As can be seen in Table 3, reducing
the absolute tolerance and using n = 1 is faster in this example.

n εA Time Iterations

1 1,000 11 s 8,073

2 1,400 25 s 9,495

3 1,400 89 s 22,883

Table 3. Time and number of iterations needed to obtain the same solution with respect to n
and the absolute tolerance of the branch-and-bound solver εA

This leads to the conclusion, that refining the integration is not the best ap-
proach to gain more accurate results in this case, instead decreasing the absolute
tolerance is preferable.



Reverse Osmosis In this section an example from [11] is considered. Reverse
osmosis (RO) is a membrane based, pressure driven desalination technology (Fig-
ure 11). Semi-permeable membranes used in water desalination have high per-
meability for water and very low permeability for dissolved substances. Hence,
by applying a pressure difference across the membrane the water contained in
the feed water is forced through the membrane whereas most of the dissolved
substances are rejected. The water passing through the membrane has a low con-
centration of dissolved substances, and forms what is called the permeate flow
(Figure 11). The concentration of dissolved substances in the permeate flow is
a function of the feed water quality and membrane characteristics, most impor-
tantly the membrane’s salt rejection, R. The permeate flow rate is a function of
several parameters such as feed pressure, feed water total dissolved concentration
(TDS), membrane characteristics, and recovery ratio, defined as the ratio of the
permeate flow rate over the feed water flow rate. Performance of the RO unit
is also affected by several other phenomena such as fouling and concentration
polarization. Thorough discussion of these phenomena is outside the scope of
this article; they are explained in detail elsewhere (e.g., [31]). However, they are
briefly introduced here as they appear in the following RO model. Fouling refers
to the accumulation of foreign materials on the membrane’s active surface. In
presence of the fouling layer on the surface of the membrane, the resistance of the
membrane to the flow of water through the membrane increases. Consequently,
fouling affects the minimum pressure requirement for the RO, and hence the en-
ergy cost of the process. Concentration polarization refers to the concentration
of solute at vicinity of the membrane surface, i.e. its boundary layer. The solute
concentration in a thin boundary layer at the feed side of the membrane surface
is higher than the solute concentration in the bulk of the feed water. Like mem-
brane fouling, concentration polarization has effects on the permeate feed flow
rate and the minimum required feed pressure.

High Pressure Feed 
Pump Permeate Flow

Pressure Exchanger (PX)

Seawater

Concentrate Flow

Fig. 11. Schematic of the RO process

The pressure difference across the membrane must be higher than the os-
motic pressure difference between the feed water and the permeate water. Os-
motic pressure is the pressure produced across the membrane due to the total



dissolved solids (TDS) concentration difference between the solutions on the two
sides of the membrane (feed and permeate). In seawater RO (SWRO), the feed
pressure to overcome the osmotic pressure of the feed side is high (45 - 85 bar,
depending on the concentration and quality of the feed water). The pressure dif-
ference between the feed and concentrate streams is small (0 - 7 bar). Hence, the
concentrate flow contains a considerable energy that is usually recovered using
various energy recovery systems such as pressure exchangers [8, 19] or Pelton
wheel turbines [3].

Theoretical Models for Specific Energy Requirement of RO

Flow Rates. The available RO models in the literature typically give the
minimum energy requirements for separation. Here, a model developed by leading
membrane provider DOW Chemical Company [10] has been adopted to estimate
the actual energy consumption of SWRO using a FILMTEC SW-380 R© mem-
brane. High efficiency pressure exchangers (PX) are also used in the model for
estimating the recovered energy from the high pressure concentrate flow. The
permeate water flow rate Qpw and feed pressure Pf are related by:

Qpw = Aperm(TCF )(FF )

(
Pf −Π −

∆Pfc

2

)
Se (3)

where Aperm is the membrane permeability, Se the membrane’s active surface,
TCF the temperature correction factor, FF the fouling factor, ∆Pfc the average
pressure difference between the feed and concentrate streams. Π is a function
of the osmotic pressure of the feed water π, the concentration of feed Cf and
concentrate flows Cc, and the concentration polarization factor PF :

Π = (PF )
Cc

Cf
π (4)

The polarizing factor depends on the recovery ratio Y and is approximated by

PF = exp (0.7Y ) (5)

The concentration of dissolved solids in the permeate Cp and the concentrate
stream is found from:

Cp = (1−R)Cf (6)

Cc =
Cf

1− Y
− Y

1− Y
Cp (7)

In the SWRO process, the higher the feed temperature, the higher the per-
meate flow rate. TCF may be approximated by the formulation provided by the
membrane manufacturer or avaliable models in literature. Here, the following
equation is used for TCF [5]:

TCF = 1.03(Tw−298) (8)

where Tw is the feed water temperature in Kelvin. Other relations in the liter-
ature and the formulation provided by the membrane provider give similar values.



System. It should be noted that an RO desalination system may have
multiple stages in which the concentrate from one stage is fed into a subsequent
stage for further recovery, and/or the permeate water from one stage is fed into a
subsequent stage for increasing purity in the product water. Booster pumps may
be required between stages. Each stage of the system has a number of pressure
vessels Nv which contain a number of elements Nepv (usually 6, 7, or 8). A single
stage system is considered here. This assumption, according to the membrane
provider guidebook [10], is a valid assumption given the size of the membrane
and the application selected here. The minimum number of elements required in
an RO system depends on the desalination plant capacity QT

pw and the design
flow rate chosen for the membrane. Choosing Qpw as design permeate flow rate,
found from the membrane performance data [31], the total number of elements
in the system, Ne, is found from:

Ne =
QT

pw

Qpw
(9)

The total number of vessel is then simply calculated as

Nv =
Ne

Nepv
(10)

Energy. In SWRO, the energy consumed by high pressure feed pump consti-
tutes the main energy requirement of RO. The power required to pressurize the
feed stream Whp, and the recovered portion of this power Wrec are found from:

Whp = (Pf − Pin)
Ne ·Qpw

Y ηpηm
(11)

and

Wrec = (Pf −∆Pfc)
Ne ·Qpw (1− Y )

Y
ηpx (12)

where η denotes efficiency factors and the subscripts p, m and px stand for
pump, electric motor, and pressure exchanger, respectively. The net total energy
requirement of the system is then estimated by

Enet =
Whp −Wrec

3600
(13)

The net specific energy requirement, i.e. the energy required for producing 1
m3 of fresh water is given by

Es = (Whp −Wrec)
1

3600NeQpw
(14)

As shown above, various variables in the model, such as PF and the recovered
energy of the system depend on the recovery ratio of the RO system. As such, it
is desired to find out the optimum recovery ratio for the objective of minimizing
the specific energy consumption.



The governing equations of the RO model and the values of the parameters
are summarized below.

Qpw = Aperm(TCF )(FF )

(
Pf −Π −

∆Pfc

2

)
Se

Π = (PF )
Cc

Cf
π

PF = exp (0.7Y )

Cp = (1−R)Cf

Cc =
Cf

1− Y
− Y

1− Y
Cp

TCF = 1.03(Tw−298)

Ne =
QT

pw

Qpw

Nv =
Ne

Nepv

Whp = (Pf − Pin)
Ne ·Qpw

Y ηpηm

Wrec = (Pf −∆Pfc)
Ne ∗Qpw (1− Y )

Y
ηpx

Enet =
Whp −Wrec

3600

Parameter Unit Value

Qpw m3/h 1.1

Cf mg/l 35000

Se m2 35.3

Aperm l/m2/h/bar 1.2

FF - 0.85

Tw K 303

R - 0.9975

ηP - 0.90

ηM - 0.95

ηPX - 0.95

Pin Pa 2.76 · 105

∆Pfc Pa 3.45 · 105



Solution of the RO optimization problem The RO optimization problem is imple-
mented in three versions, two using BARON and one in Fortran using the devel-
oped software. The difference between the two BARON models is the branching
behavior. The first version uses BARON’s default branching behavior, branching
on all variables. In the second version, branching is restricted to only branch on
the optimization variable Y by setting the branching priority to zero for all other
variables.

All three implementations calculate a solution in less than 0.5 seconds for
relative tolerances εR set to zero and absolute tolerances εA between 10−1 and
the minimal tolerance supported by BARON, 10−9. Note that BARON will use
a relative tolerance of 10−9 even if it is set to zero. The solution calculated by
the Fortran implementation is better for tolerances εA ≤ 10−2 by approximately
1.6 ·10−3. Figure 12 compares the results obtained by the three implementations.
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Fig. 12. Comparison of the solutions found for the reverse osmosis example by modMC and
BARON

All solutions should lie beneath the acceptable objective value based on tolerance
as it is defined as the sum of the optimal solution and the absolute tolerance,
Enet,opt + εA. Both solutions calculated by BARON do not fulfill this condition.

Figure 13 pictures the convex and concave relaxations of Enet = f(Y ) and
additionally the affine under- and overestimators are pictured in Figure 14. Note
that the objective function is convex, although some intermediate functions are
nonconvex. The concave envelope (i.e. the tightest concave overestimator), the
secant between the two endpoints, is not the one calculated by modMC. Also,
due to the nonconvex intermediate values, the convex relaxation is not the convex
envelope, which is the function itself. For this example, a simple local solver would
have sufficed to find the global optimum. Deterministic global optimization is
applied nevertheless, as it is generally not possible to decide easily whether a
function with non-convex intermediate expressions is convex or not.
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Fig. 13. Convex and concave relaxations of the reverse osmosis example
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Fig. 14. Convex and concave relaxations and affine under- and overestimators of the reverse
osmosis example



This example is representative for typical engineering problems. In compar-
ison to the number of intermediate expressions the degrees of freedom are very
few. An example similar to this one is discussed in [4]



5 Conclusion

Both libMC and the current version of modMC are based on the forward mode
of AD. The superior performance of modMC is due to the targeted exploitation
of Fortran specifics and inlining techniques. Benchmarks show that the overhead
created by method calls for overloaded operators is eliminated. Recursive inlin-
ing yields additional runtime improvements. Dynamically allocated subgradient
storage can be re-used. Standard compiler optimization reduces runtime and
memory consumption even further by removing redundant local variables and
by performing intraprocedural instead of originally interprocedural optimization
for the inlined operators.
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Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata
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2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering
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2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und
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