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Zusammenfassung
Diese Dissertation befasst sich mit dem Problem der Erreichbarkeitsanalyse, foku-
ssiert auf lineare hybride Systeme. Hybride Systeme sind eine Mischung von kon-
tinuierlichen und diskreten Verhalten. Ein hybrider Automat, bestehend aus einem
Graph, in dem die Knoten das kontinuierliche und die Kanten das diskrete Verhal-
ten beschreiben, bietet sich als das passende formale Modell für solche Systeme an.
Es besteht aus einen Formalismus, das Differentialgleichungen und logische Aus-
drücke im gleichen Rahmen umfasst und damit neue Horizonte für die Forschung
und Entwicklung, vor allem in Richtung neuer Methoden und neuer Algorithmen,
eröffnet. Trotz des Fortschrittes, der in den letzten Jahren zu verzeichnen war,
gibt es vor allem in Hinsicht auf die praktische Anwendung noch viele offene Fra-
gen. Begonnen haben wir diese Arbeit mit der Bewertung einiger Verifikationstools.
Speziell für diese Aufgabe wurde eine Reihe von Benchmarks erdacht und zusam-
mengefasst. Die Benchmarks besitzen besondere Eigenschaften in Bezug auf die
Prüfung der Effizienz, Anwendbarkeit, Skalierbarkeit und Leistungsfähigkeit dieser
Tools. Wir geben einen ausführlichen Überblick über bestehende Methoden zum
Berechnen einer Überapproximation der erreichbaren Mengen für lineare zeitinvari-
ante hybride Systeme. Dieser erfasst unterschiedliche Ansätze für die Berechnung
einer Überapproximation für die kontinuierliche Dynamik mit und ohne Invarianten
sowie auch für die Berechnung der Schnittmenge bei Übergängen. Basierend auf
diesen Ergebnissen wurden neue Approximationsmethoden zur Berechnung der er-
reichbaren Mengen für den kontinuierlichen Teil als auch für den diskreten Teil des
hybriden Automaten sowie eine modulare skalierbare Implementierung verschiedene
Ansätze vorgeschlagen. Für diese Implementierungen werden zuerst Stützfunktio-
nen und danach Zonotopen verwendet. Für die jeweiligen geometrischen Darstel-
lungen wurde eine Reihe von verschiedenen Ansätzen für den Umgang mit Invari-
anten, Sprungbedingungen und Transitionen vorgestellt. Zwei Tools sind daraus
entstanden. Beide Tools integrieren die oben beschriebenen Methoden und er-
lauben möglicher Kombinationen. Sie verfügen über eine GUI und ermöglichen
eine vom Benutzer konfigurierbare Erreichbarkeitsanalyse. Beide Tools wurden
zur Durchführung eines Leistungsvergleiches verschiedener Methoden verwendet.
Einen Zusammenhang zwischen diesen Leistungen und die Komplexität der Bench-
marks wurde dabei festgestellt. Die Studie mit den vorgeschlagenen Benchmarks
führte zu dem Ergebnis, dass der Unterschied zwischen Methoden in Bezug auf die
Genauigkeit der Überapproximation und die Rechenzeit unbedeutend ist. Um die
Vielfältigkeit der Anwendbarkeit der Erreichbarkeitsanalyse zu veranschaulichen,
kam es zum Vorschlag einer vernetzten Fahrzeugkolonne. Zuerst wurde die Anal-
yse verwendet, um sichere und kurze Abständen zwischen Fahrzeugen in einer
LMI-geregelten Kolonne zu bestimmen. Nachfolgend wurde eine Erreichbarkeits-
analyse durchgeführt um bei der Entscheidung über den leistungsfähigsten H2- or
H8-Regler der gleiche Kolonne zu unterstützen. Sie wurde außerdem eingesetzt
um zeitkritische Bedingungen für eine Kreuzung mit einer annähernden Kolonne
zu bestimmen und damit den Verkehr innerhalb der Kreuzung sicher zu verwalten.
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Abstract
This thesis addresses the problem of reachability analysis with the focus on linear
hybrid systems. Hybrid systems are a mixture of continuous and discrete behaviors.
The Hybrid automaton consisting of a graph, in which the locations describe the
continuous and the transitions the discrete behavior, represents the best formal
model for such kind of systems. It provides a formalism integrating differential
equations and logic expressions in a same framework, thus opening new horizons
in research and development of new methods and novel algorithms. Despite recent
progress made in this field in the last years, actual verification methods and available
tools have exhibited their shortcomings.

We started this work with the assessment of some verification tools using a suite
of benchmarks conceived specially for this task. The benchmarks possess particu-
lar characteristics for testing of efficiency, applicability, scalability, capability and
performances of these tools.

We offer a theoretical overview of existing methods for computing an overap-
proximation of reachable sets for linear time invariant hybrid systems. This covers
approaches for overapproximating reachable sets of the continuous dynamics with
and without invariants as well as methods for solving the problem of guard intersec-
tion at transitions. We furthermore propose new overapproximation techniques for
treating the continuous part as well as the discrete part of the hybrid automaton.
We suggest scalable, modular implementations of these diverse methods allowing
thereby possible combinations between them first using support functions and then
with zonotopes. The implementations include different approaches for handling in-
variants, guards and transitions for the above-mentioned set representations. Two
toolboxes are the results of this implementation effort. Both tools integrate the
methods described above. They offer a GUI and allow for a user-configurable
reachability analysis. We use both tools to carry out a performance comparison of
different methods. We note thereby that there is a correlation between these per-
formances and the complexity of the tested example. However, we note during this
survey using the proposed benchmark suite that the difference in the performance
with regards to the tightness of the over-approximation and the computation time
is not so crucial for low dimensional systems.

We propose a networked platoon of vehicles to demonstrate different context
where reachability analysis can be useful. We first perform a reachability analysis
to determine unsafe gaps between the vehicles which are controlled using LMI-
formalism. Reachability analysis can be helpful for control design. The choice
between controllers on the basis of reachability results has led to controller ensur-
ing the best compromise between safe and small gaps when applying H2 or H8
control design techniques. Reachability can also be used to determine time-critical
conditions. As demonstration, we opt for a platoon approaching an intersection.
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1. Introduction

Over the last years, the classical definition of embedded systems as an integration
of physical systems and computing entities to achieve an intended task has been
extended to the networking amongst embedded systems. Networked embedded sys-
tems are systems that involve multiple autonomous entities exchanging information
via a communication network to cooperatively achieve a predefined common objec-
tive. Networking devices are nowadays standard in the automotive and avionic
industries, widely spread in manufacturing and chemical processes and effectively
applied in the medical field. They are making rapid inroads in high performance
applications. This trend benefits from the progress made towards efficient, fast and
reliable communication and sensors technologies and new methods for networked
control in recent years.

Owing to their distributed nature, their dependency on the communication topol-
ogy and their safety-critical requirements, the design of such systems is certainly a
challenging task. Realizing correctness and ensuring safety by construction based
only on numerical simulations during the design process has been shown to be
impossible. Formal verification and validation is the only method that can cover
a wide range of test cases during design steps. Although formal verification and
validation are not feasible for all designs, they can be applied successfully in many
cases.

A particularly challenging task is to find a suitable model framework and appro-
priate tools or verification methods to analyze and validate this kind of systems.
However, looking more closely at the definition of such systems, we can differen-
tiate between two major interacting components. The physical process, generally
described by differential equations, constitutes the continuous part of the system
which can be influenced by discrete events coming from computation or from com-
munication. This mixture of discrete and continuous dynamics can naturally be
modeled using the framework of hybrid automaton. A hybrid automaton is briefly
defined as graph of indexed locations describing different continuous dynamics and
transitions between them. Commonly, these transitions possess jump conditions
and eventually reset maps.

The rapid expansion of connected controlled systems has spurred the control and
computer science communities to support research in the field of hybrid systems.
However, many problems, like the checking whether unsafe states are reachable
beginning from an initial set, for example, are in generally undecidable [6, 9, 56,
57, 66, 91]. Therefore, most of the existing methods have focused on decidable
classes like timed or rectangular automata using, for example, abstractions on some
undecidable classes like the linear time invariant (LTI) systems for which relaxation

1



1. Introduction

and approximation techniques have been proved to be feasible [89]. Over the last
years, the focus was on developing and improving approaches to handle linear, as
well as, nonlinear hybrid systems. As results of long-term efforts, several verification
tools have emerged in the course of the last years.

These tools can be categorized in two classes, the logic-theoretic tools and the
set-theoretic tools. The logic-theoretic tools construct logic proofs for checking of
correctness, as found in the toolbox KeYmaera [88] which uses theorem provers
and deductive verification for proving correctness. The toolboxes iSAT [99, 100]
and dReach [27, 62] integrate SMT-solving techniques with constraint propagation
and interval arithmetic to check for correctness.

The set-theoretic tools, however, focus on computing geometric representations
of reachable sets using thereby geometric operations and if necessary optimization.
Approximation methods are used to over-approximate the result of geometric op-
erations and result in the loss of the original set representation. In addition, the
adopted basic recursive scheme is generally approximative. Tools like CheckMate
[101] and d/dt [7] use polyhedra to compute flowpipe approximations. However,
the complexity of operations on polyhedra are usually exponential in the number of
dimensions and makes it hard for the reachable set computation to scale [25]. The
toolbox PHAVer [41] circumvents this problem by allowing polyhedron complexity
reduction nonetheless at the cost of the approximation tightness. Tools like HSolver
[94] and HyCreate [13] combine boxes with interval arithmetic and constraint prop-
agation techniques. They have scalability problems due to the adopted state space
or reachable set partition technique when the number of variables goes up. Such an
approach has been shown to be inefficient even for six dimensional systems [17, 19].
Furthermore approaches adopting polytopes [55], ellipsoids [24, 63] were proposed.
Zonotopes [4, 47] and support functions [72], however, have led to more efficient
algorithms. The COntinuous Reachability Analyzer CORA [2] and SpaceEX (State
Space EXplorer) the scalable verification tool for affine hybrid systems have been
developed on the basis of these algorithms [42]. SpaceEx is by far the most ef-
ficient and widely used tool for affine hybrid systems. Ariadne [14, 15, 23] and
the Taylor Model-Based Analyzer for Hybrid Systems Flow* [30–32] also use over-
approximations to compute the flowpipe of the continuous dynamics. The former
makes use of integrations and the latter is based on Taylor model and interval arith-
metic. The Toolbox of Level Set Methods [81], however, adopts an entirely different
method. It approximates the solutions of a class of Hamilton-Jacobi (HJ) partial
differential equations (PDEs) and make thereby use of level set methods.

The drawbacks of set-theoretic approach are the propagation and accumulation
of over-approximation errors and the difficulty to handle the logical jump condi-
tions with geometric approximations. Transitions are the main source of over-
approximation errors due to the intersection operation which frequently yield large
over-approximations. These errors are furthermore bloated because of the wrapping
effects accompanying the computation of the flowpipe of the continuous dynamics.
For the proof and logic based tools, the main problems lie in the difficulty of han-
dling the continuous dynamics with logic.
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Despite this variety of available tools and approaches, practical experiences show
that these are not mature enough for the verification of real applications. The
major problems are the time and space complexity, which critically increase with the
dimension of the application, and the conservative approximation adopted within
these tools to represent and compute reachable sets. In fact, it was shown [17, 19, 22,
29, 51] that these methods were pushed to their limits with a continuous state space
dimension of more than six when applied to examples inspired from automotive or
intelligent transportation fields and even simple academic benchmarks. Moreover,
the number of locations, the number of transitions, the jump conditions, their
nature and their logic expression complexity may indeed limit their applicability.
Another hindrance is the restriction of tools and methods to specific classes of
hybrid systems which are practically simple compared with real models.

1.1. Motivation and Objectives

At the beginning of this work, our first goal within the DFG-Priority Program 1305
Control Theory of Digitally Networked Dynamical Systems [102] was to carry out
a safety analysis of a networked platoon of trucks using existing verifications tools.
Platooning can significantly improve the efficiency of existing road systems and
increase their capacity. However, communication networks are generally subject
to delays, loss of packets and breakdowns. For this reason, a typical objective for
this system is to maintain a constant relative distance between trucks. The control
design of such cooperative vehicles is practically a challenging task, because the
controller must not only guarantee stability, robustness and safety under faults and
failures in the mechanics and in the hardware of the vehicles, but also under changes
in the topology of the communication network. A critical challenge here is to find
a controller which ensures for short and safe gaps between the vehicles in case of
nominal communication as well as under disturbances or even under a total loss of
communication. It is practically infeasible to tackle all these factors, along with
string stability in control design, into account. The idea was to find a controller
satisfying a part of these requirements and to check the satisfiability the rest with
verification tools. Therefore, it was necessary to derive a hybrid model for the
controlled networked platoon and to restrict the verification to some safety-critical
scenarios.

Results of the safety analysis of a platoon of 2 and 3 vehicles obtained using some
at that time available tools have encouraged us to begin the implementation using
zonotopes. The implementation was gradually extended with new approaches and
methods striving thereby for more efficiency and better results.

As previously stated, our main goal is the safety analysis of a cooperative platoon
of vehicles using reachability analysis. In the achieving of this objective, three
further goals are attained. First of all, a new assessment of available tools was a
necessary prerequisite for understanding how each of them works. Their individual
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strengths and weaknesses had to be investigated. A suite of linear benchmarks was
collected for this purpose. Particular benchmarks, like the classical navigation oder
the heater benchmarks [37], were extended in order to increase their complexity
with regard to the number of locations, the number of transitions and the nature of
their jump conditions. In addition, new benchmarks have been specially designed to
test the capability of the tools to handle large systems with dimension of more than
20 state variables. An overview of existing theoretical methods and approaches was
necessary for making a decisive step towards implementing a new tool.

The implementation first began under MATLAB with the zonotopic approach by
adopting thereby the simplest approximations methods for the initial and the input
sets and allowing only hyperplane or time jump conditions in transitions. We then
worked on support function implementation with the goal of allowing for a more
general representation of sets. This implementation was extended with a variety of
methods for handling the initial set, the input set, transitions and diverse optimiza-
tion algorithms for computing the support functions. We offer this implementation
for the common use and allow users to create their own reachability analysis. A
user-friendly interface was necessary to easily set the parameters and combine dif-
ferent choices. Furthermore, an intuitive textual and a graphical description of
hybrid automata was also recommended to make simple and extended input more
easier. The graphical description permits a straightforward description of rather
small dimensional systems. The textual description, however, can be used for large
systems. It was also in our interest to permit an automatic acquisition of control
parameters directly in the textual input file. This is beneficial if control decisions
are made on the base of verification analysis and practical in case of large systems
like the platoon application.

1.2. Contributions
In this work, we only focus on linear time invariant hybrid systems. Our main
contributions in this context include:

• A benchmark collection for the evaluation of verification tools. A complete
description is given in Appendix A and some of them are available under the
link [61],

• An overview of most of the methods and approaches proposed in the literature
for computing reachable sets,

• A detailed description and overview of methods for handling guard transitions,

• Suggestion of new proposals for improvement and alternative approaches.

• A user-friendly implementation of a MATLAB toolbox based on support func-
tion allowing a choice between the above-mentioned methods,

• A comparative evaluation of guard intersection methods for support functions,
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• An assessment and comparative evaluation of different methods for the over-
approximation of the input contribution and of the initial set,

• A MATLAB prototypical implementation of the zonotope based reachability
analysis,

• A user-friendly implementation of a C++ toolbox using zonotopes allowing
the choice between different methods for handling guard condition,

• A comparative evaluation of guard intersection methods and clustering strate-
gies for zonotopes,

• A control design of scalable cooperative platoon of vehicles based on a strategy
using H2 or H8 control and reachability,

• A particular fixpoint-transition hybrid model for the platoon of vehicles. This
hybrid automaton is marked by transitions which are triggered once subse-
quent reachable sets remain unchangeable. This kind of hybrid model can
generally be used to model networked systems for the goal of safety verifica-
tion.

Both implemented tools possess intuitive graphic user interfaces to ease the set-
ting of parameters and the option choice. They also allow the user to choose the
target location if many transitions can be triggered from the current location. The
main goal of these tools is to offer more flexibility towards a user-configurable anal-
ysis.

1.3. Outline
This thesis is structured in seven chapters including this introduction and two
appendices.

• In Chapter 2, we give an intensive survey and provide a comparative study
of the most important available tools to investigate their strengths and weak-
nesses and demonstrate the limits of their applicability in real applications.

• In Chapter 3, we focus more on the theoretical aspect of this work. We
first introduce the basic terminology and definitions of a hybrid automaton.
Therefore, we briefly explain key steps towards the computation of reachable
sets for linear time invariant systems. We then give a detailed description
of available approaches for the approximation of the input contribution and
for the initial set. We complete this theoretical overview with a survey of
methods for handling transitions.

• Chapter 4 focuses on the theoretical and the implementation aspects of the
reachability analysis using support functions. We briefly introduce main def-
initions and properties. Thereafter, we describe how the methods presented
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in Chapter 3 are transformed in terms of support functions. We further-
more provide a detailed description and overview of methods for handling
guard transitions and propose new alternative methods. Next, we present a
prototypical implementation in the form of a toolbox. We carry out some
experimentations with the benchmark suite of Appendix A to demonstrate
the applicability of this implementation and at the same time evaluate the
performances of different methods in a comparative way.

• Chapter 5 is dedicated to the reachability analysis based on zonotopes. After
presenting the approach we adopted for computing the reachable sets for the
continuous part of the hybrid automaton, we overview available techniques,
adapt approaches used in automatic control and suggest new methods to solve
the problem of guard and invariant intersection. We propose several clustering
approaches for handling transitions. Thereafter, we present the experimental
results with a performance comparison on the various intersection methods.

• Chapter 6 focuses on demonstrating which context reachability can be useful.
We used it first to check for the safety conditions guaranteeing no collision
inside a networked platoon of three vehicles with a leader ahead. We then
demonstrate how reachability can help in the control design of complex sys-
tems using the same application but instead of LMI, H2 and H8 control were
applied. We subsequently show that time safety-critical conditions can be
determined using a platoon approaching an intersection as application.

• In Chapter 7, we conclude our work and address potential research directions.

• In Appendix A, we give a detailed description of the linear hybrid benchmarks
collected with the goal of testing verification tools.

• In Appendix B, we present the proofs of Chapter 3.

1.4. Bibliographic Notes

Parts of this thesis were subject of refereed publications.

• Some reflections on the challenges in the verification of hybrid systems men-
tioned in Chapter 2 can be also retrieved in [33].

• Similar tool assessment results to those presented in Chapter 2 can be found
in papers [17, 19].

• The main algorithm for the computation of reachable sets with support func-
tions described in [18] and the adopted approximations for the input contri-
bution and the initial set are reproduced in Chapter 5 Section 4.3.
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• The algorithm for the computation of reachable sets using zonotopes presented
in Chapter 5 Section 5.8, was used in [20, 21] to carry out a verification anal-
ysis of a platoon of 3 vehicles. In [20], the case of nominal communication
was treated whereas the case of complete outage of communication was inves-
tigated in [21].

• The corresponding results and the hybrid model strategy adopted for the
networked platoon appear again in Chapter 6 in Section 6.5.2 and Section
6.5.1 respectively .

• Part of the results presented in Chapter 6 Section 6.6 concerning the H2-based
platoon controller are given in [18].

• Reachability experimentation with a platoon approaching an intersection as
presented in [22] are described in Chapter 6 Section 6.7.
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2. Assessment and Performance
Comparison of Tools

2.1. Introduction
Over the last ten years, many steps have been taken to develop Open Source Tool-
boxes for the verification of hybrid systems. This has resulted in a variety of
academic tools. Some of them, like KeYmaera [87], are purely based on theo-
rem proving techniques. Others, such as HySAT [39] and iSAT [40], are model
checkers for generally bounded hybrid systems. Another class of tools uses inter-
val arithmetic and constraint propagation techniques, like HSolver [95], to guide
and therewith reduce the complexity of the verification. Some others, however, are
purely reachability tools, like for example the tool SpaceEx (State Space Explorer).
The latter offers an open development environment for the verification of hybrid
systems. It encompasses the toolbox PHAVer [41] for affine systems using poly-
hedra, the LGG toolbox based on support function techniques [44] and the STC
scenario an enhancement of the LGG algorithms. These toolboxes are based on the
computation of reachable sets by means of approximations.
The problem of using different toolboxes resides in the fact that these tools differ
not only in their numerical approach but also in the input semantic and the type
of systems they can analyze. Furthermore, the techniques adopted by these tools
are generally valid only for a specific class of systems. For instance, SpaceEx han-
dles in its current version only LTI systems with the LGG and STC scenarios and
affine systems with the PHAVer one whereas HSolver can deal with systems with
restricted nonlinear dynamics including polynomial, sin and cos functions. KeY-
maera and iSAT, however, impose no restrictions on the nature of the systems and
functions they can handle. But the fact that they require a monolithic model, while
systems are typically modeled from components, can be considered as restriction.
In recent years, comparative studies of the performances of available tools have
clearly revealed that despite considerable effort, the tools have shown their lim-
its particularly in practical applications. In [17] and [51], both tools HSolver and
PHAVer have been evaluated using simple hybrid examples. A wide range of tools
for modeling and analyzing hybrid systems have also been reviewed and compared
in [29]. The simulation tools BHPC and Hybrid Chi as well as the applicability
of verification tools like KeYmaera, HySAT and iSAT have been tested in [76] us-
ing some commonly known examples. In another work [19], the performances of
KeYmaera, HSolver and PHAVer have been assessed with the goal of checking the
safety of a cooperative platoon of vehicles. A similar practical example with some
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other benchmarks has been used in [22] to compare reachability techniques based
on zonotopes and support functions and their approach for computing the invariant
of continuous systems.
In this chapter, we investigate the features of the tools SpaceEx, HSolver, KeY-
maera and iSAT by using a specific suite of benchmarks [33]. We compare their
performances with regard to different aspects, like semantics, dynamics, dimension
of the benchmarks, efficiency of the computation, intended results and many others.
This review begins with a preview of different benchmarks followed by a brief de-
scription of the tools. Numerical results with the corresponding tool settings are
thereafter presented and commented. These results are subsequently used to as-
sess the performances of the tools, to conclude about their features and to provide
guidelines for improvement and future work.

2.2. Benchmarks

In this section, we give a short description of the benchmarks suite used to test the
tools. A detailed description of the benchmarks is, however, given in Appendix A.
We confine our analysis to linear hybrid systems as the SpaceEx toolbox is restricted
to this class of systems. Our benchmark suite includes some classical benchmarks
such as the bouncing ball example, the navigation and the heating benchmarks. It
comprises the particular continuous infinity test example for which an exact reach-
able set can be computed [22]. The colliding masses [50], the two-tank benchmark
[47] and the transient in flower benchmark [36] are also considered. The suite is
reused with extensions and improvements of some available benchmarks to derive
new versions that provide a worthy challenge for the tested tools. We suggest, for
example, navigation benchmarks for a 4x4-grid and a 5x5-grid. We moreover pro-
pose beyond the known 3 room heating benchmark with 2 movable heaters [94] and
the 6 room heating benchmark [5] with 2 anchored heater, a 3 room benchmark and
three different layouts for a 4 room benchmark both as well with 2 anchored heaters.
We include in the suite the cooperative platoon of trucks. The continuous model
involves a functioning communication among the trucks while a hybrid model with
spontaneous transitions involves the case where communication among all trucks
is lost. The 5-Dimensional Linear Switching System (5DLSS), the result of a self-
conceived hybrid automaton, lastly complements the benchmark suite. The modes
are governed by a linear dynamics stabilized using the linear quadratic regulation
(LQR) technique with transitions between them deduced heuristically. Table 2.1
summarizes essential characteristics of the benchmarks. The corresponding hybrid
models vary in the dimensionality of their state vector, the number of continuous
modes, the invariant conditions, the number of transitions as well as their corre-
sponding guard and reset conditions. The aim of the variety of benchmarks is to
tackle different aspects such as the expressiveness of the input semantic in prac-
tice, the efficiency of computation, the accuracy of the output and the limits of
applicability of different hybrid system verification tools.
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Benchmark continuous
dynamics dimension modes invariants transitions guards guard

condition reset

1. infinity test Ax+Bu 2 1 yes - - - -

2. bouncing ball Ax+Bu+b 4 1 yes loop multiple 1 eq.+
1 ineq. yes

3. colliding masses Ax+Bu 4 1 yes loop 1 1 eq. yes

4. transient in flower Ax 2 4 yes 2 1 1 eq. no

5. two tanks Ax+Bu+b 2 4 yes 7 1 1 eq. no

6. nav3x3 Ax+Bu 4 7 yes 16 multiple 1 eq.+
2 ineq. no

7. nav4x4 Ax+Bu 4 14 yes 34 multiple 1 eq.+
2 ineq. no

8. nav5x5 Ax+Bu 4 23 yes 58 multiple 1 eq.+
2 ineq. no

9. 3 rooms+
2 movable heaters
layout Figure A.9(c)

Ax+b 3 7 yes 22 multiple 2 ineq. no

10. 3 rooms+
2 fixed heaters
layout Figure A.9(a)

Ax+b 3 4 yes 12 multiple 2 ineq. no

11. 4 rooms+
2 fixed heaters
layout Figure A.9(e)

Ax+b 4 4 yes 12 muliple 2 ineq. no

12. 4 rooms+
2 fixed heaters
layout Figure A.9(f)

Ax+b 4 4 yes 12 multiple 2 ineq. no

13. 4 rooms+
2 fixed heaters
layout Figure A.9(g)

Ax+b 4 4 yes 12 multiple 2 ineq. no

14. 6 rooms+
2 fixed heaters
layout Figure A.9(b)

Ax+b 6 4 yes 12 multiple 2 ineq. no

15. platoon
single mode Ax+Bu+b 9 1 no - - - no

16. platoon
two modes Ax+Bu+b 9 2 no 2 spontaneous - no

17. 5D LSS Ax+Bu 5 5 no 5 1 1 eq. no

Table 2.1.: Essential characteristics of the benchmarks used for the tool assessment.

2.3. Description of Tools
We provide a brief overview of the features offered by each tool involved in this
study along with a short description of the different input formats. The usability
and the applicability of each tool are also investigated.

2.3.1. SpaceEx: The PHAVer and the LGG Scenarios
SpaceEx is a framework for verification tools of hybrid affine systems. The first re-
lease comprised of two scenarios, the LGG support function package and the toolbox
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PHAVer (Polyhedral Hybrid Automaton Verifier) [41]. The STC scenario was newly
added to SpaceEx to reduce the complexity and tighten the over-approximation at
discrete transitions. In our study, we test both the PHAVer and the LGG support
function scenarios. The toolbox PHAVer handles piecewise linear bounded deriva-
tive systems and affine dynamics described by a conjunction of constraints of the
form:

aT
i 9x ` âT

i x ’i bi, (2.1)

with aT
i , âT

i P Z
n, bi P Z, ’iP tă, ď, “u and i P t1, . . . , mu. It makes use of

the Parma polyhedra library (PPL) [10] to compute a polyhedral approximation
of the reachable sets. It additionally includes techniques to control the increasing
complexity by limiting the number of bits and constraints of polyhedra used to
over-approximate the reachable sets. The LGG scenario uses a method proposed
in [72] to compute a template polyhedral approximation of the reachable set for
the continuous linear dynamics and the method proposed in [43] to compute this
approximation at jumps. The template polyhedral approximating set is the result
of the computed support functions in a predefined template of directions. SpaceEx
treats linear hybrid automaton with a continuous dynamics described by the fol-
lowing differential equation:

9x “ Ax ` Bu ` b (2.2)

with A P R
nˆn, B P R

nˆm are constant matrices, b P R
n a constant vector and u

an uncertain bounded input. The guard are polyhedral constraints and the reset
conditions take this form:

Re pXq “ RX ‘ W, (2.3)

with R P R
mˆn, X Ď R

n and W Ď R
m. SpaceEx offers the possibility to specify

the input with an XML-file. This input can be written by hand or produced using
a graphical editor which allows for an intuitive and convenient representation of
hybrid systems as hybrid automata. Both input possibilities are illustrated for the
bouncing ball example in Figure 2.2 and Figure 2.1 respectively.

SpaceEx also supports compositional and assume-guarantee reasoning analysis.
Besides the many possibility offered to visualize results, the graphical user interface
also helps to set up parameters to initialize and guide the reachability analysis. We
particularly focus on the meaning of some parameters we often used for the LGG
scenario during our study. A part from the setting of the time horizon, sampling
time and maximum number of iterations, SpaceEx also provides the possibility
to control the accuracy and the complexity of the intersection with guards. The
problem thereby is that an intersection may occur for many successive iterations.
Handling each intersection set separately will lead to state explosion. This problem
is addressed by setting the option clustering which computes a template hull of all
intersections or a percentage of them by setting off or enabling an error tolerance.
The option aggregate sets computes a convex hull of the already clustered sets and
improves therewith the accuracy of the approximation.
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Location: label, 
 input, invariant 

  and flow 

Transition : label 
 guard   and reset 

Figure 2.1.: The SpaceEx graphical editor: the bouncing ball model as example. A
location is described by a label, an invariant including also the input
and a flow which can be edited in the corresponding fields on the right
side with a click on the location. The synchronization label, the guard
and the reset conditions are shown after selecting the transition.

2.3.2. KeYmaera

KeYmaera is a verification toolbox for hybrid systems based on theorem proving
techniques. In KeYmaera hybrid automata are entered as hybrid programs with
respect to a specially proposed syntax detailed in [87], [86] and [85]. As example
the hybrid program corresponding to the bouncing ball is given in Figure 2.3. The
formalism of hybrid programs embeds logic, in particular the differential dynamic
logic dL, in a conventional programming framework. KeYmaera allows real-valued
formula with linear as well as nonlinear functions. The differential dynamic logic
dL is a straightforward transformation of the differential behavior of the hybrid sys-
tem. Its related axioms and proof rules are purely syntactic leading consequently
to the renouncement of their mathematical semantics to derive verification proofs.
Combined with the induction rules of ordinary logics, the dL logic complements
the induction engine of KeYmaera in a way that takes into account the interac-
tion between the discrete aspect and the continuous dynamics of the hybrid system.
Besides the verification of specific properties, KeYmaera can generate a counterex-
ample using Counter Example Guided Abstraction Refinement CEGAR-techniques
in case the verification fails. Furthermore, KeYmaera offers the possibility to deal
with parallel compositions of hybrid systems.

13



2. Assessment and Performance Comparison of Tools

Location: 
 label,  input, 

invariant 
  and flow 

Transition : 
 label,  guard   

 and reset 

Figure 2.2.: The SpaceEx textual XML-input file of the bouncing ball example.

2.3.3. HSolver

HSolver is a toolbox developed by Ratschan and She [93] to check the safety of
a class of nonlinear hybrid systems. It allows the use of nonlinear functions like
sin, cos and square, for instance. The implemented strategy is based on the par-
titioning of the state space into a grid of hyper-rectangles. For this reason, the
STATESPACE entry is required in the input format of HSolver. This can be seen
in Figure 2.4 illustrating the bouncing ball HSolver input file. HSolver avoids the
computation of reachable sets and instead uses interval arithmetic and constraint
propagation techniques to abstract the flowpipe of discrete states of the hybrid
automaton. Furthermore, an interval splitting step is forced in case the resulting
abstraction exceeds a permitted threshold, above which the over-approximation is
considered to be rough. Splitting can be also avoided by steps where the constraint
propagation is incomplete. In addition to this, the method is able to recognize un-
satisfiable constraints at an early stage of the computation and thereby eliminates
stepwise unreachable sets. Each of these pruning steps will consequently shrink the
search state space. Jump conditions, initial states and unsafe states are given by
constraints. HSolver outputs some computation steps in textual form and offers
the possibility to plot reachable sets.

The verification result returned by HSolver may be one of the following state-
ments:

a) safe if no intersection between the unsafe set and the resulting over-approximation
of the reachable sets is found or
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Location: 
 label, 
input, 

invariant 
  and flow 

Transition : 
 label,  
guard   

 and reset 

Safe 
 condition 

Figure 2.3.: The hybrid program of the bouncing ball example: input file in KeY-
maera.

Location: 
 label, input, 

invariant 
  and flow 

Transition : 
  guard  and reset 

Safe condition 

Figure 2.4.: The input file of HSolver for the bouncing ball example.

b) unknown otherwise.

2.3.4. iSAT

We introduce in this section a bounded model checker for hybrid systems based on
satisfiability checking (SAT) combined with interval constraint propagation tech-
nique (ICP) for handling linear and nonlinear constraints of integers as well as
real variables. The iSAT algorithm initialized with interval ranges for each type of
variables performs its computation in two steps. The decision step consists of first
making a variable choice among the set of all variables. Next, the corresponding
interval is split in a lower and an upper range [99]. Beginning with the upper range,
for example, the algorithm proceeds with the deduction step. It uses unit propa-
gation technique and ICP to deduce new interval ranges for unit clause variables.
A unit clause is in general a clause in which exactly one atom remains unassigned
and other assigned atoms make the clause inconsistent. The deduction process con-
tinues until no more interval refinement is possible. That reveals that a fixpoint
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is reached. The possibility of an empty deduced interval range cannot be ruled
out and indicates a possible conflict. A conflict resolution analysis helps in a next
step to backtrack the search and avoid visiting other already conflicted branches by
adding a resolved clause to the original formula. If no further resolution is possible,
the unsatisfiability of the problem is proven. The toolbox offers some user parame-
ters to control the progression of the computation and also to enforce termination.
The minimal splitting width parameter fixes the threshold at which intervals can be
split into sub-intervals. The minimum progress parameter, however, is a measure
criterion for the acceptance of the actual computed upper bound in comparison
with the last one. The iSAT-ODE is an extension of the iSAT core to allow for
the handling ordinary differential equations (ODEs) by unwinding the dynamical
behavior of the hybrid automaton as a sequence of transitions involving continuous
as well as discrete transitions. The continuous transitions often governed by the
ODE of the discrete modes of the hybrid automaton occur between two predefined
time instances, a pre-time tk and a post-time tk`1 with k P t0, . . . , Nu for a user
defined timestep r and a time horizon T “ Nr. Discrete transitions, on the other
hand, are instantaneous. The following formula:

ΦN “ initpx0q ^ transpx0, x1q ^ . . . ^
transpxN´2, xN´1q ^ targetpxN q (2.4)

is, hence, embedded in the bounded model checking engine of the iSAT solver. The
predicates initpx0q and targetpxN q correspond respectively to the initial and the
target conditions. The transition predicate transpxi, xi`1q is an instantiation of
the dynamical evolution of the hybrid system within a timestep. Consequently, an
instantiation of variables in the iSAT core corresponds to a k-fold unwinding of
the constraints in the transition system. An ODE enclosure engine is furthermore
integrated to help with the deduction and the decision steps. Regarding the input,
the hybrid automaton is given using a textual description, in which a timestep and
a state space range must be defined at the beginning. At the end of the file, a
definition of a target set is also required. The core of the input file constitutes of
a specific syntactical description of the hybrid automaton. A description of this
syntax is given in Figure 2.5 for the bouncing ball example.

2.4. Results
We tested the above verification tools with the previous suite of benchmarks. Al-
though some tools like KeYmeara, HSolver and iSAT allow nonlinear dynamics, we
restrict our actual study to linear hybrid systems. Our goal is to investigate fea-
tures such as availability, usability, efficiency, correctness and quality of the results.
We will particularly focus on the kind and classes of hybrid systems these tools
are able to handle. We take a closer look into the type of constraints permitted
by each tools to describe, for example, invariants inside discrete modes, guard as
well as reset conditions for transitions. We furthermore examine their performances
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Location: 
 label, input, invariant 

  and flow 

Transition : 
  guard  and reset 

Safe condition 

v 

Figure 2.5.: The input file of iSAT for the bouncing ball example.

with regards to the time and space complexity. In addition, we test their ability
to handle increasing state dimension. We aim to acquire a meticulously detailed
knowledge of the applicability of each tool at the end of these tests.

We first begin with the comparative overview of Table 2.2. It reveals the nature

Tool dynamics input set safety property visual ouput guards invariants

SpaceEx linear yes optional yes multiple yes
PHAVer linear no1 optional yes multiple yes
KeYmaera nonlinear yes mandatory no multiple yes
HSolver nonlinear yes mandatory no multiple yes
iSAT nonlinear no mandatory yes multiple yes

Table 2.2.: Comparison of some features supported by different tools.

of the hybrid model which can be treated by each tool. In particular, we are inter-
ested to know if invariants and multiple guards are considered and in which form
they are allowed. It is also of particular interest to know how far it is possible to
allow the disturbance or the control input variables to vary within a predefined set.
It is moreover important to have an idea of the kind of outputs and information
delivered by each tool. Secondly, we focus on the results of each tool separately
in order to provide a detailed and concise evaluation and a founded comparison of
the tested tools. All tests have been performed on a 2,9 GHz quad-core CPU with
4GB memory, but is not of much relevance for performance measurement because
SpaceEx runs on a virtual machine on the specified computer. The virtual machine

1In PHAVer, the input u in 9x “ Ax ` u with u P U can be considered by using the flow predicate
" 9x ´ Ax P U" in the invariant of the corresponding location. For this study, we consider inputs
as part of the flow condition.
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has not been modified for our test. The machine under test has 1 virtual CPU and
512 MB virtual memory2.

2.4.1. SpaceEx
For these tests we used SpaceEx v0.9.7beta with the SpaceEx Web Interface v1.0-
BETA1.4. We tested the LGG Support Function scenario and the PHAVer scenario,
which corresponds to setup 3 in Table 2.3. In SpaceEx, many user parameters are
made available, among others, to guarantee on one hand termination, by restricting
for example the local time horizon T , fixing a sampling time r or by limiting the
number of allowed transitions max trans. Other parameters, such as the relative and
absolute error parameters, are used to control the arithmetic precision error during
the computation. However, the most critical and impotant parameters are those
which have a direct impact on the accuracy and tightness of the over-approximation
of reachable sets such as the flowpipe tolerance, the clustering percentage and the
aggregation parameters. The first parameter fixes an upper bound error for the
over-approximation of reachable sets with their template polyhedron. The second
and the third ones are applied specially to make a compromise between accuracy
and complexity when handling transitions. In fact, owing to the iterative compu-
tation scheme adopted by SpaceEx, the flowpipe may contain many reachable sets
that collide with the guard. Handling each intersecting set separately may substan-
tially increase the computational complexity. Initially constructing the template
hull of the bundle of intersecting sets may circumvent this problem but result in
decreased tightness of the approximation. As a compromise, template hulls can be
constructed in a piecewise manner for each subgroup of sets up to the error bound
given by the parameter clustering percentage. With the aggregation parameter, the
user can decide whether to compute the Convex Hull (CH) of the template sets
resulting from the last step before proceeding to the next step. The user can fur-
thermore choose between box directions, oct directions or m uniformly distributed
directions. The number of directions directly effects the shape of the polyhedron
used to cover the actual flowpipe. Results can be given as graphs illustrating the
flowpipe of the hybrid evolution or as text in form of intervals, or forbidden states
are found to be reachable or not. It is moreover possible to know if the algorithm
was able to detect the existence of a fixpoint. Given its existence, the corresponding
number of transition is displayed.
For the sake of completeness, we tested the impact of the choice of the available
user parameters on the results for each benchmark separately. We choose for this
purpose the setups shown in Table 2.3 to test SpaceEx. The obtained results corre-
sponding to various examples with varying initializations are given in Tables 2.7, 2.8
and 2.9 for the navigation benchmarks. The results of the heating benchmarks are
summarized in Tables 2.10 and 2.11 while verification results for the platoon bench-
mark are collected in Tables 2.12. Table 2.6 is reserved for results of the two-tank

2During our tests the memory and one CPU core have been physically made available for the
virtual machine
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benchmark with invariants (Figure A.5(b)) and without invariants (Figure A.5(b)).
For the remaining benchmarks, the bouncing ball, the colliding masses, the tran-
sient in flower benchmark, the infinity test and the the 5-dimensional benchmark
the results are collected respectively in Tables 2.4, 2.5 and 2.13.

scenario directions clustering aggregate
sets

sampling
time

flowpipe
tolerence

time
horizon

max.
iterations

setup1 LGG box - ch 0.5 -1 50 100
setup2 LGG oct - ch 0.5 -1 50 100
setup3 PHAVer - - - - - - 100
setup4 LGG oct 50 ch 0.5 -1 50 100
setup5 LGG oct 50 NONE 0.5 -1 50 100
setup6 LGG oct - ch 0.1 -1 50 100
setup7 LGG oct - ch 0.05 -1 50 100
setup8 LGG box - ch 0.05 -1 50 100

Table 2.3.: Description of the different options used to perform the reachability
analysis of the benchmarks.

Certain benchmark tables do not contain information corresponding to the PHAVer
setup (setup3 in Table 2.2). This is attributable to the fact that the PHAVer sce-
nario cannot be used to analyze hybrid systems with free input set U as it is not
supported. Such is the case in the colliding masses example. In the 3 rooms heating
benchmark with exchangeable heaters, however, the input u has been considered
to be a constant and the model is constructed accordingly.

Infinity test example Bouncing ball example

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 1 0.06 yes no 30.678 yes
setup2 1 0.092 yes no 2.157 yes
setup4 1 0.1 yes no 2.059 yes
setup5 1 0.095 yes 6 0.096 yes
setup6 1 0.361 yes no 3.352 yes
setup7 1 0.715 yes no 4.42 yes
setup8 1 0.352 yes no 282.37 yes

Table 2.4.: SpaceEx results for the infinity test and bouncing ball examples.

The infinity test benchmark

With regard to the results for the infinity test benchmark shown in Table 2.4, we
note in spite of the system being conceived safe, no setup was able to prove this
fact.
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The bouncing ball example

The benchmark results for the bouncing ball example are summarized in Table 2.4.
We note the remarkably long computation time for setups 1 and 8. The compu-
tation using setup 5 is faster owing to the early detected fixpoint. Although the
system is theoretically safe, our different SpaceEx setups have failed to prove its
safety.

Colliding masses Transient in flower

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 3 0.199 yes no 37.680 yes
setup2 3 0.673 yes no 36.248 yes
setup3 - - - 6 0.002 yes
setup4 3 0.742 yes no 30.065 yes
setup5 3 0.668 yes 7 1.192 yes
setup6 4 2.829 yes no 127.769 no
setup7 - - - no 110.47 no
setup8 3 1.266 yes no 114.366 no

Table 2.5.: SpaceEx results for the colliding masses and the transient in flower ex-
amples.

The colliding masses example

The results for the colliding masses benchmark are shown in Table 2.5. Similar to
the bouncing ball example, the unattainability of the forbidden states, which we
have intendedly chosen to be unreachable, has not been proven using the mentioned
setups.

The transient in flower benchmark

The results for the transient in flower benchmark are shown in Table 2.5. The most
remarkable ones are the computation times and the fixpoint results obtained with
PHAVer (setup 3) and with setup 5. The PHAVer scenario is the fastest setup at
0.002s while setup 5 with a clustering percentage of 50 and a deactivated convex
hull option at the aggregation step is the second fastest one. We further note that,
contrary to the results obtained with the setups 1-5, the system is proven to be safe
with the setups 6-8.
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The two-tank benchmarks

For our tests, we consider the two-tank benchmark with and without invariants.
The corresponding hybrid automata are illustrated in Figure A.5. For simplicity,
we choose to check whether x1 or x2 could reach level -1 under an uncertain input
verifying u P r´0.1, 0.1s.

The results are given in Table 2.6 for the benchmark both with and without invari-
ants. We note that unlike the two-tank benchmark without invariants, a fixpoint
was found for the benchmark with invariants with all chosen setups. Comparing
both forbidden states reachable columns in Tables 2.6, it is interesting to remark
how the presence of invariants in modes could completely reverse the results of the
verification. In fact, the benchmark with invariants is proven to be safe with all
setups, but not so in the case without invariants. It is particularly notable the com-
putation times are reduced when invariants are considered as compared to when
they are not considered. Furthermore, the results of the benchmark with invariants
show that the number of iterations necessary to reach a fixpoint is dependent on
the chosen setup but does not necessarily increases with small timesteps.

Without invariants With invariants

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 no 6.455 yes 7 0.092 no
setup2 no 9.928 yes 7 0.114 no
setup4 no 9.702 yes 7 0.104 no
setup5 no 9.174 yes 8 0.128 no
setup6 no 39.495 yes 3 0.088 no
setup7 no 87.988 yes 3 0.136 no
setup8 no 43.105 yes 4 0.117 no

Table 2.6.: SpaceEx results for the two-tank benchmark without and with invari-
ants.

The navigation benchmark

We carry out a verification analysis for the navigation benchmarks with the setups
of Table 2.3 and the same initial and safe conditions as specified in Appendix A.
A comparison of the results in Table 2.7 obtained with setups 2 and 6 for the
3x3-navigation example with the initial point given in Table A.1 shows that the
choice of a smaller sampling time does not necessary lead to longer computation
time. The same observation can be made for setup 6 and setup 7. Only setup 1
was not able to prove the system safety. We furthermore note that increasing the
number of directions or reducing the timestep can help to prove the unattainability
of the forbidden states. This comes, however, at the expense of the computational
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efficiency. The fastest safety proof was performed with the PHAVer scenario (setup
3 in Table A.1).
Similar to the results with an initial point, the results with the initial set in Ta-
ble 2.7 show that with setup 1, the forbidden states are proved to be reachable.
The PHAVer scenario is again shown to be the most efficient reachability analysis
method for this example. Contrary to the same example with an initial point, we
remark in this case that decreasing the sampling time results in considerably slower
computations. PHAVer was also the only setup capable of computing a fixpoint
after 6 iterations for the initial point and after 19 iterations for the initial set.
For the 4x4-navigation benchmark with an initial point, we note in Table 2.8 from

With initial point With initial set

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 no 9.690 yes no 9.328 yes
setup2 no 28.173 no no 23.787 no
setup3 6 0.061 no 19 0.321 no
setup4 no 20.770 no no 20.649 no
setup5 no 12.490 no no 15.640 no
setup6 no 13.605 no no 38.912 no
setup7 no 12.345 no no 60.528 no
setup8 no 4.841 no no 15.198 no

Table 2.7.: SpaceEx results of the 3x3-navigation benchmark with the initial point
given in Table A.1 and the initial set in Table A.2 .

setup1 and setup 8 that combining a smaller sampling time with the box directions
option can in some cases speed up the computation. In addition, we observe that
the PHAVer scenario was not able to prove the safety with this example. We no-
tice also that the number of directions does not seem to affect the reachability of
forbidden states. Furthermore, the non-reachability of forbidden states was proven
by reducing the timestep for the point initialization but failed for set initialization.
By comparing the results corresponding to the time elapsed in setup 1 and setup 8,

it appears that the choice of a smaller timestep does not necessarily lead to longer
computation time. It is noteworthy that the safety proof failed with setups 6,7 an
8 for the 4x4-navigation benchmark with an initial point while succeeding with an
initial set.

Using point initialization, the PHAVer scenario was still the fastest but was
unable to prove the safety of the system. For other setups, the results for the
5x5-navigation benchmark have been found to be largely similar to those of the
4x4-navigation benchmark. setups 2,4 and 5, however, show an increasing time
complexity corresponding to the complexity of the benchmarks. Setup1 proved
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With initial point With initial set

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 no 7.712 yes no 10.817 yes
setup2 no 13.471 yes no 28.399 yes
setup3 no 0.061 yes no 1.372 yes
setup4 no 12.056 yes no 22.854 yes
setup5 no 4.869 yes no 17.790 yes
setup6 no 19.636 no no 76.023 yes
setup7 no 34.943 no no 137.568 yes
setup8 no 6.973 no no 37.990 yes

Table 2.8.: SpaceEx results of the 4x4-navigation benchmark with the initial point
given in Table A.1 and the initial set in Table A.2 .

to be an exception, taking about a minute less in computation time on the 5x5
benchmark than in the 4x4 benchmark.

The heating benchmark

The results for the heating example with 2 exchangeable heaters are presented in
Table 2.10. Similar to the 5x5-navigation with initial set, only the PHAVer scenario
proved the reachability of forbidden states.

The results for the heating benchmark with 6 rooms and 2 fixed heaters are
shown in Table 2.11. Comparing the elapsed time using the setups 1 with 8 and
2 with 7, it is observed that the choice of a smaller timestep does not necessarily
yield a longer computation time for this particular benchmark.

The results for the heating benchmark with 2 fixed heaters and 3 rooms pre-
sented in Table 2.10 are similar to those of the benchmark with 6 rooms despite
the justifiable difference in the computation time. It is particularly notable that
a combination of smaller timestep and more directions does not necessarily slow
down the computation.

The results for the heating benchmarks with 4 rooms and 2 fixed heaters using
room layouts in Figure A.9(d),(e) and (f) are given in Table 2.11. These results are
similar to the results of the benchmark with fixed heaters.

The platoon benchmark

The results for the platoon benchmark are collected in Table 2.12 with the two-mode
benchmark requiring a longer time for computation as compared to the single-mode
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With initial point With initial set

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 no 6.544 yes no 24.212 yes
setup2 no 17.708 no no 36.569 yes
setup3 no 2.252 yes no 2.591 yes
setup4 no 15.473 no no 30.509 yes
setup5 no 14.149 no no 20.477 yes
setup6 no 52.698 no no 225.098 yes
setup7 no 39.126 no no 204.610 yes
setup8 no 13.435 no no 59.805 yes

Table 2.9.: SpaceEx results of the 5x5-navigation benchmark with the initial point
given in Table A.1 and the initial set in Table A.2 .

platoon. It is important to note, at this juncture, that it is occasionally useful to
simultaneously reduce the timestep and set the oct option for the direction choice
to produce a different result, e.g. for example setup 7 from Table 2.12. In fact, with
this setup, the system has been proved to be safe while all the other setups have
failed to prove the safety. Moreover, a fixpoint was found in all setups after the
first iteration for the single mode and after the seventh for the two modes example.
For the platoon benchmark, we are interested in finding the minimum gaps assur-
ing a collision-free platooning. These can be determined by taking the maximum
boundaries of the reachable sets in the specific state variables, in this case the state
variables x1, x4 and x7 corresponding to the gaps e1, e2 and e3. We chose 128 for
the direction option, the time horizon T “ 20s and the timestep r “ 0.001. The
resulting reachable sets are shown in Figure 2.6. We note the maximal values in the
negative direction. We therefore deduce that under full communication, a collision-
free platooning is guaranteed if e1 ą 26m, e2 ą 13m and e3 ą 10m. In case of an
abrupt breakdown of the communication between all trucks, the safe gaps become
larger: e1 ą 29m, e2 ą 26m and e3 ą 11m.

The 5D linear switching system benchmark

Results for the 5 dimensional linear switching benchmark are shown in Table 2.13.
In this example, setups 1, 4 and 5 caused an internal error marked here with E. We
observed that with the setup 2, this error disappeared but the computation took
longer than three hours. The SpaceEx development team has since resolved this
problem. In addition, setups 6, 7 and 8 which are characterized by small steptimes
ended with a collision detection between the flowpipe and the chosen forbidden
states. Moreover, it is worthnoting the increase in computation time of around
eight-fold after switching the direction choice from box (setup 8) to oct (setup 7).
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Movable heaters Fixed heaters

fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 no 34.523 yes no 15.113 yes
setup2 no 65.207 yes no 32.470 yes
setup3 43 0.17 no - - -
setup4 no 59.584 yes no 24.756 yes
setup5 no 91.488 yes no 675.657 yes
setup6 no 625.658 yes no 11.597 no
setup7 no 1108.20 yes no 190.671 no
setup8 no 425.207 yes no 8.912 no

Table 2.10.: Results of the 3 rooms heating benchmark with movable heaters (layout
c Figure A.9).

(a) (b) 

Figure 2.6.: SpaceEx results of the one mode platoon for a time horizon T “ 20s, a
timestep r “ 0.01s, 128 as a direction choice. (a) x1x4 corresponding
to the gaps e1 and e2. (b) x4x7 corresponding to the gaps e2 and e3.

Figure 2.8 shows the projection of the flowpipe on the plane x1x2 computed with
the timestep r “ 0.01 for a time horizon T “ 10s, the oct option for the directions
and 10 maximal allowed transitions.

2.4.2. KeYmaera

We tested KeYmaera on an opensuse 13.1 (milestone 4) 64bit operating system.
For this study, we use KeYmaera 3.5 and Mathematica 9.0. We took the same con-
figurations given by the first initializing of KeYmaera, except the maximal number
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4 rooms
layout d

4 rooms
layout e

4 rooms
layout f

6 rooms
layout b

fixpoint
found

time
(s)

time
(s)

time
(s)

time
(s)

forbidden
states reached

setup1 no 26.067 50.291 15.113 84.550 yes
setup2 no 101.178 155.723 97.938 894.191 yes
setup4 no 24.756 122.294 62.379 581.752 yes
setup5 no 48.132 103.284 47.882 486.511 yes
setup6 no 20.410 29.714 20.743 126.886 no
setup7 no 190.671 31.436 42.624 127.550 no
setup8 no 10.362 7.889 8.207 16.110 no

Table 2.11.: Results of the heating benchmark with 4 and 6 rooms and 2 fixed
heaters (layout b,d,e,f in Figure A.9).

With one mode With two modes
fixpoint
found

time
(s)

forbidden
states reached

fixpoint
found

time
(s)

forbidden
states reached

setup1 1 0.218 yes 7 0.985 yes
setup2 1 1.766 yes 7 45.026 yes
setup4 1 1.786 yes 7 45.418 yes
setup5 1 1.802 yes 7 45.255 yes
setup6 1 8.784 no 7 199.17 yes
setup7 1 17.162 no 7 398.293 no
setup8 1 2.024 no 7 8.332 yes

Table 2.12.: SpaceEx results for the platoon benchmark with a single mode and
with modes.

of rules, which was set to 5000. KeYmaera allows the user to change this configu-
ration by choosing between different external plug-ins such as the tools QEPCAP,
RedLog, Z3-SMT, Orbital and Mathematica for simplifying, solving differential
equations and proving quantified formulas involving real arithmetic. The user can
also add new rules to the rule base of KeYmaera. Setting these operations, however,
requires a well-founded knowledge of the techniques behind KeYmaera. For this
reasons, we confined our study to the initial KeYmaera configuration. Compared
to SpaceEx, KeYmaera requires a property to be proven and has no visual output
to display trajectories. We use the same forbidden/unsafe states for KeYmaera as
before for SpaceEx.

Table 2.14 summarizes the results obtained with KeYmaera for the various sup-
ported benchmarks. During our experience with KeYmaera, we noted that the
computation time changed considerably for some benchmarks after running the

26



2.4. Results

(a) (b) 

Figure 2.7.: SpaceEx results of the two mode platoon for a time horizon T “ 20s,
a timestep r “ 0.01s, oct as a direction choice. (a) x1x4 corresponding
to the gaps e1 and e2. (b) x4x7 corresponding to the gaps e2 and e3.

same test. This phenomena was particularly noticeable in the heating benchmark
with exchangeable heaters and the platoon benchmark with 2 modes as shown in
line 6 and line 13 of Table 2.14. A possible reason for this behavior could be the
underlying Java virtual machine and the load of the operating system.
KeYmaera was only able to prove the safety of just a few of the examples, specif-
ically the heating benchmark with exchangeable heaters and the bouncing ball
benchmark.

2.4.3. HSolver
It was not possible to test all benchmarks because HSolver does not allow free
input variables. In fact, only a constant input is supported. Consequently only the
navigation benchmarks, the bouncing ball, the colliding masses, the transient in
flower benchmark and the heating benchmark with exchangeable heaters have been
tested. Specially the heating benchmark could be tested because it has a constant
input u which does not change and does not need to be represented as variable in
the model file.

We performed the HSolver tests on the same machine and operating system as
KeYmaera and we used for this purpose the HSolver 3.1 release. Compared to the
executions with KeYmaera, HSolver seems not to benefit from multicore CPUs. In
fact, we observed that three of the four cores were nearly idle during the whole
computation. However, KeYmaera has involved more than one CPU core for its
computation.

HSolver requires a safety property to perform the verification. We chose the same
as for KeYmaera and SpaceEx. The HSolver results are shown in Table 2.15. Cells
with ą 3h mean that the computation took longer than 3 hours and was therefore
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fixpoint
found

time
(s)

forbidden
states reached

setup1 no E -
setup2 no >3h -
setup4 no E -
setup5 no E -
setup6 no 216.809 yes
setup7 no 2843.04 yes
setup8 no 333.209 yes

Table 2.13.: SpaceEx results for the
5D linear switching sys-
tem (5D LSS) example

 

 

Figure 2.8.: The SpaceEx result of
the 5D LSS: projection of
the reachable sets on the
plan x1x2.

aborted. The safety has been however proven only for the bouncing ball example.

2.4.4. iSAT
In this study, we used iSAT 1.0 release. Because of the restrictive iSAT input
format, only the benchmarks in Table 2.16 have been tested. For the platoon and
the two-tank benchmarks with invariants shown in Figure A.5(b), the computation
was stopped after 3 hours. The result of the verification obtained for the colliding
masses and the transient in flower benchmark was unknown. We have observed
after testing both benchmarks that the output has shown intervals intersecting the
chosen forbidden states.

2.4.5. Performance Evaluation
As previously mentioned, we explored the features of the tools with specific bench-
marks varying from commonly known to practical ones. We proposed examples
scalable in their state dimension, in the number of discrete modes and discrete
transitions. The continuous dynamics inside discrete modes are given by linear
ordinary differential equations. We allow the input to vary within a given range
for some examples, like in the platoon benchmark. The transitions are described
by guards given as a conjunction of equalities or inequalities and affine reset condi-
tions.
The first problem we faced during this study is to put our suite of benchmarks in the
appropriate semantic and input format of each tool. While this task was straight-
forward and intuitive for SpaceEx and HSolver, this was not the case for iSAT and
KeYmaera. The unintuitive iSAT modeling of transitions was particularly difficult
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Benchmark time
(s)

open
goal

property
proved

infinity test 0.4 1 no
bouncing ball 2,7 0 yes
colliding masses 6.6 1 no
transient in flower 50.0 1 no
two tank example with invariants 30.7 1 no
Nav3x3 105.7 1 no
Nav4x4 123.7 1 no
Nav5x5 248.9 1 no
3 rooms 2 movable heaters (layout Figure A.9(c)) 6.5 to 11.3 0 yes
3 rooms 2 fixed heaters (layout Figure A.9(a)) 17.9 1 no
4 rooms 2 fixed heaters (layout Figure A.9(e)) 32.9 1 no
4 rooms 2 fixed heaters (layout Figure A.9(f)) 30.0 1 no
4 rooms 2 fixed heaters (layout Figure A.9(g)) 28.2 1 no
6 rooms 2 fixed heaters (layout Figure A.9(b)) 113.5 1 no
platoon with single mode 79.2 1 no
platoon with two modes 132.7 to 166.1 1 no
5D LSS 523.7 1 no

Table 2.14.: KeYmaera benchmark results.

because the systems are encoded as formulas decoupled from their hybrid model. A
similar problem arose with KeYmaera especially for large examples like the 5 ˆ 5-
navigation benchmark. Furthermore unlike SpaceEx, no possibility is offered by
HSolver and iSAT 1.0 to test benchmarks with uncertain inputs varying within a
given range. In contrary to SpaceEx, HSolver, iSAT and also KeYmaera request
a safety property to proceed with the verification process. For HSolver and iSAT,
we have to additionally define the state space which corresponds to the search do-
main for the state variables (see lines 3 and 4 in Figure 2.4 and line 4 in Figure
2.5). SpaceEx is the only tool among them offering a graphical model builder and
thereby making the introduction of complex examples more easier.

Depending on the possibilities offered by the different tools, the user has more or
less complete control over the whole computation process. In fact, while HSolver
and iSAT only allow the user to set few parameters like the timestep, SpaceEx
offers a set of parameters, which can be optimally tuned to meet intended require-
ments. Besides the standard parameters like the time horizon and the sampling
time, SpaceEx allows the user to decide on the precision and efficiency of the com-
putation of the reachable sets when encountering a jump. This could be done by
setting the clustering and aggregation parameters. However, if we try to make a
general observation of the contribution of the clustering and aggregation engine of
SpaceEx to time reduction, we note that a switch from setup 2 to setup 4 or setup
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Benchmark time
(s) reachability

bouncing ball <1s safe
colliding masses >3h ?
transient in flower >3h ?
Nav3x3 >3h ?
Nav4x4 >3h ?
Nav5x5 >3h ?
3 rooms 2 movable heaters (layout Figure A.9(c) >3h ?

Table 2.15.: HSolver benchmark results.

Benchmark time
(s) iterations reachability

colliding masses 0.12 20 unknown
transient in flower 1.18 13 unknown
two-tank benchmark with invariants >4h 82 aborded
platoon with single mode >4h 149 aborded
platoon with two modes >3h 468 aborded

Table 2.16.: iSAT benchmark results.

5 could result in a significant decrease in computation time for benchmarks with
many transitions, as shown in the heating and the navigation benchmarks. The
expected improvement by enabling the convex hull in the aggregation step could
not generally be confirmed by our results obtained with setup 5.

Regarding KeYmaera, the fact that hybrid automata are represented as hybrid
programs with the usual programming language constructs offers users many pos-
sibilities to describe their systems decoupled from the formal hybrid model. This
can yield different hybrid programs for the same hybrid system. Our experience
with the platoon benchmark has shown that different hybrid programs can lead to
different computation times. Furthermore, KeYmaera allows the choice between
different SMT-solves, ODE-solvers, counterexample generators, first order strate-
gies and many others for besides the usual parameters. The problem with the
configuration of the parameters lies in the need for in-depth knowledge on theorem
proving techniques and on the way KeYmaera works.

We note generally that although SpaceEx runs in a virtual machine, it achieves
the best results. Furthermore, the geometric approach seems to be more feasible
than the other approaches for linear hybrid systems.
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2.5. Conclusion

We tested toolboxes for the verification of hybrid systems with a particularly se-
lected range of benchmarks. We focused on linear benchmarks which differ in
their state dimension, the number of modes as well as the number of transitions
of their corresponding hybrid automata. Therefore, while the differential equations
describing the flows inside the modes of some systems include an input varying in
predefined range, the others only have a constant or no input. In addition, the
benchmarks can differ depending on whether the guard transitions are described
by equalities or inequalities.
The tools are based on different techniques. While the LGG scenario of SpaceEx
uses reachability technique based solely on support functions, HSolver applies inter-
val constraint propagation technique in combination with pruning and refinement
to check for intersection of reachable sets with unsafe regions. KeYmaera, however,
is a first-order theorem prover able to provide a proof for the validity of predefined
properties or a counterexample otherwise. The toolbox iSAT proposes a merging
of interval constraint propagation technique into a SAT solver which is in further
release enhanced with a nonlinear enclosure technique based on Taylor expansion
and Taylor model arithmetic. With the exception of SpaceEx, all the other tools,
with some restrictions for HSolver, allow for nonlinear hybrid systems.
It was possible to process all proposed benchmarks with the verification and the com-
putation of the reachable sets using SpaceEx. It was moreover possible to acquire
better results by making an appropriate choice of user parameters like the timestep,
time horizon, clustering and aggregation. However, the set of valid benchmarks
shrinks considerably if tested with KeYmaera, HSolver and iSAT. The obtained
results have shown as well to take a turn for the worse when KeYmaera, HSolver
and iSAT are subsequently used.
Effective decisions on choosing the right tool to use for the purpose of verification
require not only the gathering of information about the tool itself and the method
behind it, but, in many of the cases, require also a comparative evaluation of the
obtained results with results issued from a variety of other tools. Although the
most available tools are based on profound theoretical concepts, proven methods
and continually improving techniques, experiences like ours have shown that their
success rate still remains below the expectations regarding the respective needs and
objectives of the verification of practical hybrid systems. Furthermore, the recent
tendency to fuse different techniques in the same framework, like for example the
tools iSAT3 [100] and dReach [27], has shown its limits [33]. It will be interesting
for future work to find an explanation of the problems related to each promising
technique. This knowledge may allow a combination of these methods in an optimal
way. Alternatively, it is possible to offer these techniques on the same framework
with a Hybrid Systems Interchange Format like HSIF [84], [103] and to pave in
future work the way for possible combinations. This is certainly bound to an enor-
mous effort and consolidated knowledge. However, the first step in this direction
has been already taken with the platform SpaceEx. We are working on an open-
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source platform which will provide a complete library of set representations (like,
polytopes, zonotopes, support functions, Taylor models,... ) with the correspond-
ing set operations. Additionally, we are building many verification algorithms and
implementing techniques using this library. This work is progressing within the
framework project HyPro [61]. For future work, this platform can be potentially
extended by introducing and allowing combinations of these techniques with SMT-
solvers.
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3. Overview of Methods for Computing
Reachable Sets of Linear Hybrid
Systems

3.1. Introduction

For a continuous dynamical system, the computation of reachable states must guar-
antee the enclosure of all possible trajectories given by the dynamics governing the
behavior of the system and that beginning from all points included in an a-priori
defined initial set. Generally, to assure computer termination this task is done over
a bounded time.

Using simulation methods to check for safety is obviously infeasible if we have
to account for uncountable initial set or for systems submitted to disturbances or
to uncertain inputs. On the other hand even reachability has been shown to be
generally undecidable. Decidability has been proven under stringent conditions on
the continuous dynamics for particular classes of hybrid systems such as timed,
multirate and rectangular automata [56, 91], piecewise constant derivative systems,
systems with linear vector fields and subclasses of linear hybrid systems with either a
nilpotent or diagonalizable with rational eigenvalues system matrix or also matrices
with purely imaginary eigenvalues and 2x2 block diagonal Jordan form [65, 66, 89].
But works like [6, 8, 9] have revealed that even inside these classes the decidability
problem remains for particular low-dimensional systems unresolved. Furthermore,
the proposed algorithmic solutions have shown their limits in the practice, even for
low dimensional systems [17, 19].

Two different directions have been fundamentally adopted during the last years
to tackle this problem. The first direction uses logical formalizations involving for
example temporal logic, abstractions and bisimulations to choose under some con-
ditions a finite number of trajectories sufficiently covering the dynamical behavior
of the whole system and prove the correctness of a-priori predefined condition there-
after. The second direction, however, over-approximates the set of states reached
by all possible trajectories using well-known geometric shapes such as polytopes
[60, 64, 80], ellipsoids [24, 63], boxes [25, 92, 104], polyhedra [41, 44, 52] and zono-
topes [48, 71] and checks afterwards the intersection with an unsafe set.
In this chapter, we are concerned with linear hybrid automata in which each discrete
mode is described by an LTI-system. The guards are defined by equality/inequality
conditions. Resets are simple linear maps.
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The reachability analysis of hybrid systems consists of computing an approxima-
tion of the reachable set in each discrete mode beginning from an initial set. This
is, generally, the result of the intersection of the reachable set of the mode before
the transition and the guard triggering this mode.

We provide an overview of methods and techniques developed in the last few
years to compute reachable sets based on over-approximation. We handle different
aspects related to the computation of reachable sets in continuous modes beginning
with the deduction of a recursive schema less exposed to problems such as the wrap-
ping effect. This requires a close approximation of the system input contribution
and in a next step an accurate approximation of the initial set. Many approaches
have been proposed to solve these two approximation problems. On the other hand,
we describe methods for handling transitions with a particular focus on approaches
for computing the intersection with guards if many successive reachable sets are
involved in this intersection.

This chapter gives a survey of already available methods enriched with our sug-
gestions for improvement and approaches like the approximation of the input set
contribution under piecewise assumption. A practical performance comparison of
these methods using support functions is given in Chapter 4

3.2. Hybrid Automaton
A hybrid automaton is a framework to formally describe a system characterized
by an interaction between continuous dynamics and discrete events. It is a graph
G “ pQ, T ransq with vertices in Q describing different continuous behaviors the
system can take under specific conditions in Inv and edges in T rans specifying the
jump and eventually the reset conditions between them. The vertices are called
locations or discrete modes of the hybrid automaton while the edges are referred
to as transitions. A formal definition is given as follows:

Definition 1. A hybrid automaton is generally given as tuple

H “ pQ, V ar, Inv, F low, T rans, Initq
where:

• Q “ tq1, . . . , qpu is the set of different locations. A state is a pair xq, vy of a
location q and v : V ar Ñ R a valuation over V ar.

• V ar is the set of state vectors associated to each location in Q.

• Inv is the set of domains corresponding to each location in Q.

• Flow is a set of continuous maps describing the continuous behavior of each
location.

34



3.3. Run Semantics

 

 

 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

Figure 3.1.: Formal definition of a hybrid automaton.

• T rans is a set of edges. Each edge e “ pqi, qjq of them is characterized
by a source location qi and a target destination qj as well as by a Guardij

condition and a Resetij map. The guard condition is a condition on the
continuous variables that enables the discrete transition once this is satisfied.
The reset map is a relation that describes how the continuous state vector
changes when entering the target location.

• Init consists of an initial condition also called initial set X0 as well as an
initial location in Q (see Figure 1).

3.3. Run Semantics
The semantics of a hybrid automaton is specified by two different types of transi-
tions:

• The continuous transition describes the evolution over the time of state vari-
ables according to the flow inside the same location.

xqi, ry tÑC xqi, sy ðñ D a continuous trajectory ξ such that r “ ξp0q,
s “ ξptq and for each t

1 P r0, tr Invi and Flowi hold.

• The discrete transition which corresponds to an instantaneous transition be-
tween two different locations.
xqi, ry eÑD xqj, sy ðñ e P T rans and Invi, Guardij , Resetij , Invj hold.

A sequence of alternating continuous and discrete transitions defines a run of a
hybrid automaton.
A state s is reached by the hybrid automaton H from an initial set Init if Ds0 P Int
and a run of H from s0 to s.
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3.4. Reachable State within a Discrete Mode
In general linear systems are defined as follows.

Definition 2. Linear System [12] The dynamics of linear systems is described
by the following differential equation for a t P Γ “ rt0, tf s

9xptq “ Aptqxptq ` Bptquptq
xpt0q “ x0 P X0,
uptq P U

(3.1)

where:

• A, B, u : Γ Ñ R
nˆn,Rnˆm,Rm Lebesgue-integrable and

• X0, U Ă R
n respectively the nonempty initial and input sets,

The state xptq reached from xpt0q at time t is given by

xptq “ Φpt, t0qxpt0q `
ż t

t0

Φpt, sqBptqupsqds (3.2)

where Φpt, t0q P R
nˆn is the transition matrix or the fundamental solution of the

homogeneous counterpart of (3.1).

Remark 1. For any t, t0, τ and σ, the transition matrix satisfies the following
properties:

• Φpt, tq “ In where In is the identity matrix

• Φpt, τq “ Φpt, σqΦpσ, tq the semi-group property of the fundamental solution

• B
BtΦpt, τq “ AptqΦpt, τq

• Φpt, t0q´1 “ Φpt0, tq
Definition 3. Reachable Set [12] The reachable set at time t of the system
described by Definition 2 is given by:

Rpt, t0, x0q :“ ty P R
n| Dup.q P U ^ Dxp.q solution of (3.1) with y=x(t) u (3.3)

Rpt, t0, X0q :“ Yx0PX0Rpt, t0, x0q (3.4)

These sets are, according to [12] [page 161], also the reachable sets of systems
described by the following differential inclusion.

Definition 4. Linear Differential Inclusion [12] Let Γ, Ap.q, Bp.q, X0 and U be
as in Definition 2. Then xp.q : Γ Ñ R

n defined in equation 3.2 is also the solution
of the linear differential inclusion

9xptq PAptqxptq ` BptqU (3.5)
xpt0q “ x0 P X0. (3.6)

and xp.q is absolutely continuous for almost all t P Γ.
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Proposition 1. The reachable set at time tf of systems described in Definitions 2
or 4 is then given by

Rptf , t0, X0, Uq “ Φptf , t0qX0 ‘
ż tf

t0

Φpt, sqBptqUds (3.7)

where ‘ is the Minkowski set addition.

Remark 2. The reachable set Rptf , t0, X0, Uq is nonempty, convex and compact
in R

n if

• X0 is nonempty, convex and compact in R
n,

• U is nonempty and compact in R
m,

• Ap.q,Bp.q are Lebesgue-integrable.

If the values of the fundamental solution are known, an iterative set-valued ap-
proximation of the reachable set at time tf can be deduced by using its semi-group
property.

Remark 3. Semi-group Property of Reachable Sets We choose for Γ “ rt0, tf s
the partition ti, i P ti “ 0, . . . , Nu with N P R

` and a constant time-step r “ tf

N .
Let ti`1, ti such that t0 ď ti ď ti`1 ď tf

Rpti`1, t0, X0, Uq “ Rpti`1, ti, Rpti`1, ti, X0, Uq, Uq (3.8)

We adopt the abbreviation Ri “ Rpti, t0, X0, Uq for the reachable set obtained
at time ti. Furthermore, we use the semi-group property and (3.7) to derive the
iterative scheme for the computation of reachable sets for a linear system defined
by 2 or 4. This leads to the basic reachability algorithm given by algorithm 3.1.

Algorithm 3.1 Iterative scheme for computing reachable sets of linear systems
R0 “ X0
for i “ 0 : N do

Ri`1 “ Φpti`1, tiqRi ‘ şti`1
ti

Φpti`1, sqBptqUds
end for
RN “ Rptf , t0, X0, Uq

Remark 4. Fixpoint The algorithm 3.1 reaches a fixpoint if from a certain itera-
tion iF successive computed sets verify Ri`1 “ Ri for all i ě iF .

The iterative scheme described by algorithm 3.1 is practically not feasible. In
fact, the implementation of this algorithm requires first the computation of the fun-
damental solution in each iteration. However, that is only feasible for limited class
of systems, such as LTI-systems. Otherwise, special methods for the approxima-
tion of the fundamental solution as well as numerical approximation techniques for
the integral counterpart in (3.8), like the set-valued quadrature technique [11, 12],
could be applied. Second, the reachable sets have to take a geometric form to allow
their numeric manipulation.
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3.5. Reachable Set of LTI-Systems
In this section, we consider Linear Time-Invariant LTI-systems which are described
by the following differential equation

9xptq “ Axptq ` Buptq (3.9)

where A P R
nˆn, B P R

nˆm are constant matrices. These systems are effectively
closed-loop controlled systems. They have consequently to fulfill the following nec-
essary conditions:

1. The matrix A is stable, i.e., all eigenvalues of A possess negative real parts.

2. The system represented by (3.9) is completely controllable for any initial time
t0.

3. The input uptq is measurable and for all t P R`, uptq P U Ă R
m.

4. The set U is compact and convex.

The input uptq is consequently considered here as an uncertain input. For LTI-
systems, the fundamental solution takes the following particular form.

Φpt, t0q “ ept´t0qA for t ě t0. (3.10)

For the initial time, we can assume t0 “ 0 without loss of generality. This results
in the following equation:

xptq “ eAtx0 `
ż t

0
ept´sqABupsqds. (3.11)

The above equation gives rise to the following explicit form of the reachable set
function.

Rp., .q : R` ˆ R
n Ñ R

n

pt, Xq ÞÑ etAX ‘ şt
0 ept´sqABUds.

(3.12)

In this equation the matrix exponential and the matrix exponential integral are
set-valued functions.
We adopt, from now on, the same notations as in [71] for the reachable sets, i.e.

RtpXq “ Rpt, Xq
“ etAX ‘ şt

0 ept´sqABUds
“ etAX ‘ Rtpt0Rnuq,

Rrt1,t2spXq “ YtPrt1,t2sRtpXq.
(3.13)

We appeal, beside the semi-group property, the following property of the reachable
set:

Rrt0,t1s
´

Rrt
1
0,t

1
1spXq

¯
“ Rrt0`t

1
0,t1`t

1
1spXq (3.14)
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for t0, t1, t
1
0, t

1
1 P r0, tf s, to derive the following recursion:

Rrtk ,tk`1spXq “ Rr

`Rrtk´1,tkspXq˘
“ erARrtk´1,tkspXq ‘ Rrpt0Rnuq (3.15)

A concrete implementation of this recurrence imposes the choice of a geometric rep-
resentation to compute iteratively successive reachable sets. An exact computation
is quite impossible. This is first due to the dynamics of the system which contin-
uous evolution from an initial set and particularly in the presence of uncertainty
or disturbances can be enclosed only with approximation techniques. Second, the
computational complexity imposes the use of finite numerical representation of the
geometric maps. Furthermore, these sets are in general not enclosed under some
operations involved in the computation. As consequence, over-approximations are
for this purpose required to retrieve the original form.

A wide variety of geometric maps have been intensively investigated in the context
of reachability analysis of hybrid systems. Each geometric form such as hyperrect-
angles [25, 92, 104], polytopes [60, 64], polyhedra [41, 44, 52] and ellipsoids [24, 63]
have been shown to have strengths and weaknesses. The main issues are that, on
one hand, the complexity of computation increases with the complexity of the rep-
resentation. On the other hand, however, the more complexer the geometry is, the
more tighter the approximation of the reachable set becomes. The challenge is then
to find a trade-off between the complexity of computation and the accuracy of the
approximation. Zonotopes [4, 47] and support functions [12, 72] are later proposed
in the literature as solutions for this challenging problem.

We note Ωk and V the computed approximate of respectively the exact reachable
set Rrtk,tk`1spX0q and the left hand side of (3.15) after the choice of a geometric
set.

Rrtk,tk`1spX0q Ď Ωk,

Rrpt0Rnuq Ď Vr
(3.16)

That leads consequently to the following implementable recursion [71]:

Ωk “ erAΩk´1 ‘ Vr (3.17)

If we choose geometric shapes closed under Minkowski sum, it is evident that the
approximation Ωk takes directly, owing to (3.17), the same chosen shape.

To implement recursion (3.17), we have first to determine the stepwise evolution
of the approximation of the input contribution and second to compute an approxi-
mation of the initial set Ω0.

3.6. Computing an Over-approximation of the Input
Contribution

In this section, we describe different methods for over-approximating the reachable
set due the input contribution. This over-approximation is highly dependent on
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the nature of the input signals and, consequently, the specific assumptions made
about them. The input are initially supposed to be uncertain but confined in a
convex and compact set U . This guarantees the compactness and convexity of the
over-approximation.

3.6.1. Norm-bounded Uncertain Input
In many applications, the uncertain input is assumed to be bounded according to
a predefined norm. Practically, this limitation can be justified, because submitting
systems to unbounded uncertainties in the input can certainly destabilize them.
One of the simplest ways to do this is to determine a constant μ for a given norm
}.} such that μ “ supuPU }Bu}. By adopting this assumption for the uncertain
input, [47] proposed the following over-approximation for the input contribution.

Lemma 1. [47] Let }.} be a chosen norm and μ “ supuPU }Bu}. The input contri-
bution verifies then

Rrpt0Rnuq Ď Bpβrq (3.18)

where βr “ μ er}A}´1

}A} and Bpβrq is defined as a ball of radius βr according to the
norm }.}. Therefore, we get

Vr “ Bpβrq. (3.19)

The proof can be found in Appendix B.

3.6.2. Bounded Uncertain Input
It is quite evident that the afore-stated assumption leads to rapid growth of the
over-approximation of the input contribution. This consequently results in a con-
servative approximation of the reachable set [20]. In fact, under this assumption,
the reachable set has to be bloated in each time step with the ball of radius equal
to the largest input norm, although generally individual inputs have their norm
very far below the maximum value. In [73], an over-approximation based on the
maximum radius RV “ maxvPV }v} of the set V “ BU was proposed.

Lemma 2. The input contribution can be over-approximated by

Vr “ rBU ‘ βrB (3.20)

where βr “ `
er}A} ´ 1 ´ r }A}˘ RV}A} .

3.6.3. Toward a Tighter Approximation of the Input Contribution
In [71], a new approach for a tighter approximation of the input contribution was
suggested. This approach avoids the use of maximum norm but instead involves
the input set U in the approximation. Two particular set definitions are at this
stage required.
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Definition 5. The Interval Hull of a set S Ă R
n is the set

lpSq “ rx1, x1s ˆ . . . ˆ rxn, xns @i, xi “ min txi : x P Su
xi “ max txi : x P Su (3.21)

Definition 6. The Symmetric Interval Hull of a set S Ă R
n is the set

dpSq “
”
´|x1|, |x1|

ı
ˆ . . . ˆ

”
´|x1|, |x1|

ı
@i, |x1| “ max t|xi| : x P Su (3.22)

Lemma 3. Let U pr, Uq be the set defined as follows

U pr, Uq “ rBU ‘ EU (3.23)

with
EU “ l

´
|A|´2

´
er|A| ´ In ´ r |A|

¯¯
d pABUq . (3.24)

The over-approximation of the input contribution therefore verifies the following
equality

Vr “ U pr, Uq . (3.25)

where In is the identity matrix in R
n and |A| is the component-wise absolute value

operation of the matrix A P R
nˆn.

A more elaborated proof inspired from the one proposed in [71] is given in Ap-
pendix B.

3.6.4. Input Constant within a Time Step
In [3] a method based on Riemann integration and Taylor series is suggested to
compute an approximation of the integral in equation (3.11). However, this method
is valid only if uptq is interval-wise constant. Independently from this particular
property of u, an approximation of the input contribution can be derived from the
Riemann sum approximation of the integralşr

0 eApr´sqBupsqds “ lim
nÑ8

řn
i“1 eApr´s˚

i qBupsi̊ qΔs

si̊ “ pΔsqi and pΔsq “ r
n

(3.26)

by first dropping the limit in (3.26) then choosing a large n and finally computing
a supremum of uptq in each pΔsq. Otherwise, it is always possible to choose a
small discretization step r within which the piecewise assumption is practically
hold. Furthermore, this assumption is practically justified because the input u to
a continuous-time system is generally discrete and consequently constant between
samples. Under this assumption, the input contribution is over-approximated with
the following set:

Vr “ BU (3.27)

where B “ şr
0 eApr´sqBds.
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3.7. Computing an Over-approximation Ω0 of Rr0,rspX0q
We are now concerned with the computation of an over-approximation Ω0 of the
set

Rr0,rspX0q “ Y
tPr0,rs

`
etAX0 ‘ Vt

˘
“ Y

tPr0,rs
`
etAX0

˘ ‘ Y
tPr0,rs pVtq

“ Rr̊0,rspX0q ‘ V Ď Ω0

(3.28)

with Rtpt0Rnuq Ď Vt, Y
tPr0,rs pVtq Ď V and R˚

r0,rspX0q “ Y
tPr0,rs

`
etAX0

˘
the reach-

able set of the autonomous system 9x “ Ax. Many approaches have been proposed
during the last few years to cope with this problem. The most recent methods
aim at further tightening this approximation. In fact, the quality of the initial ap-
proximation can have a crucial impact on the approximation of the reachable sets
obtained at the end of the computation (see [20]). In the following, we review some
of the most practically applied approaches.

3.7.1. Using a Bloating Factor αr [47]

We begin with the approach proposed in [47, 70]. Under convexity assumptions
of considered sets, the set R˚

r0,rspX0q is there first approximated with the convex
hull C “ CHpX0 Y erAX0q and then bloated with a factor αr guaranteeing the
enclosure of all the states reachable from X0 within the time interval r0, rs (see
Figure 3.2). The methods adopted in [34, 47, 70] to find such an αr are quite

 
 

  

 

 

  

 

Figure 3.2.: Approximation of the initial set.

similar. To encounter the non trivial computation of C, the set S of segments
joining each point x P X0 and its corresponding image erAx in erAX0 is defined.

S “ �
y “ x ` t

r perAx ´ xq | x P X0 ^ t P r0, rs( (3.29)

It is evident that S Ď C. The minor difference between methods in [34] and in
[47, 70] resides, however, in the resulting final form of αr. Its value is, in general,
assumed to be equal to the upper bound on the distance between the set of real
trajectories (blue in Figure 3.2) and their approximating set S (red in Figure 3.2).
In [47], the Hausdorff distance dH is used to evaluate αr.
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Lemma 4. The initial set Rr0,rspX0q is over-approximated by Ω0 verifying

Ω0 “ CHpX0 Y erAX0q ‘ Bpαrq ‘ V (3.30)

where Bpαrq is the ball of radius αr and

αr “ `
er}A} ´ 1 ´ r }A}˘ supxPX0 }x} . (3.31)

A proof for this lemma is given in Appendix B.

3.7.2. Alternative Approach for Computing a Bloating Factor αr [73]
An over-approximation based on maximum radii RV “ maxuPV }u}, where V “ BU
and RX0 “ maxxPX0 }x} of respectively the input set U and the initial set X0 was
proposed in [73]. The proposed approach has resulted in a slightly different bloating
factor as that proposed in Section 3.7.1.

αr “
´

er}A} ´ 1 ´ }A} r
¯ˆ

RX0 ` RV

}A}
˙

(3.32)

The authors defined the unit ball B associated to the chosen norm }.} and proposed
the following set Ωo as an over-approximation for the first element of the sequence
of successive reachable sets

Ω0 “ CHpX0, erAX0 ‘ rBU ‘ αrBq. (3.33)

3.7.3. Toward a Tighter Approximation of the Initial Set [71]
The tightness of the approximation of the initial set is crucial for the quality of
successive approximations. For this reason, a method has been proposed in [71]
aiming at reducing the boating effect of the set CHpX0, erAX0q in each direction
and aims as far as possible to restrict it in the vector field directions of the system
dynamics.

Lemma 5. [71] For each λ P r0, 1s a convex set Ω0,λ is defined as follows

Ω0,λ “ p1 ´ λq X0 ‘ λerAX0 ‘ λ p1 ´ λq EX0 ‘ λrBU ‘ λ2EU (3.34)

where
EX0 “ l

´
|A|´1 `er|A| ´ In

˘
d

`
A
`
In ´ erA

˘
X0

˘¯
‘ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pABUq

¯ (3.35)

The initial set can then be approximated by

Ω0 “ CHp
ď

λPr0,1s
Ω0,λq (3.36)

A complete proof of this lemma can be found in Appendix B.
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3.7.4. Forward and Backward Approximations for Computing an
Over-approximation of the Initial Set [44, 96]

In [44, 96] a revised approximation of the initial set is proposed. The main difference
between the last approximation, and this one resides in only one term. In fact,
the approach involves forward and backward interpolations leading to error terms
proportional to λ and p1 ´ λq respectively. It results in the replacement of the term
λ p1 ´ λq EX0 in equation (3.34) with the intersection of both approximations and
is made up as follows.

Lemma 6. [44, 96] For each λ P r0, 1s a convex set Ω0,λ is defined

Ω0,λ “ p1 ´ λq X0 ‘ λerAX0 ‘ `
λE`

X0
X p1 ´ λq E´

X0

˘ ‘ λrBU ‘ λ2EU , (3.37)

where
E`

X0
“ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2X0

˘¯
E´

X0
“ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pABUq

¯
.

(3.38)

The initial set is then approximated with

Ω0 “ CHp
ď

λPr0,1s
Ω0,λq. (3.39)

For the proof of this lemma, we refer to the corresponding literature.
A summarizing overview of the above-presented over-approximation methods for

the input contribution as well as for the initial set is given by Figure 3.3 It should
be noted in regard to this figure that it is possible to combine the MethodΩ0(1) and
MethodΩ0(2) for the initial set approximation with all presented methods for the
approximation of the input contribution in the left side of the figure. In contrast
to the previous two methods MethodΩ0(3) and MethodΩ0(4) which are from the
outset based on the approximation MethodVr(3).

Claims have been made that the quality of the initial set and the input approxi-
mations has a crucial impact of the tightness of further computed reachable sets. A
practical assessment of these different approximations, however, seems to be lacking
in the corresponding literature. In Chapter 4, we present a performance compar-
ison of these methods using support functions and polyhedra for approximating
the reachable sets. We use some known benchmarks for which the reachable sets
resulting from each method are compared in regard to their computation time and
the tightness of the approximation.

3.8. Handling Invariants Inside Discrete Modes
According to the definition of hybrid automaton (Section 3.2), each location qi is
characterized by a flow condition 9x “ fqi px, ...q describing the continuous dynamics
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Computing reachable sets of LTI continuous modes
9x “ Ax ` Bu, u P Uconvex

Ωk`1 “ ΩkerA ‘ Vr,
k “ 0, ..., N, N “ T {r

Approximation methods
for the input contribution

Vr

Initial set approximation methods
Ω0

MethodVr (1) [47]
Vr “ βrB

βr “ μ er}A}´1

}A}
V “ BU
μ “ maxvPV }v}
B the unit ball according to }.}

MethodVr (2) [73]
Vr “ rV ‘ βrB

βr “ `
er}A} ´ 1 ´ r }A}˘ RV}A}

V “ BU
RV “ maxvPV }v}
B the unit ball according to }.}

MethodVr(3) [71]
Vr “ rV ‘ EU

EU “ l
´´

|A|´2 `er|A| ´ In ´ r |A|˘¯ d pAV q
¯

V “ BU
In: the identity matrix

MethodVr (4)
Vr “ BU

Input piecewise constant in rtk, tk`1s
B “ şr

0 eApr´sqBds

MethodΩ0 (1) [47]

Ω0 “ CHpX0 Y
erAX0q ‘ αrB ‘ Vr

αr “ `
er}A} ´ 1 ´ r }A}˘RX0

RX0 “ maxxPX0 }x}
B the unit ball according to }.}

MethodΩ0 (2) [73]

Ω0 “ CHpX0, erAX0 ‘
rV ‘ αrBq

αr “ `
er}A} ´ 1 ´ r }A}˘ pRX0 ` RV}A}q

V “ BU
RV “ maxvPV }v}
RX0 “ maxxPX0 }x}
B the unit ball according to }.}

MethodΩ0(3) [71]

Ω0 “ CHpŤλPr0,1s Ω0,λq

Ω0,λ “ p1 ´ λq X0 ‘ λerAX0 ‘ λrV ‘ λ2EU ‘
λ p1 ´ λq EX0

V “ BU
EX0 “ l

´
|A|´1 `er|A| ´ In

˘
d

`
A
`
In ´ erA

˘
X0

˘¯
‘ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pAV q

¯
MethodΩ0 (4) [44]

Ω0 “ CHpŤλPr0,1s Ω0,λq

Ω0,λ “ p1 ´ λq X0 ‘ λerAX0 ‘ λrBU ‘ λ2EU ‘`
λE`

X0
X p1 ´ λq E´

X0

˘
V “ BU
E`

X0
“ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2X0

˘¯
E´

X0
“ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pAV q

¯

Figure 3.3.: Approximation methods of the initial set and the input contribution.
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generally valid in a predefined domain Invi subset of the state space of the system.
For this, we have to test in each iteration k in the considered location, like by
guards, for an intersection between the computed reachable set Ωk and the domain
also called invariant which we abbreviate here for simplicity with I. In case of a
non emptiness, two actions may be taken. The first one consists in computing the
intersection set Ω̃k “ Ωk X I. The resulting set Ω̃k is then considered in the follow-
ing computation steps as the new reachable set. The second possibility is to spring
to the next location if the guard condition is met. Otherwise the computation will
be broken off.
In this section, we describe two different approaches to cope with the problem of
invariants within continuous locations. These two different concepts have been
already proposed in [71, 96] for handling this problem using support function tech-
niques.

3.8.1. Handling Invariants as Guards
The first alternative for treating invariant is to use the same concept for handling
guards. It consists, as shown in Algorithm 3.2 and detailed in the next section, first
in checking a collision between the invariant and the reachable set. In a second step
the intersection is computed. This intersection is hence taken as the reachable set
for further iteration steps.

3.8.2. Recursive Scheme with Invariants [71]
It is obvious that invariant constraints can be treated in the same manner and

consequently with the same approaches as guard conditions. In [71], however, a
recursive scheme has been suggested to handle them while computing reachable
sets. In each iteration step an emptiness check is carried out. If the intersection
between the reachable set and the invariant is revealed to be not empty, the latter
is then computed. The resulting intersection is therefore the reachable set of the
current iteration. The proposed scheme is derived by taking under consideration
the following proposition

Proposition 2. Let X, Y , Z Ď Rn. Then the following holds:

pX X Y q ‘ Z Ď pX ‘ Zq X pY ‘ Zq (3.40)

while computing successive reachable sets with the following recursion

Ω̃k “ `
erAΩ̃k´1 ‘ Vr

˘ X I. (3.41)

This leads to the following scheme for the computation of reachable set in the
presence of invariants within continuous modes

Ω̃k Ď Ωk X
k´1č
j“0

Ij (3.42)
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Algorithm 3.2 Reachability Algorithm for a Hybrid Automaton in the Presence
of Invariant and Guards
Input: r, N , Φ “ erA, Ω0, Vr, I, r, }1, . . . , }m;
Output: Ω0, . . . , ΩN ;

1: X “ Ω :“ Ω0;
2: V :“ Vr;
3: S :“ t0u;
4: for k “ 1 to N do
5: if Ω X I “ H then
6: break;
7: end if
8: for j “ 1 to m do
9: if Ω X I X gj ‰ H then

10: collect the indexes of the intersecting sets with the index of the corre-
sponding intersected guard condition;

11: end if
12: end for
13: X “ ΦX;
14: S “ S ‘ V ;
15: V “ ΦV ;
16: Ω “ X ‘ V ;
17: Ωk :“ Ω;
18: end for
19: return tΩ0, . . . , ΩN u and indexes of intersecting sets with the corresponding

guard index;
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with
Ωk “ erAΩk´1 ‘ Vr

Ik “ erAIk´1 ‘ Vr,
(3.43)

where Ω̃0 “ Ω0 and I0 “ I. This scheme can be easily, as already done in
[71], proved using induction. Although it seems to bloat once more the over-

Algorithm 3.3 Reachability Algorithm for Handling Invariant Intersection while
Computing Reachable Sets

Input: r, N , Φ “ erA, Ω0, Vr, I, r, }1, . . . , }m;
Output: Ω0, . . . , ΩN ;

1: X “ Ω :“ Ω0;
2: Y :“ I;
3: V :“ Vr;
4: S :“ t0u;
5: K :“ R

n;
6: Ω̃ “ Ω0 X I;
7: for k “ 1 to N do
8: if Ω̃ “ H then
9: break;

10: end if
11: for j “ 1 to m do
12: if Ω̃ X gj ‰ H then
13: collect the indexes of the intersecting sets with the index of the corre-

sponding intersected guard condition;
14: end if
15: end for
16: X “ ΦX;
17: Y “ ΦY ;
18: S “ S ‘ V ;
19: V “ ΦV ;
20: Ω “ X ‘ S;
21: K “ K X I;
22: I “ Y ‘ S;
23: Ω̃ “ Ω X K;
24: Ω̃k :“ Ω̃;
25: end for
26: return

�
Ω̃0, . . . , Ω̃N

(
and indexes of intersecting sets with the corresponding

guard index;

approximation of the reachable set because of the inclusion in (3.42) this scheme
has the advantage of first involving Ωk instead of Ω̃k. In this way, if an inter-
section takes place because of the over-approximation of the reachable set, this
error will thereby not be propagated along the computation. It second allows us
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to continue taking advantage of the superposition principle to compute the exact
reachable set. The third benefit of this scheme resides in shifting the intersection
operation towards the end of the recursion so that it essentially affects the invari-
ant set evolution through the computation. The corresponding algorithm, however,
calls for two set-intersection operations as shown in lines 21 and 23 of Algorithm
3.3. The intersection operation efficiency and accuracy of sets depends largely on
the choice of the reachable set representation. For this reason, this algorithm may
suffer from inefficiency and large bloating effect in comparison to Algorithm 3.2 if
the representation set is not closed under intersection and the over-approximation
of the intersection is rough and computationally complex. We will hence adopt this
algorithm for support functions but not for zonotopes in the next sections.

3.9. Handling Transitions
Hybrid automaton are particularly characterized by the strong interaction between
continuous dynamics and discrete events. As mentioned, the latter are modeled as
transitions between modes describing the continuous behavior. After handling the
computation of reachable sets for continuous dynamics, this section is dedicated to
available methods for treating transitions. In general, a transition is described by
a guard condition G and optionally a reset map Re. A transition is triggered as
soon as the guard is fulfilled. The reset map is thereafter applied before entering
the target mode. The most treated types of guards are hyperplanes, halfspaces or
recently also polyhedra [96].

To handle guards, a collision detection test of the reachable set with the guard

0.4 0.8 1 1.2 1.4 1.6 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.6 

 

Guard 

Reachable sets 

time 

 

Figure 3.4.: Detecting successive reachable sets Ω̃kmin
, . . . , Ω̃kmax intersecting the

guard y “ 0 for the two tanks benchmark.

is first introduced to each iteration in the computation schema (3.42). The test
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may be positive for several successive iteration steps k P rkmin, kmaxs. Figure 3.4
shows, for example, seven successive reachable sets intersecting the guard given as a
hyperplane x “ 0 for the two tanks benchmark. Those are marked with continuous
different colored lines to differentiate them from the dashed sets irrelevant for the
intersection. Once the bundle of intersecting sets is known, their intersections with
the guard Y is in a next step computed. Two different concepts may be considered
for computing the entire intersection:

• The pre-clustering method consists of first computing the convex hull of the
intersecting bundle and then the intersection of this last with the guard ac-
cording to the following formulation:

Y “ CH

˜˜
kmaxď

k“kmin

Ω̃k

¸
X G

¸
(3.44)

• or the post-clustering method which computes as follows each intersection
separately and then build their convex hull:

Y “ CH

˜
kmaxď

k“kmin

`
Ω̃k X G˘¸

. (3.45)

We note that the set intersection operation is required for pre-clustering, as well
as, for post-clustering. This operation is, in general, a hard operation for the
most set presentations. Moreover, the closure property of sets may be lost under
this particular operation. In this case, an over-approximation with the chosen set
presentation is required. This may lead consequently to the propagation of the over-
approximation error through the computation each time this operation is called.
From this point of view the pre-clustering scheme is clearly advantageous over the
post-clustering because it uses this operation only once. However, experimental
results have revealed that for some particular cases, the set resulting from post-
clustering (3.45) may be tighter. The complexity of computation and the choice of
the clustering method is set dependent. In the next sections, this problem will be
investigated using support functions (Section 4) and zonotopes (Section 5) as set
representations.

Once the intersection is computed, the initial set for the transition target mode
will be the image of Y under the reset map Re:

XT
0 “ Re pYq . (3.46)

An example of guard handling with reset within a transition for the bouncing ball
example is illustrated in Figure 3.5. The sets in yellow represent the intersections
of the flowpipe with the guard. The intersections in the first and second transition
involve only one intersecting set. We note the effect of the reset map which shifts
the resulting intersection in this case.

50



3.10. Conclusion

x 0 

guard 

 
 

x  

The intersection with guard at the first transition 

The image of the first intersection  
under the reset map  
of the first transition 

The intersection with guard  
at the second transition 

Figure 3.5.: Illustration of the intersection with guard and its image under the reset
map for the bouncing ball example.

3.10. Conclusion
This chapter investigates methods for computing reachable set for hybrid linear
systems. Different techniques for approximating the input contribution as well as
the initial sets and approaches for handling invariants are explored. We also sur-
veyed approaches for handling guards and resets. In the next chapters, we apply
the above-mentioned methods practically by using two different set representations.
We furthermore carry out a practical performance comparison of these methods.
Based on this, a first concept and a prototypical implementation of a reachability
analysis toolbox for linear hybrid systems based on support functions is described
in the next chapter. The main features of this toolbox is to provide these different
methods on the same platform. The user may choose amongst them accordingly.
Additionally, an implementation using zonotopes is discussed in the following chap-
ter. We discover both common and different implementation techniques for these
particular approximation sets. Consequently, we draw some conclusions about the
efficiency and accuracy of implementations when using support functions or zono-
topes based on experimental results.
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4. Support Function Technique for
Computing Reachable Sets

4.1. Introduction
Approximation methods of reachable sets are generally based on a preliminary
choice of the geometric representation. Once this choice is made, it is difficult, in
the vast majority of cases, to change it while computing reachable sets. For some
arithmetic set operations, like the intersection and containment operations, however,
the closure property may be lost for some geometric shapes. The complexity of
those operations also depends heavily on the class of the chosen geometry. To
cope with these both problems, methods based on transformation between different
geometric shapes are proposed (see [5]). The transformation from a geometric shape
into another may in its turn be a source of error propagation because of the over-
approximation usually necessary to turn back to the original chosen shape and vice
versa.

Support functions provide the best alternative to represent convex sets without
making an initial binding choice of geometric shape. They also possess specific prop-
erties making them attractive for implementation. Arithmetic set operations are
simply transformed in algebraic function operations. But in addition to their advan-
tages they also have some important drawbacks. In fact, some of those operations as
well as the evaluation of the support function in different directions for visualization
scope require the use of different optimization and linear programming algorithms.
Our experience has revealed that choosing the right linear programming algorithm
or optimization is practically difficult. The reason is that the performances of
these algorithms are tightly dependent on the form of the reachable sets and the
dynamical behavior of the system.

To our knowledge, [11, 110] were one of the first works which concretely in-
troduced support functions for approximating reachable sets. Support functions,
however, took on a much more significant role in reachability analysis with the
appearance of the works [49, 73]. Algorithms for the computation of the support
functions of successive reachable sets were proposed for time-discrete as well as
for time-continuous systems. The idea behind these algorithms is the deduction
of a recursion scheme for the computation of the support functions of successive
reachable sets based on results of previous computation steps.

Further works extended the proposed algorithms to consider the invariants of
continuous modes and guards in transitions. They suggested for example methods
to compute some specific set intersections, like convex sets/hyperplanes [72] or
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convex sets/halfspaces intersections [43, 96], using support functions combined with
optimization techniques. SpaceEx is one of most recent open source platform for
the verification of hybrid system based on support functions.
In this chapter, we overview previously existing methods and present further details
of our solutions for their practical implementations. We suggest alternatives to
these methods and compare their performances. We begin first with the definition
and the geometric interpretation of support functions. We then present some of
their properties which we judged to be relevant for the derivation of practically
efficient algorithms for the computation of reachable sets. Furthermore, we review
the most recent techniques in the approximation of the input contribution as well
as those in the approximation of the initial set for an LTI-system with an uncertain
input confined in a bounded compact set. We propose a variety of methods to
deal with invariants and guards. We therefore present a method for treating hybrid
systems with spontaneous transitions. We conclude with the description, guiding
instructions and some testing results of our MATLAB implementation.

4.2. Definition and Properties of Support
Functions/Support Vectors

Support function can be considered as an alternative representation to geometric
sets. This representation has the advantage to transform some geometric manipu-
lations of n-dimensional sets, which are hard to imagine and visualize, in ordinary
algebraic transformations.

Definition 7. : Support Functions [45]
Let S Ă R

n and l P R
n. The function

ρS : R
n ÝÑ R Y t˘8u

l ÞÝÑ ρSplq :“ supxPS xl, xy (4.1)

is called the support function of the set S.

xl, xy is the dot product of vectors ordinarily calculated as lT .x or xT .l. If the
support function of an non empty set S Ă R

n is known, we can compute the convex
hull of S, which we abbreviate here for the convenience of notation to ch(S), as
follows:

chpSq “ tx P R
n| @l P R

n : xl, xy ď ρS plqu (4.2)

Consequently, we deduce that ρS “ ρchpSq.
Support functions also possess some interesting properties which simplify their ma-
nipulation.

Proposition 3. : Properties of Support Functions
Let S, S1, S2 Ă R

n be nonempty sets, l, l1, l2 P R
n, A P R

nˆm and λ ě 0, the
following properties of the support function hold [45].

54



4.2. Definition and Properties of Support Functions/Support Vectors

+ 

S 

+ 

0 

 

 

v  

 

 

Figure 4.1.: Illustration of the notions of support function, support vectors and
supporting hyperplanes of a convex set S.

1. ρλS p.q “ λρS p.q
2. ρS pλlq “ λρS plq
3. ρS pl1 ` l2q “ ρS pl1q ` ρS pl2q
4. ρAS plq “ ρS

`
AT l

˘
5. ρS1‘S2 p.q “ ρS1 p.q ` ρS2 p.q
6. ρCHpS1YS2q p.q “ max pρS1 p.q , ρS2 p.qq
7. ρS1XS2 plq ď min pρS1 plq , ρS2 plqq
Beside these properties, it is also important to know the support function of some

particular sets. Those are useful for the computation of the support functions of
the initial and the input sets. Some of them are summarized in Table 4.1.

The support functions of hyper-rectangles and symmetric hyper-rectangles are
considered separately. These types of convex sets are commonly used for approxi-
mating the initial set and the input contribution. They appear there as ordinary
or symmetric interval hull of previously known convex sets.

Proposition 4. : Support function of hyper-rectangles
The support function of a hyper-rectangle I “ ra1, b1s ˆ . . . ˆ ran, bns, ai, bi P R, in

a direction l “ pl1, . . . , lnqT is given by

ρIplq “ řn
i“1 railipli ă 0q ` bilipli ě 0qs

“ řn
i“1

ˇ̌̌
pai´bi

2 qli
ˇ̌̌

` řn
i“1pai`bi

2 qli. (4.3)
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Convex set S ρSplq
tuu with u P R

n xl, uy
ra, bs,a ď b, a, b, l P R

"
a.l for l ă 0
b.l for l ě 0

tx P R
n : }x}1 ď 1u }l}8 “ maxi“1,...,n |li|

tx P R
n : }x}2 ď 1u }l}2

tx P R
n : }x}8 ď 1u }l}i “ řn

i“1 |li|
Ball: Brpmq with m P R

n,r ě 0 r }l}2 ` xl, my
Ellipsoid:

�
x P R

n : xT Q´1x ď 1
(

,
Q positive definite symmetric matrix

a
lT Ql

Zonotope: třr
i“1 αigi : αi P r´1, 1su, gi P R

n
řr

i“1 |gili|
Polytope: tx P R

n : Cx ď du , C, d are matrix
and vector of compatible dimension

max lT x
Cx ď d

Table 4.1.: Support function of some particular sets.

The box operator of a convex set S, lS, is the interval hull over-approximation
of the set S. The evaluation of the support function of the set S in the direc-
tions of the canonical basis pe1, . . . , enqT together with their opposites leads to the
determination of the upper and lower limits of the hyper-rectangle lS.

Proposition 5. : The box operator of sets
Let lS “ ra1, b1s ˆ . . . ˆ ran, bns, then

ai “ ´ρSp´eiq
bi “ ρSpeiq, (4.4)

where each vector ei “ p0, . . . , 0, 1, 0, . . . 0qT has 1 at the ith position, otherwise the
coordinates are equal to 0.

Proposition 6. : Support function of symmetric hyper-rectangles
The support function of a symmetric hyper-rectangle I “ r´h1, h1sˆ. . .ˆr´hn, hns,
hi P R

`, in a direction l “ pl1, . . . , lnqT is calculated as follows

ρIplq “
nÿ

i“1
|hili| “

nÿ
i“1

hi |li| . (4.5)

The symmetric box operator of a convex set S, dS, is the symmetric interval
hull over-approximation of the set S. It is computed by means of support functions
with the following proposition.

Proposition 7. : The symmetric box operator of sets
Let dS “ r´h1, h1s ˆ . . . ˆ r´hn, hns, then hi is obtained as follows

hi “ maxpρSpeiq, ρSp´eiqq. (4.6)
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It is important to retrieve the convex set representation from its support function
representation. However an infinite number of well chosen directions are necessary
for an exact representation of a convex set. Usually, a set of directions uniformly
arranged on the boundary of a unit ball is chosen.

Proposition 8. : From support function to convex set
Let B1p0Rnq be the euclidean unit ball and BB1p0Rn q its boundary. If S is a convex,
closed nonempty set then

S “ tx P R
n| @l P BB1p0Rn q : xl, xy ď ρS plqu

“ Ş
lPBB1p0Rn q tx P R

n| xl, xy ď ρS plqu (4.7)

Definition 8. : Supporting hyperplane
The hyperplane given by

H pl, αq “ tz P R
n| xl, zy “ αu (4.8)

contains the set S in its lower halfspace when xl, xy ď α, @x P S. In this case,
H pl, αq is called the supporting hyperplane of S in the direction l which we note
for convenience HSplq. The value of α is the maximum signed distance of the set
S from the origin in the direction l which is exactly the definition of the support
function (see Figure 4.1).

Proposition 9. : From support function to boundary of a convex set
We can also in the same way compute the boundary BS of S:

BS “ tv P R
n| @l P BB1p0Rnq : xl, vy ď ρS plq ,

Dl0 P BB1p0Rn q : xl0, vy “ ρS pl0qu .
(4.9)

 

 

 
 

 
 

 

  

(a) (b) 

 

 

 

 

 

Figure 4.2.: Convex sets for which the support vectors in direction l1, l2 and l3 are
respectively the segments of line VS pl1q, VS pl2q and VS pl3q.

The point v is called the support vector of S in direction l0. Consequently the
boundary of S can also be defined as the set of support vectors in all directions
li P BB1p0Rnq

BS “
ď

liPBB1p0Rn q
VS pliq (4.10)
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with i P t1, 2, . . .u which is generally infinite.
It should be noted that the intersection of a supporting hyperplane in a direction
li with the convex set S is not necessary a unique point. In general, the result of
this intersection is the so called exposed face (the colored lines VS pliq in Figure 4.2),
which is a set of all support vectors (also named exposed points) in a predefined
direction. Similar to support functions, support vectors exhibit some interesting
properties, which simplify their manipulation during computation.

Proposition 10. : Properties of Support Vectors
Let S, S1, S2 Ă R

n be nonempty sets, l P R
n, A P R

nˆm and λ ě 0, then the
following properties of the support function are fulfilled

1. VλS p.q “ λVS p.q,
2. VS1‘S2 p.q “ VS1 p.q ` VS2 p.q,
3. VAS plq “ AVS

`
AT l

˘
.

Particular interesting for our analysis are singleton intersections, which are faces
of dimension 0 where VS pliq “ tviu. In these cases vi is called an extreme point of
S in the direction li. The convex hull of these extreme points build up the tightest
over-approximation of the convex set S.
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Figure 4.3.: Representation of a convex set via support functions and supporting
hyperplanes.

Practically, a finite set or a template D “ tl1, . . . , lmu of directions uniformly
distributed on the unit ball BB1p0Rn q is chosen. For simplicity, the notations of the
support hyperplane and support vector in case of a singleton or a set in a direction
lj , j P t1, . . . , mu are respectively abbreviated in Hj and vj or VS pljq (Figure 4.3).
Generally the directions are arranged in ascending or descending order according to
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+
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Figure 4.4.: The over-approximating polyhedron of the convex set S for a template
of directions D “ tl1, l2, l3, l4, l5u (see also Figure 4.3) .

their angular deviations from a predefined reference. In this way, a set of points can
be computed. Each of these points is the result of the intersection of two adjacent
supporting hyperplanes (see Figure 4.3). The obtained set defines in its turn a
polyhedron which constitutes an over-approximation of the original convex set (see
Figure 4.4).

4.3. Computation of the Reachable Set within a
Continuous Mode

For the computation of the reachable set in continuous modes described with the
differential equation 9x “ Ax ` Bu where A and B are constant matrices, we recall
the recursion scheme given by (3.17) in Section 3.5. In fact, if the approximations for
the initial set Ω0 and the input contribution Vr are available and parameters like the
time step r and the time horizon T are already chosen, the reachable set Ωk at time
t “ kr can be theoretically obtained by calling the set equation Ωk “ ΦΩk´1 ‘ Vr

where Φ “ erA. However, it is evident that a practical implementation requires a
preliminary choice of a geometric map for representing reachable sets. We aim to
consistently take advantage of the support function presentation of convex sets to
derive a practical computation scheme of reachable sets. For this purpose, we use
the support function ρ in a direction l and its properties to derive the following
algebraic equations

ρΩk
plq “ ρΦΩk´1plq ` ρVrplq

“ ρΩk´1pΦT lq ` ρVrplq. (4.11)
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It therefore follows

ρΩk
plq “ ρΩk´1pΦT lq ` ρVrplq

“ “
ρΩk´2pΦT ΦT lq ` ρVr

`
ΦT l

˘‰ ` ρVrplq
“ ρΩk´2pΦT 2

lq ` ρVr pΦT lq ` ρVr plq
“

”
ρΩk´3pΦT ΦT 2

lq ` ρVr

´
ΦT 2

l
¯ı

` ρVr pΦT lq ` ρVrplq
“ ρΩk´3pΦT 3

lq ` ρVr

´
ΦT 2

l
¯

` ρVrpΦT lq ` ρVr plq
...

“ ρΩ0pΦT k
lq ` řk´1

j“0 ρVr

´
ΦT j

l
¯

.

(4.12)

If we adopt the notations dk “ ΦT k
l and sk “ řk´1

j“0 ρVr

´
ΦT j

l
¯

, the above equa-
tions lead to the algorithm (4.1) proposed in [71] for the evaluation of the support
functions ρΩ1plq, . . . , ρΩN

plq of successive reachable sets Ω1, . . . , ΩN in one of the
direction l P BB1p0Rnq.
To get the polyhedron approximating the reachable sets, the obtained support func-

Algorithm 4.1 Computation of ρΩ0plq, . . . , ρΩN
plq

Input: Φ, ρΩ0, ρVr , l, N
Output: ρ0 “ ρΩ0plq, . . . , ρN “ ρΩN

plq
1: d0 :“ l
2: s0 :“ 0
3: ρ0 “ ρΩ0

4: for k “ 1 to N do
5: dk :“ ΦT dk´1
6: sk :“ sk´1 ` ρVr pdk´1q
7: ρk :“ ρ0 pdkq ` sk

8: end for
9: return tρ0, . . . , ρN u

tions must be evaluated for each direction element of the template D “ tl1, . . . , lmu.
The choice of this template has a crucial impact on the tightness and precision of
the over-approximation and also on the efficiency of the computation. The problem
thereby is to find practical criteria helping to take effective compromise between pre-
cision and complexity. For these reasons, many approaches have been suggested to
cope with this problem. In [71] (pages 74-75) some improvements of the algorithm
4.1 has been proposed by making a particular choice of the template of directions
D. For a given direction l0 and some indices p1 ă .. ă pm, the directions have been
chosen in the following way

lj “ pΦT qpj l0, j P t1, . . . , mu . (4.13)

The problem indeed resides in the fact that the above defined directions would pro-
gressively tend towards the same direction with increasing indices. Particular care
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must consequently be taken for the choice of these indices to ensure the enclosure
and coverage of the reachable set. Our experience has shown that this particular
choice has led to ill-defined polyhedra in many cases.
Beside the choice of the template, the choice of the approximation method for the
initial set and the input contribution can have also a crucial impact of the quality
of the approximation of the reachable sets. Therefore, we propose the implemen-
tation of some algorithms involving these different approximation methods and
combinations between them in this work. A thorough comparison study is also
correspondingly carried out.
We begin with the approaches adopted in our implementation for computing an
over-approximation of the input contribution Vr.

4.3.1. Approximation of the Input Contribution

In this work, we opt for the implementation of the next three methods to compute
an over-approximating set Vr of the input contribution. The approximation is
made not only in each new recursion for the computation of the reachable set of
the Algorithm 4.1, but also in the computation of an over-approximation of the
initial set Ω0. These methods offer, as presented in the next sections, increasing
tightness in the approximation nonetheless with additional computation effort. Our
goal is, on one hand, to offer a multiple method choice and, on the other hand, to
allow the user to accordingly configure the analysis.

Approach 1: Using a bloating factor [73]

The details of this approach are given in Section 3.6.2 (MethodVrp2q). The support
function of the proposed over-approximation in a direction l P R

n is then computed
as follows

ρVrplq “ rρBU plq ` βrρBplq
“ rρUpBT lq ` βrρBplq (4.14)

where βr “ `
er}A} ´ In ´ }A} r

˘
RV}A} , In is the identity matrix and RV “ maxvPV }v}

with V “ BU . The support function ρB of the unit ball according to the chosen
norm }.} can be found in Table 4.1.

Approach 2: Towards a best over-approximation of the input contribution [71]

This second approach, previously described in Section 3.6.3 (MethodVrp3q), pro-
vides a tighter approximation of the input contribution and reduces thereby the
cumulative bloating effect in the recursive computation of Algorithm 4.1. The right
hand side of equation (4.14) is then replaced by the support function of the set
EU “ l

´
|A|´2 `er|A| ´ In ´ r |A|˘¯ d pABUq, which is computed using Proposi-

tions 6 and 5.
ρVr plq “ rρUpBT lq ` ρEU

plq. (4.15)
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Approach 3: Piecewise constant input

We consider the same approach adopted for the zonotope implementation in Chap-
ter 5. The input signal is assumed to be constant within a time step r. Therefore
the support function of the input contribution in a direction l P R

n is computed as
follows

ρVr plq “ ρBU plq “ ρU pBT lq (4.16)

with B “ şr
0 epr´sqABds.

As previously seen in Section 3.7, an input contribution is also implied in the
initial set over-approximation.
Next, we explore multiple support function based approaches for computing the
initial set over-approximation.

4.3.2. Initial Set Over-approximation Scenarios

Regarding the initial set over-approximation, we choose the following scenarios for
our actual implementation.

Scenario 1 (NoScale):

We begin with considering one of the first approximation, proposed in [72], for
computing the initial set using support functions. This approach was elaborated
in Section 3.7.2 (MethodΩ0p2q). The direct application of properties 4, 5, 6 of
Proposition 3 in (3.33) allows the deduction of the following support function

ρΩ0plq “ maxpρX0 , pρerAX0plq ` rρBU plq ` αrρBplqqq
“ maxpρX0 , pρX0pperAqT lq ` rρUpBT lq ` αrρBplqqq (4.17)

where l P R
n, αr “ `

er}A} ´ 1 ´ }A} r
˘ ´

RX0 ` RV}A}
¯

(3.32), RX0 “ maxxPX0 }x}
and RV “ maxvPV }v} with V “ BU .

Scenario 2 (PreciseOmega0):

The method proposed in [71] aims to further tighten the approximation of the
initial set in comparison with previous methods. This approach was previously
elaborated in Section 3.7.3 (MethodΩ0p3q). We aim, in this section, to express the
recommended over-approximation in term of support functions and then suggest
the way to implement it. In fact, according to the equations (3.34), (3.35) and
(3.36), the support function of this over-approximation in a direction l P R

n is then
equal to

ρΩ0 plq “ maxλPr0,1sρΩ0,λ
plq , (4.18)
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where

ρΩ0,λ
plq “ p1 ´ λq ρX0 plq ` λρperAX0q plq ` λrρpBUq plq ` λ p1 ´ λq ρEX0

plq
`λ2ρEU

plq
“ p1 ´ λq ρX0 plq ` λρX0

`perAqT l
˘ ` λrρU

`
BT l

˘ ` λ p1 ´ λq ρEX0
plq

`λ2ρEU
plq .

(4.19)
The support functions of the sets

EX0 “ l
´

|A|´1 `er|A| ´ In

˘
d

`
A
`
In ´ erA

˘
X0

˘¯
‘ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pABUq

¯ (4.20)

are computed using Propositions 7 and 5. Finally ρΩ0 plq is calculated by using
optimization techniques and available optimization packages like the MATLAB
optimization toolbox, the CVX or the MPT toolboxes.

Scenario 3 (SpaceEx):

The computation scheme proposed in [44, 96] is fundamentally the same scheme on
which the algorithm 4.1 is based. The authors, however, formulated it differently
to allow the choice of variable time steps rj, j P t0, . . . , N ´ 1u.

Ψk`1 “ Ψk ‘ eAtk Vrk

Ωk “ eAtk Ωr0,rkspX0, Uq ‘ Ψk
(4.21)

where tk`1 ´ tk “ rk.
We consider, in this work, a constant time step r. Therefore, the algorithm imple-
menting the recursion (4.21) is practically algorithm 4.1. The difference in other
algorithms lies in the approximation methods adopted for the initial set and the
input contribution. In [44, 96], the authors suggested a new method for the approx-
imation of the initial set , which they deemed to provide a tighter approximation
(MethodΩ0p4q Section 3.7.4). In term of support functions and using their dual
properties with convex sets operations, the proposed approximation is transformed
as follows

ρΩ0,λ
plq “ p1 ´ λq ρX0 plq ` λρerAX0 plq ` λrρBU plq ` λ2ρEU

plq
`ρpλE`

X0
Xp1´λqE´

X0
q plq

“ p1 ´ λq ρX0 plq ` λρX0

`perAqT l
˘ ` λrρU

`
BT l

˘ ` λ2ρEU
plq

`ρpλE`
X0

Xp1´λqE´
X0

q plq .

(4.22)

where
E`

X0
“ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2X0

˘¯
E´

X0
“ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ d

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pABUq

¯
.

(4.23)
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If we now consider property 7 of the support function (given in Proposition 3), then
for a given direction l P R

n, the last term is approximated as follows

ρpλE`
X0

Xp1´λqE´
X0

q plq ď minpρλE`
X0

plq, ρp1´λqE´
X0

plqq.looooooooooooooooomooooooooooooooooon
“

minpλρE`
X0

plq, p1 ´ λqρE´
X0

plqq
(4.24)

Property 6 of support functions, hence, allows the computation of the support
function of the initial set

ρΩ0 plq “ maxλPr0,1sρΩ0,λ
plq . (4.25)

Focusing now on the set λE`
X0

X p1 ´ λq E´
X0

(noted for convenience E0), we see
that the computation of its support function involves the evaluation of the support
functions of the two symmetric interval hulls E`

X0
and E´

X0
given in (4.23).

Proposition 7 facilitates now the computation of the support function of the
set E0 “ λE`

X0
X p1 ´ λq E´

X0
. First, two vectors h` “ ph1̀ , . . . , hǹ q and h´ “

ph1́ , . . . , hń q for a direction l P R
n respectively :

ρE`
X0

plq “ h` |l| ,

ρE´
X0

plq “ h´ |l| (4.26)

are evaluated. Second, the following expression is derived

ρE0plq “
nÿ

i“1
min

`
λhì , p1 ´ λq hí

˘ |li| , i P t1, . . . , nu , (4.27)

which in turn can be written as a piecewise linear function of λ. This expression
can alternatively be directly embedded in equation (4.25). After adding ρEU

, the
support function of the initial set given in (4.25) is subsequently computed by using
already existing optimization toolboxes and algorithms.

4.3.3. Impact of the Approximation Method of the Initial Set on the
Tightness of the Reachable Set

It would be interesting at this stage to assess the implication of the initial set
approximation method on the tightness of the reachable sets as well as on the com-
putation time. During tests and evaluations of our implementation, computations
of reachable sets were carried out for the same examples under different choices
of the initialization methods. In addition to initial approximation choice, a non-
linear optimization algorithm is required for the second and the third initial set
approximation methods. Choices can also be made between different algorithms
and optimization toolboxes.
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Figure 4.5.: The resulting approximation of the initial set for the two-tank bench-
mark depending on the method chosen for the initial set computation
with a time step r “ 0.05, a time horizon T “ 3s, the initial condi-
tions 1.5 ď x1 ď 2.5 ^ x2 “ 1, an input u “ 0 and the box direc-
tions option. (a) The first method (NoScale). (b) The second method
(SpaceEx/PreciseOmega0 ). (c) The third method (SpaceEx/SpaceEx).
(d) Comparison of the computed initial reachable sets with different
methods.
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Figure 4.6.: The resulting approximation of the initial set for the two-tank bench-
mark depending on the method chosen for the initial set computation
with a time step r “ 0.05, a time horizon T “ 3s, the initial conditions
1.5 ď x1 ď 2.5 ^ x2 “ 1, an input u “ 0 and the octagonal (oct) direc-
tions option. (a) The first method (NoScale). (b) The second method
(SpaceEx/PreciseOmega0 ). (c) The third method (SpaceEx/SpaceEx).
(d) Comparison of the computed initial reachable sets with different
methods.

With regards to the benchmarks and the hybrid systems we tested, we note the
increase in tightness of the approximation if the second or the third method are
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chosen instead of the first.

For purpose of illustration, the results obtained for the two-tank system of Figure
A.5(a) for an input u “ 0 and using the algorithm CDD Criss-Cross of the MPT -
toolbox are shown in Figure 4.5 for box directions and in Figure 4.6 for octagonal
directions. We note that with the box direction choice, the first computed reachable
set (purple in Figure 4.5) and the flowpipe resulting at the end of the time horizon
T “ 3s practically do not show any difference in respect with the tightness (see
Figure 4.6). In contrast, the results obtained with the octagonal directions, reveal a
little improvement between the initial set computed with the first method (NoScale
in Figure 4.6(a)) and that obtained with the second method (PreciseOmega0 in
Figure 4.6(b)). This can be seen in Figure 4.6(d). We observe, however, that
the approximations issued from the second method and the third method (the
SpaceEx adopted method in Figure 4.6(c)) coincide in the Figure 4.6(d). The
box approximation of the last computed reachable set is equal to r1.514, 1.528s ˆ
r´0.3101, 0.7338s for the second and the third methods and to r1.514, 1.530s ˆ
r´0.3139, 0.7351s for the first one. We note that the resulting difference is not
significant enough to conclude about its origin. It may also be due to finite precision
errors.

The time required for the computation increases also with the complexity of
the approximation for example from t “ 0.111109s for the first method, to t “
0.172788s for the second method and t “ 0.226099s for the third method.

The approximation of the input contribution is a part of the initial set approxi-
mation. Its quality consequently has an impact on the performance of the initial set
computation. We consider for this reason an input u P r´0.1, 0.1s and compute for
the same two-tank benchmark and the same setting parameters as above, the flow-
pipe for different approximation methods and scenarios. We observe in Figure 4.7
the same trend for the SpaceEx scenarios with both allowed initialization methods,
namely, but note that the SpaceEx initial set approximation is faster. The NoScale
scenario is fast but computes the most bloated over-approximation. The ConstU
scenario is shown, however, to be fast and to provide a better approximation as the
NoScale scenario.

Based on our experience with the suite of benchmarks described in Appendix
A, general observations can be derived. On a one hand the SpaceEx and the Pre-
ciseOmega0 methods guarantee best tightness of the initial set approximation. On
the other hand, the NoScale and the ConstU are the most time efficient methods.
It is evident that a trade-off must be made between tightness and efficiency while
carrying out a reachability analysis. We decide to let the user decide which method
suits the intended system requirements.
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Figure 4.7.: The resulting approximation of the initial set for the two-tank bench-
mark depending on the method chosen for the initial set computation
with a time step r “ 0.05, a time horizon T “ 3s, the initial condi-
tions 1.5 ď x1 ď 2.5 ^ x2 “ 1, an input ´0.1 ď u ď 0.1 and the
octagonal directions option. (a) The first method (NoScale). (b) The
second method (ConstU/ConstU ). (c) The third method (SpaceEx/-
PreciseOmega0). (d) The third method (SpaceEx/SpaceEx).

4.4. Collision Detection Between Two Convex Sets

While computing reachable sets of hybrid automata, we look to collision detec-
tion between convex sets in two areas: first to check for intersection with invari-
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ants within the locations, and second to check for intersection with guards by
transitions. Invariant and guard conditions can take the form of a hyperplane
Hp “ �

x P R
n : dT x “ e

(
, a halfspace Hs “ �

x P R
n : dT x ď e

(
or a polyhedron

P “ tx P R
n : D.x ď Eu with D P R

mˆn and E P R
m. Most of the available

collision detection algorithms are based on separation techniques and use support
functions in some way to look for the existence of separating hyperplanes between
sets (see Section 5.4.1 and Section 5.7.1). For our implementation, we make use of
the following lemmas.

Lemma 7. Let Ω Ď R
n be a convex set and Hp “ �

x P R
n : dT x “ e

(
be a

hyperplane then the following holds

pΩ X Hp “ Hq ðñ p´ρΩ p´dq ď e ď ρΩ pdqq . (4.28)

Lemma 8. Let Ω Ď R
n be a convex set and Hs “ �

x P R
n : dT x ď e

(
be a

halfspace then the following holds

pΩ X Hp “ Hq ðñ p´ρΩ p´dq ą eq . (4.29)

The proofs of both lemmas are given in [96].
The extension of the detection collision to polytopes is straight forward. A polytope
is basically an intersection of hyperplanes. We treat each of them separately by
applying the appropriate lemma.

4.5. Intersection Computation of Two Convex Sets
In this section, we are interested in methods based on support functions for comput-
ing an approximating set for the intersection of two convex sets. This intersection is
used first in continuous modes to force the system to remain inside the invariants I
and then used in the computation of the transition successors by considering guard
conditions. In general, there are three possible formulations for computing a convex
over-approximation S Ď R

n of the intersection of two convex sets S1, S2 Ď R
n char-

acterized by their support functions ρS1 and ρS2 . For the directions l, l1, l2 P R
n,

the support function ρS of the set S can be computed in different ways. The first
formulation given in (4.30) is based on the definition of so called epi-sum of convex
functions (see [97, 98] page 23). This is also called the infimal convolution of closed
proper convex functions on R

n [16, 58] and is therewith the origin of the second
formulation (4.31).

ρS1XS2plq “ infl“l1`l2 pρS1pl1q ` ρS2pl2qq , (4.30)

ρS1XS2plq “ infwPRn pρS1pwq ` ρS2pl ´ wqq , (4.31)

The operation 2`2 in (4.30) and (4.30) is obviously extended to the so-called inf-
addition by adopting the following conventions

α ` 8 “ 8 ` α “ 8 for ´ 8 ă α ă 8
α ´ 8 “ 8 ` α “ ´8 for ´ 8 ă α ă 8 (4.32)
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The third formulation comes from the seventh property of the support function
given in Property 3.

ρS1XS2plq ď minpρS1plq, ρS2 plqq (4.33)

We note that (4.33) leads to an over-approximation of the intersection because of
the inequality. The tightness of this over-approximation depends crucially on the
choice of the template of directions particularly in the case of polyhedral approx-
imation. This point will be treated in details in the part dealing the intersection
of the flowpipe with hyperplanes or halfspaces. We also note that the first two for-
mulations require optimization techniques of in general piecewise linear functions.
The last one, however, is just a comparison between two values.

4.6. Intersection with Hyperplanes or Halfspaces
In this section, we will deal with the intersection of a convex set S with a hyper-
plane Hp “ �

x P R
n : dT x “ e

(
or a hyperspace Hs “ �

x P R
n : dT x ď e

(
. If we

furthermore take into consideration the particularity of their corresponding support
functions,

ρHpplq “
"

λe if l “ λd and λ P R

`8 otherwise (4.34)

ρHsplq “
"

λe if l “ λd and λ P R
`

`8 otherwise, (4.35)

the support functions of the considered intersections according to formula (4.31)
can be reduced to the minimization of the following univariate linear piecewise
functions as given in [71, 96]

ρSXHpplq “ infλPR pρSpl ´ λdq ` λeq , (4.36)

ρSXHsplq “ infλPR` pρSpl ´ λdq ` λeq . (4.37)

To solve this minimization problem, many methods have been already suggested.
In [71], the author adapted the dichotomous search technique already proposed
for zonotopes (5.4.2) to support functions. The method is, however, restricted
only for the intersection of a convex set S with a hyperplane Hp. The classical
descending search method was also suggested as an alternative to solve this problem.
Furthermore, a performance comparison between both methods was given. The
method proposed in [96], however, is an adaptation of the sandwich optimization
technique to this particular minimization problem.

4.6.1. From n to 2 Dimension and the Dichotomous Search
This method is suggested for computing an over-approximation of a convex set S
defined by its support functions in directions given by the template D “ tl1, . . . , lmu
and a hyperplane Hp “ �

x P R
n : dT x “ e

(
. The idea behind the dichotomous
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Figure 4.8.: Illustration of the dichotomous search method in relation with the com-
putation of the infinimum of the function hpθq.
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method proposed in [71] is, as already explained in Section 5.4.2, transforming
the n dimensional minimization problem in at most |D| two dimensional identical
problems ( |D|

2 `1 if L contains both lj and ´lj). Here |D| is the size of the template
of directions D. This transformation is a projection of the convex set S Ď R

n into the
plane spanned by the vectors d and lj, j P t1, . . . , mu, which is obtained by a simple
matrix multiplication S

p2
j “ Md,lj S. The hyperplane is therefore transformed into

a line L “ �px, yq P R
2 : x “ e

(
. In the second step, the coordinates of at maximum

two intersection points between the line L and S
p2q
j are computed. These correspond,

as given in [71], to the minima of the following function:

h : s0; πr Ñ R

θ ÞÑ ρMd,lj
Spvθq´e cosθ

sinθ “ ρSpMT
d,lj

vθq´e cosθ

sinθ

(4.38)

where vθ “ pcosθ, sinθqT is the direction defined by θ Ps0; πr. In fact, ρSpMT
d,lj

vθq “
ρSpcosθ n ` sinθ ljq. This support function defines in its turn the line Lθ : x cosθ `
y sinθ “ ρMd,lj

Spvθq. The intersection of this line with L leads to points in the form

P “ pe, yq, where y “ ρMd,lj
Spvθq´e cosθ

sinθ .
Furthermore, the Theorem 8.1 in [71], states that the function defined by (4.38) is
monotonic and unimodal and that its infinimum in s0, πr corresponds to the support
function of the intersection Sp2q X L in direction p0, 1qT :

infθPs0,πrhpθq “ ρSp2qXLpp0, 1qT q. (4.39)

The algorithm proposed in [71] (page 116) computes, however, the coordinate of
the support vector which is also an extreme point of the intersection line Sp2q X L
in direction p0, 1qT . The coordinate of the second extreme point is obtained when
considering the nD to 2D projection into the plane spanned by d and ´lj. This is
automatically achieved during the computation since our choice of the template of
directions D includes different directions with their opposites.

The idea behind this algorithm is to use an approximation approach to estimate
the infinimum of the function hpθq by using just support function techniques. As
illustrated in Figure 4.8, the approach consists of first choosing a search interval
rθ0; θ1s for which the support vectors Pθ0 and Pθ1 in the directions defined by θ0 and
θ1 are evaluated respectively. Second, the intersection point M “ pe, yminq between
the line L and the line Pθ0Pθ1 is computed. On the third step, we choose a new
angle θ P rθ0; θ1s. We opt in our implementation for the simple choice θ “ θ0`θ1

2
with which we compute Pθ “ pxθ, yθq and hpθq. Other choices can also be made.
For example, the normal direction to the line Pθ0Pθ1 can be taken as a pivot. This
choice was proposed as alternative in Algorithm 5.3. The choice of the new search
interval rθ0; θs or rθ; θ1s for the next iteration depends however on the position of Pθ

to the line L. This can be determined with a simple comparison of xθ with e. The
above three steps are repeated iteratively until ymax ´ ymin ď ε, where ε is a chosen
precision. The Algorithm 4.2 returns finally the value ymax “ minphpθq, ymaxq. To
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Algorithm 4.2 dichotomous search using support function
Input: ε, h, e, Md,lj , ρMd,lj

S

Output: ymax

1: θ0 :“ 0
2: θ1 :“ π
3: Pθ0 :“ Md,lj .ρSpMT

d,lj
vθ0q § compute the support vector

4: Pθ1 :“ Md,lj .ρSpMT
d,lj

vθ1q
5: ymin :“ ´8
6: ymax :“ 8
7: while pymax ´ yminq ą ε do
8: θ :“ θ0`θ1

2
9: Pθ :“ Md,lj .ρSpMT

d,lj
vθq

10: if xθ ă e then
11: Pθ1 :“ P
12: θ1 :“ θ
13: else
14: Pθ0 :“ P
15: θ0 :“ θ
16: end if
17: M “ pe, yminq :“ Pθ0Pθ1 X L
18: ymax :“ minphpθq, ymaxq
19: end while
20: return ymax

73



4. Support Function Technique for Computing Reachable Sets

compute the intersection in nD, the Algorithm 4.2 is called |D| times, and that for
each direction of the set D “ tl1, . . . , lmu.

As an alternative to the dichotomous search, the 2D minimization problem (4.39)
can also be solved by using pre-existing optimization methods and algorithms. The
MATLAB Optimization Toolbox, for example, offers the function fminbnd which
uses the golden section search method or the Parabolic Interpolation approach to
find a minimum of a unimodal function over a fixed interval. The golden search
method is principally similar to the dichotomous search. The difference prevails,
however, through using a constant factor -the golden factor- to reduce the size
of the search interval in each iteration. The decision on the choice between the
left and the right sides of the search interval as a new search interval depends
on the values of the function on its boundaries ([90] Section 10.2). The golden
search method approximates the function with a piecewise linear function while
the parabolic extrapolation approach fits the function with a parabola within the
search interval. For more details about optimization methods, we refer the reader
to the corresponding literature.

Based on the bracketing principle of the dichotomous and golden searches, many
proposals were suggested to improve the convergence rate. An interesting key sug-
gestion involves first considering a fixed number of points in the search interval for
which the function values are evaluated. A new point is then computed by using the
golden factor for example. A comparison of the function values on these different
points allows the determination of the new bracketing interval. The method stops
when a predefined precision is attained. The next section introduces an algorithm
based on this method for solving the problems (4.36) and (4.37) directly in nD
without recourse to 2D projections.

4.6.2. The Sandwich Algorithm
The minimization approach proposed in [96] combines the bracketing search method
with its dichotomous and golden ration alternatives for the choice of new bracket
points. A comparison of the function values on these points also assists in the
region elimination technique. Furthermore, for this last criteria, a lower bound for
the function is determined without any recourse to derivative calculation. This
lower bound helps in choosing the new bracketing interval. In fact, based on the
convexity property of the function f , the chord relating two points pxi, fpxiqq and
pxj, fpxjqq, xi ă xj given by:

Lij : y “ fpxjq ´ fpxiq
xj ´ xi

px ´ xiq ` fpxiq (4.40)

allows, as shown in Figure 4.9, a simultaneous determination of a lower bound of
the minimum of the function f outside the interval rxi, xjs. Concretely, this means
that @x R rxi, xjs , y ă fpxq.

This property will be later used to formulate an appropriate criteria for finding
a lower bound of the minimum of the function. This helps make the right choice of

74



4.6. Intersection with Hyperplanes or Halfspaces

           
 

 

 

 

 

 

 

 

  

) 

) 

 

 

 

 

 

 

Figure 4.9.: The chord relating two points pxi, fpxiqq and pxj, fpxjqq, xi ă xj is a
lower bound of fpxq outside rxi, xjs.
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Figure 4.10.: Decision about the choice of the bracketing interval depending on the
values of the function in x2 and x3. (a) Illustration as state machine.
(b) Illustration as functions.
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the next bracketing interval.
The solution proposed in [96] to the problems (4.36) and (4.37) begins with an initial
interval I0 in which four pivot points x1, x2, x3 and x4 satisfying the conditions
fpx1q ą fpx2q and fpx3q ă fpx4q are selected. The search interval is thereby
decomposed into subintervals. To decide on the new search interval, three different
possibilities or states S1, S2 and S3 depending on the values of the function on x2
and x3 are distinguished:

1. if fpx2q ą fpx3q ñ xmin P rx2, x4s ñ S1 (state S1 in Figure 4.10(a) and
function f1 in Figure 4.10(b))

2. fpx2q ă fpx3q ñ xmin P rx1, x3s ñ S2 ( state S2 in Figure 4.10(a) and
function f2 in Figure 4.10(b))

3. fpx2q “ fpx3q ñ xmin P rx2, x3s ñ S3 (state S3 in Figure 4.10(a) and
function f3 in Figure 4.10(b))

where xmin is the intended minimum.
In the new bracketing interval I1 “ rxi, xjs a new pivot x is then computed

• based on the bisection rule (x “ xi`xj

2 ), or

• by applying the golden ratio rule (xj´xi

x´xi
“ x´xi

xj´x “ 1`?
5

2 ) or

• as the abscissa of a particularly predefined lower bound of the function f
inside the interval rxi, xjs. This will be detailed below.

The above mentioned lower bound property is later used to determine the bracketing
interval by states S1 and S4.

Steps by state S1

The search interval for the state S1 corresponds to rx2, x4s. This can be split into
two subintervals rx2, x3s and rx3, x4s. To decide about the next bracketing interval,
two particular points are computed.

• The intersection point pα1, min1q between the chord L12 defined by the points
px1, fpx1qq and px2, fpx2qq and the chord L34 joining both points px3, fpx3qq
and px4, fpx4qq is first given (see Figure 4.12 and Figure 4.13).

pα1, min1q “ L12 X L34 (4.41)

• Second the intersection point pα2, min2q of the chord L23 defined by the points
px2, fpx2qq and px3, fpx3qq and the vertical through the point px4, fpx4qq,
which we note here for convenience L4, is determined (see Figure 4.12 and
Figure 4.13).

pα2, min2q “ L23 X L4. (4.42)
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Figure 4.11.: State machine describing further possible steps for S1 as initial state.
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Figure 4.12.: Illustration of the state S11.
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Figure 4.13.: Illustration of the state S12.

The next bracketing interval I1 corresponds to the subinterval in which min “
minpmin1, min2q is located. This means

• if min “ min1 then I1 “ rx2, x3s. That corresponds to the state S11 in
Figure 4.11. The pivot x is then computed by using the golden ratio rule or
the bisection rule. We opt for the last one because [96] exhibits no difference
in performance between both choices. We get hereby x “ x2`x3

2 . Depending
on the value of fpxq in comparison with fpx3q, three different states are
possible. Details of these steps are given by the state machine of Figure 4.11
and illustrated in Figure 4.12.

• if min “ min2 then I1 “ rx3, x4s. This however corresponds, however, to the
state S12 in Figure 4.11. The next pivot is x “ x3`x4

2 . Details of further steps
are given in Figure 4.11 and illustrated in Figure 4.13.

Depending on the comparison result between fpxq and fpx3q, the state S1 or S3 or
the five pivots state S4 is enabled according to the state machine of Figure 4.11.

Steps by state S2

The search interval for the state S2 corresponds to rx1, x3s. This can be split into
two subintervals rx1, x2s and rx2, x3s. For the choice of the next bracketing interval,
We proceed as by the state S1 and compute two particular points.
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Figure 4.14.: State machine describing further possible steps for S2 as initial state.
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Figure 4.15.: Illustration of the state S21.
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Figure 4.16.: Illustration of the state S22.

• We begin with the computation of the intersection point pα1, min1q between
the chord L12 joining the points px1, fpx1qq and px2, fpx2qq and the chord
L34 joining the points px3, fpx3qq and px4, fpx4qq (see Figure 4.15 and Figure
4.16).

pα1, min1q “ L12 X L34 (4.43)

• We then compute the intersection point pα2, min2q between the chord L23
joining the points px2, fpx2qq and px3, fpx3qq and the vertical through the
point px1, fpx1qq, which we denote here as L1 for convenience (see Figure 4.15
and Figure 4.16).

pα2, min2q “ L23 X L1 (4.44)

Depending on the location of min “ minpmin1, min2q, the next bracketing interval
I1 is therefore

• rx2, x3s if min “ min1. This corresponds to the state S21 in Figure 4.14
which is also illustrated in Figure 4.15. The new pivot is then given by
x “ x2`x3

2 . The enable condition to the next state is governed by the result
of the comparison between fpxq and fpx2q. Details of these steps and new
pivot-naming are given in the state machine of Figure 4.14.

• rx1, x2s if min “ min2. This corresponds to the state S22 in Figure 4.14. The
next pivot is x “ x1`x2

2 . Details of further steps are given in Figure 4.11 and
illustrated in Figure 4.16.
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Figure 4.17.: State machine describing further possible steps for S3 as initial state.

The result of the comparison between fpxq and fpx2q will trigger the decision about
the next state as illustrated in the state machine of Figure 4.14.

Steps by state S3

In this case, it is obvious from the condition fpx2q “ fpx3q that the bracketing
interval will be rx2, x3s. For the choice of the new pivot x, the maximum error rule
is in [96] adopted. This consists of first computing the intersection point

pα, minq “ L12 X L34 (4.45)

and second taking x “ α, as illustrated in Figure 4.18.
The algorithm terminates if fpxq “ fpx2q. Wherever this is not the case, the five
pivots state is selected (see Figure 4.17).

The five pivots state S4

To accelerate the search, the new pivot x is added to the already chosen four pivots
so that the search proceeds as below but with five pivots. A minor difference is
in the determination of the values min1 and min2. The search interval is, in this
case, rx2, x4s which can be split into rx2, x3s and rx3, x4s. The lower bound on the
minimum of the function f in rx2, x3s is given by the intersection point

pα1, min1q “ L12 X L34, (4.46)

whereas in rx3, x4s, this is given by

pα2, min2q “ L23 X L45. (4.47)

The interval where min “ minpmin1, min2q is located corresponds to the new
bracketing interval. Further computation steps are described by the state machine
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Figure 4.18.: Illustration of the state S3.

of Figure 4.19 and illustrated in Figure 4.20 and Figure 4.21. For the new pivot
the maximum rule is applied so that

x “
"

α1 if min “ min1
α2 if min “ min2.

(4.48)

The algorithms stops if fpxq “ fpx3q.

4.6.3. Optimization Techniques
As an alternative to the previous proposed methods, the minimization problems
(4.36) and (4.37) may also be solved using existing solvers. The MATLAB opti-
mization toolbox, for example, offers a wide range of derivatives and non-derivatives
based optimizers. It provides, for one, the derivative-free method fminsearch func-
tion and also the derivative based fminunc function to solve the unconstrained
optimization problem (4.36). The fminsearch function is built on the Nelder-Mead
simplicial direct search method. It compares the objective function at a finite num-
ber of points and decides whether to reflect, expand, contract or shrink the actual
simplex to replace the simplex vertex with the worst function value with a best one.
MATLAB offer two different algorithms for the derivative-based function fminunc.
The quasi-Newton method uses the information about the objective function and its
gradient to approximate the Hessian matrix and therefore build a quadratic approx-
imation of the objective function. The standard trust-region method approximates
in a predefined region the objective function with the two first terms of the Taylor
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Figure 4.19.: State machine describing further possible steps for S4 as initial state.
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Figure 4.20.: Illustration of the state S41.
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Figure 4.21.: Illustration of the state S42.
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expansion. Both functions fminsearch and fminunc are proposed as alternative op-
tions to solve the unconstrained optimization problem (4.36). On the other hand,
the handling of inequality guards requires the constrained optimization problem
(4.37) to be considered. For this kind of optimization problems, other techniques
are though required. The fmindnd MATLAB function uses the golden Search ap-
proach to solve such constrained problems for cases where the solution is far away
from the actual state and parabolic interpolation otherwise. The fmincon function,
however, offers the possibility to choose between different algorithms, the interior-
point, the trust-region reflective, the sequential quadratic programming (SQP) and
the active-set, to find the minimum for the problem (4.37). This section gives just
a brief list with a short description of the MATLAB optimization toolbox solvers
we proposed as alternative to the algorithms of sections 4.6.2 and 4.6.1. This work
does not intend to go deeper into convex optimization techniques. Relevant details
can be found in the corresponding literature, in particular the references [26] and
[79].

4.7. Handling Invariants with Support Function Techniques

In this section, we describe how the two different approaches for handling invari-
ants presented in Section 3.8 of 3 are formulated and implemented with support
functions. We suggest several modifications on the original algorithms proposed in
[71, 96] to circumvent some potential problems encountered during the implementa-
tion. Furthermore, we make some suggestions to enhance its efficiency and tighten
the over-approximation of the computed reachable set.

4.7.1. Classical Method for Handling Invariants

Invariants can be handled using the same methods as with guards. Principally, this
begins in each iteration with a collision detection check of the computed reachable
set with the invariant set and then the computation of the intersection in the case
of partial collision. It is however important to differentiate between the two types of
constraints because the behavior of the hybrid system after the collision detection
depends largely on the nature of the constraints. In fact, in the case of intersec-
tion with guards, the corresponding transition of the hybrid automaton is triggered.
However, in the case that the invariants are fulfilled (albeit partially), the hybrid
automaton remains in the same location. It hence makes sense to use the same
collision detection function as well as the same intersection computation method
for guards and invariant during the analysis process as proposed in Algorithm 3.2.
Alternatively, the property (4.33) of set intersection operation with support func-
tions facilitates the implementation of Algorithm 3.3 where invariants and guards
are treated separately.

85



4. Support Function Technique for Computing Reachable Sets

(a) (b) 

Figure 4.22.: The hybrid automata of the two-tank benchmark with different invari-
ant conditions within discrete modes.

4.7.2. Recursive Scheme Fusing Reachable Sets with Domain/Invariant
Conditions

This approach was first proposed in [71]. The resulting recursive scheme has already
been introduced in its general form in Section 3.8 with the equations (3.42) and
(3.43). If we now express these equations in terms of support functions and adopt
the property in equation (4.33) for the intersection, we obtain the following formula
for the computation of the polyhedral approximation Pk of the set Ω̃k

Pk “
mč

i“0

!
x : li

T .x ď min
´

ρΩk
pliq, mink´1

j“0ρIj pliq
¯)

(4.49)

where m is the number of directions in a predefined direction template D “
tl1, . . . , lmu.
The algorithm proposed in [71] computes the support function ρΩ̃plq of the reach-
able set Ω̃ in a given direction l. It first checks for an intersection of the computed
reachable set with the invariant I by testing, in each iteration, if the condition
ρΩ̃plq ě ´ρIp´lq holds. This last condition is valid for reachable sets entirely or
partially contained within the invariant. Figures 4.23 and 4.24 show the reachable
sets computed for the initial location of the two-tank benchmark of Figure 4.22(a).
In these figures, the whole flowpipe of the considered location without considering
the invariant is plotted. The reachable sets intersecting the invariant are marked in
red. The invariant set I described by the inequality x1 ` x2 ě 1.5 in Figure 4.22(a)
is outlined in blue. We note, for example, in Figure 4.23 that the set Ω0 in dark
blue is entirely inside the invariant. However, the set Ω1, outlined in dark blue in
Figure 4.24, partially intersects the invariant.

By applying the property (4.33), the intersection, if it ever exists, is then com-
puted. Otherwise, the algorithm terminates. We note that this algorithm requires
an evaluation of ρI in both direction l and ´l. For this reason, we decided to
extend this algorithm to allow a simultaneous computation of ρΩ̃plq and ρΩ̃p´lq
while executing the iteration. Since the direction template contains simultaneously
both directions and their opposites, this enhancement will drastically reduce double
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Figure 4.23.: The reachable set is entirely included in the invariant.
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Figure 4.24.: The reachable set is partly included in the invariant.
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Figure 4.25.: The reachable set is not included in the invariant.

evaluations of support functions. To count for the direction ´l, we added in our
algorithm 4.3 the condition ρΩ̃p´lq ě ´ρIplq to the while loop condition at line 13.
Furthermore, it may be observed, that the more relevant direction for the check
and computation of the intended intersection is the invariant direction lI . If for
an iteration k the intersection check in this direction fails, we can be sure that the
support functions computed for all the other directions in this iteration and the
next ones are irrelevant because they describe sets outside the invariant. In this
case, we only have to compute ρΩ̃1

, . . . , ρΩ̃k´1
for all directions. Otherwise, we have

to continue the computation until the condition k ă N is no longer fulfilled. This
case means that during the chosen time horizon T “ Nr, the reachable sets remain
inside the invariant. To account for both cases, two alternatives are possible. The
first one consists in storing, for each direction li, the number of iteration ki after
which no intersection is detected, taking their minimum min “ mini“1

m ki and com-
puting with that the support functions ρΩ̃j

pliq for j “ 1, . . . , min and i “ 1, . . . , m
representing the intended reachable sets. Alternatively, if lI is added in a prior
step at the top of the direction template D, the computation will therefore first
begin with this direction lI . We note thereby the number of sets intersecting the
invariant and regard it as the maximum number of iterations in the while loop for
further computations.
On the other hand, we added an if-condition -the negation of the while condition
without its right hand side- inside the while loop in line 31 of Algorithm 4.3. The
goal of this is to detect the first reachable set of the flowpipe leaving the invariant
completely and note its index.
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Algorithm 4.3 AlgoInv: Computing the intersection with the invariant while
computing reachable set inside a location.
Input: N , r, A, l, ρI , ρΩ0, ρVr

Output: ρΩ̃0
plq , . . . , ρΩ̃k´1

plq , ρΩ̃0
p´lq , . . . , ρΩ̃k´1

p´lq
1: k “ 1
2: r “ rold “ l § Initialization step
3: sold “ s´

old “ 0
4: hold “ h´

old “ h “ h´ “ `8
5: pΩ “ ρΩ0 pliq
6: p´

Ω “ ρΩ0 p´liq
7: pI “ ρI plq
8: p´

I “ ρI p´lq
9: I´ “ ´p´

I

10: I` “ ´pI § End of the initialization step
11: resultsp1, 1q “ min ppΩ, pIq
12: resultsp2, 1q “ min

`
p´

Ω , p´
I

˘
13: while presultsp1, kq ą“ I´q ^ presultsp2, kq ą“ I`q ^ pk ă Nq do
14: k “ k ` 1
15: r “ `

erA
˘T ˚ rold

16: s “ sold ` ρVr proldq
17: s´ “ sold ` ρVr p´roldq
18: pΩ “ ρΩ0 prq ` s
19: p´

Ω “ ρΩ0 p´rq ` s´
20: h “ min phold, pIq
21: h´ “ min

`
h´

old, p´
I

˘
22: pI “ ρI prq ` s
23: p´

I “ ρI p´rq ` s´
24: resultsp1, kq “ minppΩ, hq
25: resultsp2, kq “ minpp´

Ω , h´q
26: rold “ r
27: sold “ s
28: s´

old “ s´
29: hold “ h
30: h´

old “ h´
31: if resultsp1, kq ă I´ _ resultsp2, kq ă I` then
32: k “ k ´ 1
33: end if
34: end while
35: return resultsp1, 1q, . . . , resultsp1, kq, resultsp2, 1q, . . . , resultsp2, kq

For the purposes of illustration, we note in Figure 4.25 that the sets Ω3, Ω4 and
Ω5 verify the if-condition and are hence outside the invariant. The intended index is
equal to 3 here. We decided furthermore to treat the computation of the intersection
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of the initial reachable set Ω0 with the invariant in the initialization step to avoid
further computations in case of no intersection.

4.8. Handling Guards
As mentioned in Section 3.9, two tests must be done at the end of each iteration k to
compute the reachable set Ω̃k at a time point tk. The first test checks for intersection
with the invariant of the location. This was already dealt with in the former section.
The second test aims at checking for collision between the computed reachable set
Ω̃k and the guard condition G and to note, at the same time, the corresponding
iteration number. Since the intersection can take place for a number of successive
iterations, a kmin and a kmax marking the first and the last intersection detections
are noted. To compute the intersection in an upcoming step, two strategies may be
pursued. The support function of the intersection can be computed directly using
one of the methods presented in Section 4.5 after collision detection and that within
the same iteration resulting in the support function ρΩ̃int

k
“ ρΩ̃kXG describing the

set Ω̃int
k “ Ω̃k X G. All the reachable states which join the guard are enclosed in set

represented by the following support function maxk“kmax
k“kmin

ρΩ̃int
k

. This corresponds
to the post-clustering alternative introduced previously in Section 3.9 of Chapter 3.
The pre-clustering alternative computes first the support function maxk“kmax

k“kmin
ρΩ̃k

of the set
Ťk“kmax

k“kmin
Ω̃k and in a second step the support function of the intersection

with the guard min
´

maxk“kmax
k“kmin

ρΩ̃k
, ρG

¯
is computed. Once the intersection with

the guard is computed, the reachable set after the transition Ωtrans is obtained by
applying the following reset map Re to the resulting intersection.

Re : R
n ÝÑ R

n

X ÞÝÑ RepXq :“ RX ‘ W
(4.50)

where X Ď R
n, R P R

nˆn and W Ď R
n a convex set. The corresponding support

function is then
ρΩtrans plq “ ρY

`
RT l

˘ ` ρW plq (4.51)

where l is an arbitrary direction. A precise approximation Ωtrans of the intersection
demands the addition of the normal directions of the guards and the invariants to
the template of the support directions.
The resulting approximation will be consequently considered as the initial set of
the upcoming continuous mode.

4.9. Simultaneously Handling of Invariants and Guards
The idea proposed in Section 4.7.2 to count for the invariant condition while com-
puting the reachable sets can be also extended to guard conditions in the way
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suggested in [72]. The recursion for the computation of the polyhedral approxima-
tion Pk of the intersection of the reachable set inside a mode with the invariant and
the guard conditions at iteration k thereby takes the following form:

Pk “
mč

i“0

!
x : li

T .x ď min
´

ρΩk
pliq, ρGpliq, mink´1

j“0ρIj pliq
¯)

(4.52)

where m is the number of directions in a template D “ tl1, . . . , lmu which should
include in particular the normal directions describing the guard and invariant con-
ditions.
In [96], a slightly different strategy was suggested with the goal of higher degree of
precision of the approximation. It involves, besides the invariant I´ of the source
mode q´, the invariant I` of the transition target mode q`. In fact, it is not pos-
sible to proceed with the computation in the mode q` if its invariant can be never
fulfilled. For this reason, it makes sense to compute the following approximation
corresponding to the initial set of mode q`

Ωtrans “ “
R

`
Ω X G X I´˘ ‘ W

‰ X I` (4.53)

where Ω here denotes any reachable set. If we define the pre-image I˚ “ Re´1 pI`q
and consider the following lemma

Lemma 9. pR Ω ‘ W q X I` Ď R pΩ X I˚q ‘ W ,

the following new approximation can accordingly be derived

Ω̂trans “ R
`
Ω X G X I´ X I˚˘ ‘ W. (4.54)

It remains now to know how to practically compute the set I˚ for a target invariant
taking the following form I` “ �

x P R
n|Şq

i“1 ni
Tx ď ei

(
. Simple computation steps

lead to the following result I˚ “
!

x P R
n|Şq

i“1
`
RTni

˘T
x ď ei ` ρW p´niq

)
. The

template directions D once again should be extended with the directions RTni for
i “ 1, . . . , q.

4.10. Handling Spontaneous Transitions
Spontaneous transitions are in this context defined as transitions which can take
place arbitrarily. They are not triggered by a state-variable guard condition. They
are referred to as True transitions. To guarantee the enclosure of all reached states
in case of occurrence of such transitions, a jump to the target location is allowed
only if successive reachable sets computed in the source location are ε-equal, where
ε is the chosen tolerance. In this case, the reachability algorithm converges to a
fixpoint. We consequently treat these True transitions as fixpoint-triggered tran-
sitions. We are now left with finding a way to check for fixpoints with support
function techniques.
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4. Support Function Technique for Computing Reachable Sets

Lemma 10. Let S1, S2 Ă R
n be nonempty sets, and ε P R. The sets S1, S2 are

ε-equal if for all j P t1, . . . , mu

|ρS1 pljq ´ ρS2 pljq| ď ε. (4.55)

We use this lemma to check for a fixpoint. If this is reached after a certain
user specified number of iterations, it will be taken as the initial set for the target
transition.

4.11. Handling Time-Triggered Transitions

Time triggered transitios can be regarded as state-variable guard transitions, if the
time t is included as an ordinary state variable by adding a simple clock 9t “ 1
to the differential equations describing the continuous behavior of hybrid system
and by involving it in the guard conditions too. Another alternative is to allow,
depending on the objective, different time horizon choices for different locations.
By doing so, a transition will take place directly after computation termination in
the corresponding location.

4.12. MATLAB/Simulink Implementation

This section presents our first exploration prototyping MATLAB/Simulink imple-
mentation HyReach of the support function technique for the reachability analysis
of linear hybrid systems. Figure 4.26 shows the breakout of its main components.
It consists basically of an interactive graphical user interface (GUI) and a compu-
tation core (CC) exchanging information in the way illustrated in Figure 4.28. All
suggested scenarios for the flowpipe computation and above-detailed methods for
handling transitions have been modularly implemented within the CC of HyReach
as shown in Figure 4.28. This modular structure allows for flexible combination.
Through the GUI, the layout shown in Figure 4.27, the user can easily choose
between different scenarios and methods, decide about their combination and con-
figure the reachability analysis. For the construction of the flowpipe in continuous
modes following options are available.

• The NoScale scenario is an implementation of the first support function based
reachability algorithm proposed in [72]. This involves the Approach 1 of
Section 4.3.1 for over-approximating the input contribution and Scenario 1 of
Section 4.3.2 for the initial set.

• The ConstU scenario is based on the assumption that the input remains
practically constant within small time steps. The basic algorithm given in [21]
uses the Approach 3 of Section 4.3.1 for the input contribution and Scenarios
1, 2, and 3 of Section 4.3.2 for the initial set.
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Figure 4.26.: HyReach architecture.

• The SpaceEx scenario is the implementation of the Algorithm 4.1. The user
can choose between two initialization methods: the PreciseOmega0 initial
over-approximation and the SpaceEx over-approximation which correspond
respectively to the second and the third scenarios of Section 4.3.2. For the
input contribution Approach 2 of Section 4.3.1 is adopted.

• The AlgoInv scenario is the implementation of Algorithm 4.3 embedded in
Algorithm 3.3. It adopts Approach 2 of Section 4.3.1 for input contribution
and both approaches PreciseOmega0 and SpaceEx for the initial set over-
approximation.

• The AlgoInv2 scenario is the implementation of Algorithm 3.2 with the same
over-approximation choices as above.

In addition to these different scenarios for the flowpipe computation, it is also
possible to choose between different optimization algorithms required for the com-
putation of the support function. Besides the MATLAB optimization toolbox, the
CVX and the MPT-toolboxes are added as Plug-ins to extend the choice of opti-
mization algorithms.
The user also has the possibility to choose between the Box, Oct or User set-angle
options to generate a template of directions for the evaluation of the support func-
tions.
Choices are furthermore available for handling transitions with the different meth-
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Figure 4.27.: Screenshot of the GUI.

ods presented in this section combined with different clustering strategies. We dis-
tinguish here between guard conditions given as equalities/hyperplanes and those
described by inequalities/halfspaces.
For the intersection of reachable sets with a hyperplane following choices can be
made.

• The fminsearch option involves a direct Nelder-Mead sequential simplex al-
gorithm, part of the MATLAB optimization toolbox to solve the intersection
problem.

• fminunc provides an alternative iterative method for solving unconstrained
nonlinear optimization problems based on the Broyden Fletcher Goldfarb
Shanno (BFGS) approach.

• dichotomicSearch is the implementation of Algorithm 4.2 for the dichotomous
search method proposed in [71].

• RayAlgo is an enhancement of the sandwich approach suggested in [43] and
detailed in Section 4.6.2.

• fast intersection is an application of property 7 of support functions.

For the intersection with halfspaces, following options are made available.

• fminbnd is a combination of the golden section search and the parabolic in-
terpolation methods and is a part of the MATLAB optimization toolbox.
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Figure 4.28.: User setting possibilities for the configuration of the reachability anal-
ysis.

• fmicon is a Sequential Quadratic Programming-based (SQP) algorithm pro-
vided by the MATLAB optimization toolbox.

• RayAlgo as above.

• fast intersection as above.

Moreover, different strategies for picking the target location, in the case of many
resulting transitions, are placed at the disposal of the user. A choice between
Manual, First detected, Last detected, Most intersections and All options can be
made. With the All option, all possible runs through the hybrid automaton are
considered. The Manual option, however, allows the choice of the next target
location progressively during the computation. Flowpipes computed in different
locations as well as the intersection sets corresponding to different transitions are
saved in a tree structure. Each run through the hybrid automaton ends consequently
with a leaf. Backtracking is afterwards applied to retrieve previous states if the
Manual option or All option is set.
The HyReach GUI allows as shown in Figure 4.27 besides the setting of parameters

and the configuration of the reachability analysis, the loading and the editing of
parameters embedded in a graphical (*.mdl) or in a textual input model (*.m).
The graphical hybrid model is build in the MATLAB/Stateflow environment using
a slightly amended semantic. The MATLAB input file, however, describes the
hybrid automaton textually with our own specially conceived semantic. Examples
of both formats are given in Figure 4.29 and Figure 4.30 for the bouncing ball
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Figure 4.29.: Graphical input file of the bouncing ball example.

example. The textual input has shown its practice for large systems and for direct
capture of hybrid automaton parameters from the control file. This is especially
convenient if several controllers of the same system have to be tested.

After launching the analysis via the GUI, 2D-projections of the reachable sets
can be plotted and saved at the end of the computation. The time progress of the
computation is visualized by a color gradient, beginning with green sets and ending
with red ones. The enclosure of intersecting sets with guards are plotted in yellow.
In addition, information like the computation time and interval ranges can also be
surveyed via the GUI.

4.13. Experimentation

We evaluate our implementation with the benchmark suite of [33] available under
[61]. We select just some of them for the sake of brevity and present their corre-
sponding results to highlight important features of HyReach.

The benchmarks differ from each other not only with regards to their dynam-
ics but also to their state dimension and the number of modes and transitions.
Furthermore, the guard conditions can make an important difference between the
benchmarks as the number of equalities or inequalities can have a crucial impact of
the complexity. In addition, we include benchmarks with invariants in locations as
well as benchmarks with reset conditions in transitions. We first investigate features
such as the scalability with respect to the number of variables, locations and transi-
tions. We use for this investigation Intel Core i5-2520M @ 2.50GHz laptop with an
8GB RAM and MATLAB R2014a. We also select the options the MPT-CDD-Criss-
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function [states,q,qa,transitions,I,U,configration] = getBouncingBallInput_Inv 
% Bouncing Ball        
        % definition of locations --------------------------------------------- 
        % continuous dynamics in each state         
        states{1}.A = [0,1;0,0];         
        states{1}.b = [0;-9.81];    
        states{1}.B = [1 0;0 1]; 
        % invariant in each state         
        states{1}.C = [-1 0];         
        states{1}.d = [0];            
        q=[1]; % discrete states  
        qa=1; % initial mode        
        % definition of transitions --------------------------------------------          
        % guards d.x=e for each transition  
        transitions{1}.eguards_dir = [1 0]; 
        transitions{1}.eguards_val = [0];        
        % Inequalities guards d.x<=e for each transition  
        transitions{1}.iguards_dir = [0 1]; 
        transitions{1}.iguards_val = [0];        
        % Reset 
        transitions{1}.ResetMatrix = [1,0; 0,-0.6]; 
        transitions{1}.W = [0;0];          
        % start and end location of  transition nbr 1 
        transitions{1}.from = 1; 
        transitions{1}.to = 1;         
        % initial values -------------------------------------------------------         
        % initial set (as polyheder) 
        I.polyheder.C = vectorgenerator(2) ; 
        I.polyheder.d = [2;-2;0;0];        
        % input set (as zonotope) 
        U.zonotope.c=[0;0]; 
        U.zonotope.g=0.001*eye(2,2); 
        % input set (as box) 
        U.box = [0;0];       
        configuration.timehorizon = 0.8; % time horizon 
        configuration.timestep = 0.01; % timestep 

Figure 4.30.: Textual input file of the bouncing ball example.
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Cross algorithm for the support function computation and the fast-intersection for
both equality/inequality-guard intersections for all benchmarks. Other parameter
settings with the computation time and the obtained interval enclosures of the
reachable sets using HyReach are recorded in Table 4.2 for each benchmark. The
resulting reachable sets of the cruise control, the transient in flower, the two-tank
benchmarks and all navigation benchmarks described in [61] are shown for illus-
tration in Figure 4.31. The scalable H2-based platoon proposed in [75] for 5, 10,
15 and 20 vehicles corresponding respectively to systems of dimension 15, 30, 45
and 60 have been used as a testing benchmark. We note that we were able to get
the intended reachable sets for all tested benchmarks. Furthermore, that was also
possible with different scenario and option combinations.

In a further study, we carried out a comparative investigation of the impact of
different parameter setting choices and scenarios combinations on the efficiency of
the computation and the tightness of the reachable sets. With the bouncing ball
of Figure 4.29 as example, we underline the importance of the direction template
choice. We set the SpaceEx scenario with the SpaceEx initialization option ignoring
thereby the presence of the invariant. The resulting reachable sets are shown in
Figure 4.32.

We opt for the Box, the Oct and the User pi/6 and pi/10 options to carry out
this comparison analysis. We note, as expected, an accuracy improvement of the
approximation with an increasing number of support directions. This demands
nevertheless more computation effort. In fact, we remark an increase in the compu-
tation time around 1.89s for each new direction. However, it is hard to distinguish
a noticeable difference in the tightness of the flowpipes between the Figure 4.32.(c)
and Figure 4.32(d), in contrast to the large computation time difference between
these both choices. Consequently, a trade-off between tightness and efficiency must
be found for the direction choice. Next, we tested different proposed flowpipe sce-
narios on the two-tank example. We begin with the example of Figure 4.22(b)
without invariants. For comparison purposes, both scenarios for handling invari-
ants in modes, AlgoInv and AlgoInv2, are involved in this survey because they can
also treat such systems. We are interested in the computation time and the ac-
curacy of the over-approximation of the flowpipe. We address first the SpaceEx
Scenario and compare the results of both initial set options: the SpaceEx and the
PreciceOmega0. Figure 4.33 shows practically no difference in the tightness of the
resulting flowpipes. However, we note that the SpaceEx option is faster than the
PreciseOmega0 option for this example and in general for the suite of linear bench-
marks in [61]. In a second step, we compared the scenarios Noscale, ConstU with
both initial set options ConstU and SpaceEx. Figure 4.34 shows a small difference
in the tightness of the over-approximation of the obtained reachable sets between
the NoScale scenario and those computed with both remaining scenarios. The flow-
pipes issued from the last two scenarios are practically similar.

The computation time for the two-tank benchmark obtained with all possible
flowpipe scenarios and available initial set options are summarized in Table 4.3.
The ConstU and the NoScale scenarios are shown to be faster. However, the cor-
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Benchmark T(s) r
(s)

Max.
trans.

Flowp.
constr.

Init.
approx. Dir. Init./Inp.

set
Trans.
picker

Time
(s) Intervals

1. BB
Bouncing
ball

1 0.01 4 AlgoInv SpaceEx Oct x1=2,x2=0 First 33.499 x1:[0;2]
x2:[-6.289;3.762]

2. CM:
Colliding
masses

1 0.01 4 AlgoInv SpaceEx Oct a=0,b=3,
c=2,d=-1 First 64.417 a:[0;2], b:[2;3]

c:[-2;2], d:[-1;1]

3. CC:
Cruise
control

20 0.1 10 AlgoInv SpaceEx Oct v=30,x=0,
t=0 First 116.419

v:[2.587;30]
x:[0;127.988]
t:[0;2.5]

4. Flower:
transient
in flower

20 0.05 10 AlgoInv2 SpaceEx Oct
-2.5<=x1
<=-1.5,
x2=0

Most 19.606 x1:[-2.694;2.422]
x2:[-2.224;2.637]

5. TT:
2-tanks 2 0.01 4 SpaceEx SpaceEx Oct

1.5<=x1
<=2.5,
x2=1/
-0.1<=u
<=0.1

All 119.214 x1:[-1.366;2.5]
x2:[-5.229;2.036]

6. Nav3x3 20 0.05 4 AlgoInv2 SpaceEx Oct

xx=0.5,
yy=1.5
-0.01<=vx,
vy<=0.01

Last 179.783

xx:[0.5;2.031]
yy:[0.942;1.5]
vx:[-0.010;0.749]
vy:[-0.527;0.010]

7. Nav4x4 20 0.05 8 AlgoInv SpaceEx Oct

xx=0.5,
yy=1.5
-0.01<=vx,
vy<=0.01

Last 629.664

xx:[0.5;3.771]
yy:[0.318;2.048]
vx:[-0.010;0.919]
vy:[-0.526;0.948]

8. Nav5x5 20 0.05 10 AlgoInv SpaceEx Oct

3.3<=xx,
yy<=3.4
-0.01<=vx,
vy<=0.01

Last 557.346

xx:[0.945;3.4]
yy:[1.0;4.446]
vx:[-0.882;0.299]
vy:[-0.969;0.569]

9. 3R-2MH:
3 rooms+
2 movable
heaters

2 0.01 8 AlgoInv2 SpaceEx Oct x1=x2=
x3=20 First 446.036

x1:[12.275;20]
x2:[13.997;20.536]
x3:[12.664;21.270]

10. 5D-LSS 2 0.01 10 ConstU ConstU Oct

a=3,b=4,
c=d=e=0
/
-0.01<=u
<=0.01

First 87.160

a:[-4.185;4.538]
b:[-1.163;6.824]
c:[-4.018;1.129]
d:[-0.681;8.308]
e:[-0.791;5.421]

11. 3V-P:
3-vehicle-
platoon

22 0.1 3 ConstU ConstU Oct
a=b=c=
d=e=f=
g=h=i=0

First
(Fixpoint

Tol.:
0.001
check

every r)

378.133

a:[-28.540;4.479]
b:[-8.171;8.184]
c:[-15.803;9.163]
d:[-25.634;6.274]
e:[-10.740;10.919]
f:[-23.285;12.267]
g:[-11.061;13.316]
h:[-9.252;8.729]
i:[-18.304;10.517]

12. 5V-P:
5-vehicle-
platoon

15 0.1 1 ConstU ConstU Oct

d1=d2=
d3=d4=
d5=d6=
d7=d8=
d9=d10=
d11=d12=
d13=d14=
d15=0

First
(irrelevant) 52.911

d1:[-31.438;3.958]
d2:[-7.369;8.219]
d3:[-10.450;2.830]
d4:[-15.228;2.109]
d5:[-3.516;3.602]
d6:[-10.994;3.262]
d7:[-9.690;1.411]
d8:[-2.141;2.206]
d9:[-11.288;3.533]
d10:[-5.927;0.890]
d11:[-1.275;1.321]
d12:[-11.459;3.700]
d13:[-2.836;0.433]
d14:[-0.600;0.625]
d15:[-11.539;3.779]

Table 4.2.: Setting and results of the testing benchmark list.
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Figure 4.31.: The resulting flowpipes of some selected benchmarks. (a) The flowpipe
of the cruise control as projected on the plane (t,v). (b) The flowpipe
of the trajectory in flower benchmark. (c) The flowpipe of the two-
tank benchmark. (d) The flowpipe of the navigation 3x3 benchmark
as projected on the plane (xx,yy). (e) The flowpipe of the navigation
4x4 benchmark as projected on the plane (xx,yy). (d) The flowpipe
of the navigation 5x5 benchmark as projected on the plane (xx,yy).
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Figure 4.32.: Illustration of the impact of the choice of the direction template on
the performance of the analysis using the bouncing ball example.

Scenario SpaceEx ConstU NoScale AlgoInv AlgoInv2
Init. set
Approx. SpaceEx Precise

Omega0 SpaceEx Precise
Omega0 ConstU NoScale SpaceEx Precise

Omega0 SpaceEx Precise
Omega0

Time (s) 36.957 40.141 36.3664 38.364 6.297 6.354 74.876 76.944 82.852 105.831

Table 4.3.: Computation times for different scenarios and different allowed initial
set over-approximations for the two-tank example with an initial set
1 ď x1 ď 1.8, x2 “ 1, an input u “ 0, a time horizon T “ 2s, a time
step r “ 0.01, max. transitions equal to 3 and the oct as direction
choice.
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Figure 4.33.: Reachable sets of the two-tank benchmark obtained with an initial
set 1 ď x1 ď 1.8, x2 “ 1, an input u “ 0, a time horizon T “ 2s, a
time step r “ 0.01, max. transitions equal to 3 and oct as direction
choice. (a) Flowpipe construction with the SpaceEx scenario and the
SpaceEx initial set over-approximation. (b) Flowpipe construction
with the SpaceEx scenario and the PreciseOmega0 initial set over-
approximation.
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Figure 4.34.: Reachable sets of the two-tank benchmark obtained with an initial set
1 ď x1 ď 1.8, x2 “ 1, an input u “ 0, a time horizon T “ 2s, a time
step r “ 0.01, max. transitions equal to 3 and oct as direction choice.
(a) Flowpipe construction with the NoScale scenario. (b) Flowpipe
construction with the ConstU scenario and the ConstU initial set over-
approximation. (c) Flowpipe construction with the ConstU scenario
and the SpaceEX initial set over-approximation.
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Figure 4.35.: Reachable sets of the two-tank benchmark obtained with an initial
set 1 ď x1 ď 2.2, x2 “ 1, an input ´0.1 ď u ď 0.1, a time hori-
zon T “ 2s, a time step r “ 0.1, max. transitions equal to 6, pi/20
as direction choice. (a) Flowpipe construction with the AlgoInv sce-
nario and the SpaceEx initial set over-approximation. (b) Flowpipe
construction with the AlgoInv2 scenario and the SpaceEx initial set
over-approximation.

responding flowpipes over-approximations are wider than those obtained with the
other scenarios, although the difference is not considerable. It is recommended to
avoid the choice of AlgoInv or the AlgoInv2 scenarios for systems without invariants.

We compared both scenarios dedicated for hybrid automaton with invariants
within continuous modes using the two-tank example of Figure 4.22(b) with an
initial set 1 ď x1 ď 2.2, x2 “ 1, an input in ´0.1 ď u ď 0.1 and two different choices
of the direction template: oct and pi/20. We note for the first direction choice
that the AlgoInv scenario is faster than the AlgoInv2 scenario. For this reason,
it was expected that for an increasing number of directions, this tendency would
be significantly more noticeable. However, because of our parallel implementation
of the AlgoInv2 algorithm, which was not possible for the AlgoInv algorithm, we
observed the contrary during our tests. The AlgoInv2 is shown in Table 4.4 to be
faster for large templates of directions.

Concerning the tightness of the flowpipe, Figure 4.35 shows small differences
between both scenarios.
Next, we tested different proposed intersection methods for equality guards first
using the two-tank benchmark without invariants beginning with an initial of to
1 ď x1 ď 1.8, x2 “ 1 for an input ´0.1 ď u ď 0.1, and with max. transitions of 2
and 4 subsequently. We note no difference in the tightness of the resulting reachable
sets as well as practically similar computation times. We repeated, the same test
in a second step with the transient in flower benchmark presented in [36]. We
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4. Support Function Technique for Computing Reachable Sets

Flowpipe AlgoInv AlgoInv2 AlgoInv AlgoInv2
Directions oct oct pi/20 pi/20
Time (s) 23.712 26.014 57.079 35.143
x1 [-1.262802;2.200000] [-1.255453;2.200000] [-1.262802;2.200000] [-1.255453;2.200000]
x2 [-0.648818;1.632380] [-0.655425;1.651646] [-0.645434;1.621805] [-0.652982;1.644013]

Table 4.4.: Time complexity and interval hull of the two-tank benchmark obtained
with an initial set 1 ď x1 ď 2.2, x2 “ 1, an input ´0.1 ď u ď 0.1,
a time horizon T “ 2s, a time step r “ 0.1, max. transitions equal
to 6, different direction choices and available algorithms for handling
invariants with the SpaceEx option for the initial set.

chose the following initial conditions ´2.5 ď x1 ď 1.5 ď ^x2 “ 0, a time horizon
T “ 2s and a time step r “ 0.01s. We set the SpaceEx scenario with the SpaceEx
initial set option and used the CDD Criss-Cross algorithm of the MPT-toolbox for
computing the support function. We also selected the option Most intersections
for handling transitions and the Oct option for the directions. Furthermore, we set
the inequality guards to fast intersection, although irrelevant here. We performed
the same test with the different available options for handling equality guards with
a maximum of one transition 1 and subsequently increased to four. We remark
that all proposed equality guards intersection methods return practically the same
results for the reachable sets and almost the same computation times. We note a
duration of the computation of about 10s for one transition and around 48s for four
transitions and practically the same resulting flowpipes. In a next step, we set a
maximum number of eight transitions and chose the direction option User: pi/11.
We notice in Table 4.5 a remarkable difference in the computation time between
different options in favor of the fast intersection option. With regards to the the
tightness of the reachable sets, no difference could be distinguished between the
different methods.

Eq. guards methods fast-int dic. search RayAlgo fminunc fminsearch
Time (s) 295.058 333.610 321.655 344.344 350.772

Table 4.5.: Computation time and of the transition in flower benchmark with the
initial condition ´2.5 ď x1 ď 1.5 ď ^x2 “ 0, a time horizon T “ 2s
and a time step r “ 0, 01s, max. transitions equal to 8, pi{11 for the
direction choice, the SpaceEx scenario with the SpaceEx initial set op-
tion, the CDD Criss-Cross algorithm and different proposed algorithms
for handling equality guards.

4.14. Conclusion
This chapter treated the reachability problem of linear time invariant hybrid sys-
tems with uncertain inputs using support functions for presenting reachable sets.
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4.14. Conclusion

We gave an overview of the definition and imported properties of support functions
which were used to derive different algorithms for the computation of the flowpipe
inside discrete modes with and without invariants. We also discussed the different
options for the computation of an over-approximation of the initial set and of the
input contribution. In addition, a variety of methods for checking and computing
the intersection of the flowpipe with guards described as hyperplanes or halfspaces
are described in detail. These scenarios and intersection methods were implemented
within our prototyping MATLAB toolbox HyReach to allow for a user-configurable
reachability analysis. To pave the way towards this goal, HyReach offers a GUI
to facilitate the parameter setting and the combination of different options. Dif-
ferent optimization algorithms from the MATLAB optimization toolbox, the MPT
and the CVX toolboxes are furthermore made available for the computation of the
support function. In addition, the user can choose between different transition pick-
ing strategies if multiple transitions are triggered within the chosen time horizon.
Results are provided in form of 2D-plots and interval ranges.

We present some experiences with HyReach and a comparative evaluations of the
available methods and algorithms using a suite of benchmarks. We note, in general,
that the performances of these different methods and algorithms are similar for
small dimensional benchmarks with small number of transitions and small number
of directions. Otherwise, these methods and algorithms were shown to perform
differently depending on the dimension and the dynamics of the tested benchmark.
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5. Zonotopic Approximation for
Computing Reachable Sets

5.1. Introduction
Looking back over the last ten years, the review of different reachability approaches
in relation with the geometric set choice has revealed that zonotopes, apart from
support functions, provide the best trade-off between efficiency and tightness. It was
furthermore found that approaches based on those sets allow up to 100-dimensional
systems to be treated within an acceptable time [47, 71]. We therefore dedicate
this chapter, to review, improve and combine various zonotopic techniques and
approaches originating from different domains, like reachability analysis and control
design. We aim to implement these different methods in the same framework for a
user-configurable reachability analysis.

Zonotopes are closed under linear and Minkowski sum, properties that make
them computationally attractive. But operations like intersection, union, often
required in handling of invariants oder guards, lead in general to the loss of the
original zonotopic form. This hence demands for appropriate techniques to find a
tight zonotopic approximation for the resulting set. Apart from the complexity of
reachable set computation inside continuous modes, the handling of intersections of
reachable sets with guard conditions is also a challenge. While the use of zonotopes
to represent, on one hand, reachable sets has been proven to be efficient [48], an
intersection with a guard leads to a loss of the zonotopic form and, on the other
hand, requires particular techniques to find the intersection.

The problem of computing an intersection of a hyperplane guard with a zonotope
has been solved in [48] by transforming the multidimensional intersection problem
into a series of two-dimensional problems applying projections. A zonotope/poly-
tope transformation based solution was furthermore suggested in [5] to handle poly-
topic guards. An intersection with a tight parallelotopic over-approximation of
the zonotope was computed using the MPT-toolbox, which was thereafter over-
approximated using parallelotopes.

In the field of control theory, zonotopes have been proposed as a solution for the
computational complexity problem of set-membership estimation methods. Algo-
rithms for zonotope/strip intersection based on the minimization of the segments
or the volume of the resulting zonotope were suggested in [1]. This approach was
then elaborated in [69, 106] to handle zonotope/polytope intersection. In addition
to these methods, Singular Value Decomposition SVD-based zonotope/hyperplane
and zonotope/zonotope intersection techniques were also proposed in [67].
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5. Zonotopic Approximation for Computing Reachable Sets

This chapter describes a variety of methods and approaches for computing zono-
tope/hyperplane, zonotope/halfspace and zonotope/polyhedron intersections be-
sides the classical operations with zonotopes. We also propose and investigate
various strategies for handling the bundle of zonotopes intersecting the guard. A
performance comparison study of those methods is furthermore conducted in the
context of guard intersections and handling transitions separately and in combina-
tion.

5.2. Zonotopes

A zonotope is generally defined as the image of a unit hypercube under affine
(but not necessary invertible) transformation. A zonotope is a centrally symmetric
convex polytope. Each facet of a zonotope corresponds to a congruent facet on the
other side. Equivalently, a zonotope can also be defined as the Minkowski sum of a
finite set of segments. The directions of these segments are given by a list of vectors
called the generators of the zonotope.

Definition 9. A zonotope Z of order r “ p{n is defined by its center c P R
n and

its generators g1, . . . , gp P R
n

Z “ pc, xg1, . . . , gpyq
“ tx P R

n | x “ c ` řp
i“1 sigi, ´1 ď si ď 1u (5.1)

According to this definition, the maximum number of vertices V corresponds to
the extreme points of an n-dimensional zonotope given by p generators (p ě n)
with V ď 2p. However, the exact upper bounds for the number of vertices V and
the number of facets F of such a zonotope are shown [38] to satisfy

V ď 2
n´1ÿ
i“0

pp´1
i q (5.2)

F ď 2p p
n´1q (5.3)

The upper bounds for any fixed n is for F of order Oppn´1q and for V of order
Oppp´1qn´1q. Consequently the number of extreme points and the number of facets
of a zonotope are polynomially bounded. The vertices describe the V-representation
whereas the facets define the H-representation of a zonotope. Therefore the compu-
tation challenge is to find efficient polynomial algorithms and to choose efficiently
between the V- and the H-representation of zonotopes during the implementation.

Alternatively, an equivalent definition of zonotopes involving matrix is frequently
used.
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5.3. Properties and Geometric Operations of Zonotopes

Definition 10. Let G P R
nˆp be the matrix given by the generators of the zonotope

g1, . . . , gp P R
n as columns.

G “
¨̊
˝ g1,1 ¨ ¨ ¨ g1,n

...
...

gn,1 ¨ ¨ ¨ gn,n

‹̨‚ (5.4)

A zonotope Z of order p{n is then defined by

Z “ c ‘ GBp

“ tc ` Gs : s P Bp | B “ r´1, 1su (5.5)

For implementation issues, it is practical to represent a zonotope as a matrix Z
where c, gi are their columns.

Z “
¨̊
˝ c1

... G
cn

‹̨‚ (5.6)

This representation simplifies the manipulation of zonotopes and allows for an effi-
cient implementation particularly under MATLAB.

5.3. Properties and Geometric Operations of Zonotopes
Zonotopes possess several properties that make them particularly attractive for
use as approximating set in reachability analysis. They are closed under linear
transformation, Minkowski sum and difference. This means in practice, that the
testing for intersection between zonotopes can otherwise be described as testing
for point inclusion in their Minkowski difference [54] as seen in the next sections.
Furthermore, their implicit representation as a list (or a matrix) of vectors facilitates
the implementation of such operations.

Linear image

Let L be a linear transformation and Z “ pc, xg1, . . . , gpyq a zonotope. The linear
image of a zonotope is given as follows

LZ “ pLc, ă Lg1, . . . , Lgp ąq .

Minkowski sum and convex hull

Let Z1 “ pc1, xg1, . . . , gpyq and Z2 “ pc2, xh1, . . . , hpyq be two zonotopes. The
Minkowski sum of two zonotopes is given by

Z1 ‘ Z2 “ pc1 ` c2, xg1, . . . , gp, h1, . . . , hpyq .
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5. Zonotopic Approximation for Computing Reachable Sets

The convex hull CHpZ1YZ2q can be over-approximated with the following zonotope
ZCH

ZCH “ 1
2

$’’’’’’’’’’&’’’’’’’’’’%

pc1 ` c2, xg1 ` h1, . . . , gp ` hp, c1 ´ c2,
g1 ´ h1, . . . , gp ´ hpyq if p “ q

pc1 ` c2, xg1 ` h1, . . . , gq ` hq, c1 ´ c2,
g1 ´ h1, . . . , gq ´ hq, 2gq`1, . . . , 2gpyq if p ą q

pc1 ` c2, xg1 ` h1, . . . , gp ` hp, c2 ´ c1,
h1 ´ g1, . . . , hp ´ gp, 2hp`1, . . . , 2hqyq if p ă q.

(5.7)

Convex hull of Z and erAZ

In general, the convex hull of two zonotopes is not a zonotope. In [47] an approxi-
mation of convex hull of a zonotope Z and its image with the linear transformation
erA is proposed.

CHpZ, erAZq Ď P (5.8)

where

P “ p c`erAc
2 , ă g1`erAg1

2 , . . . , gp`erAgp

2 , c´erAc
2 , g1´erAg1

2 , . . . , gp´erAgp

2 ąq (5.9)

These operations involve a concatenation of the generators of both zonotopes, which
lead to a significant increase in the number of generators of the over-approximating
zonotope. To have some control on the complexity, a global maximal order for zono-
topes is often fixed in advance in combination with an order reduction operation.

Order reduction operation

Many approaches have been proposed to reduce the order of zonotopes. In general,
a zonotope O “ pc, xg1, . . . , grnyq of order r can be reduced to a zonotope of order
q by replacing the npr ´ q ` 1q less significant generators with their interval hull.
To decide about the choice of generators, different sorting methods can be used.
We make use of the method proposed in [47] which reduces the order by one by
applying the following hard sorting criterion.
Let O “ `

c,
@
g1, . . . , gpq`1qn

D˘
be a zonotope satisfying

}g1}1 ´ }g1}8 ď . . . ď ››gpq`1qn
››

1 ´ ››gpq`1qn
››8 .

We construct the zonotope pO “ `
c,
@
Q, g2n`1, . . . , gpq`1qn

D˘
where Q P R

nˆn is the
diagonal matrix that satisfies

Qii “ ř2n
j“1

ˇ̌
gi

j

ˇ̌
, i “ 1, . . . , n

gi
j is the ith component of gj . The obtained zonotope has hence the order q and

satisfies O Ď pO.
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5.4. Zonotope/Hyperplane Intersection

The next sections describe various approaches for intersection operations of zono-
topes with different geometric shapes. We devote Section 5.4 to outline techniques
for detecting and computing the intersection of a zonotope with a hyperplane. Sec-
tion 5.5 describes zonotope/halfspace detection and intersection methods whereas
Section 5.6 presents an extension of these methods to polyhedron. For the zono-
tope/zonotope intersection, various detection and over-approximating approaches
are discussed in Section 5.7.

5.4. Zonotope/Hyperplane Intersection
The intersection of a zonotope with a hyperplane is in general not a zonotope. The
computation of the intersection with a zonotope is found to be a difficult problem.
Different methods have been proposed to solve this problem. A trivial method
considers a zonotope as an ordinary polytope and uses existing methods to ob-
tain a polytope as a resulting intersection and subsequently compute a zonotopic
approximation of the result. The difficulty thereby lies in the complexity of the
transformation of a zonotope into a polytope and vice-versa. In [5], different meth-
ods for the transformation of a zonotope from its generator representation to the
halfspace representation as well as over-approximation techniques of polytopes by
zonotopes are proposed and numerically evaluated. In [49], however, a dichotomous
based algorithm for the computation of an intersection of a zonotope in its genera-
tor representation with a hyperplane was suggested. The idea behind this method
is to transform the intersection problem from higher to a two dimension space so
that several intersections of a 2-dimensional zonotope with a plane can be com-
puted. Moreover in [1], a method was proposed to compute a family of zonotopes
parameterized by a vector λ including the intersection of a zonotope and a strip. A
hyperplane can be considered as a particular strip. Two optimization approaches
were also proposed to minimize the size criterion of the resulting zonotope. The first
approach consists of minimizing the segments of the zonotope whereas the second
one minimizes the volume of the intersection. In addition, [67] proposed algorithms
for the computation of a zonotope over-approximation of the intersection of a zono-
tope with a hyperplane using singular value decomposition (SVD) technique.
We will focus on methods directly using the generator representation. Methods
making use of polytopes are not considered here. In this section, we describe the
methods regarded in [49], [1], [67] in detail. We suggest implementations that im-
prove on efficiency and propose detailed algorithms for the final implementation.
Furthermore, inspired from these methods, we develop new approaches and algo-
rithms for handling the problem of zonotope/hyperplane intersection.

5.4.1. Intersection Check Between a Zonotope and a Hyperplane
For the computation of the intersection, we first have to know when the transition
is triggered. This demands a check for collision between the reachable sets and
the guard expressed in a form of a hyperplane. A check of no-emptiness of the
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5. Zonotopic Approximation for Computing Reachable Sets

-d 

d 

Figure 5.1.: Support hyperplanes of a zonotope in direction d and ´d.

intersection of a zonotopic reachable set Z “ pc, xg1, . . . , gpyq and a guard defined
as Hp “ tx P R

n : dT .x “ eu is done based on following condition:

pZ X Hp ‰ Hq ô
´

Dα “ pα1, . . . , αpq P Bp | dT .c ` ři“1
p dT .gi.αi “ e

¯
. (5.10)

This consequently leads to the following detection collision condition between a
zonotope and a hyperplane

pZ X Hp ‰ Hq ô
´`

e ´ dT .c
˘ P

”
´ři“1

p

ˇ̌
dT .gi

ˇ̌
,
ři“1

p

ˇ̌
dT .gi

ˇ̌ı¯
. (5.11)

This condition, as formulated in [49], can be retrieved using support hyperplanes.
As illustrated in Figure 5.1, the zonotope Z is confined between two supporting
hyperplanes. The first corresponds to the support function in direction d and
the second is defined by the support function in the opposite direction ´d. The
support function of the zonotope Z in the direction d is equal to qu “ dT .c `ři“1

p

ˇ̌
dT .gi

ˇ̌
whereas in the direction ´d is given by ql “ dT .c´ři“1

p

ˇ̌
dT .gi

ˇ̌
. Hence,

an intersection of the zonotope Z with the hyperplane is possible if and only if

ql ď e ď qu. (5.12)

5.4.2. From Dimension n to Dimension 2
In [49], the problem of computing an over-approximation for the intersection of
a zonotope Z “ pc, xg1, . . . , gpyq with a hyperplane Hp “ tx P R

n : dT .x “ eu,
c, g1, . . . , gp, d P R

n and e P R, is reduced, according to Algorithm 5.1, to a problem
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5.4. Zonotope/Hyperplane Intersection

of computing an intersection of a 2-dimensional zonotope, also called zonogon, with
a plane. This is illustrated in Figure 5.2 for the hyperplane defined by x “ 0. For
this purpose, a set of orthonormal vectors D “ tl1, . . . , lqu base of Hp is chosen. For
each j, j P t1, . . . , qu, we compute the zonogon Z

p2q
j resulting from the projection

Πpd,ljq
Πpd,ljq : R

n Ñ R
2

x ÞÝÑ pdT .x; lTj .xq “ Md,lj x
(5.13)

of the zonotope Z on the plane defined by the vector pair pd, ljq:

Z
p2q
j “ `pdT .c; lTj .cq, @pdT .g1; lTj .g1q, . . . , pdT .gp; lTj .gpqD˘ (5.14)

where p2q refers to the dimension two. In the same way, we define the line L,
projection of the hyperplane Hp on the same plane:

L “ �px, yq P R
2 : x “ e

(
(5.15)

Algorithm 5.1 Transforming a zonotope in several zonogons by 2D-projections

Input: Z “ pc, G “ xg1, . . . , gpyq, Hp “ �
x P R

n : dT x “ e
(

Output: Z
p2q
1 , ..., Z

p2q
r

1: rl1, l2, ..., lrs “ nullpdT q § orthonormal basis of Hp
2: for j “ 1 to r do
3: Z

p2q
j “ `pdT .c; lTj .cq, @pdT .g1; lTj .g1q, . . . , pdT .gp; lTj .gpqD˘

4: end for
5: return Z

p2q
1 , ..., Z

p2q
r

The next step consists in computing in dimension two and for each j P t1, . . . , qu
a supremum point pe; Mjq and an infinimum point pe; mjq corresponding both to
the intersection of the zonogon Z2

j with the straight line x :“ e (see Figure 5.3). As
result, we obtain the polyhedron P defined by

P “ �
x P R

n : @ j P t1, . . . , qu, mj ď lTj .x ď Mj

(
(5.16)

from which a parallelotopic approximation can be computed.

Zonogon/line intersection

A trivial method to compute the intersection of a zonogon with a line is to determine
the edges of the zonogon which intersect this line. This involves, in general, two
edges of the zonogon. That claims, however, the computation of a list of at most
2p vertices according to the following equation:

v “ c `
pÿ

i“1
sigi, si “ ˘1 (5.17)
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Z

0: xG

(a) An example of a zonotope/hyperplane (x “ 0) intersection in 3D.

(b) Projection on the plane (x,y) corre-
sponding here to Zp2q

1 the xy view
of (a).

(c) Projection on the plane (x,z) corre-
sponding here to Zp2q

2 the xz view
of (a) and .

Figure 5.2.: Example of zonotope/hyperplane intersection using the ND-2D trans-
formation.
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1M

1m

(a) Supremum M1 and infinimum m1 of
the intersection of the zonogon Z

p2q
1

with the line x “ 0.

1M

1m

(b) Computing M1 and m1.

2M

2m

(c) Supremum M2 and infinimum m2 of the
intersection of the zonogon Z

p2q
2 with

the line x “ 0.

2M

2m

(d) Computing M2 and m2.

Figure 5.3.: Computing the supremum and infinimum of the zonotope/hyperplane
intersection of the example of Figure 5.2a
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5. Zonotopic Approximation for Computing Reachable Sets

However, many of the 2p combinations are interior points. So that only the 2p
vertices corresponding to the extreme points of the zonogon must be at the end
extracted. Classical algorithms start with a vertex P0 of the zonogon (say the
point with the lowest x-coordinate) and sorts the rest of the points in an angular
order. The lowest vertex can be obtained by pointing all generators upwards and
subtracting them recursively from the center of the zonogon. The generators are
thereby automatically sorted angularly. Taking into account that edges of a zonogon
are segments defined by rP, P ` 2gs, where P is a vertex and g a generator from
the sorted generator list, consecutive edges are computed and tested for intersection
with the line L. The drawback of this method is that a scan of all vertices and a
test of intersection for all edges is inavoidable. We propose in the next sections two
different zonogon/line intersection methods. We first begin with our method based
on a vertices sort according to their distance and their position to the line L. The
second method proposed in [49] uses dichotomous method for the search of edges
intersecting the line L.

Sorting the vertices of the zonogon

The idea behind this algorithm is to sort the 2p vertices of the zonogon Z
p2q
j “

pc, xg1, . . . , gpyq beginning with the one closer to the line L. The method proposed
here is valid for lines defined by L “ �

u “ px; yq P R
2 : dT .u “ e.

(
unlike the di-

chotomous method, which is restricted to lines parallel to the y-axis.
We define the set zb “ pv1, v2, ..., v2pq of the extreme points vk of Z

p2q
j where

k P t1, . . . , 2pu. The sort criterion for the elements of zb is minpˇ̌abspdT .zb ´ eqˇ̌q.
As shown in Figure 5.4, if we sort the elements of zb beginning with the one nearest
the line L, the first point of the sorted set will be the first point Pl1p1 of the first
intersecting line l1. The second point of the same intersecting line Pl1p2, is then
the nearest point to the line but from the other side (see Algorithm 5.2 lines 9, 12,
19 and 22 ). For this reason, we divide the set zb in two subsets: the set of points
located on the right of the line zbR and the rest in zbL. We therefore distinguish
between following cases.

• Cases in which the first point and the second point in the sorted array are
situated on different sides of the line (Figure 5.4 black points) contribute
directly to the determining of the first intersecting line l1 of the zonogon.
The first point Pl2p1 of l2, however, will be

the last element of:

#
zbR, if Pl1p2 P zbR

zbL, if Pl1p2 P zbL

(5.18)

The second point Pl2p2 of the second intersecting line l2 (Figure 5.4 3) corre-
sponding to P6) is then the next point in the original sorted set.
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5.4. Zonotope/Hyperplane Intersection

Algorithm 5.2 Compute zonogon/line intersection points

Input: Z
p2q
j “ pc, xg1, . . . , gpyq, L “ �

u “ px; yq P R
2 : dT .u “ e

(
Output: Extreme points of intersecting edges with line L

1: Compute the array zb of the extreme points v of Z
p2q
j

2: npts “ lengthpzbq
3: dzb “ dT .zb
4: Sort vertices starting from nearest to the line L
5: if dzbp1q ´ e ă 0 then
6: il “ findpdzb ´ e ă 0q § indexes of points in zb on the left of L
7: nil “ lengthpilq § their number
8: if dzbp2q ´ e ă 0 then
9: il1p2 “ npts § index of point 2 of line 1

10: il2p1 “ nil § index of point 1 of line 2
11: else
12: il1p2 “ 2
13: il2p1 “ npts ´ nil ` 1 § index of point 1 of line 2
14: end if
15: else
16: il “ findpdzb ´ e ą 0q § indexes of points in zb on the right of
17: nil “ lengthpilq § their number
18: if dzbp2q ´ e ą 0 then
19: il1p2 “ npts § index of point 2 of line 1
20: il2p1 “ nil § index of point 1 of line 2
21: else
22: il1p2 “ 2
23: il2p1 “ npts ´ nil ` 1 § index of point 1 of line 2
24: end if
25: end if
26: if nil “ 1 then
27: il2p2 “ 1 § if only 1 point
28: else
29: il2p2 “ il2p1 ` 1 § index of point 2 of line 2
30: end if
31: return Pl1p1 “ zbp1 : 2, 1q, Pl1p2 “ zbp1 : 2, il1p2q, Pl2p1 “ zbp1 : 2, il2p1q,

Pl2p2 “ zbp1 : 2, il2p2q
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Figure 5.4.: Principle of computing the intersection points according to Algorithm
5.2 adopting a vertex sorting method.

• Otherwise, if the first point and the second point in the sorted array are
situated on same side of the line (see Figure 5.4 green points), then Pl1p2 will
be the last point in the sorted set. The points Pl2p1 and Pl2p2 defining the
second intersecting line are determined in the same way as before.

We propose the Algorithm 5.2 for the implementation of this method. We do not
directly manipulate the elements of the set zb, but only their indexes. As a result,
we obtain four points Pl1p1, Pl1p2, Pl2p1, Pl2p2 defining both intersecting lines l1 and
l2 of the zonogon Z

p2q
j with the line L and that for each direction lj .

Dichotomous search of intersecting edges

The naive way to search for an element in an ordered set is to look at the elements
in the order they appear, starting from the first element. However, the efficiency of
the search may be enhanced by picking one element of the set (often the middle) as
a pivot, and then deciding according to the search criteria which side of the pivot is
of interest. The half set on the other side will be then automatically pruned. This
procedure is therefore applied on the remainder set recursively. This is called the
dichotomous search. In [49], the authors adapted it to search for the edges of the
zonogon Z

p2q
j intersecting a line L.

The goal is, in fact, to find the vertices of the two edges of the zonogon Z
p2q
j inter-
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5.4. Zonotope/Hyperplane Intersection

Algorithm 5.3 Compute the minimum zonogon/line intersection point

Input: Z
p2q
j “ pc, xg1, . . . , gpyq, L “ �px; yq P R

2 : x “ e
(

Output: m the minimum y-coordinate of the zonogon/line intersection points
1: Pmin “ c
2: for i “ 1 to p do
3: if (ygi ă 0) or (ygi “ 0 and xgi ă 0q) then
4: gi “ ´gi § force generators to point upwards
5: end if
6: Pmin “ Pmin ´ gi § lowest vertex
7: end for
8: if xPmin ă e then
9: G “ tgk|xgk

ą“ 0u § take only vertices on the right of Pmin

10: else
11: G “ tgk|xgk

ă“ 0u § take only vertices on the left of Pmin

12: end if
13: s “ ř

gPG 2g § vector chosen as pivot
14: while size(G)ą 1 do
15: so=null(sT ) § orthonormal to s
16: G1 “ �

gk P G | gT
k .so ą 0

(
§ generators above the pivot

17: G2 “ �
gk P G | gT

k .so ă 0
(

§ generators under the pivot
18: s1 “ ř

gPG 2g
19: Pminnext “ Pmin ` s1
20: if (xPmin ď e and xPminnext ě e) or (xPmin ě e and xPminnext ď e) then
21: G “ G2
22: s “ s1
23: else
24: G “ G1
25: s “ s ´ s1
26: Pmin “ Pminnext

27: end if
28: end while
29: Pminnext “ Pmin ` s
30: m “ yPmin ` pe ´ xPminq ˚ pyPminnext ´ yPminq{pxPminnext ´ xPminq
31: return m
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5. Zonotopic Approximation for Computing Reachable Sets

Algorithm 5.4 Compute the maximum zonogon/line intersection point

Input: Z
p2q
j “ pc, xg1, . . . , gpyq, L “ �px; yq P R

2 : x “ e
(

Output: M the maximum y-coordinate of the zonogon/line intersection points
1: Pmax “ c
2: for i “ 1 to p do
3: if (ygi ą 0) or (ygi “ 0 and xgi ą 0q) then
4: gi “ ´gi § generators to point downwards
5: end if
6: Pmax “ Pmax ´ gi § highest vertex
7: end for
8: if xPmax ă e then
9: G “ tgk|xgk

ą“ 0u § take only vertices on the right of Pmax

10: else
11: G “ tgk|xgk

ă“ 0u § take only vertices on the left of Pmax

12: end if
13: s “ ř

gPG 2g § vector chosen as pivot
14: while sizepGq ą 1 do
15: so=null(sT ) § orthonormal to s
16: G1 “ �

gk P G | gT
k .so ą 0

(
§ generators over the pivot

17: G2 “ �
gk P G | gT

k .so ă 0
(

§ generators under the pivot
18: s1 “ ř

gPG 2g
19: Pmaxnext “ Pmax ` s1
20: if (xPmax ď e and xPmaxnext ě e) or (xPmax ě e and xPmaxnext ď e) then
21: s “ s1
22: else
23: G “ G2
24: s “ s ´ s1
25: Pmax “ Pmaxnext

26: end if
27: end while
28: Pmaxnext “ Pmax ` s
29: M “ yPmax ` pe ´ xPmaxq ˚ pyPmaxnext ´ yPmaxq{pxPmaxnext ´ xPmaxq
30: return M
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Figure 5.5.: Principle of the dichotomous search for the minimum intersection point
according to algorithm 5.3 adopting the method proposed in [49].

secting the line. For computing the minimum intersection point, the lowest vertex
of the zonogon is first determined. For this purpose, the generators are forced to
point upwards and then subtracted consecutively from the center of the zonogon.
Thereafter, only the set of generators driving the vertices of the zonogon to the
other side of the line are sought out to build the set G. To avoid a full scan of
the set of all the generators (g1, . . . , gq, q ď p) in G, this one is hence split into
a set G1 of generators on the left of a pivot s and G2 on the right of it. For the
choice of the pivot s, it is important to remark, as explained in [49] and shown
in Figure 5.5, that the line L intersects either the edge

”
Pmin; Pmin ` ř

gPG1
2g

ı
or the edge

”
Pmin ` ř

gPG1
2g; Pmin ` ř

gPG 2g
ı

of the zonogon, where Pmin is the
currently computed vertex of the zonogon. Consequently that justifies the choice of
s “ ř

gPG1
2g as pivot. In [49], this choice was therefore justified by the absence of

correlation with the position of the intersecting line. At the end of the search only
one generator remains. The different computation steps of the minimum intersec-
tion point are elaborated in Algorithm 5.3. Nevertheless, the worst case complexity
remains quadratic.

A new start with the highest vertex of the zonogon therefore leads to the com-
putation of the maximum intersection point. According to Algorithm 5.3, the
generators are, in this case, forced to point downwards. We also have to change the
set of generators in the dichotomous search accordingly.
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5. Zonotopic Approximation for Computing Reachable Sets

5.4.3. Zonotope/Strip Intersection
In [1], methods were proposed to bound the intersection of a zonotope,a strip with
a family of zonotopes parameterized by the vector λ. The choice of the parameter
λ affects the size and the bounds of the intersection. In [1], the following property
was proved:

Property

Given a zonotope Z “ c ‘ GBp and a strip S “ �
x P R

n :
ˇ̌
bT x ´ d

ˇ̌ ď σ
(

and the
vector λ P R

n, if

• pcpλq “ c ` λpd ´ bT cq,
• pGpλq “ “pI ´ λbT qG σλ

‰
.

then Z X S Ď pZpλq “ pcpλq ‘ pGpλqBp`1.
Henceforth, if we take σ “ 0 in the definition of a strip S, we obtain the classical
definition of a hyperplane H “ �

x P R
n : bT x “ d

(
. Therefore, we use this prop-

erty to compute the intersection of a zonotope with a hyperplane.
To minimize the size criterion of the obtained zonotope, two approaches were pro-
posed. The first one minimizes the volume of the intersection given by the following
equation:

V olp pZpλqq “ 2n
řNpn,pq

i“1
ˇ̌
1 ´ bT λ

ˇ̌ |detpAiq|
`2n

řNpn´1,pq
i“1 σ |detrBi vis|

ˇ̌
vT

i λ
ˇ̌ (5.19)

where

• Npn, mq denotes the number of ways to choose n elements from a set of m
elements.

• Ai denotes each of the different matrices that can be obtained by choosing n
columns from matrix G.

• Bi denotes each of the different matrices that can be obtained by choosing
n ´ 1 columns from matrix G.

• vi is a vector orthonormal to the image of Bi.

The second proposed approach minimizes the size of pZpλq by reducing the norm
of the generators given by the columns of the matrix pGpλq. Taking the Frobenius
norm of the matrix pGpλq leads to the optimum λ˚ computed as follows:

λ˚ “ G GT b

bT G GT b ` σ2 (5.20)

We opt for the second approach in our study, because of the direct availability of
different parameters and its relative simplicity in formulation compared to the first
approach.
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5.4. Zonotope/Hyperplane Intersection

5.4.4. Zonotope/Hyperplane Intersection using Singular Value
Decomposition (SVD)

In [67], an algorithm for the computation of the intersection of a zonotope Z “
c ‘ GBp with a hyperplane H “ �

x P R
n : bT x “ d

(
based on singular value

decomposition of matrices was proposed.
Let x P R

n,

x P Z X H ô Ds P r´1, 1sp { x “ c ` Gs ^ bT x “ d
ô Ds P r´1, 1sp { x “ c ` Gs ^ vT s “ e

(5.21)

where v “ GT b and e “ d ´ bT c. Therefore computing an approximation for the
intersection of a zonotope with a hyperplane can be regarded as the problem of
finding an outer approximation set for the values s P r´1, 1sp verifying As “ e
where A is the line vector vT . A solution for this problem can be computed using
SVD, even if the matrix A is singular or close to singular.

Definition

A singular value decomposition of a m ˆ n matrix A with m ě n is a factorization
A “ USV T where U is a m ˆ m matrix satisfying UT U “ I, V is a n ˆ n satisfying
V T V “ I and S an m ˆ n diagonal matrix S satisfying S “ diagpα1, α2, . . . , αnq,
where α1 ě α2 ě . . . ě αn ě 0 are the singular values of A.
It can be proved that if rankpAq “ r then α1 ě α2 ě . . . ě αr ą 0, and αr`1 “
αr`2 “ . . . αn “ 0.
The singular values are the nonzero square roots of the eigenvalues of one of the
matrices AAT or AT A. The eigenvectors of AAT , called the left singular vectors,
define the columns of matrix U while the eigenvectors of AT A are the right singular
vectors which specify the rows of matrix V .
The base of the abstract space defined by the rows of the matrix V can be split in
two sets. The first set, given by the matrix V0, defines the kernel of the matrix A.
The supplement V1 of V0 defines the complement subspace. The SVD can then be
rewritten as follows:

A “ USV T “ `
U1 U0

˘ˆS1 0
0 0

˙ˆ
V T

1
V T

0

˙
(5.22)

where U “ `
U1 U0

˘
, V “ `

V1 V0
˘

and S1 is the diagonal matrix of the nonzero
singular values of A. Let σ1 and σ0 be the coordinates of s in the new base, then

s “ V1σ1 ` V0σ0. (5.23)

The equation As “ b can again be expressed as

U1S1V T
1 pV1σ1 ` V0σ0q “ b (5.24)

so that σ1 “ S´1
1 UT

1 b is hold. Owing to this fact that σ0 “ V T
0 s and s P r´1; 1sp,

σ0 must be in the zonotope with the origin as center and having the columns of
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5. Zonotopic Approximation for Computing Reachable Sets

the matrix V T
0 as generators. Consequently, an approximative set of s solution of

As “ b with the constraint s P r´1; 1sp is the zonotope Zs defined by its center
cs “ V1S´1

1 UT
1 b and its generators given by the matrix V0V T

0 . For the special case
A “ vT , the SVD of the matrix A takes a particular form with

U1 “ 1, U0 “ H, S1 “ }v}2 , V1 “ v{ }v}2 , V0 “ ℵpvq (5.25)

where V0 “ ℵpvq is the orthonormal base of the kernel of vT .
The intersection of the zonotope Z “ c ‘ GBp with the hyperplane
H “ �

x P R
n : bT x “ d

(
is hence approximated by the zonotope

Zint “ xcint, Rinty ,
cint “ c ` Gcs, Rint “ GRs, cs “ v.pd ´ bT cq{vT v, Rs “ V0V T

0 .
(5.26)

The collision detection check can be integrated in the algorithm for computing
the intersection when using SVD since the consistency check according to condition
(5.12) is directly derived with the computation of the vector v “ GT b. That results
in the Algorithm 5.5 as proposed in [67].

Algorithm 5.5 Zonotope/hyperplane intersection using SVD

Input: Z “ c ‘ GBp, Hp “ �
x P R

n : bT x “ d
(

Output: Zint

1: v “ GT b
2: e “ d ´ bT c
3: M “ vT signpvq
4: collision “ p´M ď eq ^ pe ď Mq
5: if collision then
6: V0 “ ℵpvq § orthonormal base of the kernel of vT

7: cint “ c ` G.v.pd ´ bT cq{vT v
8: Rint “ GV0V T

0
9: else

10: cint “ H, Rint “ H
11: end if
12: result: cint, Rint, collision

5.4.5. Comparison of Zonotope/Hyperplane Intersection Methods
In this section, we carry out an efficiency comparison of the abovementioned meth-
ods implemented with MATLAB for the computation of the intersection of a zono-
tope and a hyperplane. We use random generated 3D-zonotopes with a growing
number of generators and the hyperplane Hp “ �

x P R
3 : p1 0 0q .x “ 0

(
. The time

complexity results are summarized in Table 5.1.
The results reveal that the time complexity for both methods based on 2D-

projections grow significantly with the number of generators. However, the time
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Figure 5.6.: Zonotopic approximation of Z1 X H resulting from (c) zonotope/strip,
(d) SVD-based, (e) dichotomous search and (f) vertices sorting algo-
rithms.
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Figure 5.7.: Zonotopic approximation of Z2 X H resulting from (c) zonotope/strip,
(d) SVD-based, (e) dichotomous search and (f) vertices sorting algo-
rithms.
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Num. of genarators SVD Zon./Strip Dichotomous search Vertices sorting
20 0.043 0.043 0.083 0.077
30 0.045 0.043 0.077 0.072
40 0.045 0.044 0.087 0.078
80 0.045 0.045 0.127 0.091

160 0.045 0.044 0.214 0.140
320 0.047 0.046 0.598 0.325
640 0.069 0.048 4.705 2.355

1280 0.171 0.050 43.839 22.174
2560 0.883 0.052 425.668 214.953
5120 5.069 0.055 3867.330 1990.890

Table 5.1.: Computation time (in s) of the four proposed zonotope/hyperplane in-
tersection methods with a growing number of generators.

complexity of our vertices sorting algorithm seems to be better as that of the di-
chotomous search. For a number of generators larger than 1280, we observed an
increase in the computation time of the SVD-based method. Hence, the effect of
the number of generators on the time complexity in the SVD method appears to be
less pronounced as in the 2D-projection methods. The Zonotope/strip intersection
method also appears not to be heavily affected by the number of generators.

We next compare the tightness of the zonotopic approximation of the zono-
tope/hyperplane intersection resulting from different methods. For illustration
purposes, we randomly created two different 3D-zonotopes Z1 and Z2 with 20 gen-
erators and use the hyperplane as defined above. The result shown in Figure 5.7,
5.6 reveals an exact equality of the sets obtained by the 2-D projection methods.
The same observation can be made for the zonotope/strip and SVD-based method
too. Nevertheless, it should be noted that these latter methods yielded tighter
approximates than those of the 2D projection methods (see Figure 5.7(b), 5.6(b)).
This is due to our choice of the projection directions. In fact, for this comparison
particular choices of the hyperplane and the orthonormal base are made. As later
shown in Section 5.11, other choices might result in a tighter, but not necessarily
hyper-rectangle approximation.

5.5. Zonotope/Halfspace Intersection
We now consider the intersection of a zonotope Z “ c ‘ GBp with a halfspace
Hs “ �

x P R
n : dT x ď e

(
. We adopt the method proposed in [106] which first

determine a tight strip over-approximation of the zonotope SZ in direction d. As
explained in Section 5.4.1, the support functions qu “ dT .c`ři“1

p

ˇ̌
dT .gi

ˇ̌
in direction

d and ql “ dT .c ´ ři“1
p

ˇ̌
dT .gi

ˇ̌
in the opposite direction ´d are computed resulting

in
SZ “ �

x P R
n : ql ď dT x ď qu

(
. (5.27)

For the intersection check, three cases illustrated in Figure 5.8 can be differentiated:

127



5. Zonotopic Approximation for Computing Reachable Sets

(a) (b) (c) 

Figure 5.8.: Collision check zonotope/halfspace. (a) No intersection (b) Partial en-
closure (c) Total enclosure.

• Z X Hs “ H if ql ą e (see Figure 5.8(a)),

• Z X Hs “ Z if qu ď e (see Figure 5.8(c)) and

• Z X Hs “ Zint ^ Zint ‰ H ^ Zint ‰ Z if ql ď e ă qu (see Figure 5.8(b)).

We note that a non-empty intersection, corresponding to the last two cases, is al-
ways confined between two halfspaces Hs and H “ �

x P R
n : ´dT x ď ´ql

(
(see

Figure 5.8) which consequently limit the supporting strip approximating the in-
tended intersection. This is then expressed as follows:

SZXHs “ �
x P R

n : ql ď dT x ď e
(

“ �
x P R

n :
ˇ̌
dT x ´ e`ql

2
ˇ̌ ď e´ql

2
(

.
(5.28)

The original problem of computing an approximation for the intersection Z X Hs

is thereby reformulated to find an intersection between a zonotope Z and the strip
SZXHs . This problem has been already treated in Section 5.4.3.

5.6. Zonotope/Polyhedron Intersection
With the knowledge that a polyhedron P “ tx P R

n : D.x ď Eu with D P R
mˆn

and E P R
m is none other as the intersection of m halfspaces Hi

s “ tx P R
n : xdi, xy “ eiu,

the intersection Z X P is computed by calling the zonotope/halfspace intersection
method m times as explained in the previous section.

5.7. Zonotope/Zonotope Intersection
In this section, we are concerned with the computation of the intersection between
guards given in form of zonotopes and reachable set. This involves the problem of
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the intersection between two zonotopes which results, in general, in a non-zonotope
and introduces new complexity issues. However, recent works [53], [67] have pro-
posed two different approaches for the approximation of this intersection with a
zonotope. The approaches in [53] appeals optimization techniques. The algorithm
proposed in [67], however, uses SVD. We intend to overview all available algorithms
for zonotopic operations. We first begin with the collision detection check between
two zonotopes. This particular test, unlike the cases with hyperplanes or halfspaces,
is not obvious. This appeals for more elaborated geometric techniques.

5.7.1. Zonotope/Zonotope Collision Detection
Various approaches were proposed to check for the intersection between convex
bodies in general. Hence, most of them are restricted to 3D-problems [107, 108].
An adapted version of the Gilbert-Johnson-Keerthi (GJK) algorithm as well as an
approach based on proper values and vectors were suggested in [67, 68] to solve the
fault diagnostic correction problem with the use of zonotopes.

The Gilbert-Johnson-Keerthi (GJK) algorithm

The GJK algorithm is an algorithm originally proposed for the computation of
the distance between two 3D-objects [28, 46]. In [83], the method was extended to
multidimensional convex polyhedra by using support vectors. The distance between
two zonotopes Z1 and Z2 is given by

dpZ1, Z2q “ min t}v1 ´ v2} | v1 P Z1 ^ v2 P Z2u . (5.29)

The collision detection problem between two zonotopes is transformed into an
equivalent problem checking for the inclusion of the origin in the Minkowski dif-
ference Z “ Z1 a Z2. This latter problem is in turn equivalent to the problem of
computing the distance of Z to the origin expressed as follows:

dpZ1, Z2q “ }vpZ1 a Z2q} “ }vpZq} (5.30)

where vpZq denotes the nearest vertex to the origin in Z.
As we are only interested in the collision detection between two zonotopes and
not in the computation of the distance between them, we use the separating-axis
version of the GJK-algorithm (SA-GJK) proposed in [83]. The algorithm constructs
in each new iteration k a new simplex Sk Ď Z “ c ‘ GBp by adding the nearest
support vector wk to the origin with a new computed direction ´vk and dropping
up the furthest. Support vectors are recursively computed according to wk “
c ` GT .sign

`´vk
T GT

˘
. The new supporting direction vk is the solution of the

quadratic optimization problem formulated for searching the nearest vertex to the
origin in Sk. The formulation uses the fact that the closest vertex v to the origin is
a linear combination of all vertices in Sk where the sum of the coefficients is equal
to 1. As shown in Algorithm 5.6, the recursion is repeated until

vT .w ą 0 ô 0 R Z. (5.31)
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Figure 5.9.: The algorithm 5.6 ends with the extreme vertex wk of Z in direction
vk with a fulfilled stop criterion vk

T .wk ą 0 [67].

This means, as illustrated in Figure 5.9, that the origin is outside Z. Consequently,
if we revert to the original problem, this proves the existence of a separating plane
between Z1 and Z2. We adopt the adaptation of the GJK algorithm proposed in
[67] for which a MATLAB implementation has been suggested. This adaptation
is described by Algorithm. 5.6. The drawbacks of the GJK algorithm reported
in [82, 105] like the termination condition, the impact of the finite precision arith-
metic and some geometric aspects must be taken into consideration. In [82, 105],
these problems were discussed and enhancement were suggested. However the rec-
ommended SA-GJK implementation adapted for zonotopes [67] is open to improve-
ment with regards to the termination conditions and limitation of finite precision
error propagation.

Regarding the geometric aspect, two constellations causes the algorithm to loop
infinitely according to [107]. The first constellation occurs when the simplex S is
oblong shaped and vpZq is an internal point of S. In this case, two vertices of
S may be so close to another that the algorithm will compute the same support
point in successive iterations. The second problem occurs if vpZq lies close to the
diagonal of an oblong facet of Z causing the algorithm to alternate also between the
same two points. Those problems happen potentially when Z1 and Z2 are closed
to each other and have almost the same size [82, 107]. That consequently results
to oblong-shaped Minkowski difference. In the case of guard intersection, however,
special situations are unlikely to be encountered owing to the difference in shape
and complexity between the zonotope describing the guard or the invariant and the
zonotope enclosing the reachable set.
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5.7. Zonotope/Zonotope Intersection

Algorithm 5.6 An adapted version of the GJK algorithm for the zonotope/-
zonotope collision detection [67].

Input: Z1 “ c1 ‘ G1Bp1, Z2 “ c2 ‘ G2Bp2

Output: nv
1: G “ rG1 ´ G2s
2: c “ pc2 ´ c1q
3: p “ p1 ` p2
4: v “ c
5: S “ H
6: repeat
7: w “ c ` G signpGT .p´vqq § the extreme vertex in the direction ´v
8: if vT .w ą 0 then
9: nv “ 0

10: end if
11: v “ vpCHpS Y twuqq § the nearest vertex to the origin in CHpS Y twuq
12: S “ smallest tX Ď S Y twu | v P CHpXqu
13: until v “ 0
14: nv “ 1
15: return nv

A sub-optimal algorithm for zonotope/zonotope collision detection

In [67], an alternative to the GJK algorithm was proposed. The author aimed
to overcome the iterative aspect of the GJK algorithm with this alternative. We
consider two zonotopes Z1 “ c1 ‘ G1Bp1 and Z2 “ c2 ‘ G2Bp2 with B “ r´1, 1s.
The Minkowski difference is equal to Z “ Z1 aZ2 and Z “ c ‘GBp with c “ c1 ´c2,
G “ rG1 ´ G2s and p “ p1 ` p2. Based on the convexity of zonotopes following
equivalences are deduced:

Z1 X Z2 “ H ô 0 R c ‘ GBp

ô Dl | 0 R lT c ‘ lT GBp

ô Dl | ´ lT c R lT GBp

ô Dl | ´ lT c R “´ ››lT G
››

1 ,
››lT G

››
1
‰ psee also (5.11)q

ô Dl | ˇ̌
lT c

ˇ̌ R “
0,

››lT G
››

1
‰

ô Dl | ˇ̌
lT c

ˇ̌ ą ››lT G
››

1

(5.32)

The problem of collision detection is, hence, formulated as an optimization problem
aimed at finding a direction l˚ maximizing the following function:

f1plq “
ˇ̌
lT c

ˇ̌
}lT G}1

. (5.33)
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5. Zonotopic Approximation for Computing Reachable Sets

In [67], however, a suboptimal solution was proposed optimizing the following func-
tion instead of the function f1 :

f2plq “
››lT c

››
2

}lT G}2
“ lT ccT l

lT GGT l
. (5.34)

This comes back to the problem of finding a maximum proper value of the matrix
rccT GGT s, the proper vector of which is the intended solution l˚. The collision
test consists then in verifying the condition:ˇ̌̌

l˚T c
ˇ̌̌

ą
›››l˚T G

›››
1

. (5.35)
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Figure 5.10.: Method to find an li (here l1 or l4) verifying (5.32) [67].

Figure 5.10 shows this condition to be fulfilled for two directions l1 and l4.

Comparison and evaluation of both detection collision methods

We aim in this section to evaluate and compare the performances of the overviewed
zonotope/zonotope collision detection methods. We tested the algorithm in cases
of no intersection (Table 5.2) as well as by intersections (Table 5.3).
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5.7. Zonotope/Zonotope Intersection

Number GJK sub-optimal
of itera average min max average min max

genarators tions Time(s) Time(s)
1. 3 7 0.0150 0.0131 0.0405 7.2547e´5 6.4926e´5 0.0029
2. 4 5 0.0077 0.0071 0.0184 6.8522e´5 6.4926e´5 5.5475e´4

3. 6 5 0.0115 0.0107 0.0206 7.5608e´5 6.5337e´5 0.0036
4. 20 4 0.0059 0.0051 0.0175 7.6822e´5 6.5337e´5 0.0024
5. 30 5 0.0077 0.0071 0.0191 6.8560e´5 6.5337e´5 5.7735e´4

6. 40 4 0.0054 0.0051 0.0726 6.8914e´5 6.5337e´5 4.9927e´4

7. 80 5 0.0089 0.0081 0.0243 8.0463e´5 6.4515e´5 0.0038
8. 160 11 0.0365 0.0334 0.0764 7.2075e´5 6.7803e´5 0.0015
9. 320 5 0.0105 0.0086 0.0311 8.2204e´5 6.8624e´5 0.0052
10. 640 5 0.0078 0.0071 0.0191 8.7771e´5 7.4788e´5 0.0032
11. 640 5 0.0094 0.0087 0.208 7.9087e´5 7.4377e´5 5.4817e´4

12. 1280 5 0.0079 0.0072 0.0174 9.1605e´5 8.4240e´5 7.4049e´4

13. 2560 5 0.0092 0.0072 0.0458 1.1813e´4 1.1342e´4 6.8542e´4

14. 5120 6 0.0166 0.0133 0.0600 1.9954e´4 1.4917e´4 0.0048

Table 5.2.: Estimation of the average, min and max computation times of the GJK
and the sub-optimal MATLAB implementations for collision detection
of two intersecting zonotopes Z1pc1 “ r´1; 0; 1s, G1 “ r1 1 2; 1 1 1; 1 ´
2 1sq and a randomly generated zonotope Z2 with a growing number of
generators.

We supposed the guard conditions to be represented by the zonotope Z1 and
the reachable set to be approximated by the zonotope Z2. This latter is chosen
randomly and the number of its generators could be arbitrary augmented. We gave
an estimation of the average computation time by running each algorithm 10000
times with the same inputs. We noted also the minimum and the maximum time
values. It should be pointed out here that the computation time increase slightly
with the number of generators particularly by the sub-optimal algorithm. The
results of the GJK algorithm show a significant increase of the computation time
with the number of iterations. This in turn is clearly shown to depend more on
the form, the orientation and the position of the zonotope Z to the origin as on
its complexity. To justify this observations, we introduced the zonotopes (Table
5.210.,11., Table 5.3 10.,11.) with both 640 but different generators. We remark
that the number of iterations of the GJK algorithm by the no intersection case are
different. That effected accordingly the computation time. We noted therefore, that
the case (Table 5.3 10.) is really not an intersecting case. However, the sub-optimal
algorithm recognized exactly the opposite. This is due to the sub-optimality aspect
of this method. In general, the sub-optimal algorithm is clearly faster. But the
result of this algorithm are concluding only by no intersection cases.
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5. Zonotopic Approximation for Computing Reachable Sets

Number GJK sub-optimal
of itera average min max average min max

genarators tions Time(s) Time(s)
1. 3 1 5.3123e´5 4.7667e´5 0.0017 6.9138e´5 6.4926e´5 6.1721e´4

2. 4 3 0.0018 0.0017 0.0124 6.8001e´5 6.3282e´5 0.0015
3. 6 3 0.0018 0.0017 0.0053 7.7129e´5 6.3282e´5 0.0040
4. 20 3 0.0018 0.0017 0.0052 6.9318e´5 6.5337e´5 0.0013
5. 30 5 0.0057 0.0054 0.0149 7.2341e´5 6.5337e´5 5.5419e´4

6. 40 3 0.0019 0.0017 0.0050 7.3441e´5 6.5337e´5 7.1706e´4

7. 80 1 5.2521e´5 4.9311e´5 0.0043 7.2320e´5 6.6159e´5 8.0171e´4

8. 160 1 5.9509e´5 5.0133e´5 0.0051 7.0706e´5 6.7803e´5 6.2830e´4

9. 320 1 6.3030e´5 5.2187e´5 0.0030 8.8267e´5 7.0679e´5 0.0024
10. 640 5 0.0055 0.0054 0.0140 8.0225e´5 7.4377e´5 0.0029
11 640 1 5.7674e´5 5.5886e´5 0.0019 7.6821e´5 7.2734e´5 5.8269e´4

12. 1280 1 8.1193e´5 6.5748e´5 0.0041 9.2673e´5 8.6294e´5 5.7077e´4

13. 2560 3 0.0020 0.0019 0.0088 1.1929e´4 1.1424e´4 7.6966e´4

14. 5120 4 0.0043 0.0039 0.0312 1.1820e´4 1.43670e´4 0.0012

Table 5.3.: Estimation of the average, min and max computation times of the GJK
and the sub-optimal MATLAB implementations for collision detection of
two no intersecting zonotopes Z1pc1 “ r´6; 0; 1s, G1 “ r1 1 2; 1 1 1; 1 ´
2 1sq and a randomly generated zonotope Z2 with a growing number of
generators.

5.7.2. Intersection of Two Zonotopes using Optimization Techniques
Let Z1 “ c1 ‘ G1Bp1, Z2 “ c2 ‘ G2Bp2 be two zonotopes and E a matrix in R

n

and let pcpEq “ Ec1 ` pI ´ Eqc2pGpEq “ rEG1 pI ´ EqG2s (5.36)

then
Z1 X Z2 Ď pZpEqpZpEq “ pcpEq ‘ pGpEqBp1`p2

(5.37)

A further problem remains, namely the choice of the matrix E. It is obvious that
we are interested in reducing the size of pZpEq. For this reason, [53] suggested the
following minimization function

fpEq “ řp1
i“1pEG1iqT pEG1iq ` řp2

j“1pG2j ´ EG2jqT pG2j ´ EG2jq (5.38)

where G1i, G2j are the columns of the matrices G1, G2 and the generators of
Z1, Z2 respectively. For illustration Figure 5.11 shows the intersection of zono-

tope Z1 : c1 “
ˆ

1
1

˙
, G1 “

ˆ
1 1 ´0.5 ´2
0 1 0.2 ´1

˙
in blue and zonotope Z2 :

c2 “
ˆ

1
0

˙
, G2 “

ˆ
1 1 ´0.5
0 1 0.2

˙
in red. The zonotope Zint in black is the

computed over-approximation of the intersection.
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Intersection zonotope/zonotope with optimization techniques 

  

  

Z 1 : c[1;1] G[1,1,-0.5,-2;0,1,0.2,-1] 

Z 2 : c[1;0] G[1,1,-0.5;0,1,0.2] 

 Z int : Approx(Z 1     Z 2 ) 

Z int :c=[0.9234;0.4617] 
G=[ 0.2990, 0.2223, -0.1648, -0.5213, 0.7010, 0.7777, -0.3352; 
-0.1005, 0.3612, 0.1426, -0.2607, 0.1005, 0.6388, 0.0574] 

Figure 5.11.: Illustration of the zonotope/zonotope intersection method using opti-
mization.

5.7.3. Intersection of Two Zonotopes using SVD

To use this technique, we have first to rewrite our problem in the form As “ e
where s P r´1, 1sp (see Section 5.4.4). In fact,
@x P Z1 X Z2, Ds1 P r´1, 1sp1 and Ds2 P r´1, 1sp2 / x “ c1 ` G1s1 “ c2 ` G2s2.
Therefore, the problem of computing an approximation of the intersection between
these two zonotopes can be formulated as a problem of finding an approximation
rss of the set of s “ rs1; s2s P r´1; 1sp such that
As “ b with A “ rG1 G2s, b “ pc2 ´ c1q and p “ p1 ` p2.
The SVD results, as elaborated in Section 5.4.4, in the unitary matrices U “`
U1 U0

˘
, V “ `

V1 V0
˘

with UT U “ V T V “ I and the diagonal matrix S1 of
the nonzero singular values of A. The zonotopic approximation of rss “ xcs, Gsy is
then given by

cs “ V1S´1
1 UT

1 and Rs “ V0V T
0 . (5.39)

Let now cs1 be the vector of the p1 first lines of cs and Rs1 the matrix containing
just the p1 first lines of the matrix Rs. An approximation set Zint “ xcint, Ginty of
the intersection between Z1 and Z2 is then computed according to Algorithm 5.7
as:

cint “ c1 ` R1cs1 and Rint “ R1Rs1. (5.40)

We note here that an another over-approximation can be obtained if we extract
the last p2 components in respectively cs2 and Rs2, instead of taking the p1 first
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5. Zonotopic Approximation for Computing Reachable Sets

Algorithm 5.7 Zonotope/Zonotope intersection using SVD
algorithmic[htbp]
Input: Z1 “ c1 ‘ G1Bp1, Z2 “ c2 ‘ G2Bp2,
Output:

1: A “ rG1 G2s
2: b “ pc2 ´ c1q
3: p “ p1 ` p2
4: rU1, U0, S1, V1, V0s=SVDpAq
5: cs “ V1S´1

1 UT
1

6: Rs “ V0V T
0

7: P1 “ rIp1 0p1ˆp2s
8: cs1 “ P1cs

9: Rs1 “ P1Rs

10: cint “ c1 ` R1cs1
11: Rint “ R1Rs1
12: return cint, Rint

lines of cs and Rs. We accordingly obtain

cint “ c2 ` R2cs2 and Rint “ R2Rs2. (5.41)

Tests of the SVD-method with the same choices of zonotopes have resulted in the
same over-approximations for the intersection set as with optimization.

5.7.4. Comparison of Both Zonotope/Zonotope Intersection Methods

We compare the performances of the zonotope/zonotope intersection methods with
the same suite of zonotopes used for testing the collision detection approaches in
the case of intersection. The results are summarized in Table 5.4. We note that
both methods are reliable and that for zonotopes with more than 40 generators
time consumption and number of generators are proportional for both methods.
However, the Table 5.4 shows the SVD method to be the fastest. With regard
to the tightness of the intersection, both methods practically provide the same
over-approximation.
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Number SDV Opt.
of average min max average min max

genarators Time(s) Time(s)
1. 3 1.2854e´4 9.9031e´5 0.0011 0.1561 0.0807 0.2373
2. 4 1.2983e´4 9.9442e´5 0.0013 0.1490 0.0805 0.2259
3. 6 1.1885e´4 1.0109e´4 0.0013 0.1505 0.0736 0.2320
4. 20 1.7229e´4 1.2286e´4 0.0018 0.2689 0.1095 0.4732
5. 30 1.9816e´4 1.3273e´4 0.0016 0.3037 0.1406 0.4523
6. 40 2.3394´4 1.3273e´4 0.0019 0.3945 0.1846 0.6282
7. 80 4.0423e´4 1.3273e´4 0.0034 0.6540 0.3334 1.0995
8. 160 9.7902e´4 1.3273e´4 0.0037 1.1903 0.6928 1.9531
9. 320 0.0044 1.3273e´4 0.0091 2.3109 1.2639 3.8150
10. 640 0.0276 1.3273e´4 0.0389 4.4174 2.1154 6.5398
11. 640 0.0282 1.3273e´4 0.0407 4.2159 2.3018 6.4668
12. 1280 0.1411 1.3273e´4 0.2046 9.1871 3.9015 12.8966
13. 2560 0.8445 1.3273e´4 1.0849 17.8006 8.3248 30.4598
14. 5120 6.1378 1.3273e´4 7.6836 38.1476 17.4229 67.2161

Table 5.4.: Estimation of the average, min and max computation times of the
MATLAB implementations of the SDV and the optimization based
methods for the intersection of two intersecting zonotopes Z1pc1 “
r´1; 0; 1s, G1 “ r1 1 2; 1 1 1; 1 ´ 2 1sq and a randomly generated
zonotope Z2 with a growing number of generators.

5.8. Computing Reachable Sets within Discrete Modes

The computation of reachable sets with zonotopes is built on the top of the funda-
mental recursion scheme given by equation (3.17) in Chapter 3: Ωk “ erAΩk´1 ‘Vr.
For the input contribution, we choose the over-approximation of equation (3.27)
based on the constant piecewise assumption of the input

Vr “ BU (5.42)

where B “ şr
0 eApr´sqBds.

In addition, we consider the approximation of equation (3.18) based on the norm-
bounded input assumption

Vr “ Bpβrq (5.43)

where Bpβrq is the ball of radius βr “ μ er}A}´1

}A} and μ “ supuPU }Bu}.
For the over-approximation of the initial set Ω0, we opt for the method of Section
3.7.1 described in Chapter 3 using the expression Ω0 “ CHpX0YerAX0q‘Bpαrq‘Vr,
where Bpαrq is the ball of radius αr “ `

er}A} ´ 1 ´ r }A}˘ supxPX0 }x} and X0 is the
initial set.
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Figure 5.12.: Projections of the reachable sets of the one mode platoon example
each 500th iteration with U “ r´1, 1s, N “ 4000, r “ 0.001 and
X0 “ t0u2 ˆ r´0.0001, 0.0001s ˆ t0u6. (a) e1, e2 [m] using the norm-
bounded assumption }Bu} ď μ (max. zonotope order q “ 1000). (b)
e1, e2 [m] using the piecewise constant assumption (max. zonotope
order q “ 20).

To compute Ω0 using zonotopes, an approximation consisting of three steps was
proposed in [47]. The convex hull Ω0 “ CHpX0 YerAX0q is first approximated by a
zonotope P according to equation (5.9). In a second step, P is bloated with a ball
of radius αr to obtain the set S Ď P ‘ pαrq enclosing all states reachable within
the time interval r0, rs. Finally, the input contribution is added.

We tested both initialization methods on the one mode platoon described in
Appendix A. Figure 5.12 shows the over-approximation of the initial set based
on the piecewise assumption to be significantly tighter as the initial set based on
the norm-bounded assumption. Therefore, only the former will be adopted in the
following sections.

For systems described by 9x “ Ax ` Bu with a convex set u P U , the reachable
sets are computed from an initial convex set X0 for a duration T “ Nr, where r
is the chosen time step and N the number of iterations according to Algorithm 5.8.
A preliminary computation step is required to obtain both matrices Φ “ erA and
B “ şr

0 e
Aij

pr´sq
Bij ds. We hence use the method proposed in [109] as it does not

impose restrictions on the matrices A or B and allows the simultaneous calculation
of both intended matrices by evaluating the exponential of the following matrix:

C “
ˆ

A B
0 0

˙
ñ eCr “

ˆ
Φ B

0 I

˙
(5.44)

We note that the internal loop of Algorithm 5.8 calls only the linear and Minkowski
sum operations twice each in different stages. This loop conserves therefore the
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Algorithm 5.8 Iterative computation of reachable sets within discrete modes
Input: αr, r, N , Φ, B, U , X0 “ pc, xg1, . . . , gpyq;
Output: Ω0, . . . , ΩN ;

1: P “ p c`Φc
2 , ă g1`Φg1

2 , . . . ,
gp`Φgp

2 , c´Φc
2 , g1´Φg1

2 , . . . ,
gp´Φgp

2 ąq
2: X0 “ P ‘ pαrq
3: V0 “ BU
4: S0 “ t0u
5: for k “ 0 to N ´ 1 do
6: Xk`1 “ ΦXk

7: Sk`1 “ Sk ‘ Vk

8: Vk`1 “ ΦVk

9: Rk`1 “ Xk`1 ‘ Sk`1
10: Ωk`1 “ reduced ´ zonotope ´ orderpΩk`1q
11: end for
12: return tΩ0, . . . , ΩN u

zonotopic structure. The problem, hence, resides in the increasing number of the
generators after each Minkowski sum call which consequently can have a crucial
impact on the complexity of the computation. To control this problem, a max-
imum number of generators is fixed a-priori and the order reduction method of
Section 5.3 is involved at the end of the loop. However, this latter operation is
over-approximating and can drastically affect the tightness of the resulting reach-
able sets.
The following section is dedicated to transitions. Guards expressed as hyperplanes,
halfspaces, polyhedra and also as zonotopes are considered for the intersection de-
scribed in Sections 5.5, 5.4, 5.6 and 5.7. We introduce various strategies for handling
the bundle of zonotopes intersecting the guard and discuss their combination with
various intersection methods.

5.9. Handling Invariants
In each iteration of Algorithm 5.8, a computation step is integrated for checking and
computing the intersection with the invariant. For invariant conditions formulated
as halfspaces, polyhedra or zonotopes, the approaches presented in Sections 5.5, 5.6
and 5.7 respectively are applied.

5.10. Handling Transitions
Besides the integration of invariant handling step, a second step is necessary for
handling guards in each new recursion step of Algorithm 5.8. Furthermore, guards
in form of equalities, inequalities and zonotopes can be treated using the previously
introduced zonotope intersection methods. We therefore know that because of the
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5. Zonotopic Approximation for Computing Reachable Sets

time discretization, the intersection of the flowpipe with the guard may involve
a bundle of successively computed reachable sets. This bundle of zonotopes is
determined by the instance of the first intersection detection kmin and the last
kmax respectively.

BZ “
kmaxď

k“kmin

Ωk. (5.45)

A naive approach is to treat each zonotope intersecting the guard separately before
and after the transitions. That can result in a computation of significant number
of flowpipes. Such an approach is practically infeasible especially for systems with
many transitions. Figure 5.13 illustrates this approach on the two-tank system as
described in Figure 4.22(b). Each transition is identified by a different color for easy

Figure 5.13.: Each zonotopic reachable set intersecting the guard is considered sep-
arately before and after the transition.

visualization. Zonotopes in red represent the intersection bundles with the respec-
tive guard. It is noteworthing that even for this sample benchmark, the computation
complexity grows with the number of maximal allowed transitions and with the ex-
istence of multiple transitions outgoing from the same discrete mode. The following
section presents some clustering strategies that could circumvent this problem. Al-
though clustering has been suggested as a potential solution to this problem, these
methods tend to suffer from rough and increasing over-approximations.

5.10.1. Taking the First Intersection
The simplest and naive approach is to spring to the next transition as soon as an
intersection is found. This means that only the first zonotope of the intersecting
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bundle is in this case regarded.

5.10.2. The Over-approximative Convex Hull Method
We use the method for computing a zonotope approximation of the initial set [47]
to over-approximate the intersecting bundle as the last is constructed by succes-
sive computed zonotopes. Beginning with the set Ωkmin

, the method is recalled
pkmax ´ kminq times to acquire an over-approximation of the intersecting bundle
before computing the intersection with the intended guard. We note that only
Ωkmin

is involved in this computation. The issued approximation is also expected
to be large due to the rough approximation.

5.10.3. Pre- and Post-clustering
Clustering by means of the convex hull operation given in Section 5.3 can be applied
either before or after the computation of the intersection. The pre-clustering strat-
egy computes first iteratively an over-approximation Ω of the intersecting bundle
as follows

CH p...CH pΩkmin
Y Ωkmin`1q Y ... Y Ωkmaxq Ď Ω. (5.46)

In a second step, the final intersection with the guard ΩI is computed using one of
the aforementioned intersection methods.

The post-clustering strategy, however, computes, for each intersecting zonotope
Ωk, an over-approximation ΩI

k of the intersection with the guard. This results in
pkmax ´ kmin ` 1q new zonotopes which are then clustered in the same way as in
(5.46) to obtain the final intersection ΩI .

ΩI Ě CH
`
...CH

`
ΩI

1 Y ΩI
2
˘ Y ... Y ΩI

kmax´kmin`1
˘

. (5.47)

5.10.4. Finding the Min/Max at a Guard Transition
This method is valid only for the ND-Projection approach and exploits the fact
that the supremum and infinimum points for each two-dimensional projection are
already available such that the global supremum and infinimum can be extracted.
These values allow for the construction of a hyperrectangle or a hyperparallelotope
of dimensionality n to over-approximate the final intersection set of the bundle with
the guard.

5.10.5. Fixpoint-/Time-Triggered Transition
In addition to the aforementioned guard transitions, we also consider fixpoint- and
time-triggered transitions. The former takes place immediately upon reaching a
fixpoint while the later is triggered after a predefined time period.
A fixpoint is reached if successive computed reachable sets are equal within a certain
margin of tolerance ε. To check for the reachability of a fixpoint, we opt for the
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zonotope support function formulation as a practical criteria for comparison of sets
instead of using the volume owing to its simplicity and its computational efficiency.
In fact, for a given direction lj P D “ tl1, . . . , lmu Ă R

n, the support function of
the reachable set Ωk “ ck ‘ GkBpk is given by ρΩk

pljq “ lj
T .ck ` ››ljT .Gk

››
1. The

sets Ωk and Ωk`1 are ε-equal if:ˇ̌
ρΩk

pljq ´ ρΩk`1 pljqˇ̌ ď ε. (5.48)

The directions in template D are generally chosen to be uniformly distributed in
the unit ball. The ε-equality check must be repeated a given number of times for a
clearer certainty of a fixpoint.

5.11. Implementation
A prototypical implementation of the above described algorithms and methods was
first done in MATLAB. Within the HyPro-project [61], a new implementation in
C++ based on the previous MATLAB implementation was required as a part of
the Hypro C++ geometric set library. Compared to the MATLAB implementa-
tion, the C++ implementation has been extended with the halfspace/polyhedron
guard intersection and invariants. We furthermore integrated the above-mentioned
strategies for handling transitions as well as picking transition strategies to deal
with cases where more as one outgoing transitions are possible. The architecture
and the setting parameters of the C++ implementation is illustrated in Figure 5.14.
The Algorithm 5.8 upgraded with the invariant computation method described in
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Figure 5.14.: Architecture and setting of the C++ implementation.

Section 5.9 constitutes the core of the flowpipe computation in continuous modes.

142



5.12. Experimental Results and Performance Evaluation

The transition handling component includes the intersection methods with hyper-
planes, halfspaces and poyhedra. Upon this, the clustering methods: first detected,
Min/Max, post-clustering, pre-clustering as well as the initial set based convex
hull methods have been integrated and offered as user choices. In addition, the
transition choice strategies: first detected and manual have been made available.

5.12. Experimental Results and Performance Evaluation
We reserve this section for experiments with the C++ implementation. The results
of the previous sections are results of the MATLAB implementation.

We begin with a new evaluation of the C++ implementation of zonotope/hyper-
plane intersection methods as we have done with the MATLAB implementation,
albeit with new test suite of zonotopes. We first compare the time computation as
well as the tightness of the intersection approximation. We second investigate their
performances in the context of guard intersection when combined with different
clustering approaches. All benchmarks and tests were run on a Core i5 2.5 GHz
system with 8 GB RAM.

5.12.1. Comparison of Intersection Methods

Figure 5.15.: Illustration of the zonotope/hyperplane intersection in 3D.

The test suite is composed of randomly generated 3-dimensional zonotopes with
an increasing number of generators and hyperplanes. During this test, the form of
the zonotopes and hyperplanes was assumed not to have an impact on the compu-
tational complexity. The computation times are listed in Table 5.5. A first obser-
vation shows stark differences between the zonotope/strip intersection method and
the other methods. The former performs considerably faster than the rest even as
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Figure 5.16.: 3-dimensional zonotope/hyperplane intersection with different meth-
ods.

Num. of genarators Zon./Strip SVD Vertices sorting Dichotomous search
4 0.06626 0.1035 0.47391 0.50093
10 0.08078 0.12059 0.55941 0.67121
50 0.18425 0.3525 2.09554 1.97534
100 0.28768 0.99743 4.39717 3.33773
200 0.47578 4.50452 8.94314 5.64377
500 1.28351 27.7316 22.2223 12.5497
1000 2.37012 143.644 37.3283 23.9758
2000 4.37552 599.267 78.5401 43.5329

Table 5.5.: Computation time (in ms) of the zonotope/hyperplane intersection
methods implemented in C++.
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the number of generators increases. The SVD method is the second best method
for fewer than 200 generators. However, the computation drastically slows down
for more than 500 generators. The SVD method turns out ultimately as the slowest
method for large number of generators. Both ND-2D methods exhibit no signifi-
cant difference with fewer than 200 generators. However, the dichotomous search
method is faster than the vertices sorting method at higher numbers of generators.
This probably returns from the implementation efficiency of the sorting algorithm
required for vertices sorting methods. It is also important at this stage to recall the
results obtained with the MATLAB implementation. We note that both methods
performs differently. The MATLAB implementation of the vertices sorting method
performed better as the dichotomous method. This is likely attributable to different
sorting algorithm and SVD implementations. The sorting algorithm seems to be
efficiently implemented in MATLAB than that offered by the C++ Eigen library.
In general depending on the application, MATLAB averages a processing speed
that is over 100 times slower than C++ code.
Figure 5.16 allows a visual comparison of different approximations computed with
all four methods for the zonotope/hyperplane 3D-intersection shown Figure 5.15.
The zonotope and the hyperplane of Figure 5.15 are described as follows

Z “
ˆ„0

0
0

j
,

B„ 1.343
0.8865
1.369

j
,

„ 1.156
1.794
0.6454

j
,

„0.1341
1.692
1.571

j
,

„ 1.650
0.6290
1.793

jF˙
(5.49)

H “
"

x P R
n :

B„0.639982
0.59482
0.923346

j
, x

F
“ 0

*
. (5.50)

With regards to the tightness of approximation, we note, in Figure 5.16, differ-
ences in the shape and tightness between two groups zonotope/strip intersection
and SVD methods, as a group and the dichotomous search and vertices sorting as
another. The approximations resulting from the ND-2D methods have been shown
in Figure 5.16 to be identical or very similar. The same observation can be made
concerning the results of the zonotope/strip intersection and SVD methods. As a
general remark, it should be noted that both former methods seem to deliver the
tightest approximation, but this is done at the cost of the computation complexity.
The resulting zonotopes possess a high number of generators in comparison to the
two generators zonotopes obtained with the ND-2D methods.

5.12.2. Experimental Evaluation at Guard Intersection

We discuss, in this section, the results of the reachability analysis on the classic
two-tank and the colliding masses systems. We consider invariants and guards on
both systems. We aim at investigating the performances of the aforementioned
zonotope/hyperplane intersection methods in combination with different clustering
strategies.

Flowpipes of the the two-tank system with 100 iterations at the first transition
are shown in Figure 5.17 to 5.20 while those of the colliding masses system with 150
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iterations are illustration in Figure 5.21 to 5.24. The intersecting zonotope bundle
is plotted in green. It should first be noted that the ND-2D projection method using
dichotomous search works only for 3-dimensional systems or larger. Consequently,
it cannot be used for the two-tank system.
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Figure 5.17.: Taking the first intersection found at guard transitions for two-tank
system.
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Figure 5.18.: Pre-clustering of intersection bundles for two-tank system.

We generally note that the pre-clustering results in tighter approximations than
post-clustering across all zonotope/hyperplane intersection computation methods.
We also observe that clustering based on the initial set approximation method pro-
vides tight sets in comparison with post-clustering. Among all methods, the ND-
2D projection methods perform the best approximation particularly with Min/Max
clustering strategy. We furthermore measured computation times which we listed
in Table 5.6. Especially noteworthy is the advantage of the ND-2D projection meth-
ods as an intersection computation method across all methods despite its apparent
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Figure 5.19.: Post-clustering of resulting intersections for two-tank system.
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Figure 5.20.: Over-approximation using an approximative convex hull for two-tank
system.

147



5. Zonotopic Approximation for Computing Reachable Sets

sluggishness for intersection computations as show in Table 5.5. In fact, the ND-2D
method keeps at most D ´ 1 generators for a system of dimension D. This con-
tributes to complexity reduction of zonotopes while computing guard intersections
nonetheless at the cost of tightness. However, the zonotope/strip, and to a certain
extent, the SVD intersection computation methods, while faster in intersection com-
putation, do not reduce the number of generators of the resulting zonotope. This
consequently leads to a steadily increasing complexity. This justifies the disparity in
computation times found in the colliding masses system. In fact, the intersection is
computed at the guard transition with a zonotopic reachable set of more than 4000
generators. Furthermore, Figure 5.25 shows the number of generators increasing to
nearly 60,000 generators due to the initialization of the resulting zonotope for the
subsequent continuous dynamics. On the contrary, the two-tank system is shown
in Figure 5.25 to deal with a zonotopic reachable set of fewer than 15 generators. It
is consequently not significantly affected by the problem of computation with many
generators in the continuous dynamics after the guard transition is taken.
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Figure 5.21.: Over-approximation using an approximative convex hull for colliding
masses system.

Two-Tank System (100 iterations) colliding masses System (120 iterations)
Overapprox. Preclust.g Postclust. Overapprox. Preclust. Postclust. Min-Max

Zon./Strip 35603 683.9 768.1 37482 10591 39412 N.A.
Dich. search N.A. N.A. N.A. 6699 4125 3825 3739
Vertices sort. 1133.9 372.2 442.3 9019 5483 4740 5188

SVD 40687 686.1 777.2 844567 60116 73090 N.A.

Table 5.6.: Computation time for reachability analysis on different systems (in ms).
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Figure 5.22.: Pre-clustering of intersection bundles for colliding masses system. .
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Figure 5.23.: Post-clustering of resulting intersections for colliding masses system.
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Figure 5.24.: Min/Max of resulting intersections for colliding masses system.
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Figure 5.25.: Number of generators in the course of reachability analysis on the
colliding masses system varies with the intersection method used. The
red vertical lines indicate the iteration in which an intersection with
the guard was detected.

Figure 5.26.: Number of generators in the course of reachability analysis on the
Two-Tank system varies with the intersection method used. The red
vertical lines indicate the iteration in which an intersection with the
guard was detected.
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Figure 5.27.: The two-tank system without and with the consideration of invariants
respectively.

5.12.3. Handling Invariant
We adopted the zonotope/polyhedron intersection method described in Section 5.6
for handling invariants in discrete mode. To highlight its performance with regard
to the tightness, a visual comparison is given in Figure 5.27. This figure shows
the flowpipes for the two-tank example (Figure 4.22) without invariants (Figure
5.27(a)) and with an invariant condition x1 ě 1 for state q1 and x2 ď 0.2 for state
q2 for a more pronounced effect regarding the consideration of invariants (Figure
5.27(a)). We note an over-approximating effect at both invariants.

5.13. Conclusion
In this section, we addressed the problem of reachability analysis based on zono-
topes. We reviewed their important properties and geometric operations and par-
ticularly explored and described methods for zonotope/hyperplane, zonotope/half-
space, zonotope/polyhedron and zonotope/zonotope intersections. These methods
were subsequently assessed with regard to tightness and computation time first in
MATLAB and second in C++. In addition, we presented different clustering strate-
gies for handling the bundle of zonotopes intersecting a guard. In a further analysis,
we carried out a comparative investigation of the intersection methods combined
with the different clustering strategies. The results revealed that depending on the
dynamical system, a trade-off must be made between the tightness and complexity.
Besides the intersection methods, the clustering strategies and their combination,
we extended the C++ implementation with invariants by using the zonotope/poly-
hedron intersection method.
Generally, zonotopes are more attractive for computing the reachable sets within
discrete modes than support functions because they do not require optimization
algorithm. However, at intersections with guards or invariants, an approximation
is required to recover the zonotopic form from the resulting intersection for the
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subsequent iteration. This approximation is often larger than that obtained with
support functions.
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6. Reachability Analysis of a Networked
Platoon of Trucks

6.1. Introduction

As an area of applications, we consider the networked platoon of trucks as a case
study. The motivation behind this choice lies mainly in its safety-critical nature and
its scalability. We firstly investigate the safety of an LMI-based controlled platoon
with the previously described zonotope and support function techniques. We are
interested in determining the shorted safe gaps between the trucks where rear-end
collisions in case of abrupt braking or loss of communication are ruled out.
Secondly, we address the problem of control design of a scalable platoon. We pro-
pose an approach to simplify the control design by ignoring some design criteria
which are later checked using reachability techniques.
The resulting scalable platoons are then used to test the capability of the zonotope
and support function implementations to deal with large-scaled systems.
Additionally, we demonstrate how reachability analysis can be used to assure strin-
gent time and safety critical requirements, if a platoon of trucks approaches an
intersection.

6.2. Description of a Networked Cooperative Platoon

A platoon consists of autonomous driving vehicles following a leader. Each vehicle
i is equipped with on-board sensors to capture its actual speed and acceleration as
well as the distance di from the vehicle ahead. This sensor information is transmit-
ted to the other vehicles via a wireless local area network (WLAN) so that each
vehicle i receives the data flow ej, 9ej and aj from all vehicles j ‰ i. The spacing
error ej is defined as the difference between dj and a reference distance dj,ref . Fig-
ures 6.1, 6.2 illustrate the structure and the architecture of the networked platoon
of trucks.

6.2.1. Platoon Model

For this application, we adopt the model proposed in [78] where the drivetrain
dynamics is approximated by a linear first order filter. The effective acceleration
of each truck and the difference of acceleration successive vehicles are given by the
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Figure 6.1.: Platoon structure and setup.
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Figure 6.2.: Architecture of the cooperative platoon of vehicles.
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6.3. Information Flow and Interconnection Topology

following differential equations:

9ai “ ´1{Ti ¨ ai ` 1{Ti ¨ ui,
:ei “ ai´1 ´ ai,

(6.1)

where Ti “ 1
γ is the time constant of the drivetrain of vehicle i and ui the corre-

sponding control input.
If we now take x “ re1, 9e1, a1, ¨ ¨ ¨ ei, 9ei, ai ¨ ¨ ¨ , eN , 9eN , aN sT P R

3N as state vector
and the vector u “ ru1, . . . , ui, . . . , uM sT P R

M as input for the platoon of N
vehicles, its dynamics would then be described with the differential equation

9x “ Asx ` B1aL ` B2u. (6.2)

The matrices As, B2 and B1 are given by the following equation:

»——————————————————–

9e1
:e1
9a1
9e2
:e2
9a2
9e3
:e3
9a3
...

9eN´1
:eN´1
9aN´1

9eN

:eN

9aN

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

“

»——————————————–

0 1 0 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 ´1 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 ´γ 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 1 0 0 ´1 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 0 0 0 ´γ 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 0 0 0 1 0 0 ´1 ¨ ¨ ¨ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ´γ ¨ ¨ ¨ 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 1 0 0 ´1
0 0 0 0 0 0 0 0 0 ¨ ¨ ¨ 0 0 0 0 0 ´γ

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

»——————————————————–

e1
9e1
a1
e2
9e2
a2
e3
9e3
a3
...

eN´1
9eN´1
aN´1

eN

9eN

aN

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

`

»——————————————–

0 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0
γ 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0
0 γ 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0
0 0 γ ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ 0
0 0 0 ¨ ¨ ¨ γ

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

»——–
u1
u2
u3
...

uM

fiffiffifl `

»————————————–

0
1
0
0
0
0
0
0
0

. . .
0
0

fiffiffiffiffiffiffiffiffiffiffiffiffifl
aL

(6.3)
where aL is the leader’s acceleration.

6.3. Information Flow and Interconnection Topology
The interconnection topology within the platoon is modeled with a directed graph
G “ pV, Eq, defined by vertices V and edges E. The ith vertex represents the ith
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vehicle and the edge pi, jq indicates that vehicle j receives information from vehicle
i. Figure 6.3 describes the general case of bidirectional exchange of information
for the platoon of Figure 6.1. This graph is represented by the adjacency matrix
R “ rrijs referred to as the communication matrix of the platoon. This matrix is
defined as follows:

rij :“
"

1, if j receives information from i
0, otherwise.

(6.4)

L1V2V3V

Figure 6.3.: Possible information exchanges inside the platoon.

If we assume sensor data to be always available, the information topology will be
then represented by the matrix T “ I ` RT where I is the identity matrix.

The interconnection topology is generally time varying because of communication
dropouts. The communication matrix is hence a time function Rptq. This can be
illustrated by Figure 6.4. In this figure, three different interconnection topologies
for a platoon of three vehicles are shown. The interconnection topology can spon-
taneously change in practice. For example, it can jump from (a) to (b) and from
(b) to (c) if the communication between V3 and V2 and then between V2 and V1 are
consecutively lost.

1V2V3V 1V2V3V

(a) (b) (c)

1V2V3V

Figure 6.4.: Three different interconnection topologies for a platoon of three vehi-
cles.

6.4. Control Design

The first usual goal of control design is to guarantee the stabilization of the system
while assuring a good disturbance rejection in terms of small and safe spacing
errors ei with a reasonable control effort. To mathematically express these control
objectives, the following transfer functions and mapping have been defined in [78]
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for each vehicle i member of the platoon

Gipsq “ eipsq
ei´1psq ,

Fv,ipsq “ pvi´vLqpsq
aLpsq ,

Fa,ipsq “ aipsq
aLpsq ,

H : aL ÞÑ pe1, . . . , eN , u1, . . . , uM qT ,

(6.5)

with H being the mapping of aL to errors and control effort. Apart from the
ordinary stability, string stability is required for interconnected vehicle strings to
exclude the amplification of the spacing errors upstreams from the start to the end of
the platoon. The term }Gi}8 ă 1 in (6.5) imposes, however, the stringent condition
ei ď ej for i ă j, where ă corresponds to the order of the vehicles in the platoon.
Forcing }Fv,ipsq}8 ď γv and }Fv,ipsq}8 ď γa assure for bounded velocity error and
acceleration of any vehicle as response to any bounded leader acceleration profile.
The upper bounds of the overshoots on velocity error and acceleration with respect
to the acceleration of the leader aL remain therefore below γv }aL}8 and γa }aL}8
respectively. The control problem with the previous requirements, is formulated in
[78] as a mixed H2{H8 minimization problem:

min pα. }F }8 ` β. }H}2 q s.t.
}Gi}8 ă 1 @i,
}F.,i}8 ă γ. @i

(6.6)

where F is either Fv,ipsq, Fa,ipsq or a combination of both. The }.}2-norm minimiza-
tion of H, hence, guarantees small distance errors with a low control effort. Solving
the problem (6.6) results in a feedback matrix Ki verifying

ui “ Kix (6.7)

such that
u “ Kx. (6.8)

Therefore, the closed loop system is described by the following differential equation

9x “ pAs ` B2Kqx ` B1aL,
“ Acl x ` Bcl aL.

(6.9)

6.5. LMI-based Control
In [77, 78], the optimization problem (6.6) is transformed into an LMI formulation
by adopting the state space model of the generalized plant P of Figure 6.5.

Assuming w “ al, z2 “ pe1, . . . , eN , u1, . . . , uM qT and z8 “ pa1, . . . , aN qT , the
system of Figure 6.5 is described with the following equations

9x “ As x ` B1 w ` B2 u,
z8 “ C8 x ` D8,1 w ` D8,2 u,
z2 “ C2 x ` D2,1 w ` D2,2 u.

(6.10)
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Figure 6.5.: H2{H8 control configuration.

The feedback loop is closed by a controller K solution of the following LMI opti-
mization problem

min
`
α.γ2 ` β.trace pQq ˘

s.t.»–pAs ` B2Kq X ` X pAs ` B2KqT B1 X pC8 ` D8,2KqT

BT
1 ´I DT8,1

pC8 ` D8,2Kq X D8,1 ´γ2I

fifl ă 0,„
Q pC2 ` D2,2Kq X

X pC2 ` D2,2Kq X

j
ą 0.

(6.11)

where α, β, γ2 and Q are optimization variables. In [77, 78] a controller for a
platoon of three vehicles has been computed based on (6.11). The system matrices
are given in Appendix A Section A.8.

To take into account the communication failures in the controller design, the
feedback matrix is multiplied by the network topology matrix. This is achieved by
forcing zeros in Ki where state information is no longer available. We hence obtain
the closed loop system matrices

• for the nominal network communication of Figure 6.3,

• for the flow of information from the start to the end of the platoon shown in
Figure 6.6

• for a total outage of communication.

The goal was to determine the conditions under which safety is absolutely guaran-
teed by carrying out a reachability analysis.

6.5.1. Hybrid Modeling
The main goal of this section is to investigate the impact of the disturbances of the
communication network on the performances of the cooperative platoon. We are
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L1V2V3V

Figure 6.6.: Communication flow in one direction.

particularly interested in worst cases which may occur owing to a loss of commu-
nication between two/many or all vehicles. The theory of hybrid systems offers a
convenient framework to model this kind of systems. The discrete states describe
the continuous dynamics of the controlled platoon generally governed by differential
equations in this form

9xptq “ Aqxptq ` Bquptq (6.12)

where xptq P R
9 denotes the state vector, uptq “ aL P r´9, 1s ms2 Ă R is the in-

put vector and q P t1, 2, . . .u is the discrete mode described by pAq, Bqq P R
9ˆ9 ˆR

9.

Communication breakdowns, however, trigger the discrete switches between these
states. These discrete events are spontaneous, implying that transitions of this
hybrid automaton have no guards. We used our fixpoint triggered transition or
alternatively the time-triggered transition to model such kind of transitions. Time-
triggered transitions are allowed after about t “ 12s to guarantee the enclosure of
all reached states. In fact, it was shown in [78] that the controlled platoon reaches
its stable state in less than 12s.

Depending on the topology and the configuration of the communication between
vehicles given by the topology matrix T , many communication scenarios are pos-
sible. This can consequently lead to a complex hybrid automaton. To simplify
the analysis, we focus on some particular and safety-critical worst case scenarios.
We firstly consider the scenario of a nominal communication, which then switches
to a communication in one direction and finally to a total loss of communication.
Secondly, we investigate the case of a direct switching from the nominal communica-
tion to complete loss of communication. We are furthermore interested in studying
the behavior of the system under arbitrary/chattering between both cases and its
impact on the stability of the system. The corresponding hybrid automata are
illustrated in Figure 6.7, 6.8 and 6.9 respectively.

6.5.2. Safety Verification of the LMI-based Controlled Platoon
We firstly carried out a reachability analysis using our zonotope implementation
with the timed-triggered transition hybrid model. The results of the above-mentioned
scenarios with T “ 20s, r “ 0.01 and u P r´9, 1s ms´2 are shown in Figure 6.10,
6.11 and 6.12. We opted for the time step r “ 0.01s as a compromise between
precision and time complexity as we noted no significant difference between the
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1q
uBxAx 11

3q
uBxAx 33

2q
uBxAx 22

1T 3T 2T

Figure 6.7.: Hybrid automaton: communication Ñ communication in one direction
from the start to the end Ñ breakdown of the communication

1q

uBxAx 11

2q

uBxAx 22

1T 2T

Figure 6.8.: Hybrid automaton: communication Ñ no communication.

1q
uBxAx 11

2q
uBxAx 22

1T 2T

Figure 6.9.: Hybrid automaton: communication Ñ no communication and vice
versa.
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gap ranges obtained with finer time steps during this study. The outer boundary
of each reachable set gives the maximum ranges of the state variables.

As a comparison, we next used the support function based implementation with
the fixpoint-triggered transition hybrid model. We chose the ConstU scenario with
ConstU initial over-approximation and the Oct set-angle option. The results are
illustrated in Figure 6.13, 6.14 and 6.15. The computed fixpoints are plotted in
light blue.

The gap ranges resulting from both implementations are summarized in Table
6.1.

com. no  
com.  

20s 20s 

(b) (c) 

 
com.  
in one 

dir. 
20s 

-25 -20 -15 -10 -5 0 5
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e 2
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2

4
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8

10

12

e2

e 3

(a)  

Figure 6.10.: Reachable set projections of the hybrid automaton of Figure 6.7 com-
puted using zonotopes with T “ 20s and r “ 0.01.

Scenario of Figure 6.7 Figure 6.8 Figure 6.9 (5 transitions)
Geo. pres. Zon. Sp. Zon. Sp. Zon. Sp.

e1rms r´22.8, 2.9s r´22.8, 3.0s r´24.4, 3.2s r´25.6, 3.8s r´25.6, 3.8s r´28.6, 4.4s
e2rms r´22.5, 4.1s r´22.5, 5.0s r´22.6, 4.6s r´25.5, 6.2s r´25.6, 6.0s r´25.5, 6.1s
e3rms r´8.0, 11.2s r´8.5, 11.2s r´8.4, 11.3s r´9.4, 13.0s r´9.7, 13.1s r´10.8, 13.6s

Table 6.1.: Gap ranges for different scenarios obtained with zonotope and support
function based reachability analysis for T “ 20s and r “ 0.01s.

The results of Figure 6.10 and Figure 6.11 show increasing gaps after each loss
of information due to outages in the communication between vehicles inside the
platoon. The gap between the first vehicle and the leader is the most affected and
the second most affected is the gap between the first and the second vehicle. In
general, we notice an attenuation of this effect from the start to the end of the
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Figure 6.11.: Reachable set projections of the hybrid automaton of Figure 6.8 com-
puted using zonotopes with T “ 20s and r “ 0.01.
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Figure 6.12.: Reachable set projections of the hybrid automaton of Figure 6.8 com-
puted using zonotopes with T “ 20s, r “ 0.01 and under several
switching.
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(a) (b) 

-30 -25 -20 -15 -10 -5 0 5
-30

-25

-20

-15

-10

-5

0

5

10

e1

e 2

-30 -25 -20 -15 -10 -5 0 5 10
-10

-5

0

5

10

15

e2
e 3

Figure 6.13.: Reachable set projections of the hybrid automaton of Figure 6.7 com-
puted using support functions with T “ 20s, r “ 0.01s and fixpoint-
triggered transitions.
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Figure 6.14.: Reachable set projections of the hybrid automaton of Figure 6.8 com-
puted using support functions with T “ 20s, r “ 0.01s and fixpoint-
triggered transitions.
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Figure 6.15.: Reachable set projections of the hybrid automaton of Figure 6.8 com-
puted using support functions with T “ 20s, r “ 0.01s, fixpoint-
triggered transitions and under several switching.

platoon.
Table 6.1 reveals that the zonotope based implementation results are more precise

than those obtained from the support function implementation. Zonotopes guar-
antee collision-free platooning under the condition d1,ref ě 24.4m, d2,ref ě 22.6m,
d3,ref ě 8.4m whereas this condition is d1,ref ě 28.6m, d2,ref ě 25.5m, d3,ref ě
10.8m for support functions. We also note that chattering between communication
and the lack of communication do not really affect the stability of the system. How-
ever, in this case, safe gaps must be larger (see Table 6.1, Figure 6.15 and Figure
6.12).

6.6. H2/H8-based Control
In this section, we address the control design of a scalable platoon of vehicles
with the help of reachability analysis. As the number of vehicles inside the pla-
toon increases, finding a solution for the corresponding LMI-problem (6.6) becomes
more challenging. Our strategy consists in considering only the H2 [75] or the
H8 component for the design of the controller which are easily scalable. Other
control requirements are then tested using reachability analysis of the closed loop
system. Profiting from the block structure of the system description in (6.3), a
linear quadratic regulator (LQR)-control design is applied to treat the H2 compo-
nent of the control problem and consequently computes the feedback matrix K.
LQR-control design is based on the minimization of the following cost function

Jpuq “
ż 8

0

“
xT Qx ` uT Ru

‰
dt (6.13)
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where Q ě 0 and R ą 0 are adequately chosen matrices. The control input is then
given by the following equation

u “ ´R´1BT
2 Px (6.14)

where the matrix P is a positive semidefinite solution of the Riccati equation

PAs ` AT
s P ´ Q ` PB2R´1BT

2 P “ 0. (6.15)

The choice of the identity matrix I for weighting matrices Q and R led to the
results of Figure 6.16. We note that with this simple choice, the controller met the
control requirements for platoons of length 3, 5, 10, 15 and 20. However, testing
with different values of the weighting matrix Q led to the conclusion that the best
performances are obtained with the controller computed with Q “ 1000.I even in
the case of a loss of communication as demonstrated in Figure 6.18 for a platoon
of 3 vehicles.

Although only the problem of a steep decrease in the errors with a minimum
control effort was tackled with the H2 component of problem (6.6), the results of
Figure 6.16 show that an adequate choice of control parameters could limit the over-
shoots in the distance and in the velocity with an acceptable system time response
even for large-scaled platoon like the examples of Figure 6.16(d) or Figure 6.17.

If we now consider only the H8 component of the control problem and use the
general control configuration of Figure 6.5 described by equations (6.10), a central
sub-optimal controller can be computed by solving the so-called H8-like Riccati
equation.

PAs ` AT
s P ` CT8C8 ` P pγ´2B1BT

1 ´ B2BT
2 qP “ 0. (6.16)

The state feedback is then
u “ ´BT

2 Px, (6.17)
where the matrix P is a positive semidefinite solution of the Riccati equation (6.16).

The results obtained based on H8 control design with γ “ 8 are illustrated in
Figure 6.19 for a platoon of 3, 5, 10 and 15 vehicles. We note that the overshoots
in the distance and velocity remain in an acceptable range with γ “ 8. The conver-
gence time to the steady state is shown, however, to be dependent on the platoon
length. It is noteworthy here that testing with different values of γ for each platoon
length leads in the most of the cases to the desired controller. For example, Figure
6.20 shows that the controller obtained with γ “ 6.6 performs better with regards
to overshoots than those computed with γ “9, 8 or 7 for a platoon of 20 vehicles.
However, unlike the H2-control, the sub-optimal γ depends on the platoon length.
Figure 6.21, for example, shows the responses of a platoon of 3 vehicles obtained
with γ “ 3 in different communication scenarios. Intensive tests have revealed this
choice to be the best performing for a platoon of length 3.

In a next step, reachability analysis is performed to verify if these performance
criteria are guaranteed under uncertainties in input as well as disturbances in the
communication between the vehicles.
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Figure 6.16.: The responses of a H2-based controlled platoon of 3, 5, 10, 15 trucks
to a leader 1m{s step form velocity with the Q “ I.
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20 vehicles, Q=1000.I
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Figure 6.17.: The responses of a H2-based controlled platoon of 20 trucks to a leader
1m{s step form velocity with different weighting matrices Q (a) Q “ I,
(b) Q “ 10.I, (c) Q “ 1000.I, (d) Q “ 100000.I,.
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Figure 6.18.: The responses of a H2-based controlled platoon of 3 trucks computed
with Q “ 1000.I to a leader 1m{s step form velocity in cases of loss
of communication.
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Figure 6.19.: The responses of a H8-based controlled platoon of 3, 5, 10, 15 trucks
to a leader 1m{s step form velocity with a γ “ 8.
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Figure 6.20.: The responses of a H8-based controlled platoon of 20 trucks to a
leader 1m{s step form velocity with different γ values. (a) γ “ 9, (b)
γ “ 8, (c) γ “ 7, (d) γ “ 6.6.
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Figure 6.21.: The responses of a H8-based controlled platoon of 3 trucks computed
with γ “ 3 to a leader 1m{s step form velocity in cases of loss of
communication.
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6.6.1. Reachability Analysis

Clearly, it is difficult to make a better controller choice based only on simulation
results, it is impossible to consider for all possible initialization scenarios. However,
this is possible through reachability analysis. In addition, like the case of LMI-based
controller, declining velocity overshoots and string stability are ignored during the
control design to reduce the complexity. The checking of these requirements can
furthermore be performed using reachability results of the closed loop controlled
platoons.

Q I 100.I 1000.I 100000.I
x1 r´27.4, 3.6s r´15.3, 1.9s r´14.6, 1.8s r´14.3, 1.8s
x2 r´8.1, 8.1s r´5.1, 5.2s r´4.9, 5.0s r´4.8, 4.9s
x3 r´11.1, 3.1s r´10.5, 2.5s r´10.3, 2.4s r´10.3, 2.4s
x4 r´10.8, 1.6s r´6.6, 0.9s r´6.5, 0.9s r´6.4, 0.9s
x5 r´3.0, 3.0s r´2.1, 2.1s r´2.1, 2.1s r´2.0, 2.0s
x6 r´11.6, 3.6s r´2.1, 2.1s r´10.9, 2.9s r´10.8, 2.9s
x7 r´4.7, 0.8s r´2.9, 0.4s r´2.8, 0.4s r´2.8, 0.4s
x8 r´1.3, 1.3s r´0.9, 0.9s r´0.9, 0.9s r´0.9, 0.9s
x9 r´11.8, 3.8s r´11.2, 3.2s r´11.1, 3.1s r´11.0, 3.1s

Table 6.2.: Gap ranges of a H2-based controlled platoon of 3 vehicles obtained with
support function based reachability analysis for T “ 30s, r “ 0.01s and
different weighting matrices Q.

In this section, we present only a small part of the produced results which we
deemed to be sufficient to demonstrate how reachability can aid by control design of
large-scale systems. For this purpose, we use our support function implementation
with the same options as with the LMI-based platoon but with the time horizon
T “ 30s. We choose a narrow neighborhood of the origin as initial set and the input
to vary constant-wise in the interval r´9, 1s ms´2. We first begin with the choice
of the weighting matrix Q. Table 6.2 lists the interval hulls of reachable sets for
different state variables in case of nominal communication for controllers obtained
with the weighting matrices Q “ I, 100.I, 1000.I and 100000.I. The variables x1,
x4 and x7 thereby correspond to the gaps e1, e2 and e3 in meters rms. We remark
that overshoots in the velocity and acceleration remain in acceptable ranges. String
stability in the form of distance attenuation from the start to the end of the platoon
is also assured. In case of outages of the communication between the vehicles, we
show that the gaps increase. This is achieved by testing the scenario depicted by
Figure 6.9 with many transitions between nominal and total loss of communication.
This is likely due to over-approximation and arithmetic errors and illustrated in
Figure 6.22 in comparison with Figure 6.23.

We note that the controllers obtained with Q “ 1000.I and Q “ 100000.I provide
the shortest gaps and that both exhibit similar performances.

The same strategy as above is used to make the best controller parameter choice
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Figure 6.22.: The reachable sets of a H2-based controlled platoon of 3 trucks com-
puted with Q “ I and Q “ 1000.I in case of nominal communication
scenario.
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Figure 6.23.: The reachable sets of a H2-based controlled platoon of 3 trucks com-
puted with Q “ I and Q “ 1000.I for the communication scenario of
Figure 6.9 with fixpoint triggered transitions and a number of transi-
tions equal to 3.
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Figure 6.24.: The reachable sets of a Hinfty-based controlled platoon of 3 trucks
computed with γ for the communication scenario of Figure 6.9 with
fixpoint triggered transitions and a number of transitions equal to 3.
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γ 8 7 6 5 4 3 3.5
x1 r´25.4, 3.1s r´24.8, 2.9s r´23.9, 2.7s r´22.4, 2.5s r´19.7, 2.2s r´13.2, 1.5s r´17.3, 1.9s
x2 r´7.6, 7.6s r´7.4, 7.5s r´7.2, 7.3s r´6.8, 6.8s r´6.1, 6.1s r´4.0, 4.1s r´5.4, 5.4s
x3 r´11.0, 3.0s r´11.0, 3.0s r´11.0, 3.0s r´10.9, 2.9s r´10.8, 2.9s r´10.5, 2.5s r´10.8, 2.8s
x4 r´10.2, 1.4s r´10.1, 1.3s r´9.8, 1.2s r´9.3, 1.1s r´8.5, 0.9s r´6.4, 0.7s r´7.8, 0.9s
x5 r´2.8, 2.8s r´2.8, 2.8s r´2.7, 2.7s r´2.6, 2.6s r´2.3, 2.3s r´1.6, 1.6s r´2.1, 2.1s
x6 r´11.4, 3.4s r´11.4, 3.4s r´11.3, 3.3s r´11.2, 0.5s r´10.9, 2.9s r´10.2, 2.2s r´10.7, 2.7s
x7 r´4.5, 0.7s r´4.4, 0.6s r´4.3, 0.6s r´4.1, 0.5s r´3.8, 0.5s r´2.9, 0.3s r´3.5, 0.4s
x8 r´1.2, 1.2s r´1.2, 1.2s r´1.2, 1.2s r´1.1, 1.1s r´1.0, 1.0s r´0.7, 0.7s r´0.9, 0.9s
x9 r´11.6, 3.6s r´11.6, 3.6s r´11.5, 3.5s r´11.3, 3.3s r´11.0, 3.0s r´10.1, 2.1s r´10.7, 2.7s

Table 6.3.: Gap ranges of a H8-based controlled platoon of 3 vehicles obtained with
support function based reachability analysis for T “ 30s, r “ 0.01s and
different values of γ.

Method LMI H2 H8
e1 in rms 25.6 15.9 15.0
e2 in rms 25.4 15.4 16.5
e3 in rms 9.7 13.5 19.8

Table 6.4.: Safe minimum gaps for a platoon of 3 vehicles controlled with different
control design methods.

for the H8 control design. Table 6.3 lists interval hulls of the reachable sets of a
platoon of 3 vehicles obtained with different values of γ in case of nominal com-
munication. For this analysis, we took the same conditions and options as by the
H2-based platoon. We note that γ “ 3 leads to the shortest safe gaps, which cor-
respond to the absolute values of the lower bounds of the intervals corresponding
to the state variables x1, x4 and x7. However, we notice thereby that the string
stability is no more guaranteed.

A comparative overview of minimum safe gaps provided by different control de-
sign methods for a platoon of 3 vehicles is given in Table 6.4. It is particularly
noteworthy that the simplest controller is also the best performing controller with
regards to the control and safety requirements.

We applied the same procedure to decide on the controller for platoons of length
5, 10, 15 and 20. The choice of Q “ 1000.I has led to the best controller for the
H2-based design. For the H8-based controller, however, the optimal value of γ
varies with the length of the platoon.

6.7. Managing Platoons at Intersections
In this section, we demonstrate how reachability can be applied to derive the time
criteria for assuring safety with the management of a platoon at intersection as case
study.
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6.7. Managing Platoons at Intersections

It is known that managing intersection is a particularly complicated task in traffic
management. The task becomes even more complex when a platoon is approaching
an intersection and the goal is to maintain the formation during the crossing process
or in the case of a collision risk, to split itself into two sub-platoons.
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Entering 
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Stop Line 

x2 x1 xISL 

yISL 
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yEL 

IR2 IR1 

    

Microcontroller 
board 

Figure 6.25.: Intersection infrastructure.

6.7.1. The Intersection Infrastructure

The intersection infrastructure is equipped with side sensors, traffic lights, a WiFi
module and a microcontroller board. The road sensors in lines IR1 and IR2 of Fig-
ure 6.25 are two infrared distance sensors. They allow a systematically assessment
of position and velocity information. This information is thereby automatically
available for safe management and for monitoring of the crossing. The intersection
is also equipped with scaled time/phase controllable traffic lights. In this work, we
consider signalized as well as unsignalized intersections. The WiFi module assures
the communication between the microcontroller unit on board of each truck and
the intersection microcontroller board. In addition, an indoor positioning system
consisting of two ultrasonic transmitters, a microcontroller and a radio sender mod-
ule measures independently from the platoon infrastructure the position of each
truck entering the intersection. A detailed hardware description of the intersection
is available in [35].
Besides lines IR1 and IR2, following lines shown in Figure 6.25 are defined:
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• The entering line EL with the coordinates xEL and yEL at which the vehicles
receive the information that they are entering an intersection,

• The intersection stop line ISL with the coordinates xISL and yISL at which
the vehicles have to wait for the permission to cross the intersection.

The width dI of the intersection area is also assumed to be known. In this study,
we furthermore assume the intersection to have the same width in both directions.
The intersection area and therefore the unsafe region is consequently defined by

pxIL ă x ă xIL ` dIq ^ pyIL ă y ă yIL ` dI q. (6.18)

6.7.2. The Intersection Model
The intersection shown in Figure 6.25 involves the platoon governed by the dynam-
ics described with equation (6.12) and principal other vehicles (POV) on the other
side of the intersection. A PI-controller is also introduced to track the reference
speed vref . The positioning system and the on-board sensors collect for each ve-
hicle k P ti, POV u inside the intersection the position xk, the velocity vk and the
acceleration ak which verify

vk “ 9xk and ak “ 9vk. (6.19)

As a consequence the dynamics of the platoon and the POV is once again described
by

9x “ Ax ` Bu, (6.20)

where x “ rxL, vL, ¨ ¨ ¨ , xi, vi, ai, ¨ ¨ ¨ , xP OV , vP OV sT , u the input of the system,
pA, Bq are the system matrices deduced from the equation of the underlying PI-
controller with the combination of equations (6.12) and (6.19).

6.7.3. Reachability using Zonotopes
The ISL in Figure 6.25 defines the critical or the unsafe area for the verification
analysis. In addition, a risk of collision increases if the platoon P and vehicle POV
enter simultaneously the intersection. For a platoon of length np, this last condition
is formally expressed as follows

@i P t1, . . . , npu pyIL ă yP OV ă yIL ` dIq ^ pxIL ă xi ă xIL ` dI q . (6.21)

However, the size of the vehicles is not considered in this formulation. For greater
safety guarantee, a time condition is introduced. Under the following condition,
where te and tl are the predicted values of the entering and leaving time respectively,

@i P t1, . . . , npu
´

te
i ă te

P OV ă tl
i

¯
(6.22)

a collision may occur. Ensuring the contrary increases the intersection safety.
The simulation has shown that with an initial state vector x0=r80,30,60,30,0,40,30,
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Figure 6.26.: Reachable sets: yP OV as a function of xL, x1, x2 and x3 for
X0=rx0, 0.01I13s and T “4s.

0,20,30,0,-10,50s and for xISL “ 200m, a collision between the POV and the
leader of the platoon is possible after t “ 4s. We use our zonotope implemen-
tation to retrieve this result. We initialized our verification first with a zonotope
X0=rx0, 0.01I13s where I13 is the identity matrix in R

13ˆ13. We are concerned with
the evolution of the positions of different vehicles involved in the intersection and
particularly in the position yP OV and the speed vP OV of the vehicle POV in rela-
tion to current positions of the platoon vehicles. For this reason, we plotted the
projections of the reachable sets on the planes pxL, yP OV q and pxi, yP OV q as well as
the projections on the planes pxL, vP OV q and pxi, vP OV q for i P t1, 2, 3u and that for
a time horizon T “ 4s. The results are illustrated respectively in Figure 6.26(a)-(d)
and Figure 6.27(a)-(d).

Figure 6.26(a) shows that the leader of the platoon and the POV cannot reach
the line 200m in the interval time r0, 4ss. This consequently guarantees a collision
free intersection. Figure 6.26(c)-(d), however, depicts the distance each vehicle can
reach behind the leader. The movement of the POV in correlation with the states
of the platoon participants can also be tracked in this way. Using these results
with the POV velocity information of Figure 6.27(a)-(d) help to safely manage
the intersection. For example, an emergency stop message to the POV from the
intersection management unit after 4s can ensure a safe intersection crossing of the
whole platoon.

Otherwise the waiting time at the ISL can be set to allow vehicle POV to cross
the intersection between the leaving time tf

i of vehicle i and the entering time te
i`1
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Figure 6.27.: Reachable sets: vP OV as a function of xL, x1, x2 and x3 for
X0=rx0, 0.01I13s and T “4s.
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Figure 6.28.: A critical intersection scenario: split the platoon and allow in-between
vehicle POV to cross.
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Figure 6.29.: Reachable sets to estimate entering times for different trucks at line
xISL “200m.
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Figure 6.30.: Reachable sets for (a) X0=rx0, I13s and (b) X0=rx0, 10I13s for T “4s.
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Figure 6.31.: Reachable sets with X0=rx0, 10I13s for different T : Entering time
estimation for xISL “ 200m.

of its follower i ` 1. An increase of the speed vP OV may therefore be necessary to
improve the safety aspect related with the critical platoon split decision. To put
this idea into practice, the split scenario illustrated in Figure 6.28 is considered. A
new ISL is thereby fixed at the distance xISL “ 110m. We first examine the results
of Figure 6.29(a)-(b). The reachable sets corresponding to the position of the POV
as a function of the position of each truck within the platoon are plotted until the
ISL was reached. The elapsed time, which is effectively the entering time te, is
thereby assessed. Different entering times te

L=1s, te
1=1.66s, te

2=2.33s and te
3=2.99s

can be recorded in this way. We note that the vehicles enter the intersection with
a time gap of 0.66s. The decision on allowing the POV to cross the intersection
between two successive platoon vehicles depends on the unsafe condition (6.21), the
intersection width dI and the information on the speed of the POV acquired from
Figure 6.27.

The same procedure is also applied to estimate different leaving times tl. However,
in this case, the computation of the reachable sets must be stopped once the line
xISL ` dI is reached. Taking for example xISL=110m and dI=50m and based on
results of Figure 6.26(c), tf

2 “ 4s can be deduced. This means that truck 2 requires
almost t “ 2, 67s to cross the intersection. For the other vehicles, this crossing time
is practically the same because the main platoon control objective is to maintain
constant reference speed vref .
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To take advantage of verification in comparison with simulation, we thereafter ini-
tialized the reachability using our zonotope implementation with the sets X0=rx0, I13s
and X0=rx0, 10I13s. The results are illustrated in Figure 6.30(a),(b). In both cases,
we deduced that for xISL “ 200m, a collision free intersection under 4s could no
longer be guaranteed. The choice of the initial set X0=rx0, 10I13s allowed large
uncertainties in state variables and is hence more relevant in practice. In fact, the
above strategy can be adopted to estimate different te, tl and recall all necessary
information required for a safe management of the intersection. For example, re-
sults of Figure 6.31(a)-(b) lead to the conclusion that no collisions are possible for
times under t “ 2.7s.
In cases of large uncertainties, it is evident that making a decision concerning the
safety of the intersection is quite difficult. However, since these decisions are based
on reachability analysis, they will consequently guarantee for absolute safety at the
intersection.

6.8. Conclusion

In this section, we addressed the problem of safety verification of interconnected pla-
toon of vehicles. The vehicles communicate via a communication network subject to
failures. A controller based on LMI control design is proposed to maintain safe and
small spacing errors between the vehicles. We modeled the controlled platoon as
a hybrid automaton switching spontaneously between different modes correspond-
ing to the changing topology of the communication inside the platoon. We used
our zonotope and our support function implementations to get an approximation
of the reachable sets and compare their results. These assist in determining the
shortest safe gaps between the vehicles inside the platoon which ensure a collision-
free path even under a complete outage of communication. We were furthermore
able to check for string stability and declining overshoots in the velocity. These
requirements have been ignored during the control design with the aim to reduce
complexity.

Beside the check for safety conditions, reachability can also help in control design
of large scale systems. We suggested a practical approach for the control synthe-
sis of a platoon of vehicles with scalable length. Easy scalable control synthesis
approaches like H2 and H8 control design were suggested to compute a feedback
controller. Control requirements like string stability and confining overshoots in
the velocity or in acceleration under specific thresholds were ignored during con-
trol design to simplify the computation. The choice between different computed
controllers was made on the basis of the results of the reachability analysis of the
closed-loop system. We were able to find controllers for platoons of length 3, 5, 10,
15, 20 with this approach for which control and safety requirements are guaranteed
even under loss of communication.

We furthermore show, with the example of a platoon approaching an intersection,
how reachability analysis can be useful for safely managing the intersection. It was
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demonstrated that reachable sets can provide information required to estimate the
collision time, the entering time and the leaving time for each vehicle involved at the
intersection. It was also possible to track different state variables and in particular
the position and the speed of the vehicle on the other side of the intersection. These
results contribute to the basis for crucial decisions like permitting the platoon to
pass the intersection, stopping it or splitting it if the collision risk is high.

We illustrated different practical applicability aspects of the reachability analysis
with these examples particularly in the field of safety and control of large-scale
connected systems.

The problem of conceiving a controller for networked systems is a challenging task
because of the complex interaction of its different components with one another and
also with the surrounding environment. The design process becomes more difficult if
large-scaled systems are involved. We proposed reachability analysis of continuous
systems to guarantee control requirements which might not be taken into account
during the control design owing to the complexity of the problem. As an example,
we suggested a large-scalable platoon of trucks. We investigated the main part of our
work on devolving an algorithm for the computation of the reachable set for this kind
of hybrid systems. We used our support function and zonotope implementations
to check for safety, assess the performances of the obtained controlled platoon and
decide on the best performing controller.
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7. Conclusion

This thesis explores methods and approaches developed during the last decade for
computing reachable sets of linear hybrid systems. After an assessment and a com-
parative evaluation of some available verification tools, a theoretical overview of
the most significant methods was provided. It begun with the skeleton of the main
algorithm which consists of a recursion derived from the linear differential equation
describing the continuous dynamics of the hybrid system. It then covered differ-
ent approximation techniques aimed at finding the tightest approximations for the
initial set and the input contribution required to complete the construction of the
above mentioned algorithm. In addition, we included a survey of different strate-
gies for dealing with invariants. Furthermore, different techniques for handling the
discrete dynamics of hybrid systems were include as part of this overview.

We opted for support functions and zonotopes for representing reachable set. We
dedicated a large part of this work to a detailed theoretical description as well
as practical guides for the implementation of the aforementioned techniques. We
also focus on techniques specific to each geometric representation. We elaborated
on diverse approaches for handling invariants, guard intersections and transitions
which are specially conceived for support functions as well as for zonotopes

We developed two toolboxes integrating these diverse methods in a same frame-
work. The first developed under MATLAB uses support functions. The second is a
C++ tool based on zonotopes. Both tools allow for a flexible choice of parameters
and combination of methods via an intuitive graphical user interface. Guards in
form of hyperplanes, halfspaces and polyhedron are allowed, while invariant given
as halfspaces or polyhedron can also be treated. Furthermore, different clustering
methods for handling transitions are also available. We furthermore proposed the
time-triggered and the novel fixpoint-triggered transition. Therefore, we allowed
the user to choose the transition picking strategy for cases where from a source
location more as one transition can be fired. The user can decide, during the anal-
ysis, which transition can be taken if the manual option is set. He can also choose
options, like first/last detected or most/few intersection transition, with the latter
referring to the number of reachable sets intersecting the guard.

We then used the tools to assess these methods and carried out a comparative
performance analysis. We generally note that in many cases and particularly for
complex systems, the choice of methods and their combination can have a crucial
impact on the tightness of the approximation and on the efficiency of the computa-
tion.

The complexity of the hybrid system essentially depends on its state dimen-
sion, the differential equation describing the continuous dynamics, the number of
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locations, the number of transitions and the complexity of the logic expressions
describing the guard conditions. The presence of invariants, the possibility of Zeno
phenomena and the possibility of multiple outgoing transitions can additionally
affect this complexity. Our experiments have revealed that it is practically impos-
sible to provide a general approaches which is efficient for all kind of linear hybrid
systems. It is therefore impossible to predict in advance which methods are most
appropriate to deal with a specific system. Thus, it is very helpful to have many
methods inside the same framework at our disposal. This allows for testing with
multiple methods and the choice of the best performing. An enormous modeling
effort is thereby spared if our implementation is used in place of other different
available verification tools.

We finally demonstrated potential applications of the reachability analysis using
a networked platoon of vehicles as case study. We first carried out a reachability
analysis to determine the shortest safe gaps between vehicles in a platoon controlled
using linear matrix inequalities. We than showed how reachability can help by the
choice of the best performing platoon controller. The controllers were computed
using H2 or H8 optimal control design. Afterwards, we considered a platoon ap-
proaching an intersection as application to demonstrate how time and state critical
conditions can be determined using reachability analysis. These conditions are
decisive for a safe and reliable management of the intersection.

This work covers only a small part of hybrid systems verification techniques,
having only focused on reachability techniques for linear hybrid systems. However,
our experience reveals that we are far away from proposing a general platform able
to deal with different hybrid automaton definitions and models. Even for the class
of linear hybrid systems, it is theoretically and practically difficult to find the most
suitable techniques for a given system.

Within the HyPro Project [61], we are working on a C++ implementation of
a library including geometric sets, like boxes, polytopes, zonotopes and support
functions with their corresponding operations and if possible transformation be-
tween them. Taylor models are also part of this library. The main goal of this
project is to use the library for implementing a reachability toolbox integrating all
these geometric sets for the verification of linear as well as nonlinear hybrid sys-
tems. Our contribution to the project consisted of collecting and building a suite
of benchmarks for testing tools [33], assessing some of them and finally on the C++
implementations of zonotopes and support functions.

Based on our experience with tools, we are working in the context of this ongoing
project to overcome the inherent disadvantages of currently available methods where
possible. It might therefore be conceivable to change the presentation set in specific
computation steps in oder to improve the efficiency and tighten the approximation.
However, we have to thereby take into account that transformations between sets
may be also potential sources of inefficiency and approximation errors.

Our experience with reachability tools for nonlinear systems, done outside the
context of this thesis, has shown these last to suffer from the same problems as
tools dedicated for linear systems. However, apart from the problems arising in
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handling transitions, which can be generally treated in the same way as by linear
systems, computing a tight over-approximation of reachable sets for the nonlin-
ear part depends crucially on the recursion adopted for the iterative computation
and particularly on the bounding approach of the remainder term in Taylor series.
Splitting is thereby often required to refine the approximation.

Furthermore, our survey of verification tools based on theorem proving or on
model checking techniques, such as KeYmaera [88], iSAT [100] and dReach [27], has
demonstrated these approaches to have difficulties in dealing with the continuous
dynamics.

After these different surveys and the practical implementation experience, the
question arises as to how far could set-theoretic and logic-theoretic techniques be
combined into the goal of improving the performance of verification tools. Seeking
the answer for this question and solutions for the aforementioned open problems
calls for an immense experimentation and research effort.
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A. Appendix A
This appendix includes a detailed description of the different benchmarks used to
assess the performances of the tools.
We use the following notations for the description of the hybrid automata: x_dot
corresponds to 9x, x ““ y to x “ y, & to the logic AND and | to the logic OR .

A.1. Infinity test
This example is a simple two dimensional system consisting of a one location with
a flow given by the following system of differential equations"

9x “ x ` u
9y “ 2y ` u,

(A.1)

where u P r0; 1s. The initial values for x and y is the origin and the unsafe states
are x ă 0 or y ă 0.

A.2. The Bouncing Ball Example
The bouncing ball example is commonly the first example used to test tools or
demonstrate the validity of new methods. It consists of a simple ball released from

(b) (a) 

Figure A.1.: Hybrid automaton of the bouncing ball benchmark.

a predefined height and left to bounce on the ground. It is modeled by the unique
mode hybrid automaton of Figure A.1(b) with a loop transition. The dynamics of
the ball is illustrated in Figure A.1(a). The initial set is x1 “ 2&x2 “ 0 and the
forbidden set x1 ă 0.
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A.3. The Colliding Masses Benchmark

This example proposed in [50] describes two particles m1 and m2 moving in a
straight homogeneous motion which then collide and move apart in the opposite
direction. This example can be modeled as a hybrid system. The continuous

(a) 

(b) 

(c) (d) 

(a)

(b)

(c)

Figure A.2.: Colliding masses example. (a) Before the collision. (b) Collision. (c)
After collision (d) The corresponding hybrid automaton.

behavior is thereby governed by the dynamics of the masses before and after the
collision (Figure A.2(a), (c)) given by the differential equation describing the flow
of the unique location of the corresponding hybrid model of Figure A.2(d). The
impact between both particles m1 and m2 (Figure A.2(b)), however, determines the
discrete event. For the case m1 “ m2, the guard condition p1 “ p2 and the reset
equation v1 “ ´v1 ^ v2 “ ´v2 of the unique transition of the hybrid automaton
can be thereby deduced (see Figure A.2(d)). The initial set is chosen equal to
p1 “ 0&p2 “ 3&v1 “ 2&v2 “ ´1 whereas u “ 0 and the forbidden set may be
p1 ą 2|p2 “ 2.

A.4. The Transient in Flower Benchmark

We consider the piecewise linear system proposed in [36] consisting of controlled
switches between four cells in a 2D-partition. This example is characterized by
dynamics that follows a flower-like trajectory. It has been used in [36] as testing
example for the ReachLab platform. The continuous dynamics of the four cells is
given by the following matrices:

A1 “ A3 “
ˆ´0.1 5

´1 ´0.1

˙
, A2 “ A4 “

ˆ´0.1 1
´5 ´0.1

˙
(A.2)

The corresponding hybrid automaton is given in Figure A.3. As initial values -1
for x1 and 0 for x2 are used. For the unsafe set, we take all states verifying x2 ą 1
or x2 ă ´1.
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Figure A.3.: The hybrid automaton of the transient in flower example.

A.5. The Two-Tank Benchmark
Different types of two-tank benchmarks have been already proposed as examples
of hybrid systems. The most classical ones of them are commonly used in lectures.
such as [74], to introduce hybrid automata. We propose the two-tank system,
suggested in [59] to tackle the stability problem of limit cycles in hybrid systems,
as a benchmark for testing verification tools. This has been also previously used in
[47] to test reachability techniques based on zonotopes. The corresponding hybrid

  

 

  

 

 

 

 pump 

(a) (b) 

Figure A.4.: The two-tank system: (a) Schematic diagram of the considered two-
tank system. (b) The corresponding hybrid automaton.

model has four locations with many possible transitions and nondeterministic jumps.
This benchmark has a periodic dynamical behavior which converges to a stable limit
cycle depending on the chosen initial set. The benchmark illustrated in Figure
A.4(a) consists of two tanks. The liquid in the first tank has two external sources
– a constant inflow source with the flow Q0 and a second source with the flow Q1
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equipped with a controlled valve valve1. A drain placed at the button of tank 1
allows the liquid to pass into tank 2 with the flow QA. Tank 2 is itself equipped
with two drains. In the first drain, a pump is placed to assure a constant liquid
outflow QB whereas the flow in the second one Q2 is controlled by an electro-valve
valve2. Both valves valve1 and valve2 can take the states On or Off. This results
consequently in four possible discrete modes for the hybrid automaton. The liquid
levels xi, i P t1, 2u in both tanks obey to the following differential equations

9x1 “
" ´x1 ´ 2 if valve1 is Off

´x1 ` 3 if valve1 is On

9x2 “
"

x1 if valve2 is Off
x1 ´ x2 ´ 5 if valve2 is On

(A.3)

The transitions are governed by the switching strategy of both valves. This latter
aims at maintaining the liquid levels in both tanks within predefined safe levels.
In this case study, valve1 should be immediately opened once x1 falls to ´1 and
closed as soon as x2 reaches level 1. On the other hand, valve2 is closed if x2
reaches the level 0. Otherwise, as soon as x2 goes above 1, valve2 should be
promptly opened. The resulting hybrid automaton is given in Figure A.4(b). We

(a) (b) 

Figure A.5.: Hybrid automata for the two-tank benchmark without invariants (a)
and with invariants (b).

test using reachability techniques whether these safety criteria are satisfied or not.
We carry out a verification analysis under disturbance by adding an input u to
the system as shown in Figure A.5(a). Afterwards, we introduce invariants in the
discrete locations like in Figure A.5(b). We furthermore allow nondeterminism and
vary the range of the initial set.
Possible initial set may be 1.5 ď x1 ď 2.5&x2 “ 1. The input can be bounded in
r´0.1, 0.1s. The unsafe set is described by ´1 ą x1|x2 ď ´1
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A.6. The Navigation Benchmark
The navigation benchmark was first proposed in [37] as a benchmark for evaluating
verification tools for hybrid systems. It describes an object moving in a two dimen-
sional n ˆ n grid. The grid is divided into a scalable number of cells. To each grid
a matrix map is associated, the element of which mappi, jq defines the dynamics of
the object inside each cell cpi, jq, i, j P t1, . . . , nu. Two particular regions inside the
grid are preliminary defined: a bad region B and a good one A. The object has to
reach the good region while avoiding the bad one. Figure A.6(a) shows an instance

(a) (b) (c) 

Figure A.6.: Instances and maps of the different navigation benchmark versions.

of the navigation benchmark for a 3 ˆ 3 grid with the corresponding map matrix
and the directions of the desired velocity in each cell. This last has been already
used in [17] to test tools like PHAVer, HSolver and KeYmaera. The chosen map
of the 4 ˆ 4-navigation benchmark as well as this of the 5 ˆ 5 variant are shown
respectively in Figure A.6(b) and Figure A.6(c).
The desired velocity vd of the object in each cell on the grid is given by

vd “ psinpmappi, jq ˚ π

4
q, cospmappi, jq ˚ π

4
qqT . (A.4)

The actual object velocity v is therefore calculated using the following differential
equation

9v “ Apv ´ vdq. (A.5)

The matrix A for the 3 ˆ 3 version is given by A3ˆ3 “
ˆ´1.2 0.1

0.1 ´1.2

˙
, whereas the

matrix for the 5 ˆ 5 instance is chosen to be equal to A5ˆ5 “
ˆ´0.8 ´0.2

´0.1 ´0.8

˙
. For

further tests, we constructed a 4 ˆ 4 version with the map A4ˆ4 “
ˆ´0.9 0.2

0.3 ´0.9

˙
.

The navigation benchmark can be modeled as a hybrid automaton with in general
nˆn´2 locations. The flow is given by the following system of differential equations"

9x “ v ` u
9v “ Apv ´ vdq, (A.6)
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where u is an uncertain input, x “ rxx, xysT and v “ rvx, vysT constitute the state
vector. The invariant of each location can eventually be defined by the position
constraints. The corresponding transition guards, however, are the constraints
describing common boundaries with neighboring cells. As examples, the hybrid
automata of the 3 ˆ 3-navigation benchmark and the 4 ˆ 4-navigation benchmark
are shown in Figure A.7 and Figure A.8. The initial states for our navigation tests

Figure A.7.: Hybrid automata of the 3 ˆ 3 navigation benchmarks..

with the different mentioned maps and matrices A are given in Table A.1 for initial
points and Table A.2 for initial sets. The set of forbidden states for the reachability
analysis is the set of states inside and along the borders of the region B in each
considered grid.

3x3-map 4x4-map 5x5-map
xx 2 0.5 3.5
yy 1 1.5 3.5
vx, vy P [-0.3;0] [-0.3;0.3] [-0.3;0.3]

Table A.1.: Initial states (points) for the navigation benchmarks

For the assessment of tools in Chapter 2 the input is taken u ““ 0.
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A.7. The Heating Benchmark

Figure A.8.: Hybrid automata of the 4 ˆ 4 navigation benchmarks.

3x3-map 4x4-map 5x5-map
xx [2;3] [0;1] [3;4]
yy [1;2] [1;2] [3;4]
vx, vy P [-0.3;0.3] [-0.3;0.3] [-0.3;0.3]

Table A.2.: Initial states (sets) for the navigation benchmarks

A.7. The Heating Benchmark
The heating benchmark consists of n rooms with temperatures xi for i “ 1 . . . n
and m heaters. The temperature changes according to the following differential
equation

9xi “ cihi ` bipu ´ xiq `
ÿ
i‰j

ai,jpxj ´ xiq, (A.7)

where ci “ 15 is the heating power, hi is a boolean variable with value 1 if room i
has a heater and 0 else, ai,j “ 1 for adjacent rooms, u is the outside temperature
and bi is a value describing the intensity of the heat exchange with the outside
supposed to be equal to

1. 0.08 for rooms with one common wall with the neighbor rooms,

2. 0.16 for rooms with two common walls with the neighbor rooms and

3. 0.24 for rooms with three common walls with the neighbor rooms.
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Two types of heaters could be considered: movable and anchored heaters. The
switching conditions will, hence, depend on the type of the heater. For anchored

(d) (e) (f) 

(a) (b) 

Anchored heater Movable heater 

( ) (c) 

Figure A.9.: Layouts of the different heating benchmark variants.

heaters, we opted for the switching criteria adopted in [5]. An upper and a lower
temperature thresholds T high “ 24 and T low “ 22 are chosen with a range δT P
r0; 0.05s so that

(a The heater in room i is switched on if xi ă T low ` δT and

(b switched off if xi ą T high ´ δT , resulting consequently in a change of the tem-
perature in different rooms.

The external temperature verifies u P r0; 0.1s. As examples for anchored heaters,
we consider for our study, the 6 room heating benchmark of [5] shown in Figure
A.9(b), the 3 room example of Figure A.9(a) and the three variants of the 4 room
heating benchmark of Figure A.9(e), (f), (g).
The initial values of the room temperatures for these benchmarks are listed in Table
A.3 and the initial location is chosen to be the location where both heaters are off.

Room x1 x2 x3 x4 x5 x6
Temperature 23.5 23.5 23 22.5 23 22.5

Table A.3.: Initial states for the proposed heating benchmarks with fixed heaters.

For movable heaters, we adopt the conditions of [37]. If a room i has no heater,
it might receive one from another room j if the following conditions are met

1. room i has no heater,

2. room j has a heater,
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3. xi ď geti and

4. xj ´ xi ě difi, where geti and difi are constants which may be different for
each room.

We choose, like in [37], the setting u “ 4, off “ p21, 21, 21qT , on “ p20, 20, 20qT ,
get “ p18, 18, 18qT and dif “ p1, 1, 1qT for these parameters.
As example for movable heaters, we consider the benchmark with 3 rooms and
2 portable heaters of [17, 95] shown in Figure A.9(c). For the initial state both
heaters must be placed in room 1 and room 2 and x1 “ x2 “ x3 “ 20. The set of
forbidden states is the set of states where the temperature of at least one room is
below or equal 14. All considered benchmarks are conceived to be safe under the
above considered conditions.

Figure A.10.: The graphical SpaceEx input format for the hybrid automaton of the
heating benchmark variant with six rooms and two fixed heaters with
the layout of Figure A.9(b) (T l “ T low, T h “ T high and dT “ δT ).

A.8. Cooperative Platoon of Trucks
We consider the cooperative platoon of three autonomously driven trucks with a
leader at the start of the convey. This benchmark has been already proposed in
[18, 21]. Each truck in the platoon senses its velocity, its acceleration or its ac-
tual gap to the vehicle ahead and then sends these values via a wireless network
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to the other participants. Concurrently, it collects via wireless the same informa-
tion about the other vehicles with on-board electronics. Figure 6.1 illustrates the
infrastructure of the platoon. The distance between two consecutive trucks i and
i ` 1 is given by ei “ diptq ´ dref,i where dref,i is the safe gap. The minimum gaps
guaranteeing collision free platooning are evaluated using verification techniques.
A centralized controller based on LMI control design ensure besides the control
requirements such as stability, short and meanwhile safe gaps between the trucks
with a guarantee of string stability. The controlled platoon is a nine dimensional
linear system described by the following differential equation 9x “ Ax ` BaL, where
x “ re1, 9e1, a1, e2, 9e2, a2, e3, 9e3, a3s is the state vector, A and B are respectively the
state and the input matrices.

A.8.1. Platoon under full communication (single mode)
We begin first with computing the minimum safe gap dref,i for i “ 1, 2, 3 for the
platoon under full communication between the trucks. The corresponding hybrid
automaton consists in this case in only one mode characterized by the matrices

Ac “

¨̊
˚̋̊

0 1 0 0 0 0 0 0 0
0 0 ´1 0 0 0 0 0 0

1.6050 4.8680 ´3.5754 ´0.8198 0.4270 ´0.0450 ´0.1942 0.3626 ´0.0946
0 0 0 0 1 0 0 0 0
0 0 1 0 0 ´1 0 0 0

0.8718 3.8140 ´0.0754 1.1936 3.6258 ´3.2396 ´0.5950 0.1294 ´0.0796
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 ´1

0.7132 3.5730 ´0.0964 0.8472 3.2568 ´0.0876 1.2726 3.0720 ´3.1356

‹̨‹‹‚,

Bc “ p 0 1 0 0 0 0 0 0 0 qT .

(A.8)

The system starts with the origin as initial value or a neighborhood as an initial set.
For some verification tools, we impose an unsafe state described by the constraint
e1 ď ´30.

A.8.2. Platoon under a dropout of communication (2 modes)
This example basically extends the previous one to a system with a second location
representing a second operation mode where the communication between all trucks
abruptly drops out. [18, 21]. This new mode is described by the matrices Bn “ Bc

and

An “

¨̊
˚̋̊

0 1 0 0 0 0 0 0 0
0 0 ´1 0 0 0 0 0 0

1.6050 4.8680 ´3.5754 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 ´1 0 0 0
0 0 0 1.1936 3.6258 ´3.2396 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 ´1

0.7132 3.5730 ´0.0964 0.8472 3.2568 ´0.0876 1.2726 3.0720 ´3.1356

‹̨‹‹‚. (A.9)

The transitions between both modes is practically a true transition, which models
simply a spontaneous triggered transition (see Figure A.11(a)). Since only a few
tools allow this kind of transition, we specially constructed a hybrid model for them,
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in which the transitions are time triggered. The corresponding guard transition
then takes the form t “ T or t ą“ T , where T is a time horizon after which the
closed loop system reaches a stable state. We have to include a clock t to the
differential equations of both modes and to add the reset condition t :“ 0 to the
transitions (see Figure A.11(b)). To guarantee the enclosure of all reached states
from a chosen initial set, we impose T as time horizon for the computation inside
both modes. Based on simulation results obtained from the control design, we
decide for a time horizon T “ 20s. The initial values and unsafe states are the

  

  

  

  

  

  

  
  

(a) (b) 

 

 

 

 

Figure A.11.: Possible hybrid models of the platoon. (a) The transitions are spon-
taneous. (b) The transitions are time triggered.

same as for the platoon example with one location.

A.9. A Five Dimensional Linear Switching System (5D
LSS)

This consists of a hybrid system, for which the linear dynamics in each mode is
randomly generated using the rss MATLAB function. To guarantee for stabilization
and the convergence of the system to a steady state in each mode, we used LQR
control design. The transitions between different modes have been determined
heuristically by simulations. This results in the hybrid automaton of Figure A.12.
For verification purposes, we initialize the hybrid automaton with the state vector
p3, 4, 0, 0, 0qT . We choose an input u P r´1; 1s and an unsafe set defined by x1 ě 5.
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Figure A.12.: The SpaceEx graphical input file for the five dimensional linear switch-
ing system.
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B. Appendix B
This appendix is reserved to proofs of Chapter 3. Some proofs extend already
existing proofs for systems in the form 9x “ Ax ` u to systems taking the form
9x “ Ax ` Bu and are derived based on support function properties.

B.1. Proof of Lemma 1: Norm-bounded uncertain input
The input contribution is over-approximated with the following set Vr if μ “
supuPU }Bu}

Vr “ Bpβrq. (B.1)

where βr “ μ er}A}´1

}A} .

Proof. (adapted from [47])
Let x P X and y P RrpXq, then Dup.q : R` Ñ R

n such that

y “ eArx `
ż r

0
epr´sqABupsqds. (B.2)

It follows, accordingly (Banach space, Lebesgue integrable)››y ´ eArx
›› “ ››şr

0 epr´sqABupsqds
››

ď şr
0
››epr´sqABupsq›› ds

ď şr
0 epr´sq}A} }Bupsq} ds

ď μ
şr
0 epr´sq}A}ds

“ μ er}A}´1

}A}
“ βr.

(B.3)

B.2. Proof of Lemma 3: Toward a tighter approximation of
the input contribution

The input contribution is over-approximated with the following set Vr i

Vr “ rBU ‘ EU (B.4)

with
EU “ l

´
|A|´2

´
er|A| ´ In ´ r |A|

¯¯
d pABUq . (B.5)
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Proof. (Adapted from [71]) We draw heavily on the demonstration proposed in [71]
to derive this proof. We know that each solution xptq of the differential equation
(3.9) can be written in the form given by (3.11). Particularly for t “ r, we have

xprq “ eArx0 `
ż r

0
epr´sqABupsqds. (B.6)

We consider now the set Vr “ Rr pt0Rnuq which is defined as follows

Vr “
"ż r

0
epr´sqABupsqds :@s P r0, rs ,u psq P U

*
. (B.7)

The goal is to find an over-approximation Vr for Vr.
For this purpose the set Vr is characterized with its support functions. Let v be an
element of Vr then it exist a function up.q : R` Ñ U such that v “ şr

0 epr´sqABupsqds.
Under consideration of Taylor series expansion of the exponential function epr´sqA “ř8

i“0
pr´sqi

i! Ai, the vector v can be rewritten as follows

v “ şr
0
ř8

i“0
pr´sqi

i! AiBupsqds

“ ř8
i“0

şr
0

pr´sqi

i! AiBupsqds

“ şr
0 Bupsqds ` ř8

i“1
şr
0

pr´sqi

i! Ai´1ABupsqds.

(B.8)

Taking the maximum of the inner product of the vector v with a given direction
l P R

n, we obtain the value of the support function ρVr plq “ supvPVr of the set Vr

in this direction. Consequently, we have

ρVr plq ď supvPVr

´´şr
0 Bupsqds ` ř8

i“1
şr
0

pr´sqi

i! Ai´1ABupsqds
¯

.l
¯

ď şr
0 supupsqPU pBupsq.lq ds`ř8

i“1

´şr
0

pr´sqi

i!
ˇ̌
Ai´1 ˇ̌ supupsqPU |ABupsq| . |lpsq| ds

¯
ď rρBU plq ` ř8

i“1

´şr
0

pr´sqi

i! |A|i´1 ds
¯

supupsqPU |ABupsq| . |l|

(B.9)

Furthermore, we know that the support function of a symmetric box Ω “ r´ω1, ω1sˆ
. . . ˆ r´ωn, ωns for an w “ pw1, . . . , wnqT P R

n in a direction l “ pl1, . . . , lnqT P R
n

is defined by

ρΩplq “ supxPΩ x.l “
nÿ

i“1
|ωili| . (B.10)

Combining this definition with definition (6) of the symmetric interval hull of sets,
we can deduce that the term supupsqPU |ABupsq| . |l| in equation (B.9) represents
the support function ρdpABUqplq of the symmetric interval hull of the set ABU in
direction l.
On the other hand, we haveř8

i“1

´şr
0

pr´sqi

i! |A|i´1 ds
¯

“ ř8
i“1

prqi`1

pi`1q! |A|i´1

“ |A|´2 `er|A| ´ In ´ r |A|˘ .
(B.11)
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Taking the same notation EU as in [71] for the set EU “ l
´ř8

i“1
prqi`1

pi`1q! |A|i´1 d pABUq
¯

,
we derive for all chosen directions l the following inequality

ρVr plq ď rρBU plq ` ρEU
plq. (B.12)

This in turn leads to the following over-approximation of the input contribution

Vr Ă Vr “ r BU ‘ EU . (B.13)

B.3. Proof of Lemma 4
The initial set is over-approximated by

Ω0 “ CHpX0 Y erAX0q ‘ Bpαrq ‘ V (B.14)

with
αr “ `

er}A} ´ 1 ´ r }A}˘ supxPX0 }x} . (B.15)

and Bpαrq the ball of radius αr.

Proof. Let z P Rr̊0,rspX0q ñ Dx P X0, t P r0, rs | z “ etAx. Let also y P S given as
y “ x ` t

r perAx ´ xq. Using the Taylor expansion of

etA “ In ` At ` ř8
k“2

tk

k! A
k, (B.16)

where In is the identity matrix, we can write

z ´ y “ etAx ´ x ´ t
r perAx ´ xq

“ `
etA ´ In ´ t

r perA ´ Inq˘x

“
´ř8

k“2
tk

k! A
k ´ t

r

ř8
k“2

rk

k! A
k
¯

x

“
ˆř8

k“2
tptk´1´rk´1q

k! Ak

˙
x

(B.17)

Otherwise, t
`
rk´1 ´ tk´1˘ ď rk holds @t P r0, rs, which leads to

}z ´ y} “
››››ˆř8

k“2
tptk´1´rk´1q

k! Ak

˙
x

››››
ď ř8

k“2

›››› tptk´1´rk´1q
k! Ak

›››› }x}

ď ř8
k“2

›››› tptk´1´rk´1q
k!

›››› ››Ak
›› supxPX0 }x}

ď ř8
k“2

rk

k!
››Ak

›› supxPX0 }x}
ď ř8

k“2
rk

k! }A}k supxPX0 }x}
ď ř8

k“2
rk

k! }A}k supxPX0 }x}

(B.18)
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Moreover, taking note of the next Taylor expansion

er}A} “ In ` }A} r ` ř8
k“2

rk

k! }A}k , (B.19)

the following inequality can be deduced

}z ´ y} ď `
er}A} ´ In ´ }A} r

˘
supxPX0 }x} (B.20)

and therewith αr “ `
er}A} ´ In ´ }A} r

˘
supxPX0 }x}.

B.4. Proof of Lemma 3.7.3
The initial set can also be approximated by

Ω0 “ CHp
ď

λPr0,1s
Ω0,λq (B.21)

with Ω0,λ “ p1 ´ λq X0 ‘ λerAX0 ‘ λ p1 ´ λq EX0 ‘ λrBU ‘ λ2EU (B.22)

and
EX0 “ l

´
|A|´1 `er|A| ´ In

˘
d

`
A
`
In ´ erA

˘
X0

˘¯
‘ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d

`
A2erAX0

˘¯
EU “ l

´
|A|´2 `er|A| ´ In ´ r |A|˘ d pABUq

¯ (B.23)

Proof. The solution xptq of the differential equation (3.9) is given by

xptq “ eAtx0 `
ż t

0
ept´sqABupsqds. (B.24)

If therefore we consider the following set

Vt “
"ż t

0
ept´sqABupsqds :@s P r0, ts ,u psq P U

*
, (B.25)

we get
Rt pX0q “ etAX0 ‘ Vt. (B.26)

The initial set, however, is approximated by the following expression

Rr0,rs pX0q “ CHp
ď

tPr0,rs
Rt pX0q q. (B.27)

The objective of the proof in [71], was to find a tight approximation for the set
Rt pX0q for t P r0, rs. The proof has two parts. The first part, consisting in
computing an approximation for the set etAX0, was detailed in [71], whereas the
proof for the approximation of the input contribution was there not really given.
We propose, hence, the complete proof of the above lemma. Let’s begin with the
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approximation of the set etAX0. We consider an x0 P X0 and take into account
that etAx0 “ ept´rqAerAx0. Then

etAx0 “ p1 ´ t
r qetAx0 ` t

r etAx0
“ p1 ´ t

r qetAx0 ` t
r ept´rqAerAx0

“ ř8
i“0p1 ´ t

r q ti

i! A
ix0 ` ř8

i“0
t
r

pt´rqi

i! AierAx0

“ p1 ´ t
r qx0 ` t

r erAx0 ` rř8
i“1p1 ´ t

r q ti

i! A
ix0 ` ř8

i“1
t
r

pt´rqi

i! AierAx0s
“ p1 ´ t

r qx0 ` t
r erAx0 ` t

r p1 ´ t
r qrř8

i“1 r ti´1

i! Aix0´ř8
i“1 r pt´rqi´1

i! AierAx0s
“ p1 ´ t

r qx0 ` t
r erAx0 ` t

r p1 ´ t
r qrř8

i“1p t
r qi´1 ri

i! Aix0´ř8
i“1

ri

i! p t
r ´ 1qi´1

AierAx0s
“ p1 ´ t

r qx0 ` t
r erAx0 ` t

r p1 ´ t
r qrř8

i“1p t
r qi´1 ri

i! AipIn ´ erAqx0`ř8
i“1pp t

r qi´1 ´ p t
r ´ 1qi´1q ri

i! AierAx0s
“ p1 ´ t

r qx0 ` t
r erAx0 ` t

r p1 ´ t
r qrř8

i“1p t
r qi´1 ri

i! AipIn ´ erAqx0`ř8
i“2pp t

r qi´1 ´ p t
r ´ 1qi´1q ri

i! AierAx0s.
(B.28)

On the other hand, we know that for that @λ P r0, 1s and @i P N

´1 ď λi ´ pλ ´ 1qi ď 1 and ´ 1 ď λi ď 1. (B.29)

takin λ “ t
r leads consequently to the following equation

etAx0 ´ “p1 ´ t
r qx0 ` t

r erAx0
‰ P t

r p1 ´ t
r qrř8

i“1
ri

i! |A|i´1 d pApIn ´ erAqX0q‘ř8
i“2

ri

i! |A|i´2 d pA2erAX0qs
etAx0 ´ “p1 ´ t

r qx0 ` t
r erAx0

‰ P t
r p1 ´ t

r qr|A|´1 per|A| ´ Inq d pApIn ´ erAqX0q‘
|A|´2 per|A| ´ In ´ r |A|q d pA2erAX0qs.

(B.30)
Therewith, we deduce that

etAX0 Ď p1 ´ λqX0 ‘ λerAX0 ‘ λp1 ´ λqrlp|A|´1 per|A| ´ Inq d pApIn ´ erAqX0qq
‘l p|A|´2 per|A| ´ In ´ r |A|q d pA2erAX0qqs.

(B.31)
Concerning the input contribution, we have to prove that Vt Ď p t

r qrBU ‘ p t
r q2EU

with
EU “ l

´
|A|´2

´
er|A| ´ In ´ r |A|

¯
d pABUq

¯
. (B.32)

For this purpose, we proceed in the same way as in proof B.2 by defining a vector
v P Vt.

v “ şt
0
ř8

i“0
pt´sqi

i! AiBupsqds

“ ř8
i“0

şt
0

pt´sqi

i! AiBupsqds

“ şt
0 Bupsqds ` ř8

i“1
şt
0

pt´sqi

i! Ai´1ABupsqds.

(B.33)

We use the support function technique to find an over-approximation of the set Vt.
For each direction l P R

n, we define the support function of the set Vt in direction
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l as follows

ρVtplq ď supvPVt

´´şt
0 Bupsqds ` ř8

i“1
şt
0

pt´sqi

i! Ai´1ABupsqds
¯

.l
¯

ď şt
0 supupsqPU pBupsq.lq ds`ř8

i“1

´şt
0

pt´sqi

i!
ˇ̌
Ai´1ˇ̌ supupsqPU |ABupsq| . |lpsq| ds

¯
ď tρBU plq ` ř8

i“1

´şt
0

pt´sqi

i! |A|i´1 ds
¯

supupsqPU |ABupsq| . |l| .

(B.34)
Furthermore, we haveř8

i“1

´şr
0

pt´sqi

i! |A|i´1 ds
¯

“ ř8
i“1p t

r qi`1 prqi`1

pi`1q! |A|i´1 . (B.35)

We also know that @t P r0, rs, @i P N and i ě 2, p t
r qi ď p t

r q2, which leads to the
following inequalityř8

i“1

´şr
0

pt´sqi

i! |A|i´1 ds
¯

ď p t
r q2 |A|´2 `er|A| ´ In ´ r |A|˘ . (B.36)

We get finally

ρVt plq ď tρBU plq ` p t
r q2 |A|´2 `er|A| ´ In ´ r |A|˘ supupsqPU |ABupsq| . |l| .

(B.37)
That leads us to the following conclusion

Vt Ď p t
r q rBU ` p t

r q2 l
´

|A|´2 `er|A| ´ In ´ r |A|˘ d pABUq
¯

. (B.38)
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