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Abstract

In a world in which we increasingly rely on safety critical systems that simultaneously are becom-
ing ever more complex, formal methods provide a means to mathematically rigorously prove
systems correct. Model checking is a fully automated technique that is successfully applied in
the veri�cation of so ware and hardware circuits. However, in practice many systems exhibit
stochastic behavior, for instance when components may fail or randomization is used as a key
element to improve e�ciency. Probabilistic model checking extends traditional (qualitative)
model checking to deal with such systems. As model checking can be (simplistically) viewed as
an exhaustive exploration of the state space of the model under consideration, it su�ers from the
curse of dimensionality: State spaces grow exponentially in the number of components and vari-
ables and they quickly become too large to be e�ectively manageable, a problem that is typically
referred to as state space explosion.

Symbolic methods have helped to alleviate this problem substantially. Rather than considering
states and transitions of the system individually, they instead exploit structure in the model and
treat sets of states and transitions simultaneously. Model checkers based on symbolic techniques
dominate the landscape of hardware and so ware model checking. In the probabilistic setting,
symbolic methods too show potential but are arguably not on par with their qualitative counter-
parts. ¿is thesis is concerned with advances in the �eld of symbolic techniques in the context of
probabilistic model checking. ¿e major contributions are �vefold:

(i) We propose the JANI modeling language to unify the multitude of input languages of
probabilistic model checkers. It covers a large range of models involving randomization
and timing aspects and o�ers well-de�ned points for future extensions.

(ii) We show how counterexamples on the level of JANI speci�cations can be synthesized.
For this, we develop a method based on the connection of standard probabilistic model
checking and a smart enumeration of the solutions of a satis�ability problem.

(iii) We combine the strengths of decision diagrams for the representation of gigantic systems
and bisimulation minimization, a technique that reduces systems by factoring out sym-
metry. Our implementation is shown to drastically reduce the sizes of models involving
probabilities, continuous time, nondeterminism and rewards.

(iv) We summarize, extend and implement a game-based abstraction-re�nement framework
that is able to treat in�nite-state probabilistic automata. In contrast to other implemen-
tations, ours is openly available and computes strictly sound bounds through the use of
rational arithmetic.

(v) We present Storm, a new high-performance probabilistic model checker. It goes beyond
the standard veri�cation tasks through numerous features and in particular integrates the
items (i) to (iv) above. We show that it outperforms other state-of-the-art model checkers
on the majority of instances of the Prism benchmark suite.





Zusammenfassung

In einer Welt, in der wir zusehends von sicherheitskritischen Systemen abhängen, die zeitgleich
immer komplexer werden, bieten formale Methoden eine Möglichkeit, die Korrektheit von Syste-
men mathematisch rigoros zu beweisen. Model Checking ist eine vollautomatisierte Technik, die
bereits erfolgreich zur Veri�kation von So - und Hardware eingesetzt wird. Interessante Systeme
weisen o stochastisches Verhalten auf, beispielsweise wenn Komponenten potentiell ausfallen
oder Randomisierung als Schlüssel zur E�zienzsteigerung benutzt wird. Probabilistisches Model
Checking erweitert das traditionelle (qualitative) Model Checking um die Analyse solcher Sy-
steme. Da Model Checking vereinfacht als vollständige Untersuchung des Zustandsraums des
betre�enden Modells betrachtet werden kann, leidet es am Fluch der Dimensionalität: Zustands-
räume wachsen exponentiell in der Anzahl der Komponenten und Variablen und werden schnell
zu groß für eine Analyse — ein Problem, das auch Zustandsraumexplosion genannt wird.

Symbolische Methoden haben entscheidend dazu beigetragen, diesen E�ekt abzuschwächen.
Anstatt Zustände und Übergänge des Systems separat zu betrachten, versuchen sie, die Struktur
des Modells auszunutzen undMengen von Zuständen und Transitionen gleichzeitig zu behandeln.
Im Bereich des traditionellen Model Checking dominieren Werkzeuge, die auf symbolischen Me-
thoden basieren. Im probabilistischen Kontext zeigen symbolische Methoden ebenfalls Potential,
sind aber in der Regel nicht auf Augenhöhe mit ihren qualitativen Gegenstücken. Diese Arbeit be-
schä igt sich mit Fortschritten auf dem Gebiet der symbolischen Methoden im probabilistischen
Model Checking. Die fünf wesentlichen Beiträge sind die Folgenden:

(i) Wir schlagen die JANI-Modellierungssprache vor, um die Vielzahl verschiedener Eingabe-
sprachen von probabilistischen Model Checkern zu vereinheitlichen. Sie deckt eine große
Bandbreite von Modellen ab, die Randomisierung oder Zeitaspekte beinhalten, und bietet
wohlde�nierte Stellen für zukün ige Erweiterungen.

(ii) Wir zeigen, wie Gegenbeispiele auf der Ebene von JANI-Spezi�kationen synthetisiert
werden können. Dazu kombinieren wir gewöhnliches probabilistisches Model Checking
mit einer geschickten Aufzählung der Lösungen eines Erfüllbarkeitsproblems.

(iii) Wir vereinen die Stärken von Entscheidungsdiagrammen zur Darstellung von riesigen
Systemen undBisimulationsminimierung, die Zustandsräume durch die Faktorisierung von
Symmetrien reduziert. Unsere Experimente zeigen, dassModelle, dieWahrscheinlichkeiten,
kontinuierliche Zeit und Kosten umfassen, drastisch verkleinert werden können.

(iv) Wir resümieren, erweitern und implementieren ein Framework zur spielbasierten Abstrakti-
on, das unendliche probabilistische Automaten behandeln kann. Im Gegensatz zu anderen
Implementierungen ist unsere ö�entlich verfügbar und berechnet korrekte Schranken
durch die Benutzung rationaler Arithmetik.

(v) Wir präsentieren Storm, einen neuen, hochperformanten probabilistischenModel Checker,
der zahlreiche Funktionen bietet, die über die gewöhnlichen Veri�kationsaufgaben hinaus-
gehen, und insbesondere (i) bis (iv) vereint. Wir zeigen, dass Storm viele Instanzen der
Prism-Benchmarksammlung schneller löst als konkurrierende Werkzeuge.





¿emost important things are the hardest to say,
because words diminish them.

Stephen King
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Chapter 1
Introduction

In an age of information, digital systems are everywhere. We are surrounded by them
every day of our lives in the form of smartphones, transportation, medical devices and
even kitchen aids. And we are relying on these systems to work correctly1. While in
many cases failures are not critical, they may have catastrophic consequences in others.
In the best of cases, this may be the loss of millions of dollars [Pra95; Koc+18; Lip+18],
in other cases it may involve the loss of lives [Lev17].

At the same time and somewhat alarmingly, the systems we depend on become more
and more complex. It is not rare to �nd more than � y communicating miniature
computers in modern cars that are concerned with various safety-critical tasks such as
ABS, traction control, electronic stability control and more recent ones like collision
avoidance systems or drive-by-wire. Apart from security concerns introduced by these
cars’ so ware being connected to the internet increasingly o en, failures in these systems
may have disastrous implications.

With the recent advent of methods based on arti�cial intelligence (AI) and machine
learning, the problem becomes evenmore troublesome. Computers deal withmillions of
dollars in a matter of milliseconds by autonomous stock trading decisions2 or detecting
fraud. Airplanes can operate fully autonomously since decades and nowadays “ultimately,
if required, [...] initiate an automatically �own evasive maneuver” [Wus02] thus possibly
overriding the pilots if they don’t respond to warnings within a certain amount of time.
¿e trend towards autonomous vehicles on public streets is — for the better or worse —

1https://xkcd.com/2030/
2https://www.bbc.com/news/magazine-19214294

1

https://xkcd.com/2030/
https://www.bbc.com/news/magazine-19214294
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probably irreversible. ¿e correct functioning of these systems is nothing short than a
matter of life and death3.

Clearly, this substantiates the need for techniques that guarantee the correctness of
hardware and so ware systemswith respect to their speci�cation. In order to increase the
con�dence in the system design, testing e�orts constitute amajor part in any engineering
project. ¿e system in question is exposed to a number of inputs and its behaviors
under these inputs is then compared with the expected behavior. If a mismatch is
found, the system design needs to be revised. Testing can be partly automated and
has the fundamental advantage that it can be applied to virtually all systems. However,
ultimately, testing can only show the presence of erroneous behavior and not prove its
absence, since, in practice, it is infeasible to exhaustively test all possible program inputs
or system executions.

Research [Ber+18] shows that real-world requirements contain ambiguous wording,
inconsistencies and underspeci�cation. Formal methods try improving on the situation
by requiring the system and the speci�cation to be formalized in an unambiguous way.
¿ey arrive at a univocal analysis result by checking the formal model against the formal
speci�cation using mathematically rigorous reasoning. In fact, many safety and security
standards such as ITSEC [Jah91; Woo+08], Common Criteria4 [Ric+04], DO-178C and
DO-278A [GP12], ISO 26262 [ISO11a] and IEC 62279 [IEC15] strongly recommend or
require the application of formal methods in varying degrees. Formal methods have
proven to �nd fundamental problems that have been hidden for years [Gou+15].

One of themost popular formal methods ismodel checking. It is a push-button technique
that proves or refutes a (formal) property on a (formal) model of the system. Very
brie�y speaking, model checking amounts to an exhaustive search through the state
space. A er all, only if all possible evolutions of a system have been explored, it can be
determined whether the speci�cation is actually met. Figure 1.1 gives an overview of
the model checking approach. A model checker takes the formal system model and the
formal property as inputs and, somewhat simplifying, returns one of three results. It
can report that the property holds or is violated. In the latter case, counterexamples
can be synthesized that explain the cause of the violation as succinctly as possible, an
e�ective means to convince engineers of a design problem. ¿e third outcome is that the
model checker ran out of resources. ¿at is, it may take too long or too much memory
to perform model checking. Responsible for this is the most well-known challenge
in model checking: the state space explosion problem. As the state space may grow
exponentially in the number of components of the system, “naive” model checking

3https://www.ntsb.gov/investigations/AccidentReports/Pages/HWY18FH011-preliminary.aspx
4https://www.commoncriteriaportal.org/

https://www.commoncriteriaportal.org/
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model checking

model

system

formulae

requirements

satis�ed violated

+ counterexample

out of resources

modeling formalizing

Figure 1.1: Overview of the model checking approach [BK08].

quickly becomes infeasible. Unsurprisingly, a (if not the) major part of research on
model checking is dedicated to improve its scalability, for instance by applying smart
representations and abstractions.

Model checking has written numerous success stories [BLR11; Hol14]. In fact, model
checking is so successful that its inventors Edmund M. Clarke, E. Allen Emerson and
Joseph Sifakis were awarded the Turing Award in 2007, the highest distinction in com-
puter science that is recognized as the “Nobel Prize of computing”.

Probabilistic model checking extends traditional model checking with tools and tech-
niques for the analysis of systems involving random phenomena or other forms of
behavior that can be approximated by randomization. Distributed algorithms and com-
munication protocols are natural examples for this, since they o en use randomization
to e�ciently break symmetry. Another example are cyber-physical systems that tightly
integrate so ware and hardware such as sensors, actors and micro-controllers. Now,
for instance, sensor readings may be noisy, actors may not always have the same e�ects
and physical components may fail. Other domains that give rise to models involving
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involving probabilistic aspects include, e. g. security protocols and systems biology.

In the context of probabilistic model checking, the state space explosion problem be-
comes even more pressing. Current techniques mostly require an in-memory represen-
tation of the full system under consideration. At the same time, the numerical solution
techniques that are at the heart of probabilistic model checking become substantially
more computationally expensive as the model grows. In 2008, in a retrospective on
25 years of model checking [Cla08], Edmund Clarke states that probabilistic model
checking is an important challenge for the future that “require[s] major breakthroughs
in order to become su�ciently practical for widespread use in industry.”

One step in this direction are the application of symbolic methods in probabilistic model
checking. Under this umbrella term, we understand all the techniques that try to
avoid processing individual states but rather reason at the level of sets of states and
sets of transitions. ¿is starts at the level of the model speci�cation: Instead of an
explicit enumeration of states, the states (and behavior) of the model is rather speci�ed
symbolically much similar to a program in a programming language. ¿en, instead of
building an explicit in-memory representation, the system may be represented (and
analyzed) using data structures that e�ciently capture the structure of themodel. Taking
this one step further, techniques may try to pursue an abstraction-re�nement approach
that initially does not distinguish any states of the system and only re�nes the view as
necessary. ¿ese symbolic methods are the topic of this thesis.

1.1 Contributions and Outline

¿e individual chapters of the thesis can be read mostly independently. Only Chapters 2
and 3 are strictly required to understand the remaining Chapters 4 to 6. We now give
an outline of this thesis and summarize the core contributions along the way.

A er this introductory chapter, Chapter 2 paves the way for the remaining chapters: We
give notations, formal de�nitions of the considered probabilistic models and properties
and conclude with background on symbolic data structures and solving techniques.

¿e JANI Modeling Language and its Semantics. We already hinted at the fact that
symbolic methods in probabilistic model checking naturally require a symbolic spec-
i�cation of the input model. ¿ere exist several symbolic modeling languages for
probabilistic models, but they are associated with certain limitations or disadvantages.
¿erefore, many tools either introduce their own ad-hoc language or accept a dialect
of a previously existing language. ¿is introduces arti�cial boundaries between tools
and, as a consequence, has led to a severely scattered tool landscape. In an attempt to
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address the major issues relevant to language design for probabilistic veri�cation, we
developed JANI [Bud+17], an expressive language that allows to formulate models that
involve randomized or timed behavior. ¿e language conservatively extends existing
formalisms, is easily parseable and has well-de�ned extension points to be �exible
enough to deal with future developments. Based on [Bud+17], Chapter 3 introduces
JANI but signi�cantly goes beyond the publication by providing a formal semantics
for the fragment that corresponds to Markov reward automata. All remaining chapters
build on JANI and its semantics.

High-Level Counterexamples for JANI Models. Counterexamples play an impor-
tant role in the acceptance of model checking among engineers. ¿ey provide succinct
feedback and substantiate failed veri�cation attempts. In the context of probabilis-
tic model checking, high-level counterexamples were recently proposed [Wim+13;
Wim+15] to li the previously existing notions of (probabilistic) counterexamples from
the state space level back to the symbolic speci�cation in terms of a PRISM program.
However, the computation of such counterexamples through the proposed MILP-based
formulation proved to be prohibitively expensive for larger models. In [Deh+14], we
therefore developed an algorithm that computes high-level counterexamples by leverag-
ing o�-the-shelf probabilistic model checking in conjunction with a smart enumeration
of the solutions of a satis�ability problem. We li this algorithm from PRISM to JANI
speci�cations in Chapter 4. ¿rough a thorough experimental evaluation, we show that
we achieve speedups of several orders of magnitude over the MILP solution.

Symbolic Bisimulation Minimization. We have already mentioned the state space
explosion problem as one the most fundamental challenges in model checking and how
two of the main approaches to alleviate the problem are symbolic representations and
abstraction. One of the most well-understood techniques falling in the latter category is
bisimulation minimization. It is o en able to signi�cantly reduce the size of structured
models and at the same time preserves all properties of the most common probabilistic
logics. [Wim10] proposes to combine the advantages of bisimulation minimization
with the symbolic representation of systems using decision diagrams. In Chapter 5, we
show how this idea can be li ed to nondeterministic, probabilistic and randomly timed
systems equipped with reward (or cost) structures. Furthermore, we illustrate how the
reduced model can be extracted in an explicit representation a er the procedure. We
conclude with an extensive evaluation of the e�ectiveness of the presented technique
and show that it yields substantial state space reductions.
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Game-Based Abstraction-Re�nement for Probabilistic Automata. Bisimulation
minimization per se preserves all properties in some fragment of a suitable temporal
logic. An alternative approach that is is very successful in traditional model checking
is typically referred to as abstraction-re�nement. It starts with an abstraction of the
concrete model. By construction, the abstract model soundly over-approximates the
concretemodel and analyzing the abstraction therefore allows to draw conclusions about
the original model. As long as the information obtained this way is not precise enough,
the abstraction is re�ned. In contrast to bisimulation minimization, the re�nement is
driven by the (abstract) analysis result and a concrete property and hence is tailored
towards a speci�c veri�cation task. Using stochastic games as abstractions for probabilis-
tic automata permits to derive lower and upper bounds on both extremal reachability
probabilities in the original model. Based on a Master thesis [Boh14], Chapter 6
shows how to implement game-based abstraction re�nement. We fully automatically
extract abstract stochastic games from JANI speci�cations through the formulation as a
satis�ability problem, analyze the abstractions and �nally re�ne them as necessary. For
this, the chapter summarizes previous results on game-based abstraction re�nement
for probabilistic automata [Wac11; Kat+10]. ¿e contribution of this chapter is not the
technique itself, but rather several optimizations and amendments to its details as well
as the implementation in the context of Storm. Our open-source implementation is
the only maintained one that is applicable to general in�nite probabilistic automata and,
in particular, it is the only one that can compute structurally sound bounds through the
use of rational arithmetic and policy iteration.

¿e Stormmodel checker. Support for JANI and the techniques presented in Chap-
ters 4 to 6 has been realized in a new probabilistic model checker Storm. Chapter 7
is based on [Deh+17] and is concerned with the characteristics of this new tool. A er
stating the development goals of Storm, we discuss its de�ning features and design
decisions. We then extensively evaluate its performance on the well-known Prism
benchmark suite. With the help of JANI, we compare Storm with three other state-
of-the-art probabilistic model checkers Prism, Epmc and theModest Toolset. Our
experiments indicate that Storm performs favorably across all veri�cation approaches
and model classes.

1.2 Publications

We now brie�y discuss which publications of the author contain contributions that are
part of this thesis and which do not. In general, we only list peer-reviewed publications
and — to avoid confusion — remark that they were published under my birth name.
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Relevant Publications.

[Bud+17] Carlos E. Budde, ChristianDehnert, ErnstMoritzHahn, ArndHartmanns,
Sebastian Junges, andAndrea Turrini. “JANI:QuantitativeModel andTool
Interaction”. In: Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, Held as Part of
the European Joint Conferences on ¿eory and Practice of So ware, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II. Vol. 10206.
2017, pp. 151–168 (cit. on pp. 5, 9, 46, 48, 73).

[Deh+14] Christian Dehnert, Nils Jansen, Ralf Wimmer, Erika Ábrahám, and Joost-
Pieter Katoen. “Fast Debugging of PRISMModels”. In: Automated Tech-
nology for Veri�cation and Analysis - 12th International Symposium, ATVA
2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings. Vol. 8837.
2014, pp. 146–162 (cit. on pp. 5, 9).

[Deh+17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. “A Storm is Coming: A Modern Probabilistic Model Checker”. In:
Computer Aided Veri�cation - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. Vol. 10427. 2017,
pp. 592–600 (cit. on pp. 6, 9, 80).

Further Publications.

[Ábr+14] ErikaÁbrahám, BerndBecker, ChristianDehnert, Nils Jansen, Joost-Pieter
Katoen, and Ralf Wimmer. “Counterexample Generation for Discrete-
Time Markov Models: An Introductory Survey”. In: Formal Methods for
Executable So ware Models - 14th International School on Formal Methods
for the Design of Computer, Communication, and So ware Systems, SFM
2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures. Vol. 8483. 2014,
pp. 65–121.

[Deh+12] Christian Dehnert, Daniel Gebler, Michele Volpato, and David N. Jansen.
“On Abstraction of Probabilistic Systems”. In: Stochastic Model Check-
ing. Rigorous Dependability Analysis Using Model Checking Techniques for
Stochastic Systems - International Autumn School, ROCKS 2012, Vahrn,
Italy, October 22-26, 2012, Advanced Lectures. Vol. 8453. 2012, pp. 87–116.
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[Deh+15] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám.
“PROPhESY: A PRObabilistic ParamEter SYnthesis Tool”. In: Computer
Aided Veri�cation - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part I. Vol. 9206. 2015, pp. 214–231
(cit. on pp. 163, 244, 248).

[Deh+16] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Joost-Pieter Katoen, Erika Ábrahám, and Harold Bruintjes.
“Parameter Synthesis for Probabilistic Systems”. In: 19th GI/ITG/GMM
Workshop Methoden und Beschreibungssprachen zur Modellierung und
Veri�kation von Schaltungen und Systemen, MBMV 2016, Freiburg im
Breisgau, Germany, March 1-2, 2016. 2016, pp. 72–74.

[DKP13] Christian Dehnert, Joost-Pieter Katoen, and David Parker. “SMT-Based
Bisimulation Minimisation of Markov Models”. In: Veri�cation, Model
Checking, and Abstract Interpretation, 14th International Conference, VM-
CAI 2013, Rome, Italy, January 20-22, 2013. Proceedings. Vol. 7737. 2013,
pp. 28–47 (cit. on p. 165).

[Jan+16] Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski, Joost-Pieter
Katoen, and Lukas Westhofen. “Bounded Model Checking for Probabilis-
tic Programs”. In: Automated Technology for Veri�cation and Analysis -
14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings. Vol. 9938. 2016, pp. 68–85 (cit. on pp. 307, 309).

[Jun+16] Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-
Pieter Katoen. “Safety-Constrained Reinforcement Learning for MDPs”.
In:Tools andAlgorithms for the Construction andAnalysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint
Conferences on¿eory and Practice of So ware, ETAPS 2016, Eindhoven,
¿e Netherlands, April 2-8, 2016, Proceedings. Vol. 9636. 2016, pp. 130–146
(cit. on p. 245).

[Qua+15] Tim Quatmann, Nils Jansen, Christian Dehnert, Ralf Wimmer, Erika
Ábrahám, Joost-Pieter Katoen, and Bernd Becker. “Counterexamples for
Expected Rewards”. In: FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, June 24-26, 2015, Proceedings. Vol. 9109. 2015,
pp. 435–452.

[Qua+16] Tim Quatmann, Christian Dehnert, Nils Jansen, Sebastian Junges, and
Joost-Pieter Katoen. “Parameter Synthesis for Markov Models: Faster
¿an Ever”. In: Automated Technology for Veri�cation and Analysis - 14th
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International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. Vol. 9938. 2016, pp. 50–67 (cit. on p. 244).

Contributions of the Author to the Relevant Publications. All publications men-
tioned above are the result of the joint work of many people, countless meetings in
o�ces or via teleconferences and an incredible amount of writing and programming
hours. However, I am required to measure my contributions — at least concerning the
relevant publications. In general, I helped writing or at least �nalizing all publications
and I therefore rather discuss the contributions concerning the development of ideas
and the implementation aspects.

For [Bud+17], the main parts and design decisions of the JANI language had already
been shaped when Sebastian Junges and I were asked whether we would like to join this
research project. During a number of frequent Skype calls with all authors, we developed
the initial proposal substantially further. Concerning the JANI-support within Storm,
I implemented the explicit and symbolic model generation showcased in [Bud+17] and
the conversion of PRISMmodels to JANI that is also mentioned there.

For [Deh+14], the fundamental idea to leverage a MaxSat solver came from Ralf
Wimmer and Nils Jansen. I implemented a prototype version using aMaxSat-based
approach and, for reference, theMilp-based technique proposed in [Wim+15]. I soon
realized that the performance was unsatisfactory and that crucial optimizations were
missing. I therefore experimented with fasterMaxSat solution techniques, developed
sharper problem cuts andmost importantly the dynamic constraints, all of which turned
out to be necessary to make the approach scale to much larger model sizes.

Since Chapter 6 is based on the Master thesis of Dimitri Bohlender [Boh14] who was
supervised by me, I want to say a few words regarding my contribution to the chapter.
While overall Dimitri worked independently, major parts of the necessary optimiza-
tions are the result of joint discussions and tight interactions. ¿e amendments to the
re�nement procedure are not part of the thesis and were developed by me. For the
implementation of the approach within Storm, I took some inspiration from Dimitri’s
code but developed the current version independently.

Finally, we turn to [Deh+17]. As this publication presents the work on our probabilistic
model checker Storm over several years, it is impossible to sharply measure the contri-
butions of the numerous people involved in the project. I proposed to develop Storm
to Joost-Pieter in 2012. Since then, I have been the lead programmer for the project and
have supervised more than 15 students during their time as assistants or when writing
their Bachelor- or Master-theses revolving around Storm.





Chapter 2
Preliminaries

In this chapter, we establish the formal underpinnings of the remaining chapters. We
start by introducing notation and well-known concepts to reason about (probabilistic)
systems in a mathematically rigorous way. Next, we formally de�ne the probabilistic
models that we address in this thesis and explain their behavior. ¿en, we lay the
foundation for the symbolic representation of these models before we �nally discuss
algorithmic aids that are used throughout the thesis.

2.1 General Notation

Sets and Functions. If for two sets A and B we have A∩B = ∅, we use A⊎B to express
their (disjoint) union. For a set A, we letP (A) = {A′ ⊆ A} be the power set of A. We
use ∣A∣ to refer to the size of a �nite set A and, for convenience, we de�ne the size of an
in�nite set to be∞.

If A and B are sets, we denote their Cartesian product by A×B = {⟨a, b⟩ ∣ a ∈ A∧ b ∈ B}.
Even though they are technically not the same, we identify A×B×C and both (A×B)×C
and A× (B × C) because there exist canonical isomorphisms between these sets.

A partial function f ∶A ⇀ B may leave the value f (a) unde�ned for arbitrary many
elements a ∈ A. If f (a) is indeed unde�ned, we denote this by f (a) = ⊥. We denote the
usual composition g( f (x)) of two functions by g○ f . When a function f ∶A1× . . .×An →
B depends on several inputs, we use

g = f (a1 , . . . , a i−1 , ⋅, a i+1 , . . . , an)

11
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to denote the function g∶A i → B that �xes all inputs of f to speci�c values a j ∈ A j , j ≠ i
except for the remaining argument a i ∈ A i . For a function f ∶A→ B and B′ ⊆ B, we let
f −1(B′) = {a ∈ A ∣ f (a) ∈ B′} be the preimage of B′ under f .

We denote the set of real numbers by R, the rationals with Q, and the set of natural
numbers (including 0) byN. Given a set of numbers A, we use subscripts to indicate the
restriction to the non-negative and positive fragments of A, respectively. For example,
R≥0 refers to the non-negative reals. We use [a, b] = {c ∈ R ∣ a ≤ c ≤ b} ⊆ R for a, b ∈ R
to denote the interval of reals between a and b including the boundaries. For two sets A
and B, we let AB = { f ∶B → A} denote all functions from B to A. Intuitively, they can be
understood as vectors of size ∣B∣ with entries in A.

For a set A, we call a function µ ∶A→ [0, 1] with∑a∈A µ(a) = 1 a (probability) distribu-
tion on A. ¿e support of µ is the set supp(µ) = {a ∈ A ∣ µ(a) > 0}. We let δa refer to
the Dirac distribution on a, i. e. the probability distribution µ with µ(a) = 1 and denote
the set of all probability distributions over A by Dist(A).

Relations. A setR ⊆ A × B is called a (binary) relation between A and B. If A = B,
the relation is also simply called a relation on A.

De�nition 1 (Properties of Relations). A relation on A is called

» re�exive if ⟨a, a⟩ ∈R for all a ∈ A,

» symmetric if ⟨a, b⟩ ∈R Ô⇒ ⟨b, a⟩ ∈R for all a, b ∈ A,

» antisymmetric if ⟨a, b⟩ ∈ A∧ ⟨b, a⟩ ∈R Ô⇒ a = b for all a, b ∈ A, and

» transitive if ⟨a, b⟩ ∈R ∧ ⟨b, c⟩ ∈R Ô⇒ ⟨a, c⟩ ∈R for all a, b, c ∈ A.

As it is one of the key notions of the abstract interpretation framework [CC77], we now
de�ne complete lattices.

De�nition 2 (Partial Order, Partially Ordered Set, Complete Lattice). A partial
order ⊑ on a set A is a binary relation on A that is re�exive, antisymmetric and
transitive.

A tuple ⟨A, ⊑⟩ is called a partially ordered set if ⊑ is a partial order on A.



2.1. General Notation 13

Let ⟨A, ⊑⟩ be a partially ordered set. An element a is called an upper bound (or
lower bound) for a subset A′ ⊆ A if a′ ⊑ a (or a ⊑ a′) for all a′ ∈ A′. An upper
(lower) bound a for A′ ⊆ A is the least upper bound (greatest lower bound) if for all
upper (lower) bounds a′ of A′ it is a ⊑ a′ (a′ ⊑ a).

A partially ordered set ⟨A, ⊑⟩ is called a complete lattice if there exists a least upper
bound and a greatest lower bound for all A′ ⊆ A.

¿e importance of complete lattices in abstract interpretation is due the fact that they
allow to make use of Kleene’s �xed point theorem [Kle52]. Intuitively, this states that the
least �xed point lfp

⊑
( f ) of a monotonic (w.r.t. ⊑) function f ∶A→ A can be obtained by

iterating f on the smallest element of the complete lattice ⟨A, ⊑⟩.

De�nition 3 (Equivalence Relation). A binary relationR on A is called an equiva-
lence relation ifR is re�exive, symmetric and transitive. For an equivalence relation
R on A, we write a1 ≡R a2 if ⟨a1 , a2⟩ ∈R and call a1 and a2 R-equivalent.

For an equivalence relationR on A and a subset A′ ⊆ A, we let

A′/R = {{a2 ∈ A′ ∣ a1 ≡R a2} ∣ a1 ∈ A′} .

¿en, A/R is the set of equivalence classes ofR. We use [a]R to refer to the (unique)
equivalence class of a ∈ A. ¿e index ofR is the number of its equivalence classes, i. e.
ind(R) = ∣A/R∣.

We call Π ⊆P (A) a partition of a set A if

» ∅ /∈ Π ,

» for all B1 , B2 ∈ Π with B1 ≠ B2 it is B1 ∩ B2 = ∅, and

» ⊎
B∈Π

B = A.

Clearly, the equivalence classes of an equivalence relation ≡ on A form a partition.
Conversely, a partition of a set A canonically induces an equivalence relation. We
therefore identify partitions and equivalence relations and use them interchangeably.
For two partitions Π1 and Π2 of a set A, we say Π1 re�nes Π2, written Π1 ⊑ Π2 if
a1 ≡Π1 a2 implies a1 ≡Π2 a2. Intuitively, this means that Π1 does not relate elements
that were already separated by Π2. We say that Π1 strictly re�nes Π1, written Π1 ⊏ Π2 if
Π1 ⊑ Π2 and there are two elements a1 , a2 such that a1 ≡Π2 a2 but a1 ≠≡Π1 a2.
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2.2 Probabilistic Models

We now formally de�ne the probabilistic models used in the following chapters. ¿e
di�erent model types can be categorized along two dimensions. ¿e �rst one is whether
the formalism has a discrete or continuous notion of time. In the former, the time is
treated as abstract and passes in discrete steps whereas in the latter time is modeled as
being continuous. ¿e second dimension is the absence or inclusion of nondeterministic
choice. Some models allow the environment or a controller to make choices that govern
their behavior, while others behave fully probabilistically. Since the remaining models
can be understood as restrictions ofMarkov reward automata (MRA), we introduce
them �rst and then detail how the other models are subsumed.

De�nition 4 (Markov Reward Automaton). AMarkov reward automaton (MRA)
is a tuple

M = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩

where

» S is a non-empty, countable set of states,

» S0 ⊆ S is a non-empty set of initial states,

» {τ, Λ} ⊆ Act is a countable set of actions,

» ∆ ⊆ S × Act × (S → R≥0) × Dist(S) is the countable extended transition
relation including transition rewards,

» E ∶ S → R≥0 is the exit rate function,

» r ∶ S → R≥0 is the state reward function,

» AP is a countable set of state labels (also referred to as atomic propositions),

» L ∶ S →P (AP) is the state labeling function,

such that

(i) for each s ∈ S there is an element ⟨s , α , ρ , µ⟩ ∈ ∆ ,
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(ii) for each ⟨s , α , ρ , µ⟩ ∈ ∆ , ρ(s′) > 0 Ô⇒ µ(s′) > 0,

(iii) for each s ∈ S it is ∣ {⟨s , Λ, ρ , µ⟩ ∈ ∆} ∣ ≤ 1,

(iv) E(s) > 0 ⇐⇒ ∃ ⟨s , Λ, ρ , µ⟩ ∈ ∆ .

LetM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩ be anMRA.An element ⟨s , α , ρ , µ⟩ ∈ ∆ with action
α is called a choice available (or enabled) in s and ⟨s , s′⟩ for s′ ∈ supp(µ) is called a
transition (from s to s′) Requirement (i) guarantees that every state has at least one
choice.

¿e actions τ and Λ serve special purposes. Choices labeled with τ are called internal
and model instantaneous, unobservable behavior. In contrast, choices labeled with Λ
are calledMarkovian and indicate that time may pass.

Starting from an initial state in S0, the system moves from state to state using the
choices in ∆ . When selecting the choice ⟨s , α , ρ , µ⟩, the successor state s′ is chosen
probabilistically according to the distribution µ and a reward of ρ(s′) is gained. Such
a choice is called Markovian if α = Λ and probabilistic otherwise. While there may
be choices inM with action α /∈ {τ, Λ}, the traditional interpretation only assigns a
semantics to closedMRA, which only use the actions τ and Λ. Since other action labels
are allowed solely to enable the synchronization of processes during parallel composi-
tion [Tim13] with other MRA, the MRAM can be closed before an actual analysis by
hiding all other actions in the sense that the corresponding choice are relabeled with
τ. In closed MRA, states s ∈ S are interactive if there is an internal choice available
in s andMarkovian if there is a Markovian choice enabled in s . States that are both
interactive and Markovian are also referred to as hybrid states. As previously mentioned,
Markovian choices require time to pass in the source state s . More speci�cally, the time
that is spent in s is (negatively) exponentially distributed with rate E(s). Consequently,
the probability to take a Markovian choice at the time the state is entered is 0. ¿is
justi�es the so-calledmaximal progress assumption: since all internal choices happen
instantaneously, the Markovian choices can never be taken in hybrid states and they
can therefore be removed (maximal-progress cut). ¿e resulting system no longer has
hybrid states, but only interactive states that are entered and le instantaneously and
Markovian states in which the system spends a random sojourn time. As the reward
that is gained while staying in a state s is the product of the sojourn time and the state
reward r(s), the system only accumulates (state) rewards in Markovian states.

Condition (ii) states that rewards along choices may only be assigned to existing transi-
tions. Requirement (iii) ensures that there is at most one Markovian choice in each state.
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Figure 2.1: An example MRAM.

Since multiple Markovian choices available in one state can always be fused into a single
equivalent one, this is no restriction concerning expressivity. Finally, (iv) establishes
that non-zero exponential rates only occur in Markovian (or hybrid) states.

We remark that De�nition 4 allows loops between interactive states. Such a behavior is
called Zeno and is typically considered a modeling error, because the system may cycle
inde�nitely (thereby taking in�nitely many steps) without any progression of time. In
the course of this thesis, it is irrelevant whether MRA are Zeno or not and we do not
consider this problem further.

Example 1. Figure 2.1 shows a example MRAM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩ with
four states S = {s0 , s1 , s2 , s3} and one initial state S0 = {s0}.

To increase readability, we color the di�erent entities as follows:

» actions are magenta,

» probabilities are turquoise, and
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» rewards are orange.

Similarly, probabilistic choices are represented by solid arrows andMarkovian choices
by dashed arrows. We write the exit rates (speci�ed by E) of the states next to the
action label Λ of the (unique) Markovian choice (if there is one) and color them just
like the action. For instance, it is E(s0) = 3 and E(s2) = 2. We write the transition
rewards next to the branching probabilities of the corresponding choices and the
state rewards attached to the states. Here,M does not assign non-zero state rewards
and, in general, we omit rewards when they are zero.

Let us look at the two choices ⟨s3 , τ, ρ3,0 , µ3,0⟩ and ⟨s3 , τ, ρ3,1 , µ3,1⟩ available in s3,
where the two probability distributions µ3,0 and µ3,1 are given as

µ3,0(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/2 if s = s2
1/2 if s = s3
0 otherwise.

µ3,1(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/2 if s = s0
1/2 if s = s1
0 otherwise.

Only the second choice assigns non-zero transition rewards via ρ3,1:

ρ3,1(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if s = s0
3 if s = s1
0 otherwise.

Finally, the states of theM are labeled with elements fromP ({a, b}). For instance,
L(s2) = L(s3) = {a, b} and L(s1) = ∅.

M’s action set is Act = {τ, Λ} and it is therefore trivially closed. However, it has
not been subject to the maximal progress cut since in s0 there is a probabilistic
and a Markovian choice. Of the four states, two are Markovian (s1 and s2), one
is probabilistic (s3) and one is hybrid (s0). Applying the maximal-progress cut to
M removes the Markovian choice in s0 but preserves the nondeterministic choice
between the τ choices in s3.

We call an MRA �nite if S , Act , ∆ and AP are �nite. As a shorthand notation, we use

∆(s) = {⟨α , ρ , µ⟩ ∣ ⟨s , α , ρ , µ⟩ ∈ ∆}

to refer to the choices enabled in state s and omit ρ if it is the constant zero function.
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Furthermore, we let

pred
M
(s) = {s′ ∈ S ∣ ∃ ⟨s′ , α , ρ , µ⟩ ∈ ∆ . s ∈ supp(µ)}

succM(s) = {s′ ∈ S ∣ ∃ ⟨s , α , ρ , µ⟩ ∈ ∆ . s′ ∈ supp(µ)}

be the predecessors and successors of a state s ∈ S , respectively. We write Act(s) =
{α ∈ Act ∣ ∃ρ , µ . ⟨s , α , ρ , µ⟩} to denote all actions available in a state s and also li this
notion to subsets of states S′ ⊆ S by

Act(S′) = ⋃
s∈S′

Act(s).

We now introduce additional notation from the literature [Tim13] that makes it easier
to describe the step-wise behavior of MRA.

De�nition 5 (Extended Action Set, Extended Choices). For an MRA

M = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩

the extended action set Act χ is de�ned as

Act χ = (Act ∖ {Λ}) ⊎ {χ(λ) ∣ ∃s ∈ S ∧ E(s) = λ ∧ λ > 0}

For α χ ∈ Act χ , we write s
α χ

Ð→ρ µ if

(i) α χ ∈ Act ∖ {Λ} and ⟨s , α χ , ρ , µ⟩ ∈ ∆ , or

(ii) α χ = χ(λ) and ⟨s , Λ, ρ , µ⟩ ∈ ∆ , E(s) = λ and there is no ⟨s , τ, ρ′ , µ′⟩ ∈ ∆ .

Furthermore, for α χ ∈ Act χ and α ∈ Act we let

χ−1(α) =
⎧⎪⎪⎨⎪⎪⎩

α if α ∈ Act
Λ otherwise.

¿e extended action set introduces a special symbol χ(λ) for all rates λ ∈ R>0 that

appear in the MRA. If α χ ∈ Act , an extended choice s
α χ

Ð→ρ µ means that the system
can select some probabilistic choice ⟨s , α χ , ρ , µ⟩ ∈ ∆ in s that branches according to
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µ . However, if α χ = χ(λ), it is means that the system may potentially spend time in s
distributed according to E(s) = λ before branching with respect to µ . For the latter,
condition (ii) states that there must not be an internal probabilistic choice enabled in s ,
because if there was such an internal probabilistic choice, even a er parallel composition
it would still be there and always be taken before time can pass. ¿erefore, it is never
the case that the system may perform the Markovian choice. ¿e condition can hence
be thought of as “performing” the maximal progress cut we mentioned earlier. Note
that ifM is not closed there still may be other (non-internal) probabilistic choices
in s and there still is the possibility that the Markovian choice is removed due to the
maximal-progress cut before an analysis. For further details, we refer to [Tim13]. If it is
clear from the context that there are no rewards, we omit the subscript from extended
choices.

Example 2. Reconsider Example 1. We have

∆(s3) = {⟨τ, ρ0 , µ3,0⟩ , ⟨τ, ρ3,1 , µ3,1⟩}

where ρ0 denotes the constant zero function on S . Similarly, it is Act(s0) = {τ, Λ},
pred

M
(s0) = {s2 , s3} and succM(s0) = {s1 , s3}.

¿ere are two distinct exit rates that appear inM, namely E(s0) = E(s1) = 3 and
E(s2) = 2. Hence, the extended action set is Act χ = {τ, χ(2), χ(3)}.

We have s3
τÐ→ρ3,1 µ3,1 and s1

χ(3)
Ð→ρ0 µ1. However, we do not have s0

χ(3)
Ð→ρ0 µ0,0 since

there is a choice available in s0 that is labeled with τ.

¿e evolution of an MRA is formally captured by the notion of a (timed) path.

De�nition 6 (Paths in MRA). LetM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩ be an MRA. A
timed path π starting in a state s0 ∈ S is an in�nite sequence

π = s0
t0 ,α0Ð→
µ0 ,ρ0

s1
t1 ,α1Ð→
µ1ρ1

s2 . . .

such that for all i ∈ N

» s i ∈ S , t i ∈ R≥0, α i ∈ Act
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» for

α′i =
⎧⎪⎪⎨⎪⎪⎩

α i if α i ≠ Λ
χ(E(s i)) otherwise

we require s i
α′iÐ→ρ i µ and s i+1 ∈ supp(µ), and

» t i > 0 implies α i ∈ Act χ ∖Act .

An untimed path π starting in state s0 ∈ S is an in�nite sequence

π = s0
α0Ð→

µ0 ,ρ0
s1

α1Ð→
µ1 ,ρ1

s2 . . .

if for all i ∈ N we have s i
α iÐ→ρ i s i+1.

¿e sets of timed and untimed paths from s in M are denoted PathsΛM(s) and
PathsM(s), respectively, and we omit the subscript if it is clear from the context. We
obtain the (timed and untimed) paths PathsM and PathsΛM ofM by joining the paths
of all initial states. ¿e non-empty �nite pre�xes π̂ of (timed and untimed) paths
are also referred to as �nite (timed or untimed) paths and are denoted FPathsΛM and
FPathsM , respectively. In this case, the refer to the last state s of π̂ by last(π̂).

Example 3. Reconsider the MRAM from Example 1. A timed path π ∈ PathsΛM =
PathsΛM(s0) is, for instance,

π = s0
0,τÐ→

µ0,1 ,ρ0
s1

3
2 ,ΛÐ→
µ1 ,ρ0

s2
1
4 ,ΛÐ→
µ2 ,ρ2

s0 . . .

where

ρ2(s) = {
4 if s = s0
0 otherwise.

We obtain the untimed path π′ from π by abstracting from the timing information:

π′ = s0
τÐ→

µ0,1 ,ρ0
s1

ΛÐ→
µ1 ,ρ0

s2
ΛÐ→

µ2 ,ρ2
s0 . . .
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As a next step, we introduce Markov automata (MA) as MRA without rewards.

De�nition 7 (Markov Automaton). An MRA

M = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩

is called a Markov automaton (MA), if

» r(s) = 0 for all states s ∈ S ,

» for every ⟨s , α , ρ , µ⟩ ∈ ∆ , ρ is the constant 0 function.

We write it as a tuple

M = ⟨S , S0 ,Act , ∆, E ,AP , L⟩

where we omit the state reward function r and let the transition relation ∆ ⊆
S ×Act ×Dist(S) not contain transition rewards.

We continue to use the notion of extended choices forMA (and all models they subsume)
but omit the transition reward subscript.

Probabilistic automata (PA) are MA without Markovian choices. ¿ey contain nonde-
terminism, but no time is spent in any state and the notion of extended choices becomes
super�uous as there are not Markovian choices.

De�nition 8 (Probabilistic Automaton). An MA

M = ⟨S , S0 ,Act , ∆, E ,AP , L⟩

is a probabilistic automaton (PA), if there is no ⟨s , Λ, µ⟩ ∈ ∆ . We write it as a tuple

M = ⟨S , S0 ,Act , ∆,AP , L⟩

without the exit rate function.

We remark that PA are similar to Markov decision processes (MDPs) [Bel57] but allow
several equally labeled choices per state.
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In sharp contrast to PA, continuous-timeMarkov chains (CTMCs) have onlyMarkovian
choices and have exactly one initial state.

De�nition 9 (Continuous-Time Markov Chain). An MA

M = ⟨S , S0 ,Act , ∆, E ,AP , L⟩

is a CTMC, if

(i) S0 = {s0}, and

(ii) there is no ⟨s , α , µ⟩ ∈ ∆ with α ≠ Λ.

We write it as a tuple

C = ⟨S , s0 ,P, E ,AP , L⟩

with P∶ S → Dist(S) such that P(s) is the uniquely determined distribution of s .

As the de�nition of MRA (De�nition 4) forbids deadlock states and allows at most
one Markovian choice per state, every state in a CTMC has exactly one Markovian
choice. ¿erefore, we ease the notation by moving from the transition relation ∆ to a
transition function P that maps states to their unique probability distributions. Note
that the sojourn times of states are still distributed according to the exit rate function E .

Finally, we de�ne discrete-time Markov chains (DTMCs) as PA in which every state has
exactly one choice that is required to be probabilistic.

De�nition 10 (Discrete-Time Markov Chain). A PA

M = ⟨S , S0 ,Act , ∆,AP , L⟩

is a discrete-time Markov chain, if

(i) S0 = {s0}, and

(ii) Act = {τ, Λ},
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deterministic nondeterministic
discrete time DTMCs PA

continuous time CTMCs MA

Table 2.1: Overview of model types.

(iii) there is no ⟨s , Λ, µ⟩ ∈ ∆ , and

(iv) for every s ∈ S there is exactly one ⟨s , τ, µ⟩ ∈ ∆ .

We write it as a tuple

D = ⟨S , s0 ,P,AP , L⟩

with P∶ S → Dist(S) such that P(s) is the uniquely determined distribution of s .

Just as for CTMCs, we use P to map states to their unique distributions.

We conclude this section with Table 2.1, which gives an overview of the model types
(without rewards) that we just presented categorized by which notion of time they have
and whether or not they include nondeterministic choices.

2.3 Measures and Logics

In order to formalize the behaviour of probabilistic models, two key notions are proba-
bility spaces and probability measures.

De�nition 11 (Probability Space). A probability space is a tuple ⟨Ω,F , P⟩ consisting
of

» a non-empty sample space Ω,

» a set of events F ⊆P (Ω) with

(i) Ω ∈ F ,
(ii) E ∈ F Ô⇒ Ω ∖ E ∈ F , and
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(iii) if E i ∈ F for i ∈ N, then ⋃
i∈N

E i ∈ F .

» P∶F → [0, 1] is a probability measure with

(i) P(Ω) = 1, and
(ii) P(⋃

i≥0
E i) = ∑i≥0 P(E i) if E j ∩ Ek = ∅ for all i ≠ k.

Intuitively, a probability space models a random experiment. Such an experiment is
subject to uncertainty and its outcome is therefore not uniquely determined. Instead,
there is a set of possible outcomes Ω that is also called the sample space. Instead of
letting the probability measure P assign probabilities to outcomes directly, it maps
events, i. e. sets of outcomes, to probabilities. ¿is is done, because it may be the case
that for continuous sample spaces the probability for each outcome is zero, whereas the
probability of a set of outcomes may be non-zero.

¿e �rst requirement on the probability measure P expresses that the probability that
the experiment yields any of the possible outcomes is one. ¿e second one is typically
referred to as countable additivity and states that the probability of an event that can be
decomposed into countably many non-overlapping events E i is the sum of probabilities
of the latter.

¿e �rst and third restriction on the set of events are both needed for well-de�nedness
of the probability measure: in order to assign probabilities to sets of outcomes, they
have to be included in the event set. Such sets are calledmeasurable. Finally, (ii) ensures
that the probability of any event and its complement always add to one. A set satisfying
the constraints for the event set are also referred to as σ-algebras. Together with a
sample space Ω, a σ-algebra F forms a measurable space ⟨Ω,F⟩. It is well-known that
⟨R,P (R)⟩ is not a measurable space as the power set of the reals contains the so-called
Vitali sets that cannot be assigned any meaningful probability. However, ⟨R,BR⟩ is in
fact a measurable space, whereBR is the Borel σ-algebra over R, the smallest σ-algebra
over the reals that subsumes all intervals.

For the probabilistic models de�ned above, it is possible to construct unique probability
measures. Here, we refrain from restating the detailed theory as it is not relevant in the
course of the thesis. Instead, we refer to the literature [BK08; Qua16] for details on the
precise construction and rather describe the intuition of the probability measures and
involved probability spaces.

Let us start with with the probability measure for a DTMCD = ⟨S , s0 ,P,AP , L⟩. As for
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discrete-time models the time is irrelevant, the sample space of the measurable space
are the untimed paths PathsD in D. ¿e events are then constructed via a cylinder
set construction [BK08]. Intuitively, the cylinder set of a �nite path π̂ is the set of all
in�nite paths that start with π̂ and then proceed arbitrarily. ¿e corresponding σ-algebra
is the smallest one that contains the cylinder sets of all �nite paths in D. Fixing the
probabilities of the cylinder sets to the product of the transition probabilities along the
corresponding �nite path, there exists a unique extension to a probability measure PrD
that assigns probabilities to (measurable) sets of (untimed) paths. For a CTMC C, the
construction for the probability measure PrC is slightly more involved as it needs to
consider timed paths to enable reasoning over its timed behavior.

For the models that incorporate nondeterministic choice the probabilities of events
depend on the resolution of nondeterminism. Formally, this happens via schedulers.

De�nition 12 (Scheduler). LetM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩ be an MRA. A
scheduler σ forM is a function

σ∶FPathsΛM → Dist(Act × (S → R≥0) ×Dist(S))

that maps �nite paths π̂ to a distribution µ such that supp(µ) ⊆ ∆(last(π̂)). ¿e
set of all schedulers forM is denoted bySM .

Schedulers for PA can be de�ned analoguously on untimed paths. By mapping �nite
paths to a distribution over the available choices, schedulers resolve the nondeterminism
completely and the “application” of a scheduler σ to an MRAM results in a fully proba-
bilistic (timed) systemMσ . For these systems, the probability measure constructions
above can be employed. As the probability measure for an MRA or PAM depends on a
scheduler σ forM we denote it by Prσ

M
. Typically, for nondeterministic models one is

interested in the extremal probabilities. We therefore de�ne theminimal andmaximal
probability of a (measurable) set of paths Π , respectively, as

Pr−M(Π) = inf
σ∈SM

Prσ
M
(Π) and Pr+M(Π) = sup

σ∈SM
Prσ
M
(Π).

To unambiguously formulate properties over formal models, typically temporal logics
are employed. In the non-probabilistic setting, the most famous logics are the linear
temporal logic (LTL) [Pnu77] and the computation tree logic (CTL) [CE81]. While the
former uses a linear view of time, the latter is interpreted over computation trees and
therefore employs a branching-time view. One way to state properties of probabilistic
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systems is to give regular LTL a probabilistic interpretation (typically referred to as
probabilistic linear temporal logic (PLTL)). ¿at is, instead of a binary answer that a
system satis�es or violates a given LTL formula φ , we use the probability measures over
paths to determine the probability mass of the set of paths characterized by φ . Another
route is to extend CTL to account for the probabilistic and timed behavior. ¿is leads
to the probabilistic computation tree logic (PCTL) [HJ94] that essentially replaces the
usual CTL path quanti�ers by a probability operator P&λ(φ) where φ is a PCTL path
formula. Instead of stating that the nested path formula φ holds for at least one or all
paths, it states that the probability to satisfy the path formula must meet the bound
&λ . PCTL is also sometimes de�ned to include the bounded-until operator U≤k that
expresses that certain states are reached within k (discrete) steps. ¿e logic CSL adapts
this for timed models such as CTMCs andMA by considering the sojourn time in states
rather than the number of steps.

¿emost fundamental property that is expressible in all of the above logics is reachability.
Ultimately, many of the other veri�cation tasks can be reduced to reachability. Since
it is also the single most important property in the course of this thesis, we formally
de�ne it as follows. For a given set T ⊆ S , we let

◊T(s ,M) = {π = s0
α0Ð→

µ0 ,ρ0
s1

α1Ð→
µ1 ,ρ1

s2 . . . ∈ PathsM(s) ∣ ∃i ∈ N . s i ∈ T}

be all (untimed) paths that start in s0 and eventually reach some state in T inM. Here,
the set T may be given either explicitly or implicitly, for instance by means of a formula
that evaluates to a truth value in each state. We omit the state s and the modelM if
they are clear from the context and write s ⊧M ∃◊T if ◊T(s ,M) ≠ ∅.

¿e aforementioned logics can be extended to allow for reasoning about rewards in the
system. Typically, these extensions (at least) involve the expected reward that is

» accumulated until some set of target states is reached,

» accumulated within the �rst k steps (or time units), or

» obtained at exactly step (or time point) k.

2.4 Variables and Expressions

Large parts of this thesis are concerned with handling probabilistic models symbolically.
In this context, the model is o en encoded in terms of variables and expressions similar
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to programming languages. For our presentation, we assume each variable x ∈ Var in a
set of variables is typed and has (potentially in�nite) domain Dom(x).

De�nition 13 (Variable Valuation). A variable valuation for a set of variables Var
is a function

ν ∶Var → Dom(Var)

where

Dom(Var) = ⋃
x∈Var

Dom(x)

such that ν(x) ∈ Dom(x) for all x ∈ Var . We use Val(Var) to denote the set
of all variable valuations for the variables Var and η@ν to denote the value of
the expression η over the variables Var when all variables are replaced by their
value according to ν . Furthermore, if ν i ∈ Val(Var i) for i ∈ {1, 2} and for all
x ∈ Var1 ∩Var2 it is ν1(x) = ν2(x), then

(ν1 ⊕ ν2) ∈ Val(Var1 ∪Var2)

(ν1 ⊕ ν2)(x) =
⎧⎪⎪⎨⎪⎪⎩

ν1(x) if x ∈ Var1
ν2(x) if x ∈ Var2

is the joint variable valuation.

We refrain from precisely de�ning expressions and treat them abstractly if possible. We
simply assume that all expressions are well-typed and evaluate to a value of the same
type when all contained variables are substituted by a value, for example through the use
of a variable valuation ν . We let Bxp(Var), Qxp(Var) and Exp(Var) refer to the set of
expressions that evaluate to a Boolean, some number or an arbitrary value, respectively.
For a Boolean expression b ∈ Bxp(Var) and a variable valuation ν ∈ Val(Var), we write
ν ⊧ b if b@ν = true.

2.5 Binary Decision Diagrams

In this section we show how to represent probabilistic systems using binary decision
diagrams, a data structure that is able to represent structured information e�ciently.
For further details that are beyond the scope of this thesis, we refer to [Par03].
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Let Var = {x1 , . . . , xn} be a set of Boolean variables and

x1 ≺ x2 ≺ . . . ≺ xn
be a total ordering of the variables in Var .

De�nition 14 (Multi-Terminal Binary Decision Diagram). Amulti-terminal bi-
nary decision diagram (MTBDD)M over ⟨Var , ≺⟩ is a tuple

M = ⟨V = VI ⊎VT , then, else, var, val, n0⟩

where

» V is a �nite set of nodes, partitioned into into the inner nodes VI and the
terminal nodes VT ,

» two successor functions then, else∶VI → V that assign to each inner node
n ∈ V a then-successor then(n) ∈ V and an else-successor else(n) ∈ V,

» a variable labeling function var∶VI → Var that assigns to each inner node
n ∈ V a variable var(n) ∈ Var ,

» a value function val∶VT → R that assigns to each terminal node n ∈ V a real
value val(n), and

» a root node n0 ∈ V.

Furthermore, we require that the labeling is consistent in the sense that for all
n ∈ VI

var(n) ≺ var(then(n)) and var(n) ≺ var(else(n))

where for readability we extend var to terminal nodes by var(nT) =⊥ and let x ≺⊥
for every x ∈ Var .

A BDD is an MTBDD for which val(n) ∈ {0, 1} for all n ∈ VT . We use Var(M) =
⋃

n∈VI

{var(n)} to denote the variables that appear in M and root(M) to refer to the

root node n0 ofM.

Note that every node of an MTBDD is itself the root of an MTBDD. We therefore o en
identify an MTBDD and its root node.
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n4
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1/2 1

Figure 2.2: An example MTBDDM.

Example 4. Figure 2.2 shows an example MTBDD

M = ⟨V = VI ⊎VT , then, else, var, val, n0⟩

over the four variables Var = {x0 , x1 , x2 , x3} using the ordering

x0 ≺ x1 ≺ x2 ≺ x3 .

¿e inner nodes are drawn as circles and the terminal nodes as rectangles containing
their value assigned by val. We draw equally labeled nodes in a layered fashion and
give the labels of each level of variables. ¿e functions then and else are represented
visually: for each node n , the solid edge points to the then-successor then(n) and



30 Chapter 2. Preliminaries

the dashed edge to the else-successor else(n). In general, unless stated otherwise we
omit edges to the constant zero terminal node for readability.

Let us �x an MTBDD M = ⟨V = VI ⊎VT , then, else, var, val, n0⟩ for the rest of the
chapter. ¿e semantics ofM is a function fM ∶Val(Var)→ R. ¿e function value of fM
for an input valuation ν ∈ Val(Var) can be obtained as follows. We start at the root
n0 = root(M). If this node is a terminal node, the function value is given by val(n0). If
not, wemove to the then-successor if ν(var(n0)) = 1 and to the else-successor otherwise.
Continuing this process from the new node ultimately yields a terminal node n ∈ VT
that speci�es the function value under ν as val(n). If Var(M) is a proper subset of Var ,
we may omit the missing variables from the signature of the associated function fM .

Example 5. Reconsider the MTBDD from Example 4. It represents the function

fM(x0 , x1 , x2 , x3) = {
1/2 if (x0 ∧ x1 ∧ x2) ∨ (¬x0 ∧ x1 ∧ x2)
1 if (x0 ∧ ¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x0 ∧ ¬x1 ∧ ¬x2 ∧ x3) .

MTBDDs are used to e�ciently represent highly structured models. To this end, im-
plementations use reduced versions only. ¿rough two simple reduction rules [Jr78],
M does not possess two distinct nodes n1 , n2 ∈ V such that fn1 = fn2 . In other words,
there are no redundant nodes in the sense that they represent the same subfunctions.
Reducing MTBDDs in this way has another fundamental advantage. It can be shown
that two reduced MTBDDs represent the same functions if and only if they are equal
up to isomorphism. In the further course, we consider MTBDDs to always be reduced,
which is guaranteed bymost implementations such asCUDD [Som] and Sylvan [Dij16].
We o en de�ne and identify an MTBDD M and the function fM it represents if there is
no ambiguity, which is possible since (in the reduced form) the MTBDDM for fM is
unique. Sometimes, we only specify the function values for parts of the domain and
implicitly map the remaining variable valuations to 0.

Example 6. Reconsider the MTBDD from Example 4. It contains nodes that are
super�uous. For instance, both successors of nodes n3 and n4 are identical and
the nodes may therefore be “skipped”. Similarly, the nodes n1 and n2 are roots of
isomorphic subgraphs and therefore represent the same subfunctions.

Figure 2.3 shows the reduced MTBDD M′ that represents the same function as M
(see Example 5). In particular, we see that there is no node whose two successors are
identical and that the node n is shared to eliminate isomorphic subgraphs.
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Figure 2.3: A reduced MTBDDM′.

For ease of presentation, we also use

M(ν1 , . . . , νk) = M(
k
⊕
i=1

ν i) = fM(
k
⊕
i=1

ν i) where ν i ∈ Val(Var i) with
k
⊎
i=1
Val(Var i) = Var .

to refer to the function value of fM at the point given by the variable valuations ν1 , . . . , νk .

Operations. For Var′ ⊆ Var and ν ∈ Val(Var′), we de�ne the generalized cofactor
M∣ν = M′ ofM with respect to ν as the MTBDDM′ representing

fM′ ∶Val(Var ∖Var′)→ R
fM′(ν′) = fM(ν′ ⊕ ν).
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In other words, the generalized cofactor amounts to the partial function application in
which all variables x ∈ Var′ are �xed to ν(x). If the variables in Var′ are the smallest in
Var with respect to the total ordering ≺, the cofactor operation amounts to descending
from root(M) according to ν and returning the resulting node.

In the scope of this thesis, wemake use of several operations onMTBDDs. ¿e following
three operations “create” decision diagrams (DDs) from other entities:

» Const(c) for c ∈ R is the MTBDD that represents the constant c function.

» for a variable valuation ν ∈ Val(Var), we use Encode(ν) to denote the BDD B
such that B(ν′) = 1 ⇐⇒ ν = ν′.

» for a variable x, Id(x) is the BDD B with B(ν) = 1 ⇐⇒ ν(x) = 1.

LetM ,M1 ,M2 be MTBDDs over ⟨Var , ≺⟩.

» ifM is a BDD, Not(M) is the BDD B such that B(ν) = 1 ⇐⇒ M(ν) = 0,

» Apply(●,M1 ,M2)with ●∶R×R→ R yields theMTBDD representing the function
fM1 ● fM2 . ¿e operation ●may, for example, be addition ormultiplication, but also
min,max and comparison operators such as ≤ or =. For comparison operations,
the result is a BDD. For the division operation, we de�ne 0

0 = 0. IfM1 andM2 are
in fact BDDs, then ●may also have the type ●∶B ×B→ B, which allows for the
usual logical connectives.

» Abstract(●,Var′ ,M) with a commutative and associative operation ●∶R ×R→
R and a set of variables Var′ ⊆ Var yields the MTBDD M′ representing the
function

fM′ = ●
ν∈Val(Var′)

fM ∣ν

Similar toApply, we allow operations ●∶B×B→ B ifM is a BDD.¿emost impor-
tant instantiations of this operation are the ones with ○ ∈ {∨,+}, that are denoted
with ExistsAbstract(Var′ ,M) and SumAbstract(Var′ ,M), respectively.

» Ite(B ,M1 ,M2) is the if-then-else operation that yields theM′

M′ = Apply (+,Apply (×, B ,M1) ,Apply (×,Not (B) ,M2))
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that yields the function values of M1 for the variable valuations for which B evalu-
ates to true and the values ofM2 otherwise. As a special case, we allow a variable
x instead of the BDD B as the �rst argument to abbreviate Ite(Id (x) ,M1 ,M2).
Note that if x ≺ Var(M1),Var(M2), this operation amounts to creating a new
node labeled with x and whose then and else successors are nodes root(M1) and
root(M2), respectively.

» Permute(M , σ) with a permutation σ of {1, . . . , n} is the MTBDD M′ represent-
ing the function

fM′(ν) = fM(σ−1(ν)) where σ−1(ν)(x) = ν(σ−1(x))

As a special case that appears frequently, we let Rename(M ,Var1 ,Var2) for vari-
able sets Var1 ,Var2 ⊆ Var with

– Var1 = {y1 , . . . , yk}, y1 ≺ . . . ≺ yk ,
– Var2 = {y′1 , . . . , y′k}, y

′
1 ≺ . . . ≺ y′k ,

– (Var(M) ∖Var1) ∩Var2 = ∅

be de�ned as Permute(M , σ ′) where

σ ′(i) =
⎧⎪⎪⎨⎪⎪⎩

j if ∃ℓ . yℓ = xi ∧ y′ℓ = x j
i otherwise

» TopVar(M) is the variable x = var(n0) where n0 is the root node ofM. We also
use TopVar (M1 , . . . ,Mn) = min{x ∈ Var ∣ ∃i . x = TopVar (Mi)} to retrieve the
smallest variable (with respect to the total variable ordering) among the top
variables of allMi .

Based on the fact that fM1○M2 is actually represented byM1 ○M2, we use the in�x notation
for the arithmetic and logical operations. For example, we write M1 +M2 instead of
Apply(+,M1 ,M2) and ¬M instead of Not(M).

Implementation Details. We want to mention a few implementation details related
to MTBDDs before discussing how to encode probabilistic models. Ultimately, it is
these details that allow operations on MTBDDs to be e�cient. Consequently, they
are employed in slight variations across all libraries providing functionality revolving
around MTBDDs.
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As previously mentioned, MTBDDs are stored in a canonical reduced form that avoids
nodes that represent the same (sub)function. To establish this in actual implementations,
a so-called unique table is used. Essentially, it is a (hash)map thatmaps a triple ⟨x , n′ , n′′⟩
to a node n if then(n) = n′, else(n) = n′′, var(n) = x and the node n has previously
been encountered. Before creating a new node for the corresponding function, the
unique table is checked for an already existing node. Only if there is none, a new node
for this function is created and otherwise the previous node is reused. Keeping nodes
unique this way not only allows for a canonic representation but also reduces function
equality checks to a simple check whether two nodes are the very same.

Unlike the unique table, which is necessary to guarantee reducedness, the second
(hash) map that is maintained is not critical to the operation but can be seen as an
optimization. ¿e compute table constitutes a cache that stores intermediate results
for previous computations. More speci�cally, it maps entries ⟨●, n′ , n′′⟩ to a node n
if fn = fn′ ● fn′′ . During the recursive descent necessary to process most DD-related
operations (like Apply), results of previous operations can be potentially reused by
checking the compute table for corresponding entries.

Representing Markov Chains. Before we start describing the encoding of probabilis-
tic systems in terms of DDs, we want to stress that we assume the system to be given
explicitly. However, in practice, the system is typically speci�ed in terms of a high-level
modeling language (like PRISM or the language JANI that is the topic of Chapter 3).
¿e details of this encoding are not important for this thesis and we refer to [Par03].

We now discuss how to represent probabilistic models without nondeterminism as
a precursor to models with nondeterminism. For this, let D = ⟨S , s0 ,P,AP , L⟩ be a
DTMC. To encode the model, we use the set of Boolean variables

VarD = {s1 , . . . , sn}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

⊎{s′1 , . . . , s′n}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S′

where n ≥ ⌈log2 ∣S∣⌉.

In practice, model checkers typically choose the variable ordering

x1 ≺ x′1 ≺ x2 ≺ x′2 ≺ . . . ≺ xn ≺ x′n

which empirically was shown to produce small decision diagrams for many models and
enable e�cient variable renaming, but this ordering is merely a heuristic and the optimal
variable order di�ers from model to model. For the most part of our presentation, the
variable order is arbitrary and we will explicitly state when it becomes relevant. We
encode (bit) vectors as DDs over the unprimed variables S . ¿roughout this section, we
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assume an encoding ⟨⋅⟩ of entities in terms of variable valuations. For example, S ← ⟨s⟩
denotes the encoding of state s ∈ S in terms of a unique valuation of the unprimed
variables S . As we choose the sizes of the variable set S appropriately, such a mapping
always exists. ¿is may, for example, be a binary encoding of an arbitrary, but �xed
indexing of the states. We can then encode

» S as a BDD BS such that

BS(S ← ⟨s⟩) = 1 ⇐⇒ s ∈ S ,

» s0 as a BDD Bs0 = Encode (S ← ⟨s0⟩) with

Bs0(S ← ⟨s⟩) = 1 ⇐⇒ s = s0 ,

» L as ∣AP∣ BDDs where for each atomic proposition a ∈ AP we have

Ba(S ← ⟨s⟩) = 1 ⇐⇒ a ∈ L(s)

where all DDs are over the variables S . It remains to encode the transition probability
function P of D. Here, we make use of both the unprimed and the primed variables
with the intuition that the unprimed variables encode the source states and the primed
variables encode the target states. S can also be thought of as row variables and S ′ as
column variables when viewing P as a matrix. Formally, we use an MTBDD MP over
Var that represents the function (or matrix)

MP(S ← ⟨s⟩ ,S ′ ← ⟨s′⟩) = P(s , s′)

Representing a CTMC is very similar. ¿e only thing that has to be stored additionally
is the MTBDD-representationME of the exit rate function:

ME(S ← ⟨s⟩) = E(s).

Example 7. Figure 2.4 shows a DTMCD that is structurally very similar to theMRA
M. Since it has four states, we need 2 Boolean variables to encode the individual
states. Let us use the variable sets S = {s1 , s0} and S ′ = {s′1 , s′0}. For readability,
we choose the variable ordering s1 ≺ s0 ≺ s′1 ≺ s′0 that encodes the source states of
the transitions on top of the transition MTBDD and the target states at the bottom.
Furthermore, we assume the usual binary encoding of the state indices to map states
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s0

{a}
s1
∅

s2

{a, b}

s3 {a, b}

τ 1
τ

1/2
1/2τ

1

τ1/2

1/2

Figure 2.4: ¿e example DTMCD.

to variable valuations. We therefore, for instance, let

(S ← ⟨s1⟩)(s) =
⎧⎪⎪⎨⎪⎪⎩

0 if s = s1
1 if s = s0

since the binary encoding of state index 1 is 01. With the mapping x0 = s1 , x1 =
s0 , x2 = s′1 and x3 = s′0, we observe that the (reduced) MTBDDM′ from Figure 2.3
encodes MP. Reconsider the function fM′ represented by M′ from Example 5. For
instance, we have

fM′(0, 1
s̄1

, 1, 1
s̄3

) = 1
2
= P(s1 , s3)

to represent the transition from s1 to s3 with probability 1/2.

Representing PA and MRA. Encoding nondeterministic models is naturally more
complicated as the nondeterminism needs to be encoded as well. Not only do states have
multiple available probability distributions, they may also possess several distributions
labeled with the same action α ∈ Act . In [Bai98], the author proposes to encode the
nondeterminism using additional Boolean variables. ¿is idea was taken up by [Par03]
and worked out in detail. To the best of our knowledge, all probabilistic model checkers
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that support DD-based model checking of nondeterministic models use an encoding
that follows this principle. Here, we only present the fundamentals of this approach and
do not delve into its details.

Wedirectly proceed to describe the encoding of anMRAM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩.
As argued in Section 2.2, MRA subsume PA and MA and the encodings for the latter
can therefore be obtained by simply omitting information in a straightforward manner.

¿e elements S , S0, L and E can be represented analogously to Markov chains (MCs).
Furthermore, the state rewards r can be encoded using an MTBDDMr with

Mr(S ← ⟨s⟩) = r(s)

To encode the nondeterminism in ∆ , we extend the variable set to

VarM = {s1 , . . . , sn}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

⊎{s′1 , . . . , s′n}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S′

⊎{a1 , . . . , ak}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⊎{n1 , . . . , nℓ}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

where n = ⌈log2 ∣S∣⌉, k = ⌈log2 ∣Act ∣⌉ and ℓ = ⌈log2maxs maxα ∣ {⟨s , α , ρ , µ⟩} ∈ ∆ ∣⌉.
¿e variables in A are meant to encode the actions of the MRA and the variables in
N are used to simply number the nondeterministic choices. ¿erefore, we extend the
encoding ⟨⋅⟩ twofold. First, we let ⟨α⟩ map actions α ∈ Act to an encoding over the
variablesA. For all actions in Act , this encoding needs to be distinct. Secondly, we use
⟨⟨s , α , ρ , µ⟩⟩ to assign unique encodings over the variablesN to choices ⟨s , α , ρ , µ⟩ ∈ ∆ .
We can then encode ∆ through twoMTBDDsM∆ andMρ

∆ over Var . M∆ encodes the
transition probabilities without the rewards, whereasMρ

∆ encodes the rewards without
the transition probabilities. Formally, they represent the functions

M∆(S ← ⟨s⟩ ,A ← ⟨α⟩ ,N ← ⟨⟨s , α , ρ , µ⟩⟩ ,S ′ ← ⟨s′⟩) =
⎧⎪⎪⎨⎪⎪⎩

µ(s′) if ⟨s , α , ρ , µ⟩ ∈ ∆
0 otherwise

Mρ
∆(S ← ⟨s⟩ ,A ← ⟨α⟩ ,N ← ⟨⟨s , α , ρ , µ⟩⟩ ,S

′ ← ⟨s′⟩) =
⎧⎪⎪⎨⎪⎪⎩

ρ(s′) if ⟨s , α , ρ , µ⟩ ∈ ∆
0 otherwise

that together fully characterize ∆ . Note that even though the representation is split, the
connection between the probability distributions and their reward functions is not lost.
For a choice ⟨s , α , ρ , µ⟩ ∈ ∆ , the encodings ⟨α⟩ and ⟨s , α , ρ , µ⟩ establish a unique link
between a probability distribution and the reward function associated with it.
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Figure 2.5: ¿e MTBDDM∆ .
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Example 8. We now encode theMRAM from Example 1 in terms of DDs. SinceM
has four states, we need two Boolean state (unprimed) variables and let S = {s1 , s0}
(and S ′ = {s′1 , s′0}) . As in Example 7, we choose the canonical mapping of state
indices to their binary representation to encode the states. AsM has two actions,
namely Act = {τ, Λ}, it su�ces to have one action variableA = {a0} and we map Λ
to the valuation which assigns 0 to a0 and τ to the valuation mapping a0 to 1. Finally,
to encode the nondeterministic choice between the two choice labeled with τ in s3,
we need one more variableN = {n0}. To improve the readability of the MTBDDs,
we choose the variable ordering

s1 ≺ s0 ≺ a0 ≺ n0 ≺ s′1 ≺ s′0

instead of an interleaved one that would be preferable in practice.

Figure 2.5 shows the M∆ representing the transition relation ∆ ofM. It uses the
action variables A to distinguish Markovian from probabilistic choices and the
nondeterminism variablesN to distinguish nondeterministic (probabilistic) choices
with the same label. In the case ofM, we only need the variable n0 to distinguish
the two choices in s3. For instance, we have that

fM∆ (
s1 ,s0ª
1, 1
°
s3

,
a0©
1
τ̄

,
n0©
0 ,

s′1 ,s
′
0©

⋅, ⋅ )

is represented by the node n1 in Figure 2.5 and corresponds to the distribution µ3,1
(from Example 1) available in s3 whereas

fM∆ (
s1 ,s0ª
1, 1
°
s3

,
a0©
1
τ̄

,
n0©
1 ,

s′1 ,s
′
0©

⋅, ⋅ )

is represented by n2 and corresponds to distribution µ3,0.

In Figure 2.6 we show the transition reward MTBDD Mρ
∆ . Since it uses the same

variablesA⊎N to encode action labels and nondeterministic choices, the connection
between the distributions of choices and their reward function is retained.
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Figure 2.6: ¿e transition reward MTBDDMρ
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2.6 Solving

Many problems arising in veri�cation reduce to solving fundamental underlying prob-
lems. In the context of the (automated) analysis of probabilistic systems, probably the
most common problem is that of solving a set of linear equations. ¿ey occur, for ex-
ample, in the context of computing (unbounded) reachability probabilities for DTMCs
and CTMCs. For models involving nondeterminism, Bellman equations [Bel58] have
to be solved. One of the two main methods for this is policy iteration [How64], which
reduces the problem to solving a series of linear equation systems. Here, we want to
mention two additional problem formulations that play a role in the course of the thesis.

Mixed-Integer Linear Programming Let Var be a set of integer- and real-valued
variables. Intuitively, a mixed-integer linear program is a set of linear inequalities over
Var together with a linear objective function. ¿e goal is to �nd a valuation ν ∈ Val(Var)
that satis�es all inequalities and produces an objective value that ismaximal (orminimal)
among all solutions.

Every linear program (LP) is also an MILP. In fact, the most common approach to
solving MILPs is to relax the problem to an LP and then successively bound the values
of the integer variables that have a non-integral value in the solution to the relaxed
problem. Well-known solvers for MILPs include the free tools glpk1 and lpsolve2 as
well as the commercial tools CPLEX3 and Gurobi4.

Satis�ability Modulo ¿eories One the most fundamental problems in computer
science is the satis�ability (SAT) problem. Given a formula φ ∈ Bxp(Var) over a set of
Boolean variables that uses only the regular Boolean operators, the question is whether
there exists a variable valuation ν ∈ Val(Var) such that ν ⊧ φ . While the problem is
NP-complete, actual solvers have made substantial progress in the past decades and
scale to problems with a huge number of variables5.

Satis�ability modulo theories (SMT) generalizes the regular satis�ability problem to
other theories. More speci�cally, the variables do not necessarily have Boolean type,
but may be integer, real or even more complex types such as strings. ¿e expressions
then may involve not only the Boolean connectives but also, for instance, arithmetical
operations or comparisons between numeric variables. However, one has to be careful

1https://www.gnu.org/software/glpk/
2http://lpsolve.sourceforge.net/5.5/
3https://www.ibm.com/analytics/cplex-optimizer
4http://www.gurobi.com/
5http://www.satcompetition.org/

https://www.gnu.org/software/glpk/
http://lpsolve.sourceforge.net/5.5/
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
http://www.satcompetition.org/
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which operations and variable types are allowed precisely, because the decision problem
is undecidable for the more expressive theories. For example, in general it is not possible
to decide whether a satisfying valuation exists if the expression involves integer-valued
variables and non-linear arithmetic (also referred to as Peano arithmetic) [Göd31].
However, other important theories such as the linear theory of the integers (Presburger
arithmetic or linear integer arithmetic (LIA)) and the non-linear theory of the reals
(linear real arithmetic (LRA)) are decidable and extensive tool support exists6.

Virtually all SAT (and SMT) solvers achieve this by applying the DPLL algorithm (and
DPLL(T)) [DP60; DLL62; Tin02; Gan+04] and con�ict-driven clause learning [SS96].
Brie�y speaking, the core idea of the approach is to assign truth values to free variables
as long as possible. Upon reaching a point where the formula cannot be satis�ed under
the current (partial) valuation (a “con�ict”), a formula is learned that explains the
con�ict. On the logic level, this formula is implied by the original problem and therefore
also called a lemma. ¿en a backtracking step happens that revises one of the earlier
assignment decisions. As the lemmas are still implied if the original problem is extended,
solvers work incrementally in the sense that the previously learned knowledge about the
formulae can speed up future calls signi�cantly. To optimize information reuse, some
solvers go so far as to provide dedicated methods for the AllSat(Φ) problem, where
the goal is to �nd all satisfying valuations of a set of formulae Φ .

Modern solvers go well beyond answering the satis�ability problems. For instance, if
the solver �nds a problem to be unsatis�able, it may o�er to extract an unsatis�able core,
which is a (typically) small “subformula” of the original formula that already explains the
unsatis�ability. Using unsatis�able cores or counter circuits [FM06; Si+16] theMaxSat
(or dually theMinSat) problem can be solved. Here, for two (satis�able) sets of formulae
Φ1 and Φ2, the goal is to determine a variable valuation ν ∈ Val(Var) that satis�es all
formulae inΦ2 and simultaneously satis�es amaximal (orminimal) number of formulae
of Φ1. Formally, with Sol(Φ) = {ν ∣ ∀φ ∈ Φ . ν ⊧ φ} and Φν = {φ ∈ Φ ∣ ν ⊧ φ}, we let

MaxSat(Φ1 , Φ2) ∈ {ν ∈ Sol(Φ2) ∣ ∀ν′ ∈ Sol(Φ2) . ∣Φν
1 ∣ ≥ ∣Φ

ν′
1 ∣} , and

MinSat(Φ1 , Φ2) ∈ {ν ∈ Sol(Φ2) ∣ ∀ν′ ∈ Sol(Φ2) . ∣Φ
ν′
1 ∣ ≥ ∣Φ

ν
1 ∣} .

Finally, some solvers, e. g.MathSat, provide methods to synthesize interpolants. Let
⟨φ1 , φ2⟩ be a pair of logical formulae ⟨φ1 , φ2⟩ whose conjunction φ1 ∧φ2 is unsatis�able.
An interpolant for ⟨φ1 , φ2⟩ is a formula φ over the variables Var(φ1) ∩Var(φ2) with

φ1 Ô⇒ φ and φ2 ∧ φ is unsatis�able.

6http://smtcomp.sourceforge.net/

http://smtcomp.sourceforge.net/
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Intuitively, an interpolant succinctly captures the essence of why the conjunction of two
formulae is unsatis�able. Interpolants are very successfully applied in regular model
checking [McM18].





Chapter 3
The JANI Modeling Language

3.1 Motivation and Goals

As probabilistic model checking became increasingly mature in the past decades [Kat16],
more and more tools were developed that support the automated analysis of systems
involving probabilistic aspects. While these tools can handle more complex model
types, larger state spaces and more properties than ever before, little e�ort was invested
in developing the tools’ input languages. ¿is is not very surprising as most of these
tools are developed in an academic context that tends to focus more on features than
usability. As most tools have been tailored to solve a very speci�c task at hand, they
either de�ne their own input language or accept a dialect — typically an extended subset
— of another tool’s input language. ¿e latter is done in an attempt to not deviate too
far from existing languages but also to save development e�ort as infrastructure like
parsers and data structures are tedious and error-prone to develop from scratch but
easy to reuse. ¿is has led to a scattered language landscape in which it is rarely the case
that the same input model can be treated by several tools.

¿is severely hinders the adoption of probabilistic model checking by, e. g., industry,
as potential users have to commit to a speci�c tool and its input language and, for this,
have to have a deeper understanding of the capabilities and characteristics of the tools.
As developing complex models is still a demanding and time-consuming task, having
to commit to a single tool and its features and restrictions potentially exceeds the risks
one is willing to take. Furthermore, the large number of modeling languages slows
down research signi�cantly: state-of-the-art techniques tend to be sophisticated and
establish results through the use of a variety of di�erent algorithms and data structures.

45



46 Chapter 3. ¿e JANIModeling Language

In practice these ingredients may happen to be spread over several tools. If these tools
are not able to refer to the very same model, this even prevents simple proof-of-concept
implementations unless the researchers conduct a time-consuming reimplementation
of the missing parts in one of the tools or perform non-trivial transformations between
the input languages. Finally, it impairs the reuse of benchmark models and therefore
hinders an e�ective comparison of tools.

We seek to improve the current situation by introducing another language, called JANI.
Obviously1, introducing a new language is associated with the risk of dividing the current
landscape further and having yet another language. To mitigate that risk, we argue that
JANI has been designed with the following key requirements in mind:

(I) easy to integrate in new and existing tools,

(II) extensibility to make the language future-proof,

(III) general enough to capture a wide range of existing modeling formalisms,

(IV) succinct and symbolic representation of huge (or even in�nite) state spaces,

(V) rigorously de�ned semantics.

When presenting the JANI language, we refer to these requirements and show how
they are ful�lled. We brie�y mention that the JANI language actually consists of two
components. jani-model de�nes a format to specify models involving quantitative
aspects meant to be supported as input language by several tools. Complementing this,
jani-interaction provides a communication protocol with which tools can communi-
cate models, tasks, features and much more. In the further course of this thesis, we
focus entirely on jani-model and therefore, for simplicity, use JANI and jani-model
interchangeably. For further details on jani-interaction, we refer to [Bud+17]. To dis-
tinguish between languages and the (sometimes identically named) tools, we will use
bold fonts for languages and small capitals for tools.

3.2 Syntax

JANImodels are encoded in the json data format. json is a text-based, human-readable,
lightweight data-interchange format [Bra14]. Unlike alternatives such as XML [96],
it is extremely simple: in fact, its complete grammar can be captured by �ve small
syntax diagrams2. Due to its simplicity, there exist generic json-parsers for virtually all

1see https://xkcd.com/927/
2https://www.json.org

https://xkcd.com/927/
https://www.json.org
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programming languages. For tool developers this means that they do not have to write
code that is concerned with parsing the input language. Instead, it su�ces to transform
the json input tree to suitable data structures. In JANI, this is further supported by
other design decisions such as – in contrast to other modeling languages – encoding
expressions as trees rather than �at strings to eliminate the need for an expression parser.

Besides getting the parser “for free”, json provides the �exibility to extend existing
speci�cations without breaking compatibility with tools that accept only the subset that
was the original speci�cation. In addition, JANI speci�es versioning constructs that
allow to deal with future amendments to previously de�ned semantics if there should be
the need to. Again, this allows for future extensions without breaking compatibility with
tools that only support a previous version as json allows to ignore unknown attributes.

Finally, choosing json has another key advantage: By providing a grammar (also re-
ferred to as schema), schema validators such as Js-Schema3 allow to rigorously validate
whether a given json input is contained in the language and is to be accepted. We
therefore decided to formalize the grammar of JANI in terms of a Js-Schema schema4.
¿is schema covers most syntactical checks of JANImodels, but some more complex
ones like the existence of a certain attribute if and only if another one is present, cannot
be expressed in Js-Schema. However, the schema documents these additional require-
ments in the form of verbose annotations. In summary, relying on json already ful�lls
requirements (II) and (at least partially) (I).

At this point, we abstain from giving the formal grammar of JANI. Instead we proceed
with the semantics of the key modeling elements and, by example, highlight how these
are expressed syntactically.

3.3 Semantics

By design, JANI is intended to be able to capture a broad class of modeling formalisms
from the quantitative veri�cation world. Figure 3.1 illustrates which model types are
supported by jani-model as well as their interconnections. ¿e most basic models are
labeled transition systems (LTS), discrete-time Markov chains (DTMC) and continuous-
time Markov chains (CTMC). At the other end of the spectrum, the most general model
are stochastic hybrid automata (SHA, [Frä+11]) that combine the features of probabilistic
hybrid automata (PHA, [Spr00]) and stochastic timed automata (STA, [Boh+06]).

3https://github.com/molnarg/js-schema
4available at www.jani-spec.org/

https://github.com/molnarg/js-schema
http://www.jani-spec.org/
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SHA stochastic hybrid automata
PHA probabilistic hybrid automata
STA stochastic timed automata
HA hybrid automata
PTA probabilistic timed automata
MA Markov automata
TA timed automata
PA probabilistic automata
CTMDP continuous-time MDPs
LTS labelled transition systems
DTMC discrete-time Markov chains
CTMC contin.-time Markov chains

Figure 3.1: Model types supported by the jani-model format [Bud+17].

Together with the embeddings from several well-known modeling languages detailed
in Section 3.4, JANI therefore satis�es requirement (III) and — as pointed out earlier —
provides natural extension mechanisms to potentially cover even more model types in
the future (requirement (II)).

In this thesis, we focus on models that do not involve hybrid aspects like the notion of
time in timed automata or the di�erential equations in hybrid modeling formalisms.
More concretely, we focus on the subclass of jani-model that encode Markov automata
(and therefore also labelled transition systems (LTSs), DTMCs, CTMCs and PA).

3.3.1 Symbolic Markov Automata

Symbolic modeling languages, such as PRISM [KNP11], Modest [Boh+06] and Up-
paal [Beh+06], build on a set of symbolic variables that implicitly span the state space as
the Cartesian product of the domains of these variables. Encoding states like this allows
to succinctly represent enormous or even in�nite state spaces, in particular for systems
that tend to be highly structured. In contrast to an explicit enumeration of all states and
transitions, using symbolic variables and, consequently, a symbolic representation of the
transitions also makes models more readable and the modeling process less error-prone.
JANI also adopts symbolic variables to satisfy criterion (IV).

For our presentation, we assume a �nite set of typed variables Var where each variable
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x ∈ Var has (potentially in�nite) domain Dom(x). We introduce assignments that are
used to symbolically encode updates to the variables in Var as follows.

De�nition 15 (Assignment). An assignment a for a set of variables Var is a partial
function

a∶Var ⇀ Exp(Var) ∪ {⊺}

that (i) denotes an over-speci�cation of variable x by a(x) = ⊺ and (ii) respects the
types of the variables in the sense that the expression a(x) ≠ ⊺ always evaluates to
an element in Dom(x), i. e.,

a(x)@ν ∈ Dom(x) for all ν ∈ Val(Var).

We use Asg(Var) to refer to the set of assignments over Var . Let a⊥ with a⊥(x) =⊥
for all x ∈ Var be the empty assignment. For x ∈ Var and η ∈ Exp(Var), we let
a[x′ ↦ e] be the assignment that mimics a but maps x′ to η instead of a(x′), i. e.

a[x′ ↦ e](x) =
⎧⎪⎪⎨⎪⎪⎩

a(x) if x ≠ x′

e otherwise.

For convenience, we write

x′1 = η1 , . . . , x′n = ηn

to denote the assignment with

a(x) =
⎧⎪⎪⎨⎪⎪⎩

η i if x = xi
⊥ otherwise.

Note that assignments are partial functions and we use a(x) =⊥ to indicate that a does
not assign to x. Similarly, a(x) = ⊺ is used to indicate that the assignment over-speci�es
what is being assigned to x, an error that can occur when composing multiple automata.
As assignments map variables to expressions that symbolically represent their “new”
value, they encode a variable valuation transformer.
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De�nition 16 (Semantics of an Assignment). ¿e semantics of an assignment
a ∈ Asg(Var) with a(x) ≠ ⊺ for all x ∈ Var is the variable valuation transformer
given by

JaK∶Val(Var)→ Val(Var)

JaK(ν)(x) =
⎧⎪⎪⎨⎪⎪⎩

a(x)@ν if a(x) ≠⊥
ν(x) otherwise

Intuitively, JaK simultaneously updates all variables x with a(x) ≠⊥ according to the
value of a(x) in ν and preserves the values of the remaining variables. As a next step,
we introduce indexed assignments that chain several assignments.

De�nition 17 (Indexed Assignment). An indexed assignment for a set of typed
variables Var is a function

ia∶Z→ Asg(Var)

such that there exist indices i , j ∈ Z with

∀k . k < i ∨ k > j Ô⇒ ia(k) = a⊥ .

We use IAsg(Var) to denote the set of indexed assignments over Var and let ia⊥
be the empty indexed assignment given by

ia⊥(i) = a⊥ for all i ∈ Z.

For an indexed assignment ia ≠ ia⊥, we use min(ia) and max(ia) to denote the
smallest and largest indices i, respectively, for which ia(i) ≠ a⊥. For convenience,
we set min(ia⊥) = max(ia⊥) = 0. We call an indexed assignment ia simple if
ia(i) = a⊥ for all i ≠ 0. For convenience, for ordered indices i1 < . . . < in , we write

ia = i1∶ ai1 # . . . # in ∶ ain
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to denote the indexed assignment with

ia(i) =
⎧⎪⎪⎨⎪⎪⎩

aik if i = ik for some 1 ≤ k ≤ n
a⊥ otherwise.

Similar to assignments, we use iai↦a to denote the indexed assignment that mimics
ia but applies a at index i instead of ia(i).

An indexed assignment ia provides a sequence of assignments for the (�nite) range of
indices between min(ia) and min(ia) with the interpretation that �rst the assignment
at index min(ia) is carried out, then the assignment at index max(ia) + 1, and so on.
¿erefore, just like for regular assignments, the semantics of an indexed assignment is a
valuation transformer.

De�nition 18 (Semantics of an Indexed Assignment). For an indexed assignment
ia ∈ IAsg(Var), its semantics is the variable valuation transformer

JiaK∶Val(Var)→ Val(Var)
JiaK(ν) = (Jamax(ia)K ○ . . . ○ Jamin(ia)K) (ν)

Hence, the semantics of an indexed assignment ia corresponds to the sequential appli-
cation of the assignments for increasing indices. Using indexed assignments, we now
formally capture a symbolic probability distribution.

De�nition 19 (Symbolic Probability Distribution). A symbolic probability distri-
bution over a set of variables Var and a �nite set of locations Loc is a function

D∶ IAsg(Var) × Loc → Qxp(Var)

such that

(i) there are only �nitely many ⟨ia , ℓ⟩ with D(ia , ℓ) ≠ 0 where 0 is the constant
zero expression, and

(ii) 0 ≤ D(ia , ℓ)@ν ≤ 1 for all ia ∈ IAsg(Var), ℓ ∈ Loc , ν ∈ Val(Var),
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(iii) for all ν ∈ Val(Var) it is∑ia∈IAsg(Var),ℓ∈Loc D(ia , ℓ)@ν = 1

SDist(Var , Loc) is used to denote the set of symbolic probability distributions over
Var and Loc. As for regular probability distributions, we de�ne the support of a
symbolic probability distribution D as

supp(D) = {⟨ia , ℓ⟩ ∣ D(ia , ℓ) ≠ 0} .

For convenience, we abbreviate ∣supp(D)∣ by ∣D∣.

A symbolic probability distributionD maps a tuple ⟨ia , ℓ⟩ to an expression q = D(ia , ℓ).
¿e indexed assignment (symbolically) describes the updates to the variables and ℓ
describes the location update of the symbolic automaton. ¿en, q describes the prob-
ability of the occurrence of the update ⟨ia , ℓ⟩. We will now formally de�ne symbolic
Markov automata (SMA), the main element of a JANI speci�cation.

De�nition 20 (Symbolic Markov Automaton). A symbolic Markov automaton
(SMA) is a tuple

A = ⟨Loc ,Var = PV⊎ TV, νTV,TL ,Act , ℓ0 , Init0 , E⟩

consisting of a

» a �nite set of locations Loc,

» a �nite set of typed variablesVar , partitioned into a set of permanent variables
PV and a set of transient variables TV,

» a default transient variable valuation νTV ∈ Val(TV),

» a transient location assignment TL∶Loc → Asg(TV),

» a �nite set of actions Act with τ ∈ Act ,

» an initial location ℓ0 ∈ Loc,

» an initial condition Init0 ∈ Bxp(PV)
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» an edge function

E∶Loc →P (Bxp(Var) × (Act ⊎Qxp(Var)) × SDist(Var , Loc))

that assigns to each location a set of edges. For an edge ⟨g , α ,D⟩ ∈ E(ℓ),
we call e′ = ⟨ℓ , g , α ,D⟩ an (location-extended) edge and also write e′ ∈ E.
Furthermore, we refer to

– ℓ as the source location of e (written src(e)),
– g as the guard of e (written g(e)),
– α as the action of e (written α(e)) if α ∈ Act or the rate of e (written

λ(e)) if α ∈ Qxp(PV), and
– D as the distribution of e (written D(e))

If α = λ ∈ Qxp(PV), we call e a Markovian edge and a probabilistic edge
otherwise. Let EM

A and EP
A denote the set of Markovian and probabilistic

edges in A, respectively, and EM
A (ℓ) = EM

A ∩ E(ℓ). A symbolic Markov
automatonA with EM

A = ∅ is called a symbolic probabilistic automaton (SPA).
If the indexed assignments of all edges of a symbolic Markov automaton are
simple, we call the overall automaton simple.

¿e automaton A starts is in its initial location ℓ0 with an initial variable valuation that
satis�es its initial condition Init0. ¿e edges of the automaton A connect the locations
via their symbolic probability distributions. In addition to symbolically specifying a
probability for a location update, they can update the variables of the automaton through
the corresponding indexed assignments. Edges labeled with actions α from Act can be
used to interact with the environment (α ≠ τ) or express that the behavior is internal to
the automaton (α = τ). If the edge speci�es a rate instead of a guard, it is a Markovian
edge and expresses that time may be spent in the source location before taking the edge
similar to the Markovian choices in MRA.

In contrast to simpler modeling formalisms, SMA distinguish permanent and transient
variables. Unlike permanent variables, transient variables have no “history” and can be
viewed as being periodically reset. Unless otherwise speci�ed by the automaton, they
always have their default value prescribed by νTV whenever they are read. ¿ey can,
however, be explicitly set in a location ℓ by the transient location assignment TL(ℓ)
and along edges in the form of (indexed) assignments. Intuitively, upon taking an edge,
transient variables are
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idlem = 0 busy

reject

0∶ p′ = 3
1 accept 1∶m′ = t

9/101/10

eP

m > 01/m0∶m′ = 0
1

Figure 3.2: An example SMA AR .

(i) �rst initialized with their default value,

(ii) then potentially read and written by the indexed assignments, and �nally

(iii) reset according to TL(ℓ′) or to their default value if TL(ℓ′) =⊥ upon entering the
target location ℓ′.

¿e formal semantics of SMA will be made more precise in Section 3.3.3 on page 59.

Example 9. Consider the symbolic Markov automaton

AR = ⟨LocR ,VarR = PVR ⊎ TVR , νTV,R ,TLR ,ActR , ℓ0R , Init
0
R , ER⟩

depicted in Figure 3.2. Let us go through the formal elements of AR . ¿e location
set of the automaton LocR = {idle, busy} consists of two locations. idle is the initial
location ℓ0R and is graphically represented by the incoming arrow without a source,
along which the initial condition Init0 = (m = 0) can be read o�. In total, the
automaton uses three variables: PVR = {m} is permanent and the other two TVR =
{t, p} are transient. In general, the default values for the transient variables are given
by 0 unless explicitly stated otherwise. We represent transient location assignments
within the locations. However,AR has TL(ℓ) = a⊥ for all locations ℓ . ¿e automaton
possesses three edges over the action set ActR = {reject, accept, τ}. Consider the
edge eP ∈ ER(idle) with α(eP) = accept. Its guard is the expression true and, unless
explicitly stated otherwise, we omit the guard in this case for better readability.
¿e support supp(D(eP)) of its symbolic probability distribution has two elements:
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D(eP)(idle, a⊥) = 1/10 and D(eP1 )(idle, 1∶ a⊥[m ↦ t]) = 9/10. To further improve
readability, we will o en omit the indices of simple assignments.

¿e automaton models a receiver that can be either idle or busy. ¿e intuition behind
its variables is as follows: m stores a message that is received whereas t is used
as a means of receiving the message and p measures a penalty that is gathered in
certain scenarios. When a message is received while the receiver is idle, the AR can
nondeterministically choose to either reject it and remain in idle or accept it and
become busy processing the message. In the former case, it accumulates a penalty
of 3. In the latter case, the message is accidentally dropped with a probability of
0.1 and takes the system into busy with probability 0.9. ¿e automaton expects the
message it is receiving to be stored in variable t. For this, it allows the sender to write
the message to t at index 0 and then goes on to read the content of the variable and
store it into its local variable m at index 1. In location busy, the automaton needs an
exponentially distributed time depending on the message m it received to process
m. More speci�cally, the higher the value of the message m, the longer the receiver
needs to process it.

Note how the automaton uses transient variables for two di�erent scenarios. First, it
uses t to read a message from other automata in a network, a concept that we detail
later. And secondly, p is used to accumulate a penalty for certain behaviors, which
can be leveraged to derive reward models. In both cases, the history of these variables
is irrelevant and they are therefore marked as transient.

Figure 3.3 shows an excerpt how the SMA AR is syntactically represented in JANI.
¿e full encoding can be found in Appendix A.

We want to highlight the advantages of using location-based automata as opposed to
location-less formalisms. While locations are syntactic sugar and could be expressed in
terms of dedicated variables of the automaton, making them explicit provides a natural
entity to which invariants in the timed and hybrid models can be attached. Further-
more, as many models represent algorithms or processes that follow a regular structure,
encoding their control locations via “program counter” variables mixes data and control
variables. Keeping them separate in JANI provides more structural information, which
potentially eases tasks such as model checking or static analysis.

3.3.2 Communication and Composition

In order to capture large, yet structured, systems succinctly, most modeling formalisms
provide a means to compose basic modeling entities. For example, PRISM features
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{
"name": "AR",
"locations": [ { "name": "idle" }, { "name": "busy" } ],
"initial -locations": [ "idle" ],
"variables": [ { "name": "m", "type": "int" } ],
"restrict -initial": { "exp": { "left": "m", "op": "=", "right": 0 }

},
"edges": [

{
"location": "idle",
"action": "reject",
"destinations": [

{ "assignments": [ { "ref": "p", "value": "3" } ],
"location": "idle" }

]
},
{

"location": "idle",
"action": "accept",
"destinations": [

{ "probability": { "exp": { "left": 9, "op": "/", "
right": 10 } },
"assignments": [ { "ref": "m", "value": "t", "index

": 1 } ],
"location": "busy" },

{ "probability": { "exp": { "left": 1, "op": "/", "
right": 10 } },
"location": "idle" }

]
},
{

"location": "busy",
"guard": { "exp": { "left": "m", "op": ">", "right": 0 } },
"rate": { "exp": { "left": 1, "op": "/", "right": "m" } },
"destinations": [

{ "assignments": [ { "ref": "m", "value": 0 } ],
"location": "idle" }

]
}

]
}

Figure 3.3: An excerpt from the json representation of AR .
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a parallel composition of its reactive modules and Uppaal composes symbolic timed
automata. Despite being syntactically di�erent, JANI leverages similar composition
mechanisms through the use of networks of symbolic Markov automata, which further
contributes to support requirement (IV).

Intuitively, the automata contained in a network execute in parallel. ¿ey may perform
steps via edges either asynchronously or synchronously. In the former case, one au-
tomaton moves according to the probabilities and updates speci�ed by the symbolic
probability distribution of an edge. In the latter case, several automata need to synchro-
nize over edges and move simultaneously.

¿e concept of parallel composition is well-known and well-understood, helping JANI
to adhere to requirement (V). Formally, a network of symbolic Markov automata is
de�ned as follows.

De�nition 21 (Network of Symbolic Markov Automata). A (parallel) network of
symbolic Markov automata (NSMA) is a tuple

N = ⟨A1 , . . . ,An , Syn⟩

comprising

» n ≥ 1 symbolic Markov automata

Ai = ⟨Loci ,Var i = PVi ⊎ TVi , νTV, i ,TLi ,Act i , ℓ0i , Init
0
i , Ei⟩

such that for 1 ≤ i , j ≤ n, we have PVi ∩ TVj = ∅,

» a set Syn ⊆ Act⊥1 × . . . ×Act⊥n ×Act(N) of synchronization vectors where

– Act⊥i = (Act i ∖ {τ}) ⊎ {⊥}, and

– Act(N) =
n
⋃
i=1
Act i .

We use Var(N) =
n
⋃
i=1
Var i to denote the set of variables of the network and let

E(N) = {⟨ℓ , g , α ,D⟩ ∣ ⟨ℓ , g , α ,D⟩ ∈ Ei(ℓ) for some 1 ≤ i ≤ n}
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be the (location-extended) edges of the network. If all automata A1 , . . . ,An are
symbolic probabilistic automata, the network is called a network of symbolic
probabilistic automata (NSPA).

Technically, within a JANI speci�cation, variables need to be explicitly declared as global
to allow sharing them between several automata. ¿is is in contrast to, e. g., PRISM’s
reactive modules where a module can read (but not write) other modules’ variables by
default and there is no notion of private or unobservable behavior between modules. In
our formal presentation, we will abstract from this and assume that all variables that are
used by more than one automaton are marked as being global.

All automata that are part of the network have access to these shared variables in guards
and variable assignments along edges. However, all other variables are private to the
individual automata and cannot be read or written by other automata of the network.
Explicitly stating the scope of visibility promotes encapsulation and makes coupling
between automata more visible.

Unlike the process algebra synchronization available in PRISM, JANI draws inspiration
from Cadp’s Exp 2.0 language [INR] and o�ers so-called synchronization vectors. In
essence, a synchronization vector v = ⟨α1 , . . . , αn , α⟩ speci�es a subset of the automata
of the network, namely all Ai for which α i ≠⊥. ¿e meaning of v then is that the overall
system may perform an α action if all selected automata perform the selected actions
α i ≠⊥ synchronously. In this context, “synchronously” means that all a�ected automata
update the variables according to the participating edges’ (indexed) assignments. All
other automata do not take part in the handshaking and retain their state. Note that τ is
assumed to express an internal action of an automaton and can therefore not be used
for synchronization.

Example 10. Recall the SMAAR fromExample 9. ¿e SMAAS depicted in Figure 3.4
models a station that sends messages to AR . ¿e sender generates messages with
exponentially distributed delay with mean λ ∈ R>0. In location send it writes the
message 1 to the shared (and therefore global) variable t at index 0with a probability of
2/3. In the remaining cases, it �rst writes the message 2 to t and incurs a penalty using
the (global) penalty variable p at index 1. Furthermore, the automaton accumulates
a penalty of 1 when in location send, which is modeled using the transient location
assignment denoted within the location. We make this more precise in Section 3.3.5

As the overall system is meant to send and receive the messages synchronously,
we have to provide appropriate synchronization vectors and therefore consider the
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Figure 3.4: An SMA AS modeling a sending station.

NSMA ⟨AS ,AR , {v1 , v2}⟩ with v1 = ⟨send, accept, τ⟩ and v2 = ⟨send, reject, τ⟩. ¿e
two synchronization vectors enforce that (i) a message can only be send if the receiver
is idle and therefore ready to handle a message, (ii) that a message can only be
accepted if the sender is in mode send and (iii) that sending and receiving happens
simultaneously. ¿e automaton AS as well as the synchronization are also encoded
in the JANImodel in Appendix A.

Now thatwe have introducedNSMA, it remains tomake the semantics of anNSMAmore
precise. We do this by de�ning a single equivalent SMA. As we need to compose edges
of individual automata, we �rst de�ne the composition of assignments and symbolic
probability distributions, which are the basic building blocks of edges.

De�nition 22 (Composition of (Indexed) Assignments). Let Var1 and Var2 be
sets of typed variables and Var = Var1 ∪Var2.

(i) Let a1 ∈ Asg(Var1), a2 ∈ Asg(Var2). ¿e composition a1 ⊗ a2 ∈ Asg(Var) is
given by

(a1 ⊗ a2)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1(x) if a1(x) ≠ ⊺ ∧ a2(x) =⊥
a2(x) if a2(x) ≠ ⊺ ∧ a1(x) =⊥
⊺ otherwise

(ii) Let ia1 ∈ IAsg(Var1), ia2 ∈ IAsg(Var2). ¿e composition ia1 ⊗ ia2 ∈
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IAsg(Var) is given by

(ia1 ⊗ ia2)(i) = ia1(i)⊗ ia2(i) for all i ∈ Z.

Intuitively, the composition of two assignments preserves the mappings of its input
assignments as long as only one of them actually assigns the variable in question. If both
assign a value to the same variable, the result is marked as overde�ned, represented by
⊺. For indexed assignments, the assignments at the individual indices are composed to
create the composed indexed assignment.

Example 11. Consider the assignments a1 = a⊥[p ↦ p+ 1] and a2 = a⊥[m ↦ t] from
the automata AS from Example 10 and AR from Example 9. ¿e composition a1 ⊗ a2
is the assignment a⊥[p ↦ p + 1][m ↦ t]. Now, consider the indexed assignments

ia1 = 0∶ a⊥[t ↦ 2] # 1∶ a1 and ia2 = 1∶ a2 .

¿eir composition ia1 ⊗ ia2 is the indexed assignment

ia1 ⊗ ia2 = 0∶ a⊥[t ↦ 2] # 1∶ a⊥[p ↦ p + 1][m ↦ t]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a1⊗a2

De�nition 23 (Composition of Symbolic Probability Distributions). Let Var1 and
Var2 be sets of typed variables, PV1 ⊆ Var1, PV2 ⊆ Var2 and Loc1 , Loc2 be two �nite
sets of locations.

For two symbolic probability distributions D1 ∈ SDist(Var1 , Loc1) and D2 ∈
SDist(Var2 , Loc2), their composition D1 ⊗D2 ∈ SDist(Var1 ∪Var2 , Loc1 × Loc2) is
given by

(D1 ⊗D2)(ia , ⟨ℓ1 , ℓ2⟩) = ∑
ia1∈IAsg(Var1)
ia2∈IAsg(Var2)
ia1⊗ia2=ia

D1(ia1 , ℓ1) ⋅D2(ia2 , ℓ2)

Composing two symbolic probability distributions composes the individual indexed
assignments and sums over such elements ia1 and ia2 that result in the same (composed)
indexed assignment ia. ¿is is necessary, because the composition of two di�erent pairs
of indexed assignments may result in the same composite indexed assignment.
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Example 12. Reconsider the automata AS and AR from Example 9 and Example 10
and the (indexed) assignments ia1 , ia2 from Example 11. Let a3 be the assignment
a⊥[t ↦ 1] and ia3 be the indexed assignment ia⊥[0 ↦ a3]. Consider the symbolic
probability distributions D1 and D2 with

D1(ia1 ,wait) = 1/3 D2(ia2 , busy) = 9/10
D1(ia3 ,wait) = 2/3 D2(ia⊥ , idle) = 1/10

and all other values mapped to 0. ¿eir composition D = D1 ⊗D2 is given by

D(ia , ⟨ℓ1 , ℓ2⟩) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3/10 if ℓ1 = wait ∧ ℓ2 = busy ∧ ia = ia1 ⊗ ia2
1/30 if ℓ1 = wait ∧ ℓ2 = idle ∧ ia = ia1
3/5 if ℓ1 = wait ∧ ℓ2 = busy ∧ ia = ia2[0↦ a3]
1/15 if ℓ1 = wait ∧ ℓ2 = idle ∧ ia = ia3

Since the composition of the indexed assignments do not coincide for any pair in
this case, the composition amounts to a pairwise multiplication of probabilities and
composition of assignments.

Now, we have all ingredients to formally de�ne the semantics of an NSMA in terms of a
single symbolic Markov automaton.

De�nition 24 (Semantics of an NSMA). LetN = ⟨A1 , . . . ,An , Syn⟩ be an NSMA
with symbolic Markov automata

Ai = ⟨Loci ,Var i = PVi ⊎ TVi , νTV, i ,TLi ,Act i , ℓ0i , Init
0
i , Ei⟩ .

¿e semantics ofN is the symbolic Markov automaton

JNK = ⟨Loc ,Var = PV⊎ TV, νTV,TL ,Act , ℓ0 , Init0 , E⟩

where

» Loc = ⨉n
i=1 Loci

» PV =
n
⋃
i=1
PVi ,
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» TV =
n
⋃
i=1
TVi ,

» νTV =
n
⊕
i=1

νTV, i ,

» TL(ℓ1 , . . . , ℓn) =
n
⊗
i=1
TL(ℓ i),

» Act =
n
⋃
i=1
Act i ,

» ℓ0 = ⟨ℓ01 , . . . , ℓ0n⟩

» Init0 = ⋀n
i=1 Init0i

» E is the unique smallest relation such that the inference rules (Indep),
(Markov) and (Sync) in Figure 3.5 hold, where Dℓ j ∈ SDist(Var j , Loc j) is
given by

Dℓ j(ia , ℓ) =
⎧⎪⎪⎨⎪⎪⎩

1 if ia = ia⊥ ∧ ℓ = ℓ j
0 otherwise.

Composing a networkN of symbolic Markov automata yields a single symbolic Markov
automaton A = JNK that captures the behavior of the whole network. To this end, A’s
location set is the Cartesian product of the location sets of the network’s SMAs. ¿e
behavior (via edges) in JNK then stems from three di�erent sources. First, one of the
automata of the network may be able to perform an unobservable step, i. e. possess
an edge that is labeled with the silent action τ that is enabled in the current location,
which is re�ected by rule (Indep). Second, the rule (Markov) states that the automata
may independently take Markovian edges. As multiple Markovian edges from di�erent
automata may have the same guard, the same rate (expression) and give rise to the same
composite distribution, special attention needs to be paid in this case. We therefore sum
the rates of edges that agree on the guard and the composite distribution. And �nally, the
rule (Sync) adds composite edges resulting from the individual synchronization vectors.
In the latter case, the composite edge may only be taken if the guards of all participating
edges are satis�ed. ¿e composition of symbolic probability distributions ensures both
that (i) all “active” automata change their locations and update their private (or global)
variables, and (ii) all other automata remain in their location and keep the values of
their variables. Note that the premise of the (Sync) rule states that there need to be
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⟨g , τ,D⟩ ∈ Ei(ℓ i)

⟨g , τ,
n
⊗
j=1

⎧⎪⎪⎨⎪⎪⎩

D if i = j
Dℓj otherwise

⟩ ∈ E(ℓ1 , . . . , ℓn)

(Indep)

ED
g =

n
⋃
i=1

⎧⎪⎪⎨⎪⎪⎩
eM ∈ EM

Ai
(ℓ i) ∣ g(eM) = g ∧D =

n
⊗
j=1

⎧⎪⎪⎨⎪⎪⎩

D if i = j
Dℓj otherwise

⎫⎪⎪⎬⎪⎪⎭
≠ ∅

⟨g , ∑
eM∈ED

g

λ(eM),D⟩ ∈ E(ℓ1 , . . . , ℓn)
(Markov)

⟨α1 , . . . , αn , α⟩ ∈ Syn ∧ ∀i (α i ∈ Act i Ô⇒ ⟨α i , gi ,Di⟩ ∈ Ei(ℓ i))

⟨ ⋀
1≤i≤n
α i∈Act i

gi , α ,
n
⊗
j=1

⎧⎪⎪⎨⎪⎪⎩

Dj if α j ∈ Act j
Dℓj otherwise

⟩ ∈ E(ℓ1 , . . . , ℓn)

(Sync)

Figure 3.5: ¿e inference rules for the transitions of JNK.

participating edges from all automata Ai for which the entry α i in the synchronization
vector is not ⊥, which requires the automaton Ai to join the synchronization.

Example 13. Reconsider the NSMAN from Example 10. Figure 3.6 depicts the SMA
JNK. Note that the composed system synchronously performs the edges labeled with

» send (from AS) and reject (from AR), and

» send (from AS) and accept (from AR).

In contrast to that, along its Markovian edges no synchronization occurs. In par-
ticular, the location ⟨send, idle⟩ has a τ-labeled edge eP2 whose symbolic probability
distribution is given by D from Example 12.
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wait,
idlem = 0

send,
idle,
p′ = 1

wait,
busy

send,
busy,
p′ = 1

λ 1

τ

t′ = 1, p′ = 32/3

0∶ t′ = 2, p′ = 3#
1∶ p′ = p + 1

1/3

eP1

τ

t′ = 1

1/15

0∶ t′ = 2#
1∶ p′ = p + 1

1/30

0∶ t′ = 2#
1∶m′ = t,
p′ = p + 1

3/10

0∶ t′ = 1#
1∶m′ = t

3/5

eP2

m > 0

1/m

m′ = 0

1

eM1
λ

eM2

m > 0

1/m

m′ = 0

Figure 3.6: ¿e semantics of the NSMAN of Example 10.
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3.3.3 Operational Semantics of SMA

Finally, we turn to the concrete semantics of a symbolic Markov automaton. For the
remainder of this section, we let

A = ⟨Loc ,Var = PV⊎ TV, νTV,TL ,Act , ℓ0 , Init0 , E⟩

be a symbolic Markov automaton and S = Loc ×Val(PV). Furthermore, for a variable
valuation ν ∈ Val(PV), we use νt = ν⊕ νTV to denote the variable valuation that extends
ν with the default values of the transient variables.

De�nition 25 (Semantics of Symbolic Probability Distributions). ¿e semantics
of a symbolic probability distribution D ∈ SDist(Var , Loc) in A is the probability
distribution

JDKA ∶Val(Var)→ Dist(S)
JDKA(ν)(ℓ′ , ν′) = ∑

ia∈IAsg(Var)
JiaK(ν t)∣PV=ν′

D(ia , ℓ′)@νt

¿e semantics of a symbolic probability distribution can be described as follows. Given
a variable valuation ν , it updates the automaton location to ℓ′ and valuation ν according
to an indexed assignment ia and assigns to this successor state a probability that corre-
sponds to D(ia , ℓ′) when evaluated at νt . We have to take into account that di�erent
assignments may map the variable valuation ν to the same successor valuation ν′ in
the sense that they agree on the variables of the permanent variables. As transient
variables have no history, and all these assignments lead to the same state in S , we sum
the probabilities of all these assignments. Furthermore, it is important to extend the
variable valuation ν with the default values of the transient variables νTV, because these
values can be read by the expressions contained in the assignments.

Example 14. Reconsider the SMA A = JNK from Example 10. Let ν ∈ Val({m})
given by ν(m) = 0 and D the symbolic probability distribution as in Example 12 on
page 61. ¿en JDKA(ν) is the distribution

JDKA(ν)(ℓ′ , ν′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3/5 if ℓ′ = ⟨wait, busy⟩ ∧ ν′(m) = 1
3/10 if ℓ′ = ⟨wait, busy⟩ ∧ ν′(m) = 2
1/10 if ℓ′ = ⟨wait, idle⟩ ∧ ν′(m) = 0
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¿e �rst two cases represent the probabilities that the system processes a message 1
or 2, respectively, whereas the last case represents the probability that the message
is dropped. ¿e symbolic probability distribution distinguished four cases, yet the
concrete distribution only three cases. ¿is stems from the fact that the symbolic
distribution maintained the assignments to the transient variables. However, as the
de�nition of JDKA(ν) sums the probabilities of assignments that agree on the values
of the permanent variables (i. e. 1/30 + 1/15 = 1/10), the assignment to the transient
variables is no longer visible.

De�nition 26 (Joint Markovian Distribution). Let s = ⟨ℓ , ν⟩ ∈ S . ¿en

EM
A (s) = {⟨g , λ ,D⟩ ∈ EM

A (ℓ) ∣ ν ⊧ g}

is the set of Markovian edges enabled at s and

λMs = ∑
eMi ∈E

M
A
(s)

λ(eMi )@νt

is the total rate of these edges.

Provided λMs > 0, the joint Markovian distribution µM
s at state s is given by

µM
s (s′) =

1
λMs

∑
eMi ∈E

M
A
(s)
(λ(eMi )@νt) ⋅ JDKA(νt)

Example 15. Let s = ⟨wait, busy,m ↦ 1⟩ ∈ Loc ×Val({m}). ¿e enabled Markovian
edges at s are EM

A (s) = {eM1 , eM2 } (see Figure 3.6). ¿en, the total rate of Markovian
edges enabled at s is λMs = λ + 1. Hence, the joint Markovian distribution µM

s is given
by

µM
s (ℓ′ , ν′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
λ + 1

if ℓ′ = ⟨wait, idle⟩ ∧ ν′(m) = 0

λ
λ + 1

if ℓ′ = ⟨send, busy⟩ ∧ ν′(m) = 1
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⟨g , α ,D⟩ ∈ EP
A(ℓ , ν) ∧ µ = JDKA(ν)

⟨⟨ℓ , ν⟩ , α , µ⟩ ∈ ∆
(Prob)

λMs > 0 ∧ µ = µM
s

⟨s , Λ, µ⟩ ∈ ∆
(Markov)

Figure 3.7: ¿e inference rules for the transitions of JAK.

De�nition 27 (Semantics of an SMA). Similar to EM
A (ℓ , ν), let

EP
A(ℓ , ν) = {⟨g , α ,D⟩ ∈ EP

A(ℓ) ∣ ν ⊧ g}

be the set of enabled probabilistic edges at s = ⟨ℓ , ν⟩ ∈ S .

¿e semantics of A is the Markov automaton

JAK = ⟨S , S0 ,Act , ∆, E⟩

with

» S0 = {⟨ℓ0 , ν⟩ ∣ ν ⊧ Init0},

» ∆ is the (unique) smallest relation satisfying the inference rules (Prob) and
(Markov) in Figure 3.7, and

» E(ℓ , ν) = λMs .

¿e state space of the resulting Markov automatonM = JAK is the Cartesian product
of the locations and variable valuations of the permanent variables. ¿at is, only the
permanent variables’ values are stored in the state space. Intuitively, the values of
transient variables are set to their default values at the beginning of a transition and
reset to these values at the end of the transition, making it unnecessary to store them in
the state. ¿e initial states ofM are all those states that consist of the initial location of
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⟨w , i , 0⟩

⟨s, i , 0⟩

⟨w , b, 1⟩ ⟨w , b, 2⟩

⟨s, b, 1⟩ ⟨s, b, 2⟩

Λ, λ τ

τ

3/5 3/10

1/10

Λ, 1

1

Λ, 2

1

Λ, λ + 1

1/(λ+1)

λ/(λ+1)

Λ, λ + 2

2/(λ+2)

λ/(λ+2)

Figure 3.8: ¿e operational semantics of the SMA JNK from Example 13.

the automaton and a variable valuation that satis�es its initial condition.

¿e probabilistic behavior of a state s = ⟨ℓ , ν⟩ inM is the union of all concrete proba-
bility distributions that are induced by the symbolic distributions of probabilistic edges
enabled at s at the variable valuation ν . For the Markovian behavior of s , we combine
the e�ects of all Markovian edges enabled at s by summing the rates that lead to the
same state and adding the single joint Markovian distribution at s .

Note that we de�ned the semantics of the SMA as an MA without state labeling. In
practice, along with the SMA, we have a set of properties we are interested in that uses a
�nite set AP ⊆ Bxp(Var) of Boolean expressions over the variables of the automaton.
We can then extend the MA JAK with a labeling L by setting

L(ℓ , ν) = {b ∈ AP ∣ νt ⊧ b} .
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Example 16. Recall the SMA A = JNK from Example 13. ¿e operational semantics
of A in terms of a Markov automatonM = JAK = ⟨S , S0 ,Act , ∆, E⟩ is depicted in
Figure 3.8 where the states are represented as tuples ⟨ℓ1 , ℓ2 ,m⟩whose last components
carry the value of the (only permanent) variable m and the locations ℓ1 and ℓ2 of the
automata AS and AR are abbreviated by their �rst character for conciseness.

Reconsider the symbolic probability distributionD from Example 12 and the concrete
probability distribution µ = JDKA(ν) from Example 14 for the variable valuation
ν ∈ Val({m})with ν(m) = 0. As eP2 = ⟨true, τ,D⟩ ∈ E(⟨send, idle⟩) (see Example 13),
we have ⟨⟨send, idle, 0⟩ , τ, µ⟩ ∈ ∆ . µ summarizes two arcs of D, namely the ones
with the indexed assignments ia1 and ia3 from Example 11 and Example 12 leading
to location ⟨wait, idle⟩. Intuitively, this is because these indexed assignments only
assign to transient variables and this change is not visible in the state space that only
stores the values of permanent variables.

Recall the joint Markovian distribution µM
s at state s = ⟨wait, busy, 1⟩ from Exam-

ple 15. We have ⟨s , Λ, µM
s ⟩ ∈ ∆ and E(s) = λMs .

3.3.4 Modeling Errors

It is apparent that the semantics of an SMAA is not well-de�ned under all circumstances.
Here, we want to mention scenarios for which JAK is not a Markov automaton and that
are therefore regarded as a modeling error.

First, the symbolic probability distributions may induce a function that is not a prob-
ability distribution. For example, it may be the case that the expressions de�ning the
probabilities evaluate to negative values or do not sum to one. Second, the rate expres-
sions of Markovian edges can potentially evaluate to a nonpositive value.

¿ird, composing edges during parallel composition may result in another form of
modeling error. To see this, recall that our de�nition of the composition a1 ⊗ a2 of two
assignments (see De�nition 22) maps a variable x to ⊺ if both a1 and a2 assign a value
to it, as it would be unclear which of the values is to be preferred. In the context of
composing edges, assignments are composed to re�ect that along the composed edges
all of these updates to variables are to be executed. If two assignments that are composed
write to the same variable x, the resulting assignment will map x to ⊺ to indicate the
ill-de�nedness. Similarly, when composing the transient location assignments of a
network, shared transient variables may illegally be written multiple times.

Finally, the parallel composition of NSMAmay produce an ill-de�ned SMA if several
automata of the network use shared transient variables with deviating default values.
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Except for the last modeling error, JANI chooses to ignore this ill-de�nedness as long
as it does not appear at any state (or variable valuation) that is reachable from the initial
states of JAK. A er all, this illegal behavior does not a�ect the observable behavior of
the system.

3.3.5 RewardModels

To enable the speci�cation of other measures of interest, an SMA A can be equipped
with a symbolic reward model.

De�nition 28 (Symbolic Reward Model). A symbolic reward model (SRM) rew
for an SMA A = ⟨Loc ,Var = PV⊎ TV, νTV,TL ,Act , ℓ0 , Init0 , E⟩, is an expression
rew ∈ Qxp(Var).

Intuitively, a symbolic reward model is simply an expression rew over the (transient
and permanent) variables of the SMA A. ¿e reward earned in a state s = ⟨ℓ , ν⟩
is equal to what rew evaluates to in s . As symbolic reward models may also involve
transient variables, their default values are assumed in state s unless the transient location
assignment TL(ℓ) assigns a di�erent value to them.

In a similar way, rewards are associated with transitions. Intuitively, a transition from
state s = ⟨ℓ , ν⟩ generated by an element ⟨ia , ℓ′⟩ ∈ supp(D) yields an amount of reward
equal to rew evaluated at the variable valuation that is obtained when applying ia to the
variable valuation ν ⊕ νTV.

De�nition 29 (Semantics of an SRM). Let rew be an SRM for the SMA A. ¿e
semantics of A and rew is an MRA

JA , rewK = ⟨S , S0 ,Act , ∆, E , r⟩

where S , S0, Act and E are de�ned as in De�nition 27, the state reward function is
given as

r(ℓ , ν) = rew@JTL(ℓ)K(νt)

and the transition relation ∆ (including the rewards) is the smallest relation such
that rules (Prob) and (Markov) from Figure 3.9.
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For s = ⟨ℓ , ν⟩ , s′ = ⟨ℓ′ , ν′⟩, the rules are given as follows.

⟨g , α ,D⟩ ∈ EP
A(s) ∧ µ = JDKA(ν) ∧ ρ = rew(s , {eP} , µ)

⟨⟨ℓ , ν⟩ , α , ρ , µ⟩ ∈ ∆
(Prob)

µ = µM
s ∧ ρ = rew(s , EM

A (s), µ)

⟨⟨ℓ , ν⟩ , Λ, ρ , µ⟩ ∈ ∆
(Markov)

where for an edge e ∈ E′ in a set of edges E′ we let

P(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ(e)@νt
E(s)

if e ∈ EM
A

1 otherwise

be the relative probability of e in

rew(s , E′ , µ)(s′) = rew(s , E
′)(s′)

µ(s′)
rew(s , E′)(s′) = ∑

e∈E′
P(e) ⋅ ∑

ia∈IAsg(Var)
JiaK(ν t)∣PV=ν′

D(ia , ℓ′)@νt ⋅ rew@JiaK(νt)

Figure 3.9: ¿e inference rules for the transitions of JA , rewK.

¿e de�nition of the state reward function is straightforward, whereas the transition
rewards are slightly more involved. Starting in a state s = ⟨ℓ , ν⟩ there may be several
indexed assignments of the same probabilistic edge eP that result in the same destination
state s′ = ⟨ℓ′ , ν′⟩ but disagree on the reward values. In the Markov automaton, they
will be summarized in the form of a single transition from s to s′. In this case, the
expected reward earned by an indexed assignment ia must be weighted with its share
of the overall probability µ(s′) of moving from s to s′ with µ . Additionally, as in MA,
multiple Markovian edges enabled in a state s are summarized in the joint Markovian
distribution. ¿erefore, the probabilities of the assignments of the individual edges need
to be additionally scaled with the ratio of the rate of the rewarded edge with the total
exit rate of s .
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It is considered a modeling error if JA , rewK is not a proper MRA, which can happen if
rew evaluates to a negative number. As for the modeling errors in A, JANI considers
this to be an error only if it happens in the reachable fragment of JAK.

Example 17. Reconsider the SMA A = JNK from Example 13 and the reward model
rew = p that measures the penalty that a system run incurs.

For the most part, the MRAM = JA , rewK = ⟨S , S0 ,Act , ∆, E , r⟩ coincides with the
SMA JAK. For the state rewards, we have

r(ℓ , ν) = {
1 if ℓ = ⟨send, idle⟩ ∨ ℓ = ⟨send, busy⟩
0 otherwise

because (i) rew only evaluates to a non-zero value in locationswith a transient location
assignment that assigns to p (p’s default value is 0) and (ii) the locations ⟨send, idle⟩
and ⟨send, busy⟩ both assign the constant 1 to p.

Consider the state s = ⟨send, idle, 0⟩ and the distribution µ from Example 14 arising
from the symbolic probability distribution D from Example 11 of edge eP2 . As argued
in Example 14, it summarizes the probability of two indexed assignments ia1 and
ia3, because they are indistinguishable on the concrete state space. However, their
behavior is visible in terms of transition rewards, because assignments to transient
variables in�uence the value of rew. ia3 makes rew evaluate to 0, because it does not
assign to p and therefore p’s default value is assumed. In contrast, ia3 yields a value
of 1 with respect to rew. Consequently, we have

⟨s , τ, ρ , µ⟩ ∈ ∆

where

ρ(s′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/3 if s′ = ⟨wait, idle, 0⟩
1 if s′ = ⟨wait, busy, 2⟩
0 otherwise

because

rew(s , eP1 , µ , ⟨wait, idle, 0⟩) =
1/15
1/10

⋅ 0

²
ia1

+
1/30
1/10

⋅ 1

²
ia3

= 1/3
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Figure 3.10: ¿e JANI landscape [Bud+17].

and

rew(s , eP1 , µ , ⟨wait, busy, 2⟩) =
3/10
3/10

⋅ 1 = 1.

3.4 Tool Support

In a collective e�ort, JANI is supported by several major tools of the probabilistic model
checking community despite being a very young language. In addition to analyzing
models given in the JANI language, most of these tools support translating one or more
input languages to JANI and sometimes even in the reverse direction. Figure 3.10 gives
an overview of the current tool landscape. More speci�cally, it displays all possible input
languages and formalisms and which of the involved tools are able to translate them
to JANIor vice versa. Also, it shows the various engines (data structures and model
checking approaches) that can be used to analyze JANImodels and obtain consistent
results. We will now �rst give a brief overview over the input languages that can be
transformed to JANI and then proceed with details on the tools and engines.
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3.4.1 Modeling Languages

While JANI is designed to be human-readable to allow for manual debugging, we do
not expect users to directly formulate their input models in the JANI format. Rather,
users can select from a variety of modeling languages from several domains that are
then automatically translated. Note that while translations are only supported by one or
two tools, all input models in any of the supported languages can in principle be used
as input to any of the tools: a er converting the selected model to the JANI format with
the speci�c tool, all other tools are able to treat the model unless it contains features of
JANI that are explicitly unsupported by the target tool.

In the long run, a graphical user interface that supports the direct generation of JANI
models without intermediate translations or the need for writing json input would be
immensely helpful. Similar to Uppaal, the user could then draw the symbolic automata
and edges in a graphical editor and bene�t from “what-you-see-is-what-you-get” in the
heavily simpli�ed modeling process. However, as of today, no such editor exists. We
will now brie�y describe the modeling languages that are currently connected to JANI.

PRISM. Although PRISM has been mentioned several times before, we want to recap
its essential properties here. PRISM is the input language to the famous probabilistic
model checker Prism. It is based on reactive modules over symbolic variables [AH99]
that operate in parallel using commands. Every command consist of a guard that governs
when it is enabled and a probability distribution over variable updates that determines
the states of the system a er having executed the command. ¿is process either happens
independently and only one of the modules executes a command, or in a synchronizing
fashion, i. e. several modules change their internal state simultaneously. ¿is fundamen-
tal similarity to JANI is not coincidental: because of the popularity of Prism and the
fact that many other tools currently support extended subsets of PRISM, many of the
ideas of JANI ultimately go back to the PRISM language.

¿rough both Storm and Epmc, we are able to make the large Prism benchmark
suite [KNP12] available in the JANI format. Epmc even supports the reverse transfor-
mation and enables the treatment (of a restricted class) of JANImodels with the large
number of veri�cation backends found within Prism.
Example 18. Figure 3.11 shows a simple probabilistic timed automaton (PTA) spec-
i�ed in the PRISM language. ¿e PTA has two locations that are encoded by the
variable l and one clock c. As long as the system is in location 1, the value of the
clock is required to be at most 2. In location 0, the system tries to send a message
to the channel, which succeeds with probability 0.99 and fails otherwise. A er a
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pta

module Channel
l: [0..1] init 0; // control location
c: clock; // measuring delay

invariant
l=1 ⇒ c <= 2

endinvariant

[send] l=0 → 0.01: (l’=0) + 0.99: (l’=1)&(c’=0);
[receive] l=1 & c >= 2 → 1: (l’=0);

endmodule

Figure 3.11: A channel PTA modeled in the PRISM language.

successful send, the automaton starts the clock c to measure the delay until it receives
an acknowledgement that the message arrived properly. Due to the invariant, the
automaton will re-send the message a er exactly two time units.

IOSA. In stochastic automata (SA) [DK05] arbitrarily (continuously) distributed
clocks govern the occurrence of events in the system. Input-Output stochastic automata
(I/O SA) [DLM16] are networks of stochastic automata that syntactically guarantee the
absence of nondeterminism. To this end, they require (i) automata to be input-enabled
(they must be able to respond to an action at all times), (ii) that any event can only be
emitted by at most one automaton, and (iii) that clocks can only control the timing of
outputs. IOSA enables the speci�cation of I/O SA in the form of a language that is a
slight variation of PRISM. Its synchronization mechanism uses input and output events
whose names end in a “?” and “!”, respectively. ¿e communication between automata
is limited to that of broadcasting. ¿at is, an output event needs to synchronize with all
matching input events. All automata that do currently not o�er synchronizing with the
output event do not prevent progress as they are input-enabled.

¿e Fig tool [BDM16] translates IOSA to and from JANI. When converting IOSA to
JANI, the resulting model type is a stochastic timed automaton (STA) as I/O SA are a
proper subset of STA. In the reverse direction, input STA andCTMCs in the JANI format
need to specify synchronization vectors that correspond to broadcast communication
in order to be supported.
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const int c = 10;
const int λ = 3;
const int µ = 2;

module Arrivals
arrival: clock; // external arrivals ~ Exponential(λ)
[arrive!] @ arrival → (arrival ’= exponential(λ));

endmodule

module Queue
q: [0..c];
process: clock; // queue processing ~ Exponential(µ)
// Packet arrival
[arrive?] q=0 → (q’= q+1)&(process ’= exponential(µ));
[arrive?] q>0 & q<c → (q’=q+1);
[arrive?] q=c → (q’=c);
// Packet processing
[send!] q=1 @ process → (q’=q-1);
[send!] q>1 @ process → (q’=q-1)&(process ’= exponential(µ));

endmodule

Figure 3.12: A simple queue modeled in IOSA.

Example 19. Figure 3.12 shows an IOSA example. It models a (bounded) queue
that is processing packages that arrive with an exponential distribution with mean
λ. When the queue is non-empty, packages are processed and sent, which takes an
amount of time that is also exponentially distributed with parameter µ. To ensure
that arriving packages from the module Arrivals are correctly registered (with
respect to the bounded size of the queue), the module Queue provides appropriate
input events.

Modest. ¿eModest language is a high-level modeling language that supports very
expressive features like recursive data-structures and process invocations, loops and
exception handling. Its semantics are de�ned in terms of STA [Boh+06] and were later
extended to SHA [Hah+13]. As SHA cover all model types that are currently targeted
by JANI (see Figure 3.1), Modest is the richest modeling language that is currently
connected to JANI. As indicated in Figure 3.10, theModest Toolset [HH14] allows
for translating the language to JANI and vice versa.
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process Channel() {
send palt {

:99: delay(2)
receive

: 1: // message lost
{==}

};
Channel();

}
Channel();

Figure 3.13: ¿e channel model in theModest language.

int c := 0;
int x := 0;

while (c = 0) {
{

x := x + 1
} [0.5] {

c := 1
}

}
observe (x % 2 = 1);

Figure 3.14: A example program in pGCL.

Example 20. Reconsider the model of a lossy channel from Example 18. Figure 3.13
shows the same model in theModest syntax.

pGCL. Probabilistic programming languages extend standard languages with con-
structs to sample from randomdistributions. An example for such a language is the prob-
abilistic guarded command language (pGCL) [MM05] with observe statements [Kat+15].
It additionally provides a mechanism to condition the probability distributions that are
described by such programs. ¿ese constructs are at the heart of algorithms in machine
learning, security, and quantum computing [Gor+14]. ¿e operational semantics of a
probabilistic program written in pGCL is a (typically in�nite) MDP. Storm implements
a translation from pGCL to jani-model via program graphs.
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Example 21. An example program in the pGCL language is shown in Figure 3.14. In
each iteration of the while-loop, a fair coin is thrown and depending on the outcome
x is either increased or the iteration aborted. Overall, the value of x at the end of the
while loop is geometrically distributed with success probability one half. ¿e observe
statement at the end of the program �lters all possible program runs that reach this
point with a value of x. Stated di�erently, only runs that assign an odd value to x
have a non-zero probability of terminating. To make up for the “lost” probability
mass, the probability of the remaining events is rescaled, which formally amounts to
probabilistic conditioning. Intuitively, this results in x being geometrically distributed
over the odd numbers only.

A noticeable feature of the translation of pGCL to JANI in Storm is the detection of
transient variables. It uses heuristics to determine whether the history of a variable is
relevant or not within a pGCL program.

Under some restrictions the value of a variable does not need to be stored explicitly and
the variable can be treated as transient. Avoiding to store an unbounded variable may
make the underlying PA �nite and therefore amenable to standard probabilistic model
checking. Consider as an example a modi�ed version of the program in Example 21
that omits the observe statement at the end. If the property in question is the expected
value of x, the increments to this variable can be seen as obtaining a reward of 1. ¿e
question can then be answered by an expected reward analysis on a �nite PA.

GSPNs. Petri Nets (PN) are among the most widespread modeling formalisms for
concurrent processes. Generalised stochastic Petri nets (GSPN) [MCB84] extend the
standard immediate transitions of PNs with exponentially delayed ones. Most o en, the
semantics of GSPN were formally speci�ed in terms of a CTMC. However, this requires
resolving the nondeterminism from immediate transitions by specifying weights in
the GSPN.¿is avoids nondeterminism by implicitly encoding a probabilistic branch-
ing, which may be unnatural depending on the system’s domain and environment.
[Eis+13] presents a formal semantics for every GSPN, including confused ones with
actual nondeterminism, in terms of Markov automata.

Based on an implementation of this semantics, Storm can translate GSPNs given either
as a GreatSPN project [Amp14] or in a variant of the ISO-standard PNML [ISO11b]
format into a jani-model description. ¿e encoding uses variables to representmarkings
and probabilistic andMarkovian edges for immediate and timed transitions, respectively.
¿e translation of the (optional) weights is more involved.
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λ1 λ2

Figure 3.15: A con�icted GSPN.

Example 22. We show an example GSPN in Figure 3.15. ¿e net has four places
(circles) and four transitions (rectangles). Two transitions are immediate (black)
and two are timed (white). Each of the timed transitions is equipped with a rate
that is the parameter of the negative exponential distribution governing the �ring
times. ¿is net is what the literature refers to as con�icted as the current marking (the
amount of tokens in each place) enables both immediate transitions and there is no
policy on which to schedule �rst. Hence, the system needs to nondeterministically
select the �ring order, which is not supported when using the CTMC semantics of
GSPNs. Using the Markov automaton semantics, Storm can translate every GSPN
to a symbolic Markov automaton in the JANI format.

xSADF. Data�ow formalisms are popular in the study of embedded data processing
applications. ¿e recently introduced extensions of scenario-aware data�ow [¿e+06]
xSADF [HHB16] and eSADF [KW16] add cost annotations (to model, for example,
power consumption), nondeterminism, and continuous stochastic execution times. For
xSADF the compositional semantics in terms of STA are implemented in theModest
Toolset. Via the latter’s support for jani-model, we can now also convert xSADF
speci�cations to jani-model. ¿e resulting models are networks of STA that make use
of some of the features speci�ed in the datatypes and functions extensions of JANI
to encode the unbounded typed scenario channels of xSADF.
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3.4.2 Analysis

Using intermediate representations within tools has the well-known advantage that
the same backend can be used for several input languages. ¿is not only reduces
programming andmaintenance e�ort but also allows a more optimized and streamlined
backend. A very popular example for this approach is the compiler framework Llvm
with its language LLVM-IR [LA04].

Currently, there are four tools that support the analysis of JANI models directly:
Fig [BDM16], Epmc [Hah+14], theModest Toolset [HH14] and Storm [Deh+17].
However, through Epmc’s capability to transform JANI to PRISM, Prism’s [KNP11]
broad palette of veri�cation approaches can also be implicitly leveraged. Table 3.1 sum-
marizes which model types, features and property types are supported by which of the
tools. ¿e columns indicate support for (i) probabilistic reachability (P), (ii) probabilistic
computation tree logic (PCTL), (iii) satisfaction probabilities for linear temporal logic
formulas (LTL), (iv) expected values or rewards (E), and (v) steady-state measures (S).

We refrain from describing the tools in more detail as this is the topic of Chapter 7.

3.5 RelatedWork

Several e�orts have been made to standardize modeling languages for broader use, or
to develop overarching formalisms that o�er a union of the features of many di�erent
specialized languages. Notable examples for this include the ISO standard Lotos [BB87]
and CIF language and format [ABR13]. ¿e latter is a complex speci�cation consisting
of a textual and graphical syntax for human use plus an XML representation that covers
quantitative aspects such as timed and hybrid, but not probabilistic, behavior. It has
connections to a variety of tools including those based onModelica [Fri11], which itself
is also an open speci�cation intended to be supported by tools focusing on continuous
system and controller simulation. E�ectively the only implementation of Lotos is
in the Cadp toolset [Gar+13], and active CIF support appears restricted to the CIF 3
tool [Bee+14]. We took inspiration from the use of synchronization vectors in Cadp
and related tools to compactly-yet-�exibly specify how automata interact. AADL is
a language originating from the automotive industry and currently used in other do-
mains as well. Together with its error annex, the resulting semantic model is a Markov
automaton. ¿e semantic model of the PRISM language — networks of Markov chains,
probabilistic automata or probabilistic timed automata with variables — forms the con-
ceptual basis of jani-model. ¿e notion of transient variables in SMAwas adopted from
RDDL [San10]. ¿e HOA format [Bab+15] is a tool-independent exchange format for
ω-automata designed to represent linear-time properties for or during model checking.
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Table 3.1: Support for model types, features and property classes in analysis tools.

tool engine LT
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TA PT
A
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A
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fu
nc
tio

ns
P PC

TL
LT

L
E S

Fig rare – ∗ ✓ – – – – – (1) – (2) – ∗ ✓ – – ∗ ✓

Epmc sparse ✓ ✓ ✓ ✓ ∗ ∗ – – – – – – – ✓ ✓ ✓ ∗ ∗
dd ✓ ✓ ✓ ✓ ∗ ∗ – – – – – – – ✓ ✓ ✓ ∗ ∗

Modest
Toolset

explicit ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓ (3) ✓ ✓ ✓ ✓ ∗ – ✓ –
SMC ✓ ✓ – ✓ – (4) (4) (4) (4) – ✓ ✓ ✓ ✓ – – ✓ –

Storm sparse ✓ ✓ ✓ ✓ – ✓ – – – – ✓ – – ✓ ✓ – ✓ ✓
dd ✓ ✓ ✓ ✓ – ✓ – – – – (2) – – ✓ ✓ – ✓ ∗

Prism (various) ✓ ✓ ✓ ✓ – – ✓ ✓ – – ∗ ∗ ∗ ✓ ✓ ✓ ✓ ✓

✓ =̂ supported
∗ =̂ support planned
(1) =̂ only broadcast-based input/output STA supported
(2) =̂ support planned for �xed-size arrays
(3) =̂ supported via the prohver tool
(4) =̂ supported for deterministic models

Atlantif [SLG09] is an intermediate model for real-time systems with data that can be
translated to timed automata or Petri nets. In the area of satis�ability-modulo-theories
(SMT) solvers, the SMT-LIB standard [BFT15] de�nes a widely-used data format and
tool interface protocol analogous to the pair of jani-model/jani-interaction that we
propose for quantitative veri�cation. ¿e formats mentioned so far provide concise
high-level descriptions of potentially vast state spaces. An alternative is to exchange
low-level representations of actual state spaces, representing all the concrete states of
the semantics of some high-level model. Examples of such state space-level encodings
include Cadp’s BCG format andMrmc’s [Kat+11] input format. Disadvantages are that
the �le size explodes with the state space, and all structural information necessary for
symbolic (e. g. MTBDD-based) reasoning or static analysis is lost.

A number of tools take a reversed approach by providing an interface to plug in di�erent
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input languages. In the non-quantitative setting, one example is LTSMin [Kan+15]
and its PINS interface. However, this is a C/C++ API on the state space level, so every
input language needs to provide a complete implementation of its semantics for this
tool-speci�c interface. A prominent tool with a similar approach that uses quantitative
models is Möbius [Cou+09]. Notably, a command-line interface has recently been
added to Möbius’ existing graphical and low-level interfaces to improve interoperabil-
ity [KS13]. Similarly, Prism features a Java-level model generator interface. ¿eModest
Toolset [HH14] also used an internal semanticmodel similar to that of jani-model that
allows it to translate and connect to various external tools, albeit via their command-line
interfaces.

¿e JANI speci�cation can be seen as a metamodel. ¿e Eclipse EMF/Ecore plat-
form [Ecl] is popular for building and working with metamodels. We chose to create a
standalone speci�cation instead in order to avoid the heavy dependency on Eclipse and
to not force a preferred programming language on implementers.



Chapter4

Fast Debugging of JANI Models

4.1 Motivation and Goals

Model checking is a push-button technique to verify or refute the compliance of a system
with a speci�cation. It is increasingly used in industry and has had remarkable suc-
cesses [BLR11; Hol14]. Two of the major challenges that remain to continue this success
story are (i) improving its scalability to make it applicable to real-world problems whose
complexity is ever growing, (ii) gain acceptance among engineers. For the latter, it is not
enough to merely (dis)prove statement about the system, but requires an explanation
of the veri�cation result. In case the veri�cation attempt fails, counterexamples have
emerged as a way to capture the faulty behavior of the system. Experience has shown
that counterexamples are the single most e�ective feature to convince system engineers
of the value of formal veri�cation [CV03]. Consequently, the competition on so ware
veri�cation (SV-COMP) requires the participating tools to generate counterexamples
for almost all categories.

Interestingly, counterexamples also play a key role in tackling the �rst challenge men-
tioned above. State-of-the-art techniques like counterexample-guided abstraction re-
�nement [Cla+00] (CEGAR) and counterexample-guided inductive synthesis [Sol+06]
(CEGIS) use counterexamples to guide the solution process.

¿ese observations sparked a whole body of research and made algorithmic generation
of counterexamples a key component in modern model checkers such as Spin [Hol97],
NuSMV [Cim+02], CPAChecker [BK11], and Ultimate Buchi Automizer [HHP13].
¿ese tools include powerful facilities to generate counterexamples in various formats.
Such counterexamples are typically provided at themodeling level, like a diagram indicat-

83
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Figure 4.1: A simple DTMC [HKD09].

ing how the change of model variables yields a property violation, or a message sequence
chart illustrating the failing scenario. Substantial e�orts have been made to generate
succinct counterexamples, o en at the price of an increased time complexity [GM07;
HG08; SB05].

Despite the growing popularity of probabilistic model checkers, such facilities are
absent in tools such as Prism [KNP11] andMrmc [Kat+11]. One of the reasons is that
counterexamples in the probabilistic setting turn out to be more complicated. Consider,
for example, a labeled transition system L and a distinguished “bad” state s . A safety
property might now state that s is not reachable in L. If this property does not hold, the
simplest form a counterexample can take is a (�nite) path in L that starts in the initial
state and ends in s . ¿e corresponding problem in the probabilistic setting is whether
in a probabilistic automatonM, the probability to reach s is below a safety threshold λ .

As an example, consider the DTMCD depicted in Figure 4.1 along with the probabilistic
safety property φ = P≤9/10(◊a) that expresses that the probability to reach states labeled
with a is at most 0.9. Clearly,D /⊧ φ as the probability to reach state s is 1. However, no
single path inM alone carries enough probability mass to violate the bound λ . Instead,
a set of �nite paths is required whose combined probability mass exceeds the threshold.
Computing minimal counterexamples in terms of sets of paths amounts to solving a
k-shortest path problem [HKD09]. However, for D and φ , more than 230000 paths
are needed to explain the violation [HKD09]. In fact, it can be shown that in general
exponentially many paths are necessary and for formulae with strict probability bounds
itmay even be the case that no �nite set of paths is su�cient. Subsequent research tried to
mitigate these de�ciencies. While [AL10] employs heuristics to guide the exploration of
the system, [WBB09] uses a symbolic encoding of the system to enable bounded model
checking. [LL13] enhances the path search by post-processing steps, such as building a
fault-tree to better explain the causality in the model. However, these approaches su�er
from a potentially large number of paths that need to be explored. A viable alternative
is to determine minimal critical subsystems [Wim+12; Wim+14], i. e., model fragments
for which the likelihood of reaching bad states already exceeds the probability bound
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λ . Using binary decision diagrams, minimal critical subsystems can be computed for
models with billions of states [Jan+14]. Yet, the generated counterexamples remain huge.
¿e fundamental commonality of these approaches is that they work at the state space
level. ¿e sheer size of such counterexamples makes them incomprehensible and not
e�ectively usable in CEGAR approaches for probabilistic systems [HWZ08; CCD14].

Recent works take a radically di�erent approach. Drawing inspiration from the e�orts
in the qualitative setting to li counterexamples from the state space level to the speci-
�cation level, the authors propose to map the core argument of the violation back to
the (symbolic) model speci�cation. In [Brá+15], the authors use learning techniques to
identify small schedulers that represent critical decisions in the model and in [Fen+18]
explanations in terms of structured language are synthesized. We, however, focus on the
approach of [Wim+15]. Here, the authors determine the smallest set of commands C of
a PRISMmodel [KNP11] whose semantics in terms of a PA already violate a reachability
property. ¿e restriction of the PRISM model to the command set C then forms a
high-level counterexample. Algorithmically, C is computed by encoding the query in
terms of an mixed-integer linear program (MILP) and delegating the solution to an
o�-the-shelf solver like Gurobi. Since deciding whether there is a critical set of com-
mands of size at most k is NP-hard [Wim+15], this encoding is optimal in the sense that
it does not increase the theoretical complexity. However, MILP solvers target general
purpose problems and do not exploit domain-speci�c knowledge unless it is part of
the encoding. In fact, [Wim+15] shows that the solver’s performance varies drastically
depending on which additional information is encoded into the problem.

In this chapter, we present a more scalable algorithm that solves the same problem
whose fundamental advantage lies in leveraging the domain knowledge through the use
of a probabilistic model checker. While our presentation will focus on computing high-
level counterexamples for JANImodels, the approach is applicable to other modeling
formalisms for probabilistic automata such as PRISM, PIOA [Can+08], stochastic
process algebras [Kat+12] and the graphical component-wise representation of systems
as possible in Uppaal [Beh+06].

Formally, we will consider the problem of computing a minimal critical edge set.

De�nition 30 (Minimal Critical Edge Set). Let N = ⟨A1 , . . . ,An , Syn⟩ be a net-
work of symbolic probabilistic automata

Ai = ⟨Loci ,Var i = PVi ⊎ TVi , νTV, i ,TLi ,Act i , ℓ0i , Init
0
i , Ei⟩
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andM = JJNKK its semantics in terms of a probabilistic automaton. A set

E∗ ⊆
n
⋃
i=1
(Loci × Bxp(Var(N)) ×Act(N) × SDist(Var(N), Loci))

of (location-extended) edges is called a critical edge set forN and the probabilistic
safety property φ = P≤λ(◊T), if

JJN∣E∗KK /⊧ φ

where

» N∣E∗ = ⟨A1∣E∗ , . . . ,An ∣E∗ , Syn⟩, and

» Ai ∣E∗ = ⟨Loci ,Var i = PVi ⊎ TVi , νTV, i ,TL ,Act i , Ei ∩ E∗ , ℓ0i , Init0i ⟩.

and

⟨ℓ , g , α ,D⟩ ∈ Ei ∩ E∗ ⇐⇒ ⟨g , α ,D⟩ ∈ E(ℓ) ∧ ⟨ℓ , g , α ,D⟩ ∈ E∗ .

E∗ is calledminimal if there is no other critical edge set E′ with ∣E′∣ < ∣E∗∣.

Intuitively, a minimal critical edge set E∗ for a NSPA N and property φ , is a set of
edges such that deleting all edges that are not in E∗ from automata contained in the
network will still induce a probabilistic automaton that violates the property φ . Hence,
any extension ofN∣E∗ will also violate φ , since — intuitively speaking — the resulting
PA can only have more behavior and the maximal reachability probability can only
increase. Note that this monotonicity property holds for probabilistic safety properties
in particular but not for all properties in general. We remark that a minimal critical
edge set E∗ is not unique and there may be several such sets with size ∣E∗∣.

Example 23. Consider the two symbolic probabilistic automata in Figure 4.2 that
form a network of symbolic probabilistic automataN together with the synchroniza-
tion vectors Syn = {⟨msg ,msg ,msg⟩}. AS (top) generates a simple message that AR
(bottom) receives. ¿e latter then tries at most two times to process the message. Ev-
ery attempt succeeds with probability 9/10 and fails with 1/10. Additionally, the system
has a mechanism to reset the number of remaining tries (variable t) that also causes
the system to fail in 1% of the cases. ¿e system designer uses a standard probabilistic
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Figure 4.2: ¿e two automata forming the NSPAN.
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Figure 4.3: ¿e operational semantics ofN in terms of a PAM.

model checker that can handle JANI and asks whether JJNKK ⊧ φ = P≤ 1
5
(◊T) where

T=̂fail to verify that on average the overall system only fails in at most every � h
run independent of the how the nondeterminism is resolved. ¿e veri�er correctly
returns that the property is not satis�ed and reports that the maximal reachability
probability w.r.t. T is in fact 1. To see this, consider the operational semantics JJNKK
depicted in Figure 4.3 where the set T now corresponds to {s4 , s5 , s6}. ¿e problem is
that the reset operation is directly available before the �rst attempt of processing it and
a scheduler can therefore schedule this choice whenever it is in state s1. Strengthening
the guard of edge e2 from t < 2 to t > 0∧ t < 2 would remove the choice labeled with
{e2} from s1 and make the resulting system satisfy φ . While the NSPAN has 7 edges,
three of them su�ce to exceed the safety threshold λ = 1

5 of the property: a minimal
critical edge set forN and φ is the set E∗ = {e0 , e1 , e3}. ¿e restrictionM∣E∗ ofM
to E∗, which we de�ne formally later, is the boldly drawn fragment in Figure 4.3.

For the remainder of this chapter, wewill use the term edges to refer to location-extended
edges (see De�nition 20) and letN = ⟨A1 , . . . ,An , Syn⟩ be an NSPA with SPA

Ai = ⟨Loci ,Var i = PVi ⊎ TVi , νTV, i ,TLi ,Act i , ℓ0i , Init
0
i , Ei⟩ ,
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M = JJNKK = ⟨S , S0 ,Act , ∆⟩ be the PA induced by N, and φ = P≤λ(◊T) with a tar-
get set T ⊆ S be a probabilistic safety property. Furthermore, letM∣E = JJN∣E KK =
⟨S , S0 ,Act , ∆ ∣E ⟩ be the restricted model with respect to a given set E as in De�nition 30.
To guarantee the existence of a (minimal) critical edge set, we assumeM /⊧ φ . ¿is
property is easily checked using standard probabilistic modelchecking techniques. If, in
fact,M ⊧ φ , then there exists no minimal critical edge set and we can directly abort
the search. To ease the presentation, we requireM to have exactly one initial state,
i. e., S0 = {s0}, and thatN is canonically synchronizing. ¿e latter means that for each
action α ≠ τ, every automaton Ai that possesses the action α (α ∈ Act i) needs to join
the synchronization. ¿is formally amounts to

Syn =
⎧⎪⎪⎨⎪⎪⎩
⟨α1 , . . . , αn , α⟩ ∣ α ∈ Act ∧ α i =

⎧⎪⎪⎨⎪⎪⎩

α if α ∈ Act i
⊥ otherwise

⎫⎪⎪⎬⎪⎪⎭
.

Note that these restrictions can be li ed and donot a�ect the applicability of the approach
in general. Most importantly, we from now on assume a labeling

L∶ S ×Act ×Dist(S)→P (E(N))

of the choices inM with the edges that were involved in generating them according
to the semantics ofN (see De�nition 24 and De�nition 27). Such a labeling can easily
be built during model construction. In practice, it could be that the same choice is
generated by multiple edge combinations. However, this is a technicality and can easily
be circumvented by relabeling choices uniquely.

Using L, we de�ne the sources and destinations of an edge set E as follows.

De�nition 31 (Edge Sources and Destinations). For a set E of edges, we let

srcT(E) = {s ⊧M ∃◊T ∣ s αÐ→ µ ∧ E = L(s , α , µ)}

dstT(E) = {s′ ⊧M ∃◊T ∣ ∃s ∈ S . s αÐ→ µ ∧ s′ ∈ supp(µ) ∧ E = L(s , α , µ)}

be the sources and destinations of E , respectively.

¿ese are all states that can reach the target set T and are source or destination, respec-
tively, of a distribution that is labeled with E . As we �x the set of target states over the
whole chapter, we will omit the subscript for better readability. As a special case, we let
src(e) = src({e}) and dst(e) = dst({e}).
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Example 24. Reconsider Example 23 and in particular the PA in Figure 4.3. For T =
{s4 , s5 , s6}, we have src(e2) = {s1 , s2}, dst(e2) = {s2 , s3} and dst({e0 , e1}) = {s1}.
Note that dst(e2) does not include the states s7 and s8, because these states cannot
reach the target set.

4.2 Enumerative Computation of Minimal Critical Edge Sets

¿e basic idea of our algorithm is very simple. In a nutshell, it enumerates subsets of
edges of E(N) of increasing size, starting with all candidate edge sets E of size 0, 1, 2, and
so on. For every enumerated set E , we use a model checker to determine whetherM∣E
violates φ . If so, E is a minimal critical edge set by construction. If not, the enumeration
process is continued.

Clearly, this enumeration is infeasible for reasonable models: if the automata of N
altogether possess k edges, in the worst case all possible 2k edge sets are enumerated,
which happens if all edges are in fact necessary to refute φ . ¿erefore, it is crucial
to consider additional information to make the search more e�cient. To this end,
we prune the search space by introducing a set of logical constraints Φ over Boolean
variables ΦE = {xe ∣ ∃i ∈ {1, . . . , k} . e ∈ Ei}. ¿ese constraints, which we treat in detail
in Section 4.3, describe properties of all minimal critical edge sets ofN and therefore
do not rule out any optimal solution. Initially, only constraints that can be statically
derived fromN are contained in Φ . We then employ aMaxSat solver to compute the
smallest set of edges that is in compliance with Φ as E =MinSat(ΦE , Φ). 1

Consequently, E is the smallest set of edges that is a viable candidate set for a minimal
critical edge set, provided no solution has been found yet. We then construct the
restrictedmodelM∣E and query a standard probabilisticmodel checker whetherM∣E ⊧
φ , or, equivalently, Pr+

M∣E
(◊T) ≤ λ . If not, the edge set is su�cient for the construction

of a high-level counterexample. If, however, E is not yet su�cient, the enumeration
process needs to be continued. One way would be to assert in Φ the formula

⋀
e∈E

xe → ⋀
e∈E(N)∖E

xe

to enforce that E will not be enumerated again. However, this amounts to an unguided
search as only the information that E is insu�cient is captured by it. We therefore strive

1 Formally, this is not entirely correct. First, since MinSat returns a set of assignments, we pick an
arbitrary single element. Secondly, the assignment induces an edge set via E = {e ∣ ν(xe) = true} where
ν =MinSat(ΦE , Φ).
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compute E =
MinSat(ΦE , Φ)

add constraints
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compute
Pr+M∣E (◊T)
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model JJNKK

solution E∗

> λ

≤ λ

Figure 4.4: A schematic overview of ourMaxSat-based approach.

to analyzeM∣E and derive explanations in the form of additional constraints why E
is insu�cient, which are then added to Φ . A schematic overview of this procedure is
depicted in Figure 4.4. It is not hard to see (Section 4.5) that the algorithm is sound
and complete provided that all constraints do not rule out minimal critical edge sets.
Formally, the constraint system Φ is sound, if for allminimal critical edge sets E∗

νE∗ ⊧ Φ where (νE∗(xe) = true ⇐⇒ e ∈ E∗) . (4.1)

All constraints that we present in the following maintain this property.

4.3 Pruning the Search Space

As previously mentioned, the constraints are the key element in our enumeration
procedure. For their derivation, it su�ces to consider the fragment of the state space of
M that can reach the target set T , whichwe refer to as the relevant fragment. ¿roughout
this section, we will use E∗ to denote a minimal critical edge set and E as a candidate
for a solution.



92 Chapter 4. Fast Debugging of JANIModels

Certain Edges. For typical models, some edges need to be taken along all paths from
the initial state to a target state. It is therefore bene�cial to determine this set in a
preprocessing step of the actual enumeration and thereby possibly prune large parts of
the search space. For a given state s ∈ S and a set of states S′ ⊆ S , we let

CMs ,S′ = ⋂
π∈◊S′(s ,M)

ES′(π)

be the set of certain edges that are taken along all paths from s to S′ where

ES′(π = s0
α0Ð→
µ0

s1
α1Ð→
µ1

s2 . . .) = ⋃
0≤i<min π@S′

L(s i , α i , µ i) with π@S′ = {i ∈ N ∣ s i ∈ S′} .

¿is set can be computed using a standard �xed-point analysis [NNH99] onM. Initially,
we can assert

⋀
e∈CM

s0 ,T

xe . (4.2)

Example 25. Reconsider the PAM from Example 23. All paths from the initial state
to one of the target states must take the �rst choice labeled with {e0 , e1}. Clearly, any
critical edge set must contain them and the constraint system Φ can be strengthened
by including

x0 ∧ x1 .

Synchronization Implications. By the semantics of the NSPAN and our simplifying
assumption thatN is canonically synchronizing (see Section 4.2), an edge e of the SPA
Ai that is labeled with action act(e) = α ≠ τ can only generate a choice together with
edges from automata that need to synchronize on α . We can conclude that all minimal
critical edge sets either do not include e or take at least one edge labeled with α from
every A j with α ∈ Act j . However, this is rather coarse as these additional edges might
not be able to synchronize with e because their guards prevent them from being enabled
at a common state. As we assume to haveM available, we can be more precise: instead
of requiring edges that potentially synchronize with e to generate choices, we can require
edges that certainly do so in the relevant fragment ofM. We assert this as

xe → ⋁
s∈src(e)

⋁
⟨α ,µ⟩∈∆(s)
e∈L(s ,α ,µ)

⋀
e′∈L(s ,α ,µ)

e≠e′

xe′ for all Ai , e ∈ Ei . (4.3)
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Example 26. In the NSPAN from Example 23, the automata need to synchronize
along the edges labeled withmsg. ¿e synchronization implications

x0 → x1 and x1 → x0 (4.4)

ensure that enumerated sets must either contain both or none of the two edges.

Forward and Backward Implications. Suppose that an edge e ∈ E only participates
in generating choices that lead to non-target states without outgoing choices in the
restricted modelM∣E , i. e.

e ∈ L(s , α , µ) Ô⇒ ∀s′ ∈ supp(µ) (s′ /∈ T ∧ (s′ αÐ→ µ Ô⇒ L(s′ , α , µ) /⊆ E)) .

¿en, no path from the initial to a target state inM∣E uses a choice ⟨s , α , µ⟩ with
e ∈ L(s , α , µ) and, hence, e can be omitted from E without a�ecting the reachability
probability. ¿us, we can conclude that e either generates at least one choice (i) with a
target state as a successor or (ii) has some successor state s with a non-empty choice set
∆ ∣E(s). We therefore add the constraints

xe → ⋁
s′∈dst(e)

⋁
⟨α ,µ⟩∈∆(s′)
L(s ,α ,µ)≠{e}

⋀
e′∈L(s′ ,α ,µ)

xe′ for all Ai , e ∈ Ei , dst(e) ∩ T = ∅ (4.5)

to Φ , which we refer to as forward implications.

Example 27. Reconsider the PAM from Example 23. No choice labeled with
{e2} directly leads to a target state. Consequently, including e2 has no e�ect on
the reachability probability unless the label set of some choice in some state in
dst(e) = {s2 , s3} is also included. Hence, we add the constraint

x2 → x3 ∨ x4 . (4.6)

Note that the constraints (4.5) consider every edge individually, which might be coarser
than necessary. For example, there might be a single choice ⟨s , α , µ⟩ inM labeled with
{e1 , e2} such that supp(µ)∩T ≠ ∅, which precludes asserting the constraints (4.5) for e1
and e2. However, a solution to the constraint system might only set one of the variables
xe1 and xe2 to true and the other one to false and therefore not have the choice ⟨s , α , µ⟩ in
the restricted model. We therefore generalize the forward implications to synchronizing
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Figure 4.5: A counterexample for the simple generalized forward implications.

sets of edges. An initial attempt is to assert a straight adaptation of constraints (4.5):

⋀
e∈E′

xe → ⋁
s′∈dst(E′)

⋁
⟨α ,µ⟩∈∆(s)
L(s ,α ,µ)≠E′

⋀
e′∈L(s′ ,α ,µ)

xe′
for E′ ⊆ E(N) such that
∃s , α , µ . L(s , α , µ) = E′
and dst(E′) ∩ T = ∅.

(4.7)

As it turns out, these constraints are not sound and there are minimal critical edge sets
that violate them.
Example 28. Consider the PAM in Figure 4.5 together with the safety property
P≤ 1

2
(◊T) where the target states are indicated by double circles. Clearly, the property

is violated as the maximal reachability probability is 1. ¿e only minimal critical edge
set is E∗ = {e0 , e1 , e2 , e3}, which induces a restricted modelM∣E∗ with a reachability
probability of 23 as both the upper and the lower paths are included. ¿e generalized
constraints (4.7) would, however, assert

x1 ∧ x2 → x4 ∧ x5 (4.8)

because they require the choice labeled with {e1 , e2} to have a successor choice at s .
¿e implication can therefore not be sound as e1 , e2 ∈ E∗, but e4 , e5 /∈ E∗.

Intuitively, the reason why these constraints are unsound is that non-synchronizing
edges are always included because of the choices they generate on their own and should



4.3. Pruning the Search Space 95

therefore only be included if they have any possibility to proceed towards a target state.
In contrast, a set of synchronizing edges E′ ⊆ E∗ may be fully included in a minimal
critical edge set E∗, but no choice labeled with E′ is necessary to exceed the probability
bound (see Example 28) or such choices are not even reachable in the restricted model
M∣E∗ . In these cases, the choices are super�uous and we must not require that they
have enabled successor edge sets. Instead, we can show the following constraint to be
sound that extends the original constraints with a disjunct ΦSyn(E′):

⋀
e∈E′

xe →
⎛
⎜⎜⎜
⎝
⋁

s′∈dst(E′)
⋁

⟨α ,µ⟩∈∆(s′)
L(s ,α ,µ)≠E′

⋀
e′∈L(s′ ,α ,µ)

xe′
⎞
⎟⎟⎟
⎠
∨ ΦSyn(E)

for E′ ⊆ E(N) such that
∃s , α , µ . L(s , α , µ) = E′
and dst(E′) ∩ T = ∅.

(4.9)

where

ΦSyn(E′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⋀
e∈E′

ΦSyn(e , E′) if ∣E′∣ > 1

false otherwise
(4.10)

ΦSyn(e , E′) = ⋁
s∈src(e)

⋁
⟨α ,µ⟩∈∆(s)

e∈L(s ,α ,µ)≠E′

⋀
e′∈L(s ,α ,µ)

e′≠e

xe′ . (4.11)

With ΦSyn(E′) encoding the fact that the edges e ∈ E′ all appear in enabled synchroniz-
ing combinations di�erent from E′, this weakens the previous assertions (4.7) and allows
that the subset E′ is included to enable other synchronizations in the system.

Example 29. Coming back to the PAM of Example 28, the corrected constraints
(4.9) simplify to

x1 ∧ x2 → (x4 ∧ x5) ∨ x3 (4.12)

which does not contradict the optimal solution E∗ = {e0 , e1 , e2 , e3}.

Similar to forward implications, we can derive backward implications with the idea that
every selected edge generates at least one choice from some state s such that s is in the
support of some choice that is generated by the current set of edges. Formally, for each
edge e ∈ E that is not enabled in the initial state, we select a combination of edges that
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leads to some state s ∈ src(e) by enforcing

xe → ⋁
s∈src(e)

⋁
s′∈pred(s)

⋁
⟨α ,µ⟩∈∆(s′)
L(s ,α ,µ)≠{e}
s∈supp(µ)

⋀
e′∈L(s′ ,α ,µ)

xe′ for Ai , e ∈ Ei , s0 /∈ src(e) (4.13)

As before, the constraints can be li ed to reason about synchronizing sets of edges and
we can assert

⋀
e∈E′

xe → ⋁
s∈src(E′)

⋁
s′∈pred(s)

⋁
⟨α ,µ⟩∈∆(s)
L(s ,α ,µ)≠E′
s∈supp(µ)

⋀
e∈L(s′ ,α ,µ)

xe ∨ ΦSyn(E′) (4.14)

for E′ ⊆ E(N) such that ∃s , α , µ L(s , α , µ) = E′ and s0 /∈ src(E). As slight variations of
these implications, we can encode that at least one of the choices of the initial state and
at least one choice that has a target state as a direct successor are generated by minimal
critical edge sets.

Example 30. Reconsider our running Example 23. In a backward manner, we assert
that including edge e2 is only reasonable if either {e0 , e1} or e3 is also taken, because
only via these edges a state can be reached that has a choice generated by e2. In the
form of the constraints (4.13), this is formulated as

x2 → (x0 ∧ x1) ∨ x3 . (4.15)

Extended Backward Implications. As argued in Example 30, including e2 in a solu-
tionmust trigger taking {e0 , e1} or e3. However, we can bemore precise. As e2 represents
an attempt at processing the received message, it is evident that this can only happen
a er a message has been received and we would therefore like to assert

x2 → x0 ∧ x1 , (4.16)

which is stronger than the constraint obtained in (4.13). Intuitively, the set {e0 , e1}
enables choices labeled with {e2}, because it takes the system from state s0 in which
there is no choice labeled with {e2} to state s1 in which there is such a choice. Note that
this is not the case for e3. More formally, we say that a set of edges E′′ enables an edge
set E′ that is not enabled in the initial state, i. e., s0 /∈ src(E′), if there is at least one state
s such that

(i) s /∈ src(E′), and
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(ii) s αÐ→ µ with L(s , α , µ) = E′′ and for some successor state s′ ∈ supp(µ), s′ ∈
src(E′).

In this case, E′′ is necessary to establish the conditions for E′ to be enabled. Let
enable(E′) denote all sets of edges that enable E′. We can then assert

⋀
e∈E′

xe → ⋁
E′′∈enable(E′)

⋀
e∈E′′

xe ∨ΦSyn(E′)
for E′ ⊆ E(N) such that
∃s , α , µ . L(s , α , µ) = E′
and dst(E′) ∩ T = ∅.

(4.17)

without ruling out optimal solutions.

EnforcingReachability of aTarget State. Despite all previously presented constraints,
the solver potentially enumerates edge sets that have no path from the initial to a target
state. Such edge sets can never serve as aminimal critical edge set andwewould therefore
like to avoid enumerating them. Using a similar construction as the one in [Wim+15],
reachability of a target state can be encoded using additional constraints. ¿is comes
at the cost of a signi�cant increase in the number of constraints. It also requires the
use of a MaxSmt solver (as opposed to a MaxSat solver) as the constraints make
use of real-valued variables Φr = {rs ∣ s ∈ S} in addition to further Boolean variables
Φt = {ts ,s′ ∣ s , s′ ∈ S}. ¿e constraints

⋁
s′∈succ(s0)

ts0 ,s′ (4.18)

⋁
s′∈pred(s)

ts′ ,s Ô⇒ ⋁
s′′∈succ(s)

ts ,s′′ for s ∈ S ∖ T (4.19)

ts ,s′ Ô⇒ ⋁
⟨α ,µ⟩∈∆(s)
s′∈supp(µ)

⋀
e∈L(s ,α ,µ)

xe for s , s′ ∈ S (4.20)

ts ,s′ Ô⇒ rs < rs′ for s , s′ ∈ S (4.21)

enforce that a target state is reachable from the initial state. Intuitively, they require
the solver to synthesize a chain of transitions (constraints (4.19)) from the initial state
(constraints (4.18)) along which

(i) the labeling of the choices associatedwith these transitions is included (constraints
(4.20)), and

(ii) (strict) progress towards the target states is made through the strict ordering
imposed on the variables from Φr (constraints (4.21)).
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Together, this amounts to the existence of a loop-free path from an initial to a target
state that is fully contained in the restricted model. Note that the (expensive) constraints
(4.21) are in fact necessary as otherwise a lasso-shaped path (a stem that passes into a
loop) that never reaches T would be an admissible solution.

4.4 Guiding the Enumeration

A er the initial constraint set was constructed, aMinSat problem is solved to obtain a
smallest edge set E that adheres to these constraints. ¿e restricted modelM∣E is then
dispatched to amodel checker to verify or refute φ . If the reachability probability inM∣E
exceeds λ , a solution for the minimal critical edge set problem has been found, because
the set E is, by construction, the smallest candidate set. However, in the more likely
event of not exceeding λ , we aim to derive additional constraints from the constrained
model that guide the solver towards a solution with a higher reachability probability.
While it is possible to rule out just the current (insu�cient) candidate set E by adding

⋀
e∈E

xe → ⋀
e∈E(N)∖E

xe

toΦ , we strive to rule out more insu�cient edge sets to guide the search. For the sake of
illustration, suppose that for the most recently enumerated set of edges E cannot reach
T , i. e. Pr+

M∣E
(◊T) = 0. ¿en, there is not a single path from the initial to the target

states in the restricted modelM∣E . ¿at means that the states
←Ð
E that are reachable

from the initial state inM∣E are disconnected from the states
Ð→
E that can reach a target

states inM∣E . In order to achieve a non-zero reachability probability, any extension
of E that is enumerated, must try to “connect”

←Ð
E and

Ð→
E in the sense that they must

establish a path from some state s ∈←ÐE to some state s′ ∈Ð→E . We consider the states on
the border of E , de�ned as

E↑ = {s ∈←ÐE ∣ s αÐ→ µ with L(s , α , µ) /⊆ E

∧ ∃s′ ∈ supp(µ) with s′ /∈←ÐE ∧ s′ ⊧ ∃◊Ð→E (M)}

that have (i) some choice that is not contained in the restricted model (ii) that has at
least one successor state that is not part of the restricted model and (iii) can reach

Ð→
E

(in the original PAM). ¿is set can be e�ciently obtained using graph searches.
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Clearly, a path from
←Ð
E to

Ð→
E must visit some state s ∈ E↑. In particular, such a path

must include all certain edges CM
s ,
Ð→
E
. We can therefore assert

⋀
e∈E

xe → ⋁
s∈E↑

⋀
e∈CM

s ,
Ð→
E

xe (4.22)

However, it may be the case that the sets of certain edges CM
s ,
Ð→
E
are empty for all states

s ∈ E↑. In this case, the constraint (4.22) does not add any information and does not
provide guidance to the solver. Even worse, it does not even rule out E and as the
solver is free to enumerate the same solution again, there is no progress towards the
solution. However, we observe that from one of the border states, we must “cross” the
latter and take a choice ⟨s , α , µ⟩ to a state that is currently not reachable in the restricted
modelM∣E . ¿at means L(s , α , µ) /⊆ E and we need to included the missing labels to
enable this choice. We therefore extend the constraint (4.22) by an intermediate step to
a previously unreachable state and obtain the new constraint

⋀
e∈E

xe → ⋁
s∈E↑

⋁
⟨α ,µ⟩∈∆(s)
supp(µ)/⊆

←Ð
E

⋁
s′∈supp(µ)∖

←Ð
E

s′⊧M∃◊T

⎛
⎝ ⋀
e∈L(s ,α ,µ)

xe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s→s′/∈

←Ð
E

∧ ⋀
e′∈CM

s′ ,
Ð→
E

xe′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s′→
Ð→
E

⎞
⎠

(4.23)

Example 31. Reconsider the running Example 23. Assume that the solver found
the candidate edge set E = {e0 , e1 , e2}. Note that this is not possible if all previously
presented constraints are added, but is assumed here for the sake of illustration. ¿e
set of states that is reachable in the restricted model is

←Ð
E = {s0 , s7 , s8 , s1 , s2 , s3}, the

latter three of which are on the border E↑. ¿e constraints (4.23) now simplify to

x0 ∧ x1 ∧ x2 → x3 ∨ x4 .

¿e constraints (4.23) only apply to the case where the maximal reachability probability
in the restricted model is zero. ¿ey ensure that at least one state that previously was
not reachable from the initial state will be part of

←Ð
E′ for any edge set E′ ⊇ E . ¿is is,

however, no longer the case if which the maximal reachability probability is greater
than zero in the restricted modelM∣E . ¿is is because new edges may increase the
reachability probability by (directly) connecting states that are already reachable with a
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higher probability. Hence, in this case we weaken the constraints (4.23) to

⋀
e∈E

xe → ⋁
s∈
←Ð
E

⋁
⟨α ,µ⟩∈∆(s)

⋁
s′∈supp(µ)
s′⊧M∃◊T

⎛
⎝ ⋀
e∈L(s ,α ,µ)

xe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s→s′

∧ ⋀
e′∈CM

s ,
Ð→
E

xe′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s′→
Ð→
E

⎞
⎠
. (4.24)

4.5 Soundness and Completeness

As argued in Section 4.3 and Section 4.4, constraints in Φ do not rule out solutions to
the minimal critical edge set problem and property (4.1) is satis�ed at all times.

Soundness. Suppose that the algorithm returns a critical edge set E as a result. Now
assume that there is a minimal critical edge set E∗ with ∣E∗∣ < ∣E ∣. Because of (4.1), we
additionally have that νE∗ ⊧ ΦN . As the algorithm enumerates edge sets ordered by
their sizes, E∗ is enumerated before E and the algorithm therefore had returned E∗ as
the result, which contradicts that the algorithm returned E .

Completeness. Assume that there is a minimal critical edge set E∗1 of size ∣E∗1 ∣ = k. By
(4.1), νE∗1 ⊧ Φ . Our algorithm enumerates the edge sets as long as there is a solution to
Φ . As there are only �nitely many edge sets of size at most k, eventually E∗1 (or another
critical edge set of size k) is enumerated and returned.

4.6 Evaluation

Implementation. We implemented our algorithm within the framework of Storm
(see Chapter 7). We employ a counter-based MaxSat procedure [FM06] using Z3
4.6 [MB08] as the underlying solver.

To provide a fair comparison, we additionally implemented the Milp-based ap-
proach [Wim+15] using the commercial solver Gurobi 7.5.2 [Gur16]. We also augment
the MILP-based approach with the detection of certain edges (see Section 4.3) as an
optimization and add the resulting information to the problem encoding. As proposed
in [Wim+15], we added the so-called scheduler cuts, an additional set of constraints
to rule out suboptimal solutions, to theMilp encoding, because they strongly tend to
improve the performance of the solver. According to [Wim+15], all other cuts have a
mixed in�uence on the performance of the solver and were thus omitted.
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Experimental results. For the evaluation of the prototype we used the four bench-
marks that were considered in [Wim+15]. ¿ey are part of Prism’s benchmark
suite [KNP12]. Both the models and the properties we used are described in more
detail in Appendix C. As our approach uses JANImodels, we used Storm’s capability
of transforming PRISMmodels to JANI (see Section 3.4 in Chapter 3).

Table 4.1 shows di�erent instantiations of the models along with their sizes in terms of
states and transitions. For each instance, we give the maximal reachability probability
with respect to the target set T and the probability threshold λ that we considered in
the probabilistic safety property. In all cases, we chose this bound to be around 50%
of the total (maximal) reachability probability. Finally, we show how many edges were
necessary to form a high-level counterexample in column ∣E∗∣ next to the total number
∣E ∣ of edges in he model. For the cases where we were unable to compute a high-level
counterexample, we indicate the best lower bound we could prove. ¿e ratio of ∣E∗∣ to
∣E ∣ therefore is an indicator of how concisely edge-based high-level counterexamples
could capture the essence that explains the violation of the property.

As the table shows, this ratio varies substantially betweenmodels. For the csma instances,
almost all edges are necessary to violate the property. ¿is is despite the fact that the
target reachability probability was only 0.5 and the actual reachability probability is
almost 1 for the two smaller instances. Slightly better, for the coin and wlan case studies
about 50% to 60% of the edges are su�cient to achieve enough probability mass. Finally,
high-level counterexample perform best for the firewiremodels in which almost two
thirds of all edges can be deleted without losing violation of the safety property.

As the largest reductions are obtained for the smallest instances of firewire and wlan,
we study the impact of the probability bound λ on the size of minimal critical edge
sets. For this, we vary λ and give the sizes of critical edge sets in Figure 4.6 from 0% to
100% of the actual (maximal) reachability probability in the models in steps of 10%. We
see that for wlan(2,2), the increase in size of the minimal critical edge sets remains
moderate and 100% of the probability can be achieved using only 34 of the 70 edges of
the model. In contrast, for the firewire(3) instance, going from 20% to 60% requires
8 more edges or an increase in size of 40% and obtaining at least 80% of the overall
probability requires at least 38 (of 64) edges.

We now move to a performance comparison of the Milp- and the MaxSat-based
approach. For this, we computed high-level counterexamples for all instances using
both approaches. ¿e experiments were conducted on a HP BL865C G7 blade with 48
cores clocked at 2.0GHz and 192GB of RAM running Debian 9.0 (Stretch). We set a
timeout of one hour for each individual (single-threaded) experiment. For the MILP
approach, we performed experiments with and without using the scheduler cuts and
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probabilities edges
model instance states transitions λ Pr+(◊T) ∣E∗∣ ∣E ∣

(2, 2) 272 492 0.30 0.56 8 14
(4, 4) 43,136 144,352 0.30 0.54 17 28coin

(6, 2) 1,258,240 6,236,736 0.30 0.59 ≥ 16 42
(2, 4) 7,958 10,594 0.50 > 0.99 36 38
(2, 6) 66,718 93,072 0.50 > 0.99 36 42csma

(4, 2) 761,962 1,327,068 0.40 0.78 ≥ 43 72
(3) 4,093 5,585 0.50 1 24 64
(12) 22,852 40,904 0.50 1 24 64firewire

(36) 212,268 481,792 0.50 1 24 64
(2, 2) 28,598 57,332 0.10 0.18 33 70
(4, 4) 345,120 762,422 4e−4 7.9e−4 39 76wlan

(6, 6) 5,007,670 11,475,920 1e−7 2.2e−7 43 80

Table 4.1: ¿e model and counterexample sizes for the benchmark models.

report on the best of these results. Encoding reachability of a target state as presented
in Section 4.3 tended to be too expensive for the MaxSat solver. It slowed down
enumerating the candidate edge sets so much that this could not be made up for by the
reduced number of model checking calls that needed to be performed. ¿us, we list the
times obtained without adding these constraints.

Table 4.2 summarizes the results of our experiments. For each considered model in-
stance, we give the runtime in seconds and memory consumption in gigabytes of both
approaches. If an experiment timed out, we indicate this with TO.

First of all, we observe that theMilp approach returns a wrong result for the largest
wlan instance. It returns an edge set of size 30 that is not su�cient to prove violation
of the property. A er careful inspection of the encoding, we believe this to be due
to imprecisions within Gurobi, which uses numerical procedures rather than exact
arithmetic.2 In particular, it allows that integer variables to have a non-integral value if
the deviation is bounded by a given tolerance. Setting this to the lowest possible value
(10−9) did not solve the problem. We tried to verify our suspicion and used Z3’s (MI)LP

2see http://www.gurobi.com/documentation/7.5/refman/variables_and_constraints.html

http://www.gurobi.com/documentation/7.5/refman/variables_and_constraints.html
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Figure 4.6: In�uence of λ for firewire(3) and wlan(2,2).

solver that uses rational arithmetic. However, we had to abort the experiment when it
consumed more than 140GB of RAM and did not �nish within a week.

Next, we notice that theMaxSat approach outperforms theMilp encoding substantially
in both time and memory. WhileMilp times out on the largest instances of all selected
case studies, MaxSat solves two of them within the time limit. In particular, the
MaxSat approach determines that for the largest wlan instance with more than �ve
million states, 43 out of the 80 edges are necessary to prove violation. Checking the
induced submodel revealed that — in contrast to the incorrectMilp solution — these
edges indeed form a counterexample.

We now turn to the more detailed performance characteristics of ourMaxSat approach.
¿e core of the algorithm can be divided into three parts: (i) derivation of constraints
(both a priori and in each iteration), (ii) solving theMaxSat problem to determine
the next candidate edge set and (iii) the model checking calls to determine whether
the current candidate is su�cient. Table 4.3 breaks down the total time consumed
by theMaxSat approach according to these three ingredients, where we additionally
distinguish the time needed for derivation of the initial constraints (see Section 4.3) and
the computation of the dynamic constraints (see Section 4.4). ¿e percentages in the
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Milp MaxSat
model instance time memory time memory

(2, 2) 102.84 0.07 0.05 0.05
(4, 4) TO > 1.00 767.81 0.09coin

(6, 2) TO > 11.54 TO > 1.11
(2, 4) 89.28 0.11 2.58 0.05
(2, 6) 189.29 0.48 81.29 0.09csma

(4, 2) TO > 7.77 TO > 0.68
(3) 49.18 0.14 7.43 0.06
(12) TO > 0.92 27.60 0.07firewire

(36) TO > 6.91 281.24 0.25
(2, 2) TO > 2.13 1.67 0.05
(4, 4) TO > 1.82 40.00 0.07wlan

(6, 6) error error 458.35 0.32

Table 4.2: Performance comparison of theMilp- andMaxSat approaches.

table are to be understood as the fraction of the runtime that was spent on a particular
task where the runtime does not include the model building times.

We observe that both the derivation of (dynamic) constraints and the model checking
calls dominate the runtime for at least one instancewhereas solving theMaxSat problem
and the derivation of the initial constraints have a low impact on the total running times.
For the coin(4,4) instance, the numerical solution of the enumerated submodels takes
three times as long as the derivation of all constraints combined. In contrast, model
checking the firewire case study submodels takes only one tenth of the time needed to
derive the constraints. Finally, in the case of wlan, both parts contribute roughly equally
to the overall runtime. We want to highlight that the overwhelming time dedicated
to the derivation of constraints is actually spent on the constraints that dynamically
guide the solver in each iteration rather than the ones derived initially. Depending on
the model, the �xpoint iteration to derive the certain edges (see Section 4.3) takes a
substantial number of iterations.

While this seems very costly, we will now show that the dynamic constraints play a
crucial role in eliminating a vast number of candidate edge sets. In Table 4.4 we show
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constraints
model instance initial dynamic solving checking

(2, 2) 53.1% 18.4% 14.3% 14.3%
coin

(4, 4) 0.2% 22.8% 1.1% 75.9%
(2, 4) 4.3% 58.4% 5.0% 32.3%

csma
(2, 6) 1.3% 75.7% 0.8% 22.2%
(3) 1.6% 33.7% 56.0% 8.6%
(12) 1.2% 69.6% 15.4% 13.8%firewire

(36) 1.1% 83.1% 1.5% 14.3%
(2, 2) 5.0% 46.4% 18.0% 30.7%
(4, 4) 0.5% 54.9% 4.0% 40.6%wlan

(6, 6) 0.3% 53.5% 0.3% 46.0%

Table 4.3: Time breakdown of theMaxSat approach for the benchmark models.

the runtimes of theMaxSat-based approach with and without the dynamic constraints.
With the exception of the coin instances, not including them signi�cantly increases the
runtimes and leads to a number of time outs. Even though the time spent on deriving
the constraints is reduced, not guiding the search is clearly disadvantageous.

To illustrate the overall e�ectiveness of all constraints combined, we give for each
benchmark instance the number of edge sets that were enumerated in Table 4.5. Since
each such set amounts to a model checking call, these two measures coincide. To give an
indication of how many sets were enumerated in comparison to the number of sets that
would have been enumerated if no constraints were added, we compute the fraction

fraction of total = sets enumerated
2∣E∗∣−1

⋅ 100.

Note that we subtract 1 from the size of the minimal critical edge sets to only count sets
that would de�nitely have to be enumerated. ¿is is because when enumerating the
sets of size ∣E∗∣ the order of enumeration governs whether a minimal critical edge set
is found right away or a er ( ∣E ∣

∣E∗∣) sets were enumerated. We account for this by not
counting the sets of the target size and observe that the actual savings our constraints
achieve are at least as high as indicated.

As the data shows, the number of enumerated edge sets remains reasonable across
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model instance with without
(2, 2) 0.05 0.05

coin
(4, 4) 767.81 797.21
(2, 4) 2.58 TO

csma
(2, 6) 81.29 TO
(3) 7.43 TO
(12) 27.60 TOfirewire

(36) 281.24 TO
(2, 2) 1.67 749.04
(4, 4) 40.00 TOwlan

(6, 6) 458.35 TO

Table 4.4: Runtimes of MaxSat approach with and without dynamic constraints.

MaxSat
model instance sets enumerated fraction of total

(2, 2) 25 2.0 × 101
coin

(4, 4) 2025 3.1
(2, 4) 148 4.3 × 10−7

csma
(2, 6) 380 1.1 × 10−6

(3) 306 3.6 × 10−3

(12) 306 3.6 × 10−3firewire

(36) 306 3.6 × 10−3

(2, 2) 296 6.9 × 10−6

(4, 4) 715 2.6 × 10−7wlan

(6, 6) 694 1.6 × 10−8

Table 4.5: Information on how many edge sets were enumerated for each instance.
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all instances. For the smallest coin instance, only 8 edges are necessary to form a
counterexample and therefore the 25 enumerated sets are almost 20% of all sets of size
at most 7. However, for the larger models, the constraints rule out a lot of candidate
sets. Where for the firewire case study roughly 3 millionth of the space is enumerated,
for the wlan case study only 694 of the possible 242 = 4,398,046,511,104 edge sets are
enumerated. ¿at amounts to enumerating 1 out of every 10 billion edge sets.

Finally, wewant to shed some light on the performance of theMilp approach. MostMilp
solvers use a branch-and-bound technique to solve a problem. Initially, fast heuristics
search for a good initial solution that provides an upper bound on the optimal objective
value (in the case of a minimizing objective as in our setting). Such a solution amounts
to an edge set that is su�cient, but not necessarily of minimal size. Simultaneously,
the solver maintains a lower bound on the number of edges that is required to exceed
the probability threshold. ¿is lower bound stems from solutions to the relaxed (non-
integral) problem and is improved over time. Consequently, unless the solver’s heuristics
were unable to �nd any solution at all, it possesses an interval in which the optimal
objective value lies. ¿e size of this window is referred to as the gap. It is quite common
that the solver arrives at a good solution quickly, but takes a very long time to prove
optimality. In contrast, theMaxSat procedure only has a lower bound on the number
of required edges. We therefore analyzed how the lower and upper (if available) bounds
develop over time for several considered instances.

Figures 4.7 to 4.10 show a comparison of the evolution of the obtained lower and upper
bounds of the techniques over time for four selectedmodel instances. Here, time 0 refers
to the point directly a er the model building step that both approaches carry out. ¿e
horizontal dashed lines indicate the sizes of minimal critical edge sets. As theMaxSat
approach does not have a non-trivial upper bound available, the enumeration process
cannot be stopped when the target edge set size has been established as a lower bound,
because it still might be a strict lower bound. ¿erefore, we indicate the termination
times of the approaches for the instances with vertical dotted lines.

For the coin(4,4) and wlan(4,4) instances, theMilp solver does not �nd any (even
non-optimal) solution to the problem and consequently is not able to compute an upper
bound on the required number of edges. Also, almost no progress is made on the lower
bounds, whereas theMaxSat approach progresses steadily towards the target size. For
the csma(2,6) example, Gurobi obtains lower and upper bounds a er a short (about
10 seconds) phase of precomputation. ¿en, for a long period of time, no progress is
made until a er about 180 seconds the lower and upper bounds quickly converge to the
target edge set size of 36. ¿e progress of theMaxSat procedure again is more steady
due to the guiding constraints. Finally, Gurobi can achieve an upper bound of 24 for
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Figure 4.7: Development of bounds over time for coin(4,4).

0 20 40 60 80 100 120 140 160 180 200

25

30

35

40

tMilptMaxSat

time (in s)

ed
ge

se
ts
iz
e

Milp MaxSat solution

Figure 4.8: Development of bounds over time for csma(2,6).
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Figure 4.9: Development of bounds over time for fw(12).
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Figure 4.10: Development of bounds over time for wlan(4,4).
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the firewire(12) benchmark, which happens to be the minimal critical edge set size).
It can do so a er about 1150 seconds, but a erwards it fails to prove optimality of the
solution within the time limit, because the lower bound can only be improved very
gradually. In contrast, ourMaxSat approach improves the lower bound rapidly and
arrives at the solution in under 30 seconds.



Chapter5

Symbolic BisimulationMinimization of
Markov Automata

5.1 Motivation and Goals

One of the major challenges for automated veri�cation techniques like model checking
is the state space explosion problem. ¿e state space of a system grows exponentially in
both the number of components and variables. Consequently, real-world systems give
rise to a vast state space and cannot be e�ectively checked without sophisticated abstrac-
tions be it either manual or automatic. In the context of probabilistic model checking,
this problem becomes even more pressing. ¿e numerical methods for solving linear
programs or Bellman equations that are key to the veri�cation of probabilistic systems
are inherently computationally more expensive than their qualitative counterparts.

In both the qualitative and quantitative setting, this problem motivated a huge body of
research related to coping with large (or even in�nite) state spaces in model checking
and related techniques. ¿e major commonality between all these approaches is that
they represent the state space symbolically. For qualitative systems, bounded model
checking (BMC) [Bie+03] or IC3 [Bra11] (sometimes also referred to as property-driven
reachability or PDR for short) are successful techniques that represent the state space
using Boolean variables and logical formulae. Another route is the use of binary de-
cision diagrams (BDDs) for the representation of systems, an approach that in the
qualitative case is mostly applied in the veri�cation of hardware circuits. In the prob-
abilistic setting, employing variants of decision diagrams supporting multiple values
such as multi-terminal binary decision diagrams (MTBDDs) or multi-valued decision

111
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diagrams (MDDs) is the most widely used approach to deal with large state spaces. ¿is
is witnessed by implementations in model checkers like Prism, Epmc and Storm (all
MTBDDs) and Smart (MDDs). While usingMTBDDs enables the storage of enormous
models, the numerical solution process typically is slow. To combat this, hybrid tech-
niques [Par03] have been proposed that store parts of the model and solution vectors
using MTBDDs and parts using explicit data structures. However, [Par03] argues that
to leverage such methods

»[...] an important focus for future work should be the development of
techniques and methodologies for abstraction, which concentrate on re-
ducing the size of model which must be analysed, rather than on �nding
compact storage for large models. «

¿e goal of symbolic representations of data structures is to exploit structure in the
model and they tend to be small when the model is symmetric. ¿e idea to exploit
that many states behave similarly in a real-world model is also the key idea behind
bisimulation minimization. Instead of trying to analyze the system directly, a smaller
variant of it is built that merges all states whose behavior is not distinguishable in a
well-de�ned sense. ¿is potentially smaller quotient model preserves the behavior of
the original model in the sense that it satis�es the same properties in a fragment of
a suitable logic. ¿erefore, it is sound to analyze the quotient instead of the original
model. Bisimulation minimization (BM) was shown to speed up the analysis of Markov
chains (MCs) [Kat+07] in many cases when systems are represented explicitly in terms
of sparse matrices.

Based on the Kannelakis-Smolka algorithm [KS90] to compute bisimulation relations,
Blom and Orzan presented a signature-based approach [BO05] that is particularly
suited in distributed environments. [Wim10] proposes an elegant algorithm that uses
signatures to compute the bisimulation quotient of transition systems and MCs directly
on the BDD representation. Using the combination of both symbolic representations
(DDs) and bisimulation minimization, models with billions of states can be reduced to
quotient models that are orders of magnitude smaller in size. To obtain these results,
the symbiosis of symbolic representation and (symbolic) bisimulation minimization
was essential. Without the former, the model could not have been built in the �rst place
and without the latter no reduction would have been possible.

In this chapter, we extend symbolic bisimulation minimization in several directions.
First, we show how it can be extended to Markov automata and (by subsumption)
probabilistic automata where the main di�culty lies in the mixture of nondetermin-
ism and probabilities. Second, we explain how the procedure can be made aware of
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rewards in the models. And �nally, we accelerate the quotient extraction by deriving
its explicit representation directly from the bisimulation partition without the detour
over a symbolic representation of the quotient’s transition relation, which enables the
bene�ts from both symbolic model minimization and explicit state model checking.

5.2 Bisimulation Equivalence

To reduce the size of themodel prior to veri�cation, themost obvious attempt is tomerge
states. Given a notion of what it means that two states behave equivalently, one can
build a quotient model that merges equivalent states. Of course, reasonable equivalence
relations guarantee that the interesting properties carry over from the quotient to the
originalmodel. ¿is enables tominimize the inputmodel with respect to the equivalence
and use the quotient model instead of the original model for answering veri�cation
queries. One of the most well-studied behavioral equivalences for Markov automata are
bisimulation relations. Intuitively, they require related states to be able to mimick one
anothers’ behavior. Various notions of bisimulation di�er on what this means precisely.
For example, strong bisimulation requires that τ steps need to be mimicked, whereas
weak bisimulation abstracts from these internal steps. ¿e weaker notions allow for
merging more states in the quotient model, but can only preserve the truth values of
properties that are oblivious to internal steps and the repetition of atomic proposition
sets along a path. In contrast, the stronger notions preserve more properties, but relate
fewer states and therefore generate larger quotient state spaces. In addition, strong
bisimulation is typically easier and more e�cient to compute. For the remainder of this
chapter, we focus on strong bisimulation and also refer to it by just bisimulation.

Example 32. As a running example for this chapter, we consider the MAM in
Figure 5.1. Of its four states S = {s0 , s1 , s2 , s3} three are probabilistic (s0 , s2 , s3) and
one one is Markovian (s1) with exit rate 4. Although not useful in practice, all states
are labeled with the empty set for illustration purposes. Unless explicitly stated
otherwise, all examples in this chapter refer to this MA.

We start our presentation of bisimulation minimization by de�ning the quotients of
distributions and reward functions under a given equivalence relation.

De�nition 32 ((Rewarded) Distribution Quotient). Let µ ∈ Dist(S), ρ ∶ S → R≥0
a reward function andR ⊆ S × S an equivalence relation.
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∅
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∅
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µ3

Figure 5.1: ¿e running example MRAM.

» ¿e quotient distribution [µ]R ∈ Dist(S/R) of µ moduloR is de�ned as

[µ]R(C) = µ(C) =∑
s∈C

µ(s)

» ¿e quotient reward function [ρ , µ]R of ρ with respect to µ moduloR is
de�ned by

[ρ , µ]R ∶ S/R → R≥0

[ρ , µ]R(C) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
s∈C

µ(s)
µ(C)

⋅ ρ(s) if µ(C) > 0

0 otherwise

¿e quotient of a distribution with respect to an equivalence relationR on a state space
S is again a distribution, but this time on the equivalence classes ofR. It assigns to each
class C the sum of probabilities that targets any state in C. Similarly, the quotient reward
function assigns rewards to the equivalence classes ofR. Before summing the rewards
of the states of a class C, they are weighted with the fraction of the probability they are
associated with according to µ to preserve their expected values.
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Example 33. Let R be the equivalence relation on S × S corresponding to the
symmetric, transitive and re�exive closure of {⟨s0 , s2⟩ , ⟨s0 , s3⟩ , ⟨s1 , s1⟩}. In other
words, the equivalence classes ofR are

S/R =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{s0 , s2 , s3}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C
R

0

, {s1}
±
C
R

1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Consider the choice ⟨α , µ2,1⟩ of state s2. ¿e quotient distribution of µ2,1 moduloR
is given by

µR2,1(C) = [µ2,1]R(C) =
⎧⎪⎪⎨⎪⎪⎩

3/5 if C = CR0
2/5 if C = CR1 .

De�nition 33 (Reward and Distribution Equivalence). Let µ1 , µ2 ∈ Dist(S) be
distributions over S , ρ1 , ρ2∶ S → R≥0 be reward functions and R ⊆ S × S an
equivalence relation.

(i) µ1 and µ2 areR-equivalent, written µ1 ≡R µ2, if [µ1]R = [µ2]R .

(ii) ⟨µ1 , ρ1⟩ and ⟨µ2 , ρ2⟩ areR-equivalent, denoted by ⟨µ1 , ρ1⟩ ≡R ⟨µ2 , ρ2⟩, if
µ1 ≡R µ2 and [ρ1 , µ1]R = [ρ2 , µ2]R .

Given an equivalence relation R on S , distributions are equivalent under R if their
quotient distributions underR coincide. ¿is is similar for reward functions, only that
they always have to be considered in the context of the accompanying distribution.

Example 34. Consider the choice ⟨α , µ3⟩ of state s3 inM. As

µR3 (C) = [µ3]R(C) =
⎧⎪⎪⎨⎪⎪⎩

3/5 if C = CR0
2/5 if C = CR1 ,

we have µ2,1 ≡R µ3.

Finally, we formally phrase what it means for two states to behave equivalently.
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De�nition 34 (Strong Bisimulation for MRA). An equivalence relationR ⊆ S × S
is called a strong bisimulation for an MRAM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩, if for
all ⟨s , t⟩ ∈R, α ∈ Act χ , µ ∈ Dist(S)

(i) L(s) = L(t),

(ii) r(s) = r(t), and

(iii) s αÐ→ρs µ Ô⇒ ∃ ⟨µ′ , ρt ⟩ . t
αÐ→ρ t µ′ ∧ ⟨µ , ρs ⟩ ≡R ⟨µ′ , ρt ⟩

Two states s , t ∈ S are strongly bisimilar, denoted s ∼M t , if there exists a bisimu-
lationR forM with ⟨s , t⟩ ∈R. Two MRAMi = ⟨S i , S0i ,Act i , ∆ i , E i , r i ,AP i , L i⟩
for i ∈ {1, 2} are strongly bisimilar, denotedM1 ∼M2, if

∀s01 ∈ S01 . ∃s02 ∈ S02 . s01 ∼M s02
∀s02 ∈ S02 . ∃s01 ∈ S01 . s01 ∼M s02

where

M = ⟨S1 ⊎ S2 , S01 ⊎ S02 ,Act1 ∪Act2 , ∆1 ⊎ ∆2 , E , r ,AP1 ∪AP2 , L⟩

with

f(s) =
⎧⎪⎪⎨⎪⎪⎩

f1(s) if s ∈ S1
f2(s) if s ∈ S2

for f ∈ {E , r , L} is the disjoint unionM1 ⊎M2 of the two MRAM1 andM2.

¿e intuition of bisimulation is that is relates states that are indistinguishable. For this,
they clearly have to agree on the label as otherwise a simple atomic proposition could
tell the states apart. Similarly, they need to have the same state reward. Furthermore,
they are required to be able to copy each others steps in the sense that if one of them can
perform a distribution µ labeled with α , then the other state can perform a step with
the same action and a distribution that coincides with µ when li ed to the equivalence
classes of the bisimulation. In other words, the probabilities that the two distributions
assign to the equivalence classes ofR need to match. For Markovian choices, which are
labeled with χ(λ) for some λ ∈ R>0, requirement (iii) also ensures that s and t agree on
their exit rates. In the rewarded case, additionally the expected reward value obtained
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in one step needs to be the same for the mimicking choice. For an MRAM, ∼M is the
coarsest bisimulation, i. e. relates the most states and has the fewest equivalence classes
among all (strong) bisimulations. IfM is clear from the context, we omit the subscript
and just write ∼ for ∼M .

Example 35. For our example MAM from Example 32 the coarsest (strong) bisim-
ulation ∼ has the equivalence classes

S/∼ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{s0}
±
C0

, {s1}
±
C1

, {s2 , s3}
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
C2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Conditions (i) and (ii) of De�nition 34 are trivially ful�lled and (iii) can be easily
veri�ed. While the behavior of s2 and s3 is indistinguishable, s0 clearly has a di�erent
behavior as it does not possess a distribution that assigns a non-zero probability to
any Markovian state. As Markovian states on the one hand and probabilistic states
on the other hand can by de�nition never be related, this implies s1 /∼ s2 , s3.

Note that from the general de�nition for Markov reward automata, the de�nitions
for discrete and continuous-time Markov chains as well as for probabilistic automata
follow directly as all these models can be seen as special cases of Markov automata (see
Section 2.2). In particular, De�nition 34 coincides with the notion of strong bisimulation
for PA as de�ned in [SL95], but is strictly �ner than the strong bisimulation (for PA) as
de�ned in [Seg95] by the same author. ¿e latter allows for an α-labeled choice from
state s to be matched by a combined choices at state t , which essentially corresponds
to a weighted combination of choices labeled with α . Since our goal is the symbolic
computation of ∼M and — to the best of our knowledge — all algorithms to compute
this weaker formulation of bisimulation need to repeatedly solve large linear programs,
we do not treat this re�ned version of strong bisimulation further.

Given a bisimulationR for an MAM, we can now de�ne the quotient model.

De�nition 35 (Bisimulation Quotient). Let R be a strong bisimulation for an
MRAM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩. ¿e quotient Markov reward automaton is
de�ned by

M/R = ⟨S/R , S0/R ,Act , ∆/R , E/R , r/R ,AP , L/R⟩
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Λ, 41

Figure 5.2: ¿e quotient of the example MRAM with respect to ∼M .

where

» L/R([s]R) = L(s),

» r/R([s]R) = r(s),

» E/R([s]R) = E(s), and

» ∆/R is the (unique) smallest relation satisfying

⟨s , α , ρ , µ⟩ ∈ ∆

⟨[s]R , α , [ρ , µ]R , [µ]R⟩ ∈ ∆/R .

¿e quotient Markov reward automaton has as many states as there are equivalence
classes in R. ¿e behavior of an equivalence class [s]R corresponds to li ing the
distributions of the choices of s to the quotient state space. Note that the labeling, state
reward and exit rate functions are well-de�ned, because De�nition 34 requires that
states in the same equivalence class agree on these values.

Example 36. Recall the bisimulation ∼ with the equivalence classes C0 , C1 and C2
from Example 35. ¿e quotient MAM/∼ is depicted in Figure 5.2.

Clearly, the quotient MRA is at most as large as the original MRA (in terms of states).
In general, it may be smaller, as states are potentially merged. However, as it lumped
only states that were intuitively indistinguishable, it preserves interesting properties.
We will now make the relation of the quotient and the original model more precise and
show what this means in terms of the preservation of logical properties.

Lemma 1. LetM be an MRA andR be a strong bisimulation forM. ¿enM ∼M/R.
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Lemma 1 states that with respect to strong bisimulation,M andM/R are indistinguish-
able. Finally, we want to discuss which logical properties are preserved by quotienting
with respect to bisimulation. ¿e following theorem summarizes the results regarding
the logical characterization.

¿eorem 1 (Bisimulation Equivalence and CSL/PCTL∗). LetM be an MRA andR be
a strong bisimulation forM.

(i) ⟨s , t⟩ ∈R Ô⇒ s ≡PCTL∗ t,

(ii) ⟨s , t⟩ ∈R Ô⇒ s ≡CSL t.

¿at is, bisimilar states are not distinguishable by neither PCTL∗ [SZG13] nor CSL.
¿e latter result was proven by Sergey Sazonov in his Master’s thesis [Saz13], but is not
published to this date. ¿e slightly weaker result that strongly bisimilar states of an
interactive Markov chain (IMC) are not distinguished by CSL is shown in [NK07]. To
the best of our knowledge, there is no result that formally establishes preservation of
(expected) reward objectives. However, in the same spirit as [Tim13], we conjecture that
(strong) bisimulation on MRA preserves all these properties.

Corollary 1. LetM1 andM2 be two MRA. ¿en

(i) M1 ∼M2 Ô⇒ M1 ≡PCTL∗M2, and

(ii) M1 ∼M2 Ô⇒ M1 ≡CSLM2.

¿eorem 1 andCorollary 1 lay the foundation of the bisimulationminimization approach.
Instead of verifying a property φ on the given MRAM, a bisimulation relationR for
M is computed. ¿en, the quotient modelM/R is extracted. Because of the strong
logic preservation properties, the formula may now be veri�ed on the quotient and the
result carries over directly to the original model. Note that the minimal quotient size
is obtained by choosing R = ∼M . Sometimes it might be computationally easier to
compute a �ner bisimulation at the expense of a larger quotient state space [KNP06b;
DM06]. However, in the context of this thesis, we aim for computing ∼M .

5.3 Partition Re�nement

We are now turning to the algorithmic computation of ∼. For the rest of this chapter, we
�x a �nite MRAM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩. We assume thatM has been subject
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to the maximal progress cut (see Section 2.2). Suppose that Π is a partition of the state
space S that is strictly coarser than ∼, i. e., ∼ ⊏ Π . ¿en it is straightforward to say when
two states cannot be bisimilar, by looking at their one-step behavior with respect to Π .
More concretely, assume there are two states s , t ∈ B within a block B ∈ Π , and s can
make a step s αÐ→ρs µ that cannot be matched by an equivalent choice of state t in the
sense of De�nition 34 requirement (iii). In this case, we call the block B unstable and
we clearly have s /∼ t . ¿is justi�es the following approach that is typically referred to as
partition re�nement. Starting with an initial partition Π0, the algorithm continuously
re�nes the partition by checking whether there are blocks that are unstable with respect
to the requirements of De�nition 34. If so, these blocks are split into subblocks such
that within each of these subblocks only states are grouped that could potentially be
bisimilar. Starting from an initial partition Π0 that respects the criteria (i) and (ii) of
De�nition 34, this process yields a bisimulation relation. A straightforward choice for
the initial partition is

ΠM0 = {{t ∈ S ∣ L(t) = L(s) ∧ r(t) = r(s) ∧ E(t) = E(s)} ∣ s ∈ S} .

Even though the requirements on the exit rates is not explicit in De�nition 34, it is
implied by requirement (iii).

Example 37. For the MRAM in Figure 5.1, the initial partition ΠM0 is given by

ΠM0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{s0 , s2 , s3}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C
R

0

, {s1}
±
C
R

1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= S/R

whereR is the equivalence relation of Example 33. Although the labeling ∅ is the
same for all the states, the exit rates of Markovian and probabilistic states always
di�er and the initial partition separates those states. Block CR0 is unstable: for the
distribution µ0 available in s0 we have [µ0]R = δC0 that cannot be matched by
neither s2 nor s3 as all their quotient distributions assign a non-zero probability to C1.
Splitting C0 according to requirement (iii) of De�nition 34 yields the partition S/∼.

¿e partition re�nement procedure can be elegantly phrased in terms of signatures of
states and signature-based re�nement. Intuitively, a signature is a function mapping
states to a characterization of their behavior with respect to a partition Π . In the case of
strong bisimulation for MRA, we de�ne the signature as follows.
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De�nition 36 (Signature of a State in an MRA). Let s ∈ S and Π be a partition of
S . ¿e signature of s with respect to Π is given by

sigΠ(s) = {⟨χ
−1(α), [ρ , µ]Π , [µ]Π ⟩ ∣ s

αÐ→ρ µ} .

Hence, the signature of a state s captures the one-step behavior of s li ed with respect to
the partition Π . Note that for continuous-time models (CTMCs andMA), the signature
abstracts from the exit rate of Markovian states. Intuitively, we can do this because we
move this criterion to the initial partition ΠM0 by requiring related states to agree on
their exit rates. For models without transition rewards, we omit the (quotient) reward
functions from the signature altogether. For our de�nitions of Markov chains (i) all
distributions are labelled equally (with τ for DTMCs and Λ for CTMCs), (ii) there are
no rewards, and (iii) the signature of a state is a singleton. We therefore simplify the
notation for such models by leting the signature of a state s ∈ S be directly given by the
(unique) quotient distribution [P(s)]Π of s .

Example 38. Reconsider the quotient distributions µR2,1 = µR3 of states s2 and s3
from Examples 33 and 34 and let Π = ΠM0 as in Example 37. ¿en

sigΠ(s2) = {⟨α , µ
R
2,1⟩}

is the signature of s2 with respect to Π . Note that it only has one element, because
the quotient distribution of both of s2’s choices coincide. As it turns out, sigΠ(s2) =
sigΠ(s3). However, we �nd the signature of s0 to be

sigΠ(s0) = {⟨α , δC0⟩}

and as δC0 ≠ µ
R
2,1, it is sigΠ(s0) ≠ sigΠ(s2) = sigΠ(s3). ¿e signature of the Marko-

vian state s1 is

sigΠ(s1) = {⟨Λ, δC0⟩} .

We can now de�ne an operator that takes a partition Π as input and returns a re�ned
partition Π′ ⊑ Π based on the signatures sigΠ .
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De�nition 37 (Sigref Operator). ¿e signature-re�nement (sigref ) operator for
partition Π is de�ned as

sigref (Π) = {{t ∈ S ∣ sigΠ(t) = sigΠ(s) ∧ t ≡Π s} ∣ s ∈ S} .

¿e sigref operator groups all states into one block that have an identical signature and
have been related before. ¿e latter condition ensures that the operator is monotonic in
the presence of non-monotonic signatures that map states to the same signature even
though the states are already not equivalent in the previous partition. For example,
it is quite common that the initial partition Π0 separates states that have a similar
behavior, but do not possess the same state labeling (or state rewards). ¿e signatures of
these states are then potentially equal, but they are easily distinguished by an atomic
proposition. Without the requirement that related states also had to be related in the
input partition, the sigref operator would group those states in the same block, even if
they are not bisimilar.

Example 39. As we have seen in Example 38, the signatures of s2 and s3 agree with
respect to ΠM0 , so

sigref (ΠM0 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{s0}
±
C0

, {s1}
±
C1

, {s2 , s3}
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
C2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= S/∼

It is easy to verify that sigref (S/∼) = S/∼.

¿e sigref operator satis�es the following properties.

Lemma 2 (Correctness). ¿e following two statements hold.

(i) If ∼ ⊑ Π, then ∼ ⊑ sigref (Π)

(ii) Π ⊒ ΠM0 and sigref (Π) = Π if and only if Π is a strong bisimulation forM.

First, starting with a partition Π that is coarser than ∼, the result of the application of
sigref to Π using the signature sigΠ is still coarser than ∼. In other words, sigref (Π)
does not separate states that are in fact bisimilar. Secondly, a partition is a bisimulation
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Algorithm 1: Signature-based partition re�nement.
1 function SignatureRefinement(M, Π0):

input:M: the MRA for which to compute ∼M ,
Π0: the initial partition

output: the partition ∼M
2 i ← 0
3 repeat
4 i ← i + 1
5 Π i = sigref (Π i−1)
6 until Π i = Π i−1
7 return Π i

if and only if the partition is a re�nement of ΠM0 and it is a �xed-point of the sigref
operator. In this case all blocks are stable with respect to the current partition.

With the sigref operator in place, the partition-re�nement algorithm can be written as
in Algorithm 1. Ultimately, it computes a sequence of partitions

Π0 ⊒ Π1 ⊒ . . . with Π i+1 = sigref (Π i).

Since the sigref operator is monotonic and the set of partitions of S that re�ne ΠM0
together with the ⊑ relation is a (�nite) complete lattice, this sequence eventually stabi-
lizes in the sense that there exists an index n such that Πn = Πn+1. At this point, the
algorithm can terminate as no further changes to the partitions will occur. By the Kleene
�xpoint theorem, the partition Πn is the greatest �xed point of sigref that re�nes ΠM0
and therefore equal to ∼. Using the properties of the sigref operator stated in Lemma 2,
the following corollary states the correctness of Algorithm 1.

Corollary 2. SignatureRefinement(M , ΠM0 ) = ∼.

5.4 MTBDD-based Signature Re�nement

In this section, we describe how signature-based partition re�nement can be imple-
mented in a purely symbolic fashion. ¿at is, given an MRA stored in terms of DDs, the
procedure SignatureRefinement is performed exclusively at the decision diagram
level. For this, recall the encoding of an MRAM = ⟨S , S0 ,Act , ∆, E , r ,AP , L⟩ in terms
of DDs in Section 2.5 on page 36. More speci�cally, we encodedM by means of the
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tuple ⟨BS , BS0 ,M∆ ,Mρ
∆ ,ME ,Mr , (Ba)a∈AP⟩ over the variables

VarM = {x1 , . . . , xn}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

⊎{x′1 , . . . , x′n}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S′

⊎{a1 , . . . , ak}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⊎{n1 , . . . , nℓ}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

of DDs consisting of

» a BDD BS over S encoding S ,

» a BDD BS0 over S encoding S0,

» the BDDs Ba over S encoding whether a ∈ L(s) for each a ∈ AP,

» an MTBDDM∆ over VarM encoding the probability distributions available in
the states according to ∆ without the transition rewards,

» an MTBDDMρ
∆ over VarM encoding the transition rewards of all distributions

according to ∆ ,

» an MTBDDME over S encoding the exit rate function E ,

» an MTBDDMr over S encoding the state rewards r .

To implement SignatureRefinement symbolically, we discuss how to (i) represent a
partitionΠ of S , (ii) computeΠM0 , (iii) compute and represent sigΠ , and (iv) implement
the sigref operator — all in terms of DDs.

Example 40. Reconsider the MAM = ⟨S , S0 ,Act , ∆, E ,AP , L⟩ from Example 32.
For improved readability, we assume the variable order

s1 ≺ s0
´¹¹¹¹¹¸¹¹¹¹¹¶
S

≺ n0
®
N

≺ a0
®
A

≺ s′1 ≺ s′0
´¹¹¹¹¹¸¹¹¹¹¹¶
S′

.

and give the DD representation of ∆ in Figure 5.3. Here, we encode every state s i
over the variables S and S ′, respectively, using the standard binary encoding of i.
For example,

(S ← ⟨s2⟩)(s) =
⎧⎪⎪⎨⎪⎪⎩

0 if s = s0
1 if s = s1

encodes the state s2. Note that s1 contains the most signi�cant bit. Furthermore, we
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s1

s0

n0

a0

s′1

s′0

s1

s0 s0

n0 n0 n0 n0

a0 a0 a0 a0

s′1 s′1 s′1

s′0 s′0s′0

1/22/51/103/5

Figure 5.3: ¿e MTBDDM∆ forM.
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use

(A ← ⟨α′⟩)(a0) =
⎧⎪⎪⎨⎪⎪⎩

0 if α′ = Λ
1 if α′ = α

and use the single variable n0 to disambiguate the two distributions of s2.

5.4.1 Representation of Partitions

Let Π = {B0 , . . . , Bh−1} be a partition of the state space S ofM with h blocks. As
discussed in [Wim10], there are various ways to represent this partition. In the context
of the sigref operator, however, one representation turns out to be the most appealing.
For this encoding, we introduce additional block variables B = {b1 , . . . , bn+k+ℓ} that
are used to encode the block indices. For the implementation of the sigref operator,
it is important that the block variables are all greater than the state variables S in the
variable ordering. More concretely, we require S ,N ≺ A ≺ B. Other than that, the
variables can be ordered arbitrarily. For example, the nondeterminism variablesN may
be on top, below or interleaved with the state variables. We then encode Π as the BDD

BΠ(S ← ⟨s⟩ ,B ← ⟨κ⟩) =
⎧⎪⎪⎨⎪⎪⎩

1 if s ∈ Bκ

0 otherwise

Note that for this encoding to be possible, we would only need n Boolean variables in
B. In the context of nondeterministic models (see Section 5.4.4 on 138), it will become
apparent later how the additional k + ℓ variables are used.

Example 41. Figure 5.4 shows the BDD representing the partition ΠM0 from Exam-
ple 37. It uses the block variables

b0 ≺ b1
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
B

that are ordered below all other variables in Var . As before, the variable b1 is used
to represent the most signi�cant bit of the block indices encoded in terms of B, but
unlike the state variables, we choose to let the lower bit precede it. ¿e nodes p0 and
p1 therefore encode the blocks C0 and C1, respectively.

Representing a partition like this has several advantages. First of all, it requires only a
single BDD to represent the whole partition, regardless of the number of blocks in the
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s1

s0

b0

b1

s1

s0

b0

p0
b0

p1

b1

1

Figure 5.4: ¿e BDD representation of the initial partition ΠM0 .

partition. ¿is greatly simpli�es the symbolic implementation of the sigref operator.
While it is true that the size of BΠ grows linearly in the number of blocks, experimental
evaluation has shown that it is more compact [Wim10] than, for example, the relational
representation in terms of a BDD for

BR(S ← ⟨s⟩ ,S ′ ← ⟨s′⟩) = 1 ⇐⇒ s ≡Π s′ .

For reasons that will become apparent later, we defer explaining how the initial partition
ΠM0 can be computed to Section 5.4.3 until a er the presentation of the symbolic
implementation of the sigref operator for MCs.
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5.4.2 Symbolic Implementation of the sigref Operator for MCs

Similar to our presentation of encoding probabilistic models in terms of DDs, we treat
the simpler case of MCs as a precursor. ¿erefore, suppose that our modelM is actually
a DTMCM = D = ⟨S , s0 ,P,AP , L⟩.

Example 42. For illustration purposes, we consider the DTMCD = ⟨S , s0 ,P,AP , L⟩
that results fromM (see Example 32) by

» relabeling all actions to τ (and therefore treating s1 as probabilistic),

» deleting the choice of µ2,1 at state s2, and

» attaching the label {a} to s1 instead of ∅.

¿is DTMC is shown in Figure 5.5(a). ¿e new label attached to s1 has the sole
purpose of having ΠD0 = ΠM0 in the absence of Markovian states. Figure 5.5(b)
shows the transition relation MTBDDMP over the variables S and S ′.

We implement the sigref operator in terms of a two-step procedure as in [DP18]. First,
an MTBDD MΠ

sig is computed that represents the signatures of all states in D with
respect to the current partition Π . ¿en, a traversal of MΠ

sig su�ces to generate the
partition Π′ = sigref (Π). Note that this approach re�nes all blocks of the partition
simultaneously and is therefore somewhat di�erent from the variants shown in [Wim10].
¿e latter either (i) re�ne only one block in one iteration, (ii) only re�ne the blocks with
the same state labeling in one iteration, or (iii) require additional MTBDD variables
and changes to the signature de�nition and computation. ¿e alternative approach
suggested in [DP18] not only has the advantage that it re�nes all blocks simultaneously
without invasive changes, but at the same time it partially reuses block encodings over
successive applications of the sigref operator. ¿is may not appear to be a substantial
change, but because of the implementation details of DDs this can improve the runtimes
by several orders of magnitude [DP18].

Let us turn to the computation of the MTBDD MΠ
sig for the signatures based on the

BDD BΠ for a given partition Π . Because of the choice of the partition representation,
we can compute it as

MΠ
sig = SumAbstract (S

′ ,MP ⋅ Rename (BΠ ,S ,S ′)) . (5.1)
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(b) ¿e transition MTBDDMP for the DTMCD.

Figure 5.5: ¿e DTMC “submodel”D of the MAM.
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p1 pn. . .

S

B

s

B0 . . . Bn

σ

Figure 5.6: ¿e shape of the signature MTBDD for DTMCs.

By construction, we have

MΠ
sig(S ← ⟨s⟩ ,B ← ⟨κ⟩) = ∑

s′∈Bκ

P(s)(s′) = [P(s)]Π(Bκ).

and, consequently, it is a representation of the signature for DTMCs. Given our variable
order,MΠ

sig has a property that we can exploit in the implementation of the re�nement.
Figure 5.6 sketches the shape of the signature MTBDD. It is built over the variables
S ⊎ B as state-block pairs ⟨s , B⟩ are mapped to the quotient probability with which
s can reach B in one step. As S ≺ B, the state encodings strictly precede the block
encodings. ¿erefore, for a �xed s ∈ S , the MTBDD Ms = MΠ

sig ∣S←⟨s⟩ is a representation
of the quotient distribution µ = [P(s)]Π of s with respect to the partition Π . Also,
because of the variable ordering, the node representing µ is a subnode of MΠ

sig as the
cofactor can be computed by simply following the state encoding. Since we consider
only fully reduced MTBDDs, there is exactly one node in MΠ

sig that represents [P(s)]Π .
¿is holds true for any arbitrary s ∈ S , and we make the following observation: s , s′ ∈ S
have the same signature if and only if following the two state encodings ⟨s⟩ and ⟨s′⟩ in
MΠ
sig results in the very same DD node.

Example 43. Reconsider the DTMC D and the MTBDD MP representation of its
transition function P from Example 42. ¿e signature MTBDD MΠ

sig with respect
to Π = ΠD0 = Π

M
0 (see Example 37 and Example 41 for its BDD representation) is

depicted in Figure 5.7. ¿e node σ0 represents the quotient distribution δC0 . Similarly,
the node σ1 represents the quotient distribution µR2,1 of Example 33.
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s1

s0

b0

b1

s1
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σ1
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σ0

b1 b1 b1

13/52/5

Figure 5.7: ¿e signature MTBDDMΠ
sig for the DTMCD.

¿is observation gave rise to the core idea of the algorithms proposed in [Wim10].
Starting from the root node, MΠ

sig is traversed in a depth-�rst fashion. ¿e search
descends as long as the currently visited node is labeled with a variable in S . As soon as
this is not the case anymore, the search has hit a node σ that represents the signature
of a state. If this node has been seen before, the current state is placed into the same
block as the previous ones whose encodings led to σ. In case the node has not been seen
before, the current state is assigned to a new block. Proceeding this way, all blocks are
grouped according to their signatures by a simple traversal of the signature MTBDD.

In [DP18], the authors propose to not only traverse the signature MTBDD, but simulta-
neously traverse the current partition BDD. A slightly simpli�ed version of the resulting
procedure is shown in Algorithm 2. Speci�cally, as multi-threading is one of the main
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goals of [DP18], but is not of major concern here, we simplify the corresponding parts
to a sequential setting.

Given the root node σ of the signature MTBDDMΠ
sig , the root node p of the partition

BDD BΠ and a set of state variables Var′ ⊆ Var , the algorithm follows the approach
described above. It maintains an (initially empty) mapping cache to store the signatures
of blocks that have already been discovered. Furthermore, it takes as input a counter
variable that is used to determine the next free block encoding. First, lines 2 and 3
make sure that illegal state encodings are not mapped to any block by checking whether
the previous partition does not assign the current state encoding to any block. Line 4
checks whether the pair of nodes ⟨σ , p⟩ has already been seen in the current traversal.
If so, the cached result is returned. In the simple traversal of [Wim10], the cached result
only depends on the signature node σ . For the dual (signature and partition) traversal,
however, the result may depend on the partition node p. Intuitively, this is because states
with the same signature must not be grouped together if the node in BΠ representing
their block in Π are di�erent, as this means they are not related in the current partition
Π . ¿e lines 7-10 recursively descend if the next relevant variable in either the signature
or the partition is a state variable. Finally, lines 11-16 assign the current state encoding to
a new block. Note that “new” is to be understood with respect to the current top-level
invocation of the Refine. ¿e block may be a block encoding that can be reused from
the old partition (lines 12-14) or a completely new block (line 16). In the latter case,
EncodeBlock(b) is assumed to encode the index b in terms of the variables B and
increment the counter b such that it is visible to the outside.

¿e simultaneous traversal of both MsigΠ and BΠ has two major advantages. First, it
makes the monotonicity requirement of the sigref operator trivial to implement. Recall
that the operatormust only relate states that have been related before. By also considering
the current partition in the traversal, it is easy to keep states separate that were not
related before. Second and most importantly, it allows to reuse the block encodings over
iterations. If a signature node is hit, the old block encoding can potentially be reused.
To this end, a set of blocks is maintained in the form of an (initially empty) set used
of BDD nodes by the algorithm that keeps track of which nodes (representing block
encodings) were already reused from the partition Π . While this seems like a minor
optimization, we illustrate its impact on performance in Section 5.6.

Example 44. We apply Refine to the signature MTBDD MΠ
sig from Example 43. As

the signature is traversed simultaneously with the BDD BΠ , recall that the latter is
given in Figure 5.4. Starting from the root nodes of the DDs, the �rst non-trivial
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Algorithm 2: Implementation of the sigref operator for MCs.
1 function Refine(σ , p,Var′ , b):

input: σ : root node of the signature MTBDD,
p: root node of the previous partition BDD,
Var′: the set of state variables,
b: the next free block number

output: the next partition BDD
2 if p = Const (0) then
3 return p
4 if ⟨σ , p⟩ ∈ cache then // check if node pair already seen
5 return cache [⟨σ , p⟩]
6 x ← TopVar (σ , p)
7 if x ∈ Var′ then // descend if x is state variable
8 low ← Refine(σ ∣x=0 , p∣x=0 ,Var′ , cache, b)
9 high← Refine(σ ∣x=1 , p∣x=1 ,Var′ , cache, b)
10 result ← Ite (x , high, low)
11 else // hit a signature encoding
12 if p /∈ used then // reuse block p if possible
13 used ← used ∪ {p}
14 result ← p
15 else // otherwise use new block number
16 result ← EncodeBlock(b)

17 cache [⟨σ , p⟩]← result
18 return result

action that happens is the visit to the node pair ⟨σ0 , p0⟩. As σ0 is not labeled with a
state variable, it is detected as representing a signature. As p0 encodes the block C0,
which is not yet claimed in the current traversal, this block is returned for the node
pair. ¿e next interesting visit is for the node pair ⟨σ0 , p1⟩. ¿e signature node is the
same as before, but the (previous) partition node is di�erent. ¿at means that even
though the signatures of the two states (s0 and s1) is the same with respect to Π , we
have s0 /≡Π s1. As the block C1 encoded by p1 is not yet claimed either, it is returned.
Finally, the pair ⟨σ1 , p0⟩ is visited. ¿e signature node σ1 has not been visited before,
but the block encoded by p0 is already taken, so the new block with index 2 encoded
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Figure 5.8: ¿e BDD encoding the partition S/∼.

by the node p2 is returned. ¿e resulting BDD, depicted in Figure 5.8, represents the
partition S/∼.

Algorithm 3 embeds the Refine algorithm into the framework of Algorithm 1. In
particular, it shows how the global block counter b is maintained throughout the whole
traversal process.

5.4.3 Computation of the Initial Partition

We now show how to obtain the initial partition ΠM0 using the representation we
introduced in Section 5.4.1. For this, we take a two-step approach. ¿e �rst step consists
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Algorithm 3: Symbolic signature-based partition re�nement for MCs.
1 function EncodeBlock(b):

input: b: the counter holding the next free block number
output: the encoding of the next free block number as a BDD and an increment to

the counter b as a side-e�ect
2 result ← Encode (B ← ⟨b⟩)
3 b ← b + 1 // increment counter globally
4 return result
5 function SignatureRefinement(M , Π0):

input:M: the MC for which to compute ∼M ,
Π0: the initial partition

output: the bisimilarity relation ∼M
6 i ← 0
7 b ← ∣Π0∣ // initialize counter to partition size
8 repeat
9 i ← i + 1
10 MΠ

sig ← SumAbstract (S ′ ,MP ⋅ Rename (BΠ i−1 ,S ,S ′))
11 BΠ i ← Refine(MΠ

sig , BΠ i−1 ,S , b) // re�ne signature MTBDDMΠ
sig

12 until BΠ i = BΠ i−1

13 return BΠ i

of computing the representation of the partition

ΠL
0 = {{t ∈ S ∣ L(t) = L(s)} ∣ s ∈ S}

that only respects the state labeling. In the second step, we account for the state rewards
and the exit rates of the MRA. Algorithm 4 shows how ΠL

0 can be computed in terms of
elementary BDD operations. It maintains a set of BDDs that ultimately characterize all
labeling sets that occur inM (lines 3-11). A er these have been computed, it attaches a
unique block encoding to these blocks and combines them to the BDD BΠL

0
(lines 12-15).

We now consider the state rewards r and exit rates E ofM. We observe that anMTBDD
M over the variables S can also be seen as signature MTBDDs over the variables S ⊎ B
even though there is no node in M labeled with a variable in B. In particular, this holds
for both Mr and ME . ¿is makes re�ning the partition ΠL

0 with respect to state rewards
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Algorithm 4:¿e algorithm to compute ΠL
0 .

1 function ComputeLabelPartition(M):
input:M: the MRA for which to compute ΠL

0
output: the partition ΠL

0 represented as a BDD BΠL
0

2 B ← {Const (1)} , B′ ← ∅
3 foreach a ∈ AP do
4 foreach B ∈ B do
5 Bt ← B ∧ Ba
6 if Bt ≠ Const (0) then
7 B′ ← B′ ∪ {Bt}
8 Bt ← B ∧ ¬Ba
9 if Bt ≠ Const (0) then
10 B′ ← B′ ∪ {Bt}

11 B ← B′ , B′ ← ∅
12 BΠL

0
← Const (0)

13 i ← 0
14 foreach B ∈ B do
15 BΠL

0
← BΠL

0
∨ (B ∧ EncodeBlock(i))

16 return BΠL
0

and exit rates as simple as

ΠM0 = Refine(Mr ,Refine(ME , BΠL
0
,S , ∣ΠL

0 ∣),S , b
′),

where b′ is the number of blocks of the intermediate partition that respects the state
labels and exit rates but not the state rewards.

Example 45. For the MRA of Example 32, the partition ΠL
0 maps all states to the

single block with number 0. ¿e BDD representation of this partition is given in
Figure 5.9(a). Similarly, the exit rate MTBDD ME is given in Figure 5.9(b) where
we choose to make the 0-leaf explicit for illustration. ¿e two leaves are the only
nodes inME that are not labeled with a state variable. Refine therefore assigns states
to di�erent blocks that disagree on the exit rates, which, in particular, separates
probabilistic from Markovian states. Consequently, Refine yields the partition ΠM0
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(a) ¿e partition BDD BΠL
0
for the example MRAM.

s1

s0
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(b) ¿e MTBDDME for the example MRAM.

Figure 5.9: ¿e BDDs used for creating ΠM0 for the example MRAM.
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with the BDD representantion as given in Figure 5.4.

5.4.4 Symbolic Implementation of the sigref Operator for MRA

We start by illustrating that Algorithm 3 does not yield the desired result for nondeter-
ministic models such as PA and MA when encoded as in Section 2.5. In contrast to the
representation of DTMCs, the transition relation MTBDD M∆ also needs to encode the
nondeterminism of the model. In general, it uses the variables VarM = S ⊎ S ′ ⊎A ⊎N
(see beginning of Section 5.4). More speci�cally, is uses the variablesN to disambiguate
the individual distributions. In contrast to the MC case, there may be several nodes
inMΠ

sig representing the same signature when the signature is computed as in (5.1) on
page 128.

Example 46. Computing the signatureMTBDD forM of Example 32with respect to
the partitionΠM0 whose BDD is given in Figure 5.4 yields theMTBDD in Figure 5.10.
Even though the states s2 and s3 have the same signature (see Example 38), their
encodings lead to di�erent nodes p2 and p3. Applying Refine to this MTBDD as
before therefore splits the two states and ends up with the trivial state partition that
assigns each state to its own block.

¿e problem is caused by the fact that the nondeterminism variables N are used to
distinguish the di�erent distributions available in a state. ¿ey are an artifact of the fact
that DDs represent functions whereas the choices of a nondeterministic model are in
fact a relation. Applying Algorithm 3 to such a model does separate states that have the
same signature but use di�erent encodings overN to encode their distributions. ¿e
actual result depends on the concrete nondeterminism encoding, whereas ∼ is clearly
independent of this.

One way to approach this problem is to extend Algorithm 2 to deal with the nondeter-
minism encodings. In [Deh11], the authors propose an extension that relies on a nested
depth-�rst search within the regular Refine procedure. Computing the bisimulation
relation this way, however, comes at the expense of computational overhead. First, the
nested search may visit nodes multiple times, which impacts running times negatively.
And secondly, the used signature cache needs to be queried for sets of nodes rather than
just individual nodes. Intuitively, this set of nodes arises from abstracting from the
nondeterminism encodings for a particular state. In practice, the basic operations used
on the cache (see Algorithm 2) become more expensive and make partition re�nement
computationally costly [Deh11]. Furthermore, this technique requires a more restricted
variable ordering that may increase the sizes of the DDs.
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Figure 5.10: ¿e signature MTBDD for the exampleM with respect to ΠM0 .
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Learning from the problems with this approach, we propose a di�erent two-step al-
gorithm. Its core idea is very simple: based on the observation that the intricasies
stem from mixing qualitative choice (nondeterminism) with probabilistic choice (the
distributions), we keep the two apart. Instead of maintaining just a partition Π of the
states, we additionally maintain a partition Πd of the (rewarded) distributions available
as nondeterministic choices in the states. ¿is is based on the following decomposition of
the state signature.

De�nition38 (SignatureDecomposition). Let Sd = {⟨ρ , µ⟩ ∣ ∃s , α . ⟨s , α , ρ , µ⟩ ∈ ∆}
be the (rewarded) distributions ofM. ¿e signature of a rewarded distribution
⟨ρ , µ⟩ with respect to a partition Π of S is given by

dsigΠ(ρ , µ) = ⟨[ρ , µ]Π , [µ]Π ⟩ .

By construction, dsigΠ induces a distribution partitioning Πd of Sd by

Πd = {{⟨ρ′ , µ′⟩ ∈ Sd ∣ dsigΠ(ρ
′ , µ′) = dsigΠ(ρ , µ)} ∣ ⟨ρ , µ⟩ ∈ S

d}

¿e choice signature of a state s ∈ S with respect to Π is de�ned by

csigΠ(s) = {⟨α , B⟩ ∣ B ∈ Π
d ∧ ∃ ⟨α , ρ , µ⟩ ∈ ∆(s) . ⟨ρ , µ⟩ ∈ B} .

Intuitively, the choice signature of a state s represents which equivalence classes of Πd

are covered with which action label α ∈ Act in s . Whenever there are no transition
rewards, we omit the component ρ for better readability.

Example 47. Reconsider the MRAM of Example 32 and the partition Π induced
by the equivalence relationR of Example 33. Slightly abusing the notation to account
for the missing transition rewards, dsigΠ(µ2,1) = µR2,1 = [µ2,1]R . ¿e distribution
partition induced by dsigΠ is

Πd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{µ0 , µ1}
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

B0

, {µ2,1 , µ2,2 , µ3}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

We therefore have
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» csigΠ(s0) = {⟨α , B0⟩},

» csigΠ(s1) = {⟨Λ, B0⟩}, and

» csigΠ(s2) = csigΠ(s3) = {⟨α , B1⟩}.

¿en, we have the following connection between the signature sigΠ(s) of a state s and
its choice signature csigΠ(s).

Lemma 3. Let s , t ∈ S and Π be a partition of S.

sigΠ(s) = sigΠ(t) ⇐⇒ csigΠ(s) = csigΠ(t).

Considering csigΠ instead of sigΠ has the advantage that it decouples quantities (prob-
abilities, rewards) from nondeterministic choices. While the signatures of rewarded
distributions are quantitative in nature, they do not contain nondeterminism. In contrast,
the choice signature of a state is purely qualitative. Note that a very similar decomposi-
tion idea was formulated in the context of an explicit state representation in [BEM00].

We use this connection and develop Algorithm 5 to symbolically implement the sigref
operator for MRA. In correspondence to the choice signature formulation, it maintains
two partitions: a state partition Π and a distribution partition Πd that corresponds to
the partition induced by dsigΠ . Note that both partitions share the same block variables
B. ¿is is possible as enough block variables have been reserved to also represent the
distribution partition (see Section 5.4.1). In lines 3 and 4, the counters bS and bd for the
number of state and distribution blocks, respectively, are initialized. Line 5 initializes the
distribution partition by assigning all distributions that appear inM to a single block.
¿e �rst re�nement step re�nes the distribution partition with respect to the quotient
distributions (lines 8-9). For this, it computes a signature MTBDD representing dsigΠ i−1
and calls Refine similarly as before. However, there is one important di�erence, namely
that instead of just the variables S now also the variablesA andN need to be considered
as “state variables” by Refine. ¿is re�ects that the partition that is created is a partition
of (rewarded) distributions rather than states. As MRA may also involve transition
rewards, the next step re�nes the distribution partition, however this time with respect
to the quotient reward functions. Line 10 computes a representation of the quotient
reward functions as in De�nition 32 and line 11 performs the corresponding re�nement
step of the just computed partition BDD BΠd

i
. Note that the computation of the quotient

reward functions reuses the distribution signature MTBDD. In summary, the lines 8
through 11 are concerned with re�ning the distribution partition according to dsigΠ i−1

.
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Algorithm 5: Symbolic signature-based partition re�nement for MRA.
1 function SignatureRefinement(MRAM, partition Π0):

input:M: the MRA for which to compute ∼M ,
Π0: the initial partition

output: the bisimilarity relation ∼M represented by a BDD BΠ i

2 i ← 0
3 bS ← ∣Π0∣
4 bd ← 0

// create trivial distribution partition (and increment bd )
5 Πd

0 = ExistsAbstract (S ′ ,M∆ ≠ 0) ∧ EncodeBlock(bd)
6 repeat
7 i ← i + 1

// re�ne Πd w.r.t. quotient distributions
8 Msig ← SumAbstract (S ′ ,M∆ ⋅ Rename (BΠ i−1 ,S ,S ′))
9 BΠd

i
← Refine(Msig , BΠd

i−1
,S ⊎A ⊎N , bd)

// re�ne Πd w.r.t. quotient reward functions
10 Msig ← SumAbstract (S ′ ,M∆ ⋅Mρ

∆ ⋅ Rename (BΠ i−1 ,S ,S ′)) /Msig

11 BΠd
i
← Refine(Msig , BΠd

i
,S ⊎A ⊎N , bd)

// re�ne Π w.r.t. Πd

12 Bsig ← ExistsAbstract (N , BΠd
i
)

13 BΠ i ← Refine(Bsig , BΠ i−1 ,S , bS)
14 until BΠ i = BΠ i−1

15 return BΠ i

Finally, lines 12 and 13 re�ne the state partition with respect to Πd
i . ¿is corresponds

directly to the computation of a signature BDD for csigΠ i
and an application of Refine.

Example 48. ¿eMTBDD of Figure 5.10 represents the signatures of the distribu-
tions ofM, where the latter are encoded over S ⊎N ⊎A. Using this MTBDD and
the trivial distribution partition Πd

0 that assigns all distributions to block 0 as the
previous partition, Refine yields the distribution partition Πd of Example 47 in the
form of the BDD depicted in Figure 5.11. To compute the BDD for the choice signa-
tures of the states, we now existentially abstract from the variables inN. ¿is results



5.4.4. Symbolic Implementation of the sigref Operator for MRA 143

s1

s0

n0

a0

b0

b1

s1

s0 s0

n0 n0 n0

a0 a0 a0

b1 b1

b1

1

Figure 5.11: ¿e BDD representing the distribution partition Πd .
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Figure 5.12: ¿e BDD representing the choice signatures of the states.
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in the BDD in Figure 5.12. Invoking Refine on this BDD together with the previous
state partition BDD of Example 37 yields the (�nal) partition S/∼ represented by the
BDD in Figure 5.8.

5.5 Quotienting

As our ultimate goal is to verify or refute a property on the bisimulation quotient rather
than on the original MRA, it remains to show how the quotient can be extracted from
the symbolic representation ofM and a BDD B∼ that represents the (state) partitioning
induced by ∼ in our partition representation (see Section 5.4.1).

5.5.1 Symbolic quotienting

Recall the symbolic representation of the MRAM from the start of the section and
De�nition 35 for the quotient ofM under a bisimulation R. We now derive a sym-
bolic representation ofM/∼. In contrast to the variant (for transition systems) shown
in [Wim10], we use the variables B for the encoding of states rather than using the
original variables S . ¿is might change the relative order of the variables encoding the
nondeterminism to the (new) variables encoding the states. While this may a�ect the
sizes of the DDs, our representation can be trivially shi ed to the original variables of
the MRA representation like [Wim10]. However, renaming variables tends to be an
expensive operation and our experiments show that using the block variables for state
representation does not have adverse e�ects. As we use the block variables for the state
encoding, we assume an additional set of variables B′ = {b′ ∣ b ∈ B} that encode the
successor states.

As a �rst step, we present an algorithm that takes a BDD representing a state partition
and returns a BDD representing a set of representatives such that for each block there
is exactly one representative. Algorithm 6 shows the pseudo-code of this routine.
It maintains an initially empty set visited of DD nodes that have been seen in the
traversal. Invoked with SelectRepresentatives(BΠ ,S), it recursively descends depth-
�rst through the partition BDD BΠ until a node is found that is not labeled with a state
variable S . In this case, the node must correspond to exactly one block encoding as
BΠ adheres to our partition representation scheme (see Section 5.4.1). To not select
multiple representatives for some block, attention is paid to insert a unique valuation of
skipped variables (lines 6 to 9) and not visiting the same node more than once (line 2).
Technically, it is su�cient to only remember the block encodings that were seen in the
visited set, but aborting the depth-�rst search upon a revisit of any node improves the
e�ciency as it potentially avoids visiting large parts of BΠ .
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Algorithm 6: Selection of representative states.
1 function SelectRepresentatives(σ ,Var):

input: σ : the root node of the partition BDD B∼ ,
Var : the state variables

output: a BDD containing exactly one state of each block
2 if σ ∈ visited then
3 return Const (0)
4 x ← min{Var ∪ {var(σ)}}
5 if x ∈ Var then
6 if x = var(σ) then
7 Var′ ← Var ∖ {x}
8 else
9 Var′ ← Var
10 low ← SelectRepresentatives(σ ∣x=0 ,Var′)
11 high← SelectRepresentatives(σ ∣x=1 ,Var′)
12 result ← Ite (x , high, low)
13 else
14 result ← Const (1)
15 visited ← visited ∪ {σ}
16 return result

In the following, we assume that the BDD BRep of representative states over the variables
S has been computed as SelectRepresentatives(BΠ ,∅,S) where B∼ is the partition
BDD obtained by SignatureRefinement(M , ΠM0 ).

Let us now recall De�nition 35. Several components of the quotient MRA can be
computed in a straightforward manner:

» BS/∼ = ExistsAbstract (B∼ ,S),

» BS0/∼ = ExistsAbstract (BS0 ∧ B∼ ,S),

» Ba/∼ = ExistsAbstract (Ba ∧ B∼ ,S) for all atomic propositions a ∈ AP,

» ME/∼ = SumAbstract (ME ⋅ BRep ⋅ B∼ ,S), and

» Mr/∼ = SumAbstract (Mr ⋅ BRep ⋅ B∼ ,S).
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It remains to compute the MTBDDsM∆/∼ andMρ
∆/∼ .

¿e quotient probability distributions can be computed in two steps.

MB
′

∆ = SumAbstract (M∆ ⋅ Rename (B∼ ,S ⊎ B ,S ′ ⊎ B′) ,S ′)

M∆/∼ = SumAbstract (M
B
′

∆ ⋅ BRep ⋅ B∼ ,S)

Here,MB
′

∆ is over the variables S⊎A⊎N⊎B′ and is the intermediate result that speci�es
for each nondeterministic choice in each state s the probability to move to the blocks
of ∼. In the second step, a representative state of each block is used to determine the
behavior of the block. Similarly, we computeMρ

∆/∼ as

Mρ ,B′

∆/∼ = SumAbstract (M
ρ
∆ ⋅M∆ ⋅ Rename (B∼ ,S ⊎ B ,S ′ ⊎ B′) ,S ′) /M

B
′

∆

Mρ
∆/∼ = SumAbstract (M

ρ ,B′

∆/∼ ⋅ BRep ⋅ B∼ ,S) .

¿e reward functions need to be scaled with the total probability to move to an equiv-
alence class (see De�nition 32) and we can reuse the intermediate BDD MB

′

∆ for the
corresponding division.

5.5.2 Direct Sparse Extraction

It is well known [BS92] that bisimulation quotienting might increase the number of
nodes that is necessary to symbolically represent the system, an e�ect that we will further
encounter in our experimental evaluation in Section 5.6. Brie�y speaking, symbolic
data structures are well-suited to represent symmetrical systems, but bisimulation
minimization factors out the symmetry and leaves a system that is largely asymmetrical.
¿is e�ect suggests that the state space savings due to this minimization do not translate
into speedups or improvedmemory footprints. In fact, the opposite is true and it appears
to render bisimulation minimization void. However, there is an avenue worth pursuing
similar to that proposed in [Par03]. Instead of performing all operations symbolically,
we only treat it symbolically up to the point where we want to conduct model checking.
¿en, the symbolic transition relation is translated to an explicit representation on which
the numerical analysis is carried out. Since for an explicit representation reductions in
state space size are more promising to directly translate into performance gains, this
approach may not su�er too much from the increased DD sizes.

However, as explicitly mentioned in [Wim10], extracting the quotient is a computa-
tionally costly operation. Intuitively, this is because the intermediate DDs (partitions,
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signatures, etc.) relate variables that are far apart in the variable ordering, which causes
them to be large on the one hand and requires an expensive renaming to return to
an interleaved (with respect to source/target states) variable ordering. Ultimately, this
problem boils down to the chosen representation of a partition over state variables that
precede all block variables. However, the central re�nement procedure requires this
variable order in order to exploit the reducedness property of the DDs.

Instead of �rst computing the symbolic representation of the quotient and then convert-
ing it to an explicit representation, we propose to extract the explicit quotient directly.
Since the extraction of the quotient transition relation is the most involved part, we
restrict our attention to this setting. ¿e other components of the system can be derived
similarly.

Algorithm 7 shows the pseudo code of the procedure Extract. It returns a function

f ∶{0, . . . , ind(∼)} ×Act ×N × {0, . . . , ind(∼)}→ [0, 1]

that represents ∆/∼. It does so in the sense that

⟨s , α , µ⟩ ∈ ∆/∼ ⇐⇒ ∃n ∈ N . f (s , α , n, ⋅) = µ

where we identify states of the quotient system with the numbers of their block within
the partition ∼. ¿e additional parameter n can be thought of as an index that uniquely
identi�es the distribution among all those labeled with the same action α . From this
representation it is straightforward to extract other representations, for example in the
form of sparse matrices.

Let us now step through the building blocks of the algorithm. ¿e procedure takes 7
arguments:

» m is the current node in the transition relation MTBDD,

» r is the current node in the representatives BDD BRep,

» ps is the node in the partition BDD B∼ corresponding to the current source state,

» pt is the node in the partition BDD B∼ corresponding to the current target state,

» Vars is the set of (remaining) state variables,

» Bn is a BDD that encodes the current nondeterminism variables’ valuation, and

» Varn is the set of (remaining) nondeterminism variables.
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Algorithm 7: Direct sparse extraction of the quotient transition relation ∆/∼.
1 function Extract(m, r, ps , pt ,Vars , Bn ,Varn):

input: m: the root node of the transition relation MTBDDM∆ ,
r: the root node of the BDD containing the representative states,
ps : the root node of the partition BDD,
pt : the root node of the partition BDD,
Vars : the state variables,
Bn : the nondeterminism encoding (initially Const (1)),
Varn : the nondeterminism variables

output: a function explicitly encoding the choices of the quotient model
2 if r = Const (0) then // no representative state, abort
3 return ∅
4 if Vars = ∅ ∧Varn = ∅ then // m is terminal node of transition relation
5 s ← DecodeBlock(ps)
6 t ← DecodeBlock(pt)
7 α ← DecodeAction(Bn)
8 n ← DecodeOffset(Bn)
9 return ⟨s, α , n, t⟩↦ val(m) // add explicit transition
10

11 x ← min{Vars ∪Varn}
12 if x ∈ Vars then

// descend by assigning both state variables x and x′
13 f00 ← Extract(m∣x=0,x′=0 , r∣x=0 , ps ∣x=0 , pt ∣x=0 ,Vars ∖ {x} , Bn ,Varn)
14 f01 ← Extract(m∣x=0,x′=1 , r∣x=0 , ps ∣x=0 , pt ∣x=1 ,Vars ∖ {x} , Bn ,Varn)
15 f10 ← Extract(m∣x=1,x′=0 , r∣x=1 , ps ∣x=1 , pt ∣x=0 ,Vars ∖ {x} , Bn ,Varn)
16 f11 ← Extract(m∣x=1,x′=1 , r∣x=1 , ps ∣x=1 , pt ∣x=1 ,Vars ∖ {x} , Bn ,Varn)
17 return f00 + f01 + f10 + f11
18 else

// descend by assigning just the nondeterminism variable x
19 f0 ← Extract(m∣x=0 , r, ps , pt ,Vars , Bn ∧ Id (x) ,Varn ∖ {x})
20 f1 ← Extract(m∣x=1 , r, ps , pt ,Vars , Bn ∧ ¬Id (x) ,Varn ∖ {x})
21 return f0 + f1
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¿erefore, the top-level invocation is Extract(M∆ , BRep , B∼ , B∼ ,S ,Const (1) ,A⊎N).
¿e idea is to recursivelywalk through the transition relationMTBDDM∆ and keep track
of which source and target blocks the transitions connect by simultaneously traversing
the partition BDD B∼ . As both the source and the target blocks need to be determined,
the algorithm maintains two nodes of the partition BDD, namely ps that corresponds
to the block of the source state and pt that corresponds to the block of the target state.
Since we only want to extract the transitions of the representative state of each block, no
quotient transition is recorded if the currently followed state encoding does not belong
to a representative state (line 2). If a terminal node has been found in the transition
relation M∆ (line 4), the nodes ps and pt allow for easy discovery of the source and
target blocks. Additionally, the BDD Bn over the variablesA ⊎N uniquely identi�es
the action label and index of the distribution and can therefore be used to identify
the correct choice. We can therefore record the quotient transition by creating the
appropriate mapping in line 9. Lines 11 to 21 take care of the recursive descent. If the
next variable is a variable encoding a state, we assign to the variable and its primed
counterpart and move in both ps and pt . If, however, the next variable is a variable
encoding nondeterminism, this is re�ected by updating the transition relation node
and the BDD Bn encoding the current nondeterminism encoding. In both recursive
cases, the remaining variable sets are updated.

While our algorithm is independent of the variable ordering, an e�cient implementation
requires that the variable sets S and S ′ are ordered in an interleaving manner, because
the generalized cofactors then amount to simply following pointers. ¿is is not a real
restriction, though, as most tools choose to arrange the variables like this.

We want to remark that actual implementations might look slightly di�erently than the
pseudo code in Algorithm 7 for performance reasons. For example, it is possible to use
o�set-labeled binary decision diagrams (ODDs) [Par03] to decode source and target
states during the traversal.

5.6 Evaluation

Implementation. We implemented symbolic bisimulation minimization within the
framework of Storm (see Chapter 7). It is available using both major libraries that
support MTBDDs, namely CUDD [Som] and Sylvan [Dij16]. ¿e Sylvan-based imple-
mentation reuses substantial parts from the implementation of [DP18] and supports
multi-threaded signature computation and re�nement. Additionally, it can not only
deal with probabilities stored as �oating point numbers but also as rational numbers
and even rational functions.
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Unlike our presentation, our implementation does not use ΠM0 as the initial partition.
Instead, we assume a set of properties to be available that are to be checked. We then
extract the atomic propositions used in these formulae and additionally determine
whether they refer to rewards or not. ¿e initial partition can then be created with
respect to the labels appearing in the properties and does not need to be re�ned according
to the rewards if the property does not refer to them. ¿is can signi�cantly in�uence the
size of the resulting bisimulation quotient. In the context of the evaluation, we therefore
always consider pairs of model instances and properties.

Benchmarks. For the evaluation of the prototype we considered 12 benchmark mod-
els covering DTMCs, CTMCs, PA and MRA. With the exception of the MRA, they are
part of Prism’s benchmark suite [KNP12]. ¿e MRAmodels are taken from [QJK17]
and [Guc+13]. Both, the models and the properties are listed in more detail in Ap-
pendix D. Similarly, Appendix D contains more detailed experimental results. As
previous work [Wim10] determined that �oating point arithmetic may be harmful to
symbolic bisimulation minimization in the sense that it can lead to unnecessarily large
quotients and even non-terminating behaviour of the re�nement algorithm, we choose
to use rational arithmetic and therefore focus on our Sylvan-based implementation. To
not introduce unwanted side-e�ects due to multi-threading, we limit all runs to a single
thread.

State space reduction. We start by showing the state space reductions that can be
obtained on the models. Table 5.1 lists for each benchmark instance the size of the model
in terms of states prior to minimization and the size of the quotient system. With few
exceptions (polling) the considered models are reduced signi�cantly by bisimulation
minimization. Disregarding the models that could not be reduced at all, the reduction
factors over all models range from roughly 4 for the jobs(15,3) to more than 1017 for
crowds(30,30). For the latter, neither Sylvan nor CUDD could count the number of
minterms of the state and transition relation DDs for the original model. We therefore
give lower bounds for the state and transition count based on a smaller instance for
which counting states and transitions does not (yet) fail. In contrast, the reduced state
model has just below 600 states. A similarly huge reduction can be observed for the
CTMC benchmark p2p: its quotient model is roughly 9 orders of magnitude smaller
than the original model.

In general, however, we observe that continuous-timemodels tend to be less symmetrical
in the sense of strong bisimulation. ¿e reason for this is that for two states to be
considered equivalently not only their probabilistic behavior has to match, but also their
timing behavior. ¿is separates states that could have been merged in discrete-time



152 Chapter 5. Symbolic Bisimulation Minimization of Markov Automata

original quotient
model instance states transitions states transitions

(1) 3.4 × 109 5.0 × 109 3.7 × 102 3.7 × 102
bluetooth

(2) 5.5 × 1010 5.9 × 1010 7.8 × 105 1.4 × 106

(30, 20) 6.1 × 1015 3.0 × 1016 3.8 × 102 5.7 × 102
crowds

(30, 30) > 1.3 × 1019 > 1.4 × 1019 5.8 × 102 8.7 × 102

(6, 8) 1.3 × 106 1.6 × 106 1.4 × 101 1.5 × 101

D
TM

C

leader
(7, 7) 4.9 × 106 5.8 × 106 1.6 × 101 1.7 × 101

(1000) 8.5 × 105 3.6 × 106 6.5 × 104 4.0 × 105
embedded

(2000) 1.7 × 106 7.1 × 106 1.3 × 105 7.9 × 105

(16) 1.6 × 106 1.4 × 107 1.6 × 106 1.4 × 107
polling

(17) 3.3 × 106 3.1 × 107 3.3 × 106 3.1 × 107

(7, 5) 3.4 × 1010 6.0 × 1011 1.1 × 103 3.9 × 103

CT
M
C

p2p
(8, 5) 1.1 × 1012 2.2 × 1013 1.4 × 103 4.8 × 103

(6, 4) 2.4 × 106 1.2 × 107 5.2 × 103 3.1 × 104
coin

(6, 6) 3.5 × 106 1.7 × 107 7.7 × 103 4.6 × 104

(3, 4) 1.5 × 106 2.4 × 106 3.0 × 104 6.4 × 104
csma

(4, 4) 1.3 × 108 2.6 × 108 3.9 × 105 1.0 × 106

(7, 140) 8.1 × 108 1.9 × 109 4.6 × 105 1.3 × 106

PA

wlan_dl
(8, 140) 2.2 × 109 5.1 × 109 4.6 × 105 1.3 × 106

(10) 1.1 × 106 3.0 × 106 1.3 × 105 3.7 × 105
mutex

(15) 3.6 × 106 9.7 × 106 4.0 × 105 1.2 × 106

(3, 4) 9.1 × 104 2.3 × 105 9.1 × 104 2.3 × 105
polling

(4, 4) 8.3 × 105 2.1 × 106 8.3 × 105 2.1 × 106

(15, 3) 1.9 × 106 7.5 × 106 4.6 × 105 2.0 × 106

M
A

jobs
(16, 3) 4.7 × 106 1.8 × 107 9.0 × 105 3.9 × 106

Table 5.1: ¿e sizes of the bisimulation quotients for the considered benchmark models.
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models. As an extreme case, for the two pollingmodels (one is a CTMC and the other
one is an MA), no reduction is possible at all: the quotient models are just as large as
the original model.

Symbolic ver�cation. While the state space reductions can be huge, we now analyze
whether they translate to gains in the model checking process. In the following, we
therefore compare two approaches: verifying the original model directly versus �rst
constructing the bisimulation quotient and then verifying this instead. Since the model-
building step is the same for both, we omit these �gures from the evaluation. Note
that construction of the quotient consists of two phases, namely (symbolic) partition
re�nement to compute the bisimulation and extracting the quotient from the original
model and ∼. For each experiment, we set a timeout of 1 hour and a memory limit of
16GB and set the maximal memory to be used by Sylvan to 8GB.

As a �rst step, we measure the impact of bisimulation minimization on DD-based
veri�cation. Storm’s support for this is limited to discrete-time Markov models at the
moment, since the analysis of continuous-time models tends to involve more costly
numerical operations for which DDs are not well suited. Consequently, we consider
all DTMCs and PA from our example set for this evaluation. Here, the bisimulation
minimization as well as the actual veri�cation are carried out on DD representations of
the systems. ¿e results are summarized in Table 5.2.

With the notable exception of both crowds and the leader(7,7) instances, the state
space reductions do not carry over to the overall runtimes. To the contrary, the total
time needed to verify the wlan_dl models increases fortyfold even though the state
space is reduced by four orders of magnitude. Even the raw veri�cation times (i. e.
without considering the time taken by the minimization) are increased by a factor of
thirty. Ultimately, this is caused by the blow-up of the DD representation of the quotient
model: the quotient transition relation has roughly ten times the number of nodes that
were necessary to store the original transition relation. To see the e�ect of bisimulation
quotienting on the size of systems in terms of DD nodes, consider Figures 5.13 and 5.14.

In the majority of cases, the DD-based representation of the quotient usedmore nodes
than the original transition relation. In particular, for the models involving nondeter-
minism (i. e. PA and MA), not a single instance had a smaller quotient representation.
¿e blow-up ranges from a very minor increase (jobs(16,3)) to four orders of magni-
tude (polling(17)). ¿is e�ect suggests that symbolic model checking rarely bene�ts
from symbolic bisimulation minimization in its current form.
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original quotient
model instance veri�cation construction veri�cation

(1) 1.87 7.12 0.50
bluetooth

(2) TO 2130.19 TO
(30, 20) TO 152.11 96.71

crowds
(30, 30) TO 434.21 192.57
(6, 8) 96.85 123.28 0.02

D
TM

C

leader
(7, 7) 536.54 496.50 0.02
(6, 4) TO 35.77 TO

coin
(6, 6) TO 55.34 TO
(3, 4) 1227.61 72.07 2125.60

csma
(4, 4) TO 1922.98 TO
(7, 140) 55.09 748.65 1879.16

PA

wlan_dl
(8, 140) 68.73 968.47 1722.64

Table 5.2: DD-based quotient model checking.

Hybrid veri�cation. One particularly promising approach is the one that we touched
in Section 5.5.2. First, the model is built and minimized symbolically. During the model
checking step, however, the symbolic representation is translated into an explicit one
and the latter is used for the expensive numerical operations. ¿is approach [Par03]
is pursued by the hybrid engine of Storm (for all model types except MA) and the
sparse engine of Prism. In the context of symbolic bisimulation minimization, it is
appealing, because the state space reductions are more likely to translate into actual
gains during the veri�cation on explicit model representations. However, doing this
translation without minimization as a preprocessing step potentially requires much
more memory.

We therefore use Storm to model check the original models as well as the quotient
models using its hybrid engine. As it is comparable in spirit, we additionally compare
with the sparse quotient extraction of Section 5.5.2. ¿e results of this comparison are
displayed in Table 5.3.

We observe that sparse quotient extraction results in both reduced construction and
veri�cation times for all instances when compared to DD-based quotienting. For the
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original quotient
DD quotient sparse quotient

model instance verif. constr. verif. constr. verif.
(1) MO 7.07 0.05 6.16 <0.01

bluetooth
(2) MO 2513.92 530.63 2026.89 3.26

(30, 20) MO 152.07 0.13 134.87 <0.01
crowds

(30, 30) MO 432.73 0.21 392.84 0.01
(6, 8) 134.87 104.46 0.01 80.05 <0.01

D
TM

C

leader
(7, 7) MO 411.32 0.01 314.12 <0.01
(1000) 1604.72 144.81 193.86 133.48 129.74

embedded
(2000) 3004.38 746.98 445.19 489.59 283.05
(16) 1074.14 722.12 TO 280.95 1273.26

polling
(17) 2547.50 2955.19 TO 1581.84 TO
(7, 5) MO 283.93 0.42 224.72 0.02

CT
M
C

p2p
(8, 5) MO 748.60 0.35 687.22 0.02
(6, 4) 1195.26 36.00 5.43 33.24 2.34

coin
(6, 6) TO 55.93 12.40 52.34 6.21
(3, 4) 16.08 71.51 14.35 61.87 0.09

csma
(4, 4) MO 2107.61 382.92 1598.20 2.04
(7, 140) 19.65 802.96 2068.94 652.36 1.09

PA

wlan_dl
(8, 140) 20.07 814.42 1563.55 724.67 1.68

Table 5.3: Analysis of hybrid quotient model checking.
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Figure 5.13: DTMC and CTMC benchmark models.

polling(16) CTMC benchmark, it reduced the time to extract the quotient from 488
seconds to less than 18 seconds and cut the overall time to construct the bisimulation
quotient by two thirds. As it avoids the construction of the MTBDDM∆/∼ , it is not af-
fected by the blow-up that symbolic quotienting incurs. Figures 5.15 and 5.16 summarize
the runtime di�erences for the two quotient extraction approaches.

With the exception of polling, wlan_dl and the smaller csma instance, bisimulation
minimizaton pays o�. For a number of benchmark models, veri�cation of the original
model requires too much memory. Using bisimulation enables the treatment of all of
these models with the hybrid approach. Even when there is no lack of memory, the
bisimulation gains in terms of state space size translate into gains in terms of veri�cation
e�ciency. Because of this, verifying most quotients is typically a matter of seconds.

As mentioned before, the polling CTMC benchmark does not allow for any minimiza-
tion under strong bisimulation (using the property that we considered). ¿erefore, no
speedups can be expected. Initially, we were surprised that the hybrid engine can treat
the wlan_dl instances with more than 109 states whereas csma(4,4) led to a memory-
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Figure 5.14: PA and MA benchmark models.

out even though it has fewer states and transitions. Not only that, but it is much faster
than bisimulation minimization. Looking into the model, it turned out that almost all
states related by bisimulation have a probability of zero for the considered property.
¿is set of states is computed symbolically by the hybrid engine and, in particular, not
translated to the explicit representation. ¿erefore, it doesn’t require (structurally) more
memory than verifying the quotient and the numerical computations are very limited
even in the original model. We observe that the hybrid veri�cation of the DD-based
quotient takes almost three orders ofmagnitude longer than the veri�cation of the sparse
quotient. ¿is e�ect is again related to the blow-up of the quotient transition relation
MTBDD. While the numerical parts are solved quickly on the explicit representation,
the qualitative precomputation su�ers signi�cantly from the increased DD sizes.

We turn to the impact of bisimulation minimization on the considered MA. As Storm
currently does not support the symbolic or hybrid veri�cation of such models, we resort
to comparing the veri�cation of the sparse model and verifying the quotient obtained
through symbolic bisimulation minimization and direct sparse extraction in Table 5.4.
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Figure 5.15: DTMC and CTMC benchmark models.

Given that there was no reduction due to bisimulation minimization for the polling
instances (Table 5.1), no improvements in the running times can be expected for these
models. Both other models, however, bene�t from bisimulation minimization. For the
larger instance of the jobs benchmark the regular veri�cation runs into a shortage of
memory, whereas the quotient model with a state space of about one � h of the original
model can be computed and veri�ed in about 900 seconds. Both mutex instances can
be solved in less time and without triggering an out-of-memory.

Before leaving the evaluation of the impact of bisimulation on model checking, we
want to make two further observations. ¿e �rst observation concerns the e�ectivity of
bisimulation minimization. Apart from the avoided memouts, it paid o� the most when
the veri�cation task is expensive and requires a lot of numerical operations. ¿is is, for
example, the case for the embedded, coin and mutex benchmarks. Unsurprisingly, the
investment of the quotient construction is o�set more easily in the face of expensive
follow-up operations.

Secondly, we address a statement of [Wim10]:
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Figure 5.16: PA and MA benchmark models.

original sparse quotient
model instance verif. constr. verif.

(10) 1734.59 76.57 245.10
mutex

(15) MO 186.00 1511.25
(3, 4) 183.79 18.36 186.80

polling
(4, 4) MO 106.49 MO
(15, 3) 189.15 298.34 77.09

M
A

jobs
(16, 3) MO 725.41 170.00

Table 5.4: Analysis of sparse quotient model checking.
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»In summary, we can say that there is no reason to use �oating point arith-
metic for the computation of bisimulations for Markov chains. Rational
arithmetic adds virtually no extra cost and yields a correct result that is not
a�ected by rounding errors. «

In the cited source, performing bisimulation minimization using exact arithmetic was
inspired by the observation that for somemodels the rounding problems led to increased
quotient sizes or even nonterminating behavior. Ultimately, this is rooted in (i) the
used DD libraries’ (CUDD) setting that terminals that di�er by at most a prede�ned
constant є are considered equal and stored only once and (ii) rounding errors through
the use of �oating point arithmetic itself. In practice, the former causes much more
inacurracies in the context of bisimulation minimization than the latter. ¿is is backed
by our observation that for Sylvan (that never treats distinct numbers as equal), the
quotient sizes are the same for all considered models independent of whether �oating
point or rational arithmetic is used. Furthermore, we see that in our context, using
rational arithmetic does not come for free. While we found that for the majority of
experiments rational arithmetic has in fact negligible impact on the running times,
for a few models it came at a considerable penalty. ¿is is true, in particular, for the
continuous-time models. ¿e most extreme case is the embedded(2000) instance:
computing the quotient using rational arithmetic took 50% more time than computing
it using ordinary �oating point arithmetic. Converting the model to a �oating point
representation prior to veri�cation additionally invalidates most entries of the caches
and causes a lot of new nodes to be inserted in the unique table (see Section 2.5), which
in turn makes the veri�cation slightly more expensive. ¿is e�ect, however, vanishes
over time as the conversion only happens once.

Reusing block numbers. Finally, we study the impact of reusing block numbers as
suggested in [Dij16]. Figure 5.17 illustrates the e�ect of reusing blocks on the runtime
of partition re�nement (without quotient extraction) for selected models. Clearly, the
impact is signi�cant and, for example, reduces the computation time from more than
3600 seconds (timeout) to around 300 seconds for jobs(15,3).

To study the e�ect more closely, we look at the progress of re�nement over time for the
embedded(1000) instance. Figure 5.18 shows the time spent on each iteration for this
instance, where every iteration consists of computing the signature and then applying
Refine as in Algorithm 2. We observe that the time needed for Refine is comparable
in both settings. However, the time needed to compute the signature MTBDD grows
rapidly when blocks are not reused. Ultimately, the major fraction of time is spent on
signature computation. ¿e �gure also nicely illustrates that not reusing block numbers
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Figure 5.17: In�uence of reusing blocks on partition re�nement.

results in an increased number of nodes that are created. ¿is can be seen by the periodic
spikes that represent garbage collection. When reusing blocks, garbage collection is
only triggered once at the very end. Before that, the time to compute the signature does
not in�uence the overall time much.

5.7 Conclusion and FutureWork

In this chapter, we have shown how to minimize MRA represented as DDs with respect
to strong bisimulation fully symbolically. We additionally showed how to extract the
quotient in an explicit format to improve the runtimes of quotient extraction. Finally, we
evaluated the e�ectiveness of bisimulation minimization in terms of regular quantitative
model checking in the framework of Storm.

Our experiments show that performing bisimulation minimization does typically not
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Figure 5.18: Time spent on each re�nement operation for embedded(1000).



5.7. Conclusion and Future Work 163

lead to reduced time and space requirements if the veri�cation is performed using DDs.
However, in the context of a hybrid veri�cation approach that builds and minimizes
the model symbolically and then solves the task on the explicit representation of the
quotient, it can lead to substantial gains. More speci�cally, it enables the treatment of
models that are otherwise out of reach for the hybrid approach.

So when is bisimulation minimization useful? Needless to say, models with a lot of
symmetry bene�t the most. However, it also crucially depends on the property to be
veri�ed. In general, we can say that it becomes more appealing the more expensive
the veri�cation task is. Such tasks tend to bene�t the most, because the time spent
on reducing the model is more easily outweighed by the potential gains. ¿erefore,
bisimulation minimization is more likely to be applied when verifying complex tasks
such as multi-objective [QJK17] or parametric [Deh+15] queries. ¿ese are currently
only supported on explicit representations by probabilistic model checkers like Storm
and Prism, because of their complexity and the involved numerical operations. As
Storm supports the representation of parametric systems in terms of DDs, the existing
implementations for explicit representations can be directly leveraged through the use
of sparse quotient extraction. We want to remark that in the face of several, separate
veri�cation tasks, it crucially depends on the properties whether bisimulation minimiza-
tion is fruitful. On the one hand, the minimization only has to be performed once and
the minimized model can be used to answer all queries on a potentially smaller state
space. However, in practice the initial partition is strongly in�uenced by the atomic
propositions and reward models used in the properties and building a suitable quotient
for several properties will therefore typically result in a much larger quotient model.

¿ere are a number of directions to improve symbolic bisimulation minimization. For
instance, it might be possible to apply the recent ideas in [GVV18] to reduce the amount
of work in each re�nement step. Another obvious dimension is the implementation
and evaluation of weaker notions of bisimulation equivalence in the context of prob-
abilistic model checking. However, the potential larger reductions come at the price
of being computationally more involved. ¿is seems to be promising in the context of
continuous-time models, as they were the most resistant to strong bisimulation and
the numerical queries tend to be expensive. Finally, bisimulation minimization may
be fruitfully embedded in an abstraction-re�nement loop. ¿e (potentially) costly
minimization could be interrupted and an over-approximation of the original system’s
behavior extracted. It is well conceivable that this already su�ces to (dis)prove the
validity of the property on the original model in some cases. If not, re�nement may be
continued until a conclusive answer can be given.





Chapter6

Game-Based Abstraction-Re�nement

6.1 Motivation and Goals

In Chapter 5, we argued that the state space explosion problem is one of the major
obstacles for model checking and probabilistic model checking in particular. As state
space sizes grow exponentially in the number of components and variables, representing
the system in memory as well as the numerical solution methods become intractable in
practice. Bisimulation minimization is a way to mitigate this explosion by identifying
states of the system that behave equivalently and then merging these states to obtain
a (mostly) smaller quotient system. As probabilistic bisimulation preserves PCTL∗
properties [Bai+05], properties can then be checked on the quotient model and the
results carry over to the original model.

While this approach is able to signi�cantly reduce the state spaces of models (see Sec-
tion 5.6), it has two drawbacks. First, bisimulation minimization is mostly applicable to
�nitemodels. While there are approaches [DKP13] that can in principle treat in�nite
state spaces, they are restricted to cases where the bisimulation quotient is �nite. A er
all, the quotient needs to be analyzed to obtain information about the original system.
¿e second is that it is not property directed. ¿e only in�uence the target property has
on the quotient model is the selection of atomic propositions and whether or not to pre-
serve rewards. Because of the preservation results for strong bisimulation (¿eorem 1),
the quotient model preserves all PCTL∗ and CSL properties, respectively [Bai+05].
Consequently, the bisimulation quotient may be much �ner than necessary when only
few properties are to be checked.

In this chapter, we present an abstraction technique for probabilistic automata for (un-
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bounded) reachability objectives that is both property-driven and suitable for in�nite-
state systems. Similar to bisimulation minimization, it is based on grouping states
and obtaining a “quotient model”. However, the related states are not required to have
equivalent behavior, but may – in general – behave di�erently. ¿e quotient model
therefore contains both the nondeterminism inherent to the model and the nondeter-
minism introduced by the abstraction. One way to resolve this is to merge the two
sources of nondeterminism as in [DAr+01; DAr+02]. In this case, the quotient is again a
probabilistic automaton that can be analyzed with standard techniques. As the abstract
PA is an over-approximation of the original model, the minimal reachability probability
in the quotient is a lower bound for the minimal reachability probability of the original
model and, similarly, the maximal reachability probability in the quotient is an upper
bound for the maximal reachability probability of the original model. Using this way
of abstraction, probabilistic CEGAR [HWZ08; CV10] checks realizability of abstract
counterexamples in the concrete model.

¿e alternative that we will focus on is to keep the sources of nondeterminism separate
in the quotient model [KNP06a]. Instead of a PA, the abstraction then takes the form of
a stochastic game (SG) [Sha53; Con90]. In this game, the players resolving the nondeter-
minism can either choose to cooperate or compete. ¿e two layers of nondeterminism
allow to maintain the direction (minimal or maximal) of the resolution of nondeter-
minism of the original model (induced by the property) while varying the direction of
the abstraction. Ultimately, this results in lower and upper bounds for bothminimal
andmaximal reachability probabilities in the original model. ¿is allows for obtaining
signi�cantly tighter bounds than when the nondeterminism is simply merged.

Our presentation essentially summarizes and re�nes the results of [Wac11] and the
associated publications [WZH07;WZ10; Hah+10b]. As such, there are strong similarities
between our presentation and theirs and we will refrain from reciting the sources
repeatedly. Similarly, the re�nements we make to the aforementioned techniques were
developed in the course of the Master thesis by Dimitri Bohlender [Boh14] (supervised
by me) and this chapter reuses several examples from this work for illustration purposes.

For completeness, we mention other related techniques. Magnifying-lens abstrac-
tion [AR07] uses a similar scheme but considers individual concrete states contained
in an abstract state and therefore “magni�es” the state. Even for in�nite systems large
parts of the probability mass may be concentrated in a �nite subset of the states. Sliding-
window abstraction [HMW09] is a technique to abstract from an in�nite state space by
“hiding” states that are irrelevant in the sense that they possess a negligible amount of
probability mass in a way similar to the view through a window that slides as di�erent
states become more relevant over time. Finally, assume-guarantee reasoning [Kwi+10;
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FKP10; KPC12] tries to combat the state space explosion problem by trying to analyze
the components of a parallel composition in isolation.

6.2 Setting

Before discussing how to leverage stochastic games as abstractions of PA, we �rst �x the
concrete setting. We are interested in minimal and maximal reachability probabilities
in PA and for the rest of the chapter �x a (potentially in�nite) PAM = ⟨S , S0 ,Act , ∆⟩
and a set T ⊆ S of target states. In our context, the PAM is given in terms of an SPA
that is speci�ed in the JANI language. For the rest of the chapter, let

A = ⟨Loc ,Var = PV⊎ TV, νTV,TL ,Act , ℓ0 , Init0 , E⟩

be an SPA without transient variables (TV = ∅) such thatM = ⟨S , S0 ,Act , ∆⟩ = JAK as
in De�nition 27. In particular, recall that the state space ofM is S = Loc × Val(Var)
and that A only has probabilistic edges. AsM is given as a JANImodel, the number
of distributions ∆(s) available in each state s ∈ S is �nite. We assume that the target
states T are given implicitly via an expression ηT ∈ Bxp(Var) together with a location
ℓT ∈ Loc such that

T = {⟨ℓT , ν⟩ ∈ S ∣ ν ⊧ ηT} .

Without loss of generality, we assume that

» no state inM is a deadlock state, i. e. for all states s ∈ S (also for unreachable
states) there exists ⟨α , µ⟩ ∈ ∆(s),

» A is simple and therefore does not make use of indexed assignments, and

» all edges in A are labeled with di�erent actions α ∈ Act .

To further ease the presentation, we requireM to have one initial state, i. e., S0 =
{s0}. Note that these restrictions can be li ed and do not a�ect the applicability of the
approach.

However, there are two more serious restrictions that we need to make. One is that the
probability expressions of the edges in A do not contain any variables in Var . ¿at is,
for every location ℓ ∈ Loc and every edge ⟨g , α ,D⟩ ∈ E(ℓ) we have

Var(D(a , ℓ)) = ∅ for all ⟨a , ℓ⟩ ∈ supp(D).
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ℓ0phase = 0 ∧ run = −1

αphase = 0

run′ = 2, phase′ = 1
1

β

phase = 1 ∧ run > 0

97/100
phase′ = 3

run′ = run − 1
3/100

γ

phase = 1 ∧ run ≤ 0phase′ = 2

1δ

phase ≥ 2

1

Figure 6.1: ¿e SPA A used as a running example.

¿e motivation behind this is simple: it is a syntactic restriction that guarantees that
the abstractions ofM we will discuss later are �nitely branching. We therefore treat the
expressions D(a , ℓ) of symbolic probability distributions as elements of the interval
[0, 1]. Note that this assumption also implies that there are only �nitely many di�erent
probabilities appearing inM, because the support sets of the symbolic distributions in
A are �nite. ¿e second signi�cant restriction regarding the input model A is that we
require all expressions appearing in guards and assignments to belong to a suitable theory
whose satis�ability problem is decidable. As it is arguably the most used in currently
existing models, we assume that this theory is linear integer arithmetic (see Section 2.6).

Example 49. As a running example, we consider the SPA A in Figure 6.1. It has
one location ℓ0 and two (permanent) variables phase and run. Where phase has
the domain {0, 1, 2, 3} and is initially 0, run ∈ Z with initial value −1. Four actions
Act = {α, β, γ, δ} uniquely identify the four probabilistic edges eα , eβ , eγ and eδ .
Figure 6.2 shows the semantics of A in terms of a PAM = JAK where states are of
the form ⟨phase , run⟩ and thus omitting the location component, because there is
only a single location. For readability, we color the states according to their values of
phase and label the distributions for future reference.
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⟨0,−1⟩
s0

⟨1, 2⟩
s1

µ1

⟨3, 2⟩
s2

⟨1, 1⟩
s3

µ3

⟨3, 1⟩
s4

⟨1, 0⟩
s5

⟨2, 0⟩
s6

α
µ0

1

3/100

β
97/100

δ µ2
1

3/100

β
97/100

δ µ4
1 γ

µ5
1

δ µ6
1

Figure 6.2: Reachable fragment ofM = JAK of the example SPA A.

Intuitively, A behaves as follows. In the �rst step, the protocol is initialized and the
counter run that indicates how many protocol iterations are remaining is set to 2.
¿is counter is then decremented as long as it remains (strictly) positive. In each
of these steps, the protocol fails (phase = 3) with probability 3/100 and successfully
decrements the counter with probability 97/100. We are interested in the minimal
probability that the system reaches a state with phase = 2 (and location ℓ0), which
indicates successful termination of the protocol.
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6.3 Games as Abstractions

To further motivate the use of games as abstractions, we start our presentation by
recapitulating the essentials of the abstract interpretation framework [CC77]. At its
core, it uses the concept of a Galois connection.

De�nition 39 (Galois Connection). Let ⟨L, ⊑L⟩ and ⟨M , ⊑M⟩ be complete lattices.
A pair ⟨α , γ⟩ of monotonic functions

α ∶ L → M and γ ∶M → L

is a Galois connection if

∀ℓ ∈ L . ℓ ⊑L γ(α(ℓ)) and ∀m ∈ M . α(γ(m)) ⊑M m.

We refer to α and γ as the abstraction and concretization functions, respectively.

Intuitively, a Galois connection establishes a connection between a concrete domain L
and an abstract domainM by providing functions thatmap concrete elements to abstract
ones (via the abstraction α) and abstract ones to concrete ones (via the concretization γ).
As the orderings ⊑L and ⊑M can be thought of as the degree of preciseness (with smaller
elements being more precise), the conditions on the abstraction and concretization
functions ensure that

(i) �rst abstracting a concrete element ℓ ∈ L and then concretizing the result cannot
yield something more precise than ℓ, and

(ii) �rst concretizing an abstract element m and then abstracting the result does not
lose information in the sense that it is at least as precise as m.

A popular technique for computing Pr−M(◊T) and Pr+M(◊T) for the PAM is value
iteration, which is essentially a �xed-point analysis on the complete lattice ⟨[0, 1]S , ≤⟩.
For ⊑ ∈ {≤, ≥}, we refer to L⊑ = ⟨[0, 1]S , ⊑⟩ as the concrete domains. More speci�cally,
value iteration approximatesminimal andmaximal reachability probabilities by iterating
the (value iteration) value transformers

vi−M ,T(w)(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if s ∈ T
min

⟨α ,µ⟩∈∆(s)
∑
s′∈S

µ(s′) ⋅w(s′) otherwise
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and

vi+M ,T(w)(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if s ∈ T
max

⟨α ,µ⟩∈∆(s)
∑
s′∈S

µ(s′) ⋅w(s′) otherwise

on valuations w ∈ [0, 1]S starting from the constant zero valuation 0S , which is the least
element in L≤. To shorten the notation, we from now on use ☆ to range over {−,+}
and let★ refer to min if☆ = − and max otherwise. For example, we write

vi☆
M ,T(w)(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if s ∈ T
★

⟨α ,µ⟩∈∆(s)
∑
s′∈S

µ(s′) ⋅w(s′) otherwise

to de�ne both transformers vi−M ,T and vi+M ,T .

Since minimal and maximal reachability probabilities can be expressed in terms of the
least-�xed points of these transformers as

Pr☆s (◊T) = lfp≤(vi
☆
M ,T)(s) (6.1)

and the Kleene �xed-point theorem states that

lfp
≤
(vi☆
M ,T) = sup

n∈N
{(vi☆

M ,T)
n
(0S)}

the ascending chains resulting from iterating the value iteration transformers on 0S
converge to the minimal and maximal reachability probabilities, respectively.

Fixing a partition Π of the state space S with �nitely many blocks for the remainder
of the chapter, the natural abstract domains of computation are the complete lattices
M⊑ = ⟨[0, 1]Π , ⊑⟩ for ⊑ ∈ {≤, ≥}. [Wac11] shows that ⟨α l , γ⟩ and ⟨αu , γ⟩ with

α l(w)(B) = inf
s∈B

w(s) for all B ∈ Π

αu(w)(B) = sup
s∈B

w(s) for all B ∈ Π

γ(w#)(s) = w#(B(s)) for all s ∈ S

for w ∈ [0, 1]S ,w# ∈ [0, 1]Π are Galois connections: ⟨α l , γ⟩ is a Galois connection
between L≥ andM≥ whereas ⟨αu , γ⟩ is a Galois connection between L≤ andM≤.
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Using the connections between the concrete and abstract domains, we proceed to
connect concrete and abstract valuation transformers. Let f ∶ [0, 1]S → [0, 1]S be a
concrete valuation transformer. An abstract transformer g#∶ [0, 1]Π → [0, 1]Π soundly
approximates f inM⊑ if

f(γ(w#)) ⊑ γ(g#(w#)). (6.2)

Intuitively, this property states that the applying the transformation f in the concrete
domain must be at least as precise as the abstract transformation in the abstract domain.
¿eremay be several abstract transformers that satisfy this property. However, in general,
for non-trivial partitions Π , abstract transformers are not as precise as their concrete
counterparts. [CC92] shows that the most precise abstract transformer f # that is sound
with respect to (6.2) is given by

f # = α ○ f ○ γ .

¿erefore, f # is o en referred to as the best transformer with respect to the Galois
connection ⟨α , γ⟩. Using results from [CC92], [Wac11] shows that for f #l and f #u given
by

f #l = α l ○ f ○ γ and f #u = αu ○ f ○ γ

it is

γ(lfp
≤
( f #l )) ≤ lfp≤( f ) ≤ γ(lfp≤( f

#
u )). (6.3)

Together with Equation (6.1), this yields lower and upper bounds for the concrete
reachability probabilities:

γ(lfp
≤
(vi #,☆ , l
M ,T ))(s) ≤ Pr

☆
s (◊T) ≤ γ(lfp≤(vi

#,☆ ,u
M ,T ))(s)

where

vi #,☆ , l
M ,T = α l ○ vi☆M ,T ○ γ (6.4)

vi #,☆ ,u
M ,T = αu ○ vi☆M ,T ○ γ . (6.5)

Given this connection, we now show that these abstract transformers can be captured
in the form of stochastic games.
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De�nition 40 (Stochastic Game). A stochastic game (SG) is a tuple

G = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩

where

» ⟨V , E⟩ is a directed graph with (�nite) vertex set V and (�nite) edge set
E ⊆ (V1 × V2) ∪ (V2 × Vp) ∪ (Vp × V1),

» V1 is the set of player 1 vertices,

» V2 is the set of player 2 vertices,

» Vp ⊆ Dist(V1) is the set of probabilistic vertices where for all µ ∈ Vp we have
µ(v′) > 0 if and only if ⟨µ , v′⟩ ∈ E, and

» V0 ⊆ V1 are the initial vertices.

In an SG, every vertex belongs to either player 1 or 2 or is a probabilistic vertex, which
is a probability distribution over player 1 vertices. ¿e two players resolve the nondeter-
minism in the vertices that belong to them. ¿at is, in player 1 vertices, player 1 makes a
decision which player 2 successor to pick and in player 2 vertices it is player 2’s turn to
choose a successor (probabilistic) vertex. Note that the edge relation of our de�nition
of an SG ensures that the game is played in a strictly alternating manner: �rst, player 1
makes a choice, then player 2 and �nally the next player 1 vertex is chosen according to
a probability distribution. We denote the successors and predecessors of a vertex v ∈ V
by succG(v) = {v′ ∈ V ∣ ⟨v , v′⟩ ∈ E} and predG(v) = {v

′ ∈ V ∣ ⟨v′ , v⟩ ∈ E} and omit the
subscript G if it clear from the context.

De�nition 41 (Strategies for Stochastic Game). Let G = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩
be an SG. A (memoryless, deterministic) strategy σi for player i ∈ {1, 2} in G is a
function

σi ∶Vi → V

such that σi(v i) ∈ succ(v i). We denote the set of player i strategies for G bySGi .
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A (memoryless, deterministic) strategy pair ⟨σ1 , σ2⟩ for G consists of a player 1
strategy σ1 and a player 2 strategy σ2.

Intuitively, a strategy pair ⟨σ1 , σ2⟩ and an SG G induce a (�nite) DTMC G⟨σ1 ,σ2⟩ by
resolving all nondeterminism in G. Using the standard unique probability measure
Pr⟨σ1 ,σ2⟩
G

on G⟨σ1 ,σ2⟩, we de�ne

Pr☆1☆2
G
(◊T) = ★1

σ1∈S
G

1

★2
σ2∈S

G

2

Pr⟨σ1 ,σ2⟩
G

(◊T).

When both players cooperate, reachability probabilities can be computed as for PA.
However, in our context, the case when both players pursue competing goals is of particu-
lar relevance. Similar to PA, one can show that these extremal reachability probabilities
are captured by the least �xed-point of particular transformers. For this, we de�ne four
transformers as follows:

vi☆1☆2
G ,T (w)(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if v ∈ T
★1

v2∈succ(v)
★2

vp∈succ(v2)
∑
v′∈V

vp(v′) ⋅w(v′) otherwise.

We can then [Con92; Wac11] use

Pr☆1☆2
G
(◊T) = lfp

≤
(vi☆1☆2
G ,T )

to characterize reachability probabilities in SG. Similar to the PA case, value iteration
approximates the probabilities by iterating these transformers starting from 0V1 .

To ease the presentation in the rest of the chapter, we introduce further notation. For a
given PAM = ⟨S , S0 ,Act , ∆⟩ and a partition Π of S , we use

[∆(s , α)]Π = {[µ]Π ∣ ⟨s , α , µ⟩ ∈ ∆}

to denote all distributions labeled with α that are available in state s ∈ S li ed to the
partition Π . We extend this notation by

[∆(s)]Π = ⋃
α∈Act(s)

[∆(s , α)]Π and [∆]Π = ⋃
s∈S
[∆(s)]Π

to additionally abstract from the action and the concrete state. We remark that in our
context (see Section 6.2), [∆(s , α)]Π , [∆(s)]Π and [∆]Π are all �nite if the partition
has �nitely many blocks.
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6.3.1 Game-based Abstraction

From now on, we assume T ⊆ S to be exactly representable in the partition Π of S , i. e.

∃T# ⊆ Π . T = ⋃
B∈T#

B .

and use T# to refer to the blocks of Π that exactly represent T .

Using the value iteration transformers vi☆
M ,T on PA and the best transformers in Equa-

tions (6.4) and (6.5), we obtain

vi #,☆ , l
M ,T (w

#)(B) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if B ∈ T#

min
s∈B

★
⟨α ,µ⟩∈∆(s)

∑
s′∈S

µ(s′) ⋅w#(B) otherwise

vi #,☆ ,u
M ,T (w

#)(B) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if B ∈ T#

max
s∈B

★
⟨α ,µ⟩∈∆(s)

∑
s′∈S

µ(s′) ⋅w#(B) otherwise.

Here, we can move from the in�mum and supremum to taking the minimum and
maximum, respectively, by exploiting that

» Π has �nitely many blocks,

» M is �nitely branching, and

» there are only �nitely many probabilities appearing inM (see Section 6.2).

From the structure of these equations, the similarity to the value iteration transformers
vi☆1☆2
G ,T for games is apparent. We now introduce the game-based abstraction [Kat+10]

of a PAM with respect to Π as an SG Ggba
M ,Π in such a way that the value iteration trans-

formers on Ggba
M ,Π coincide with the abstract value iteration transformers onM.

De�nition 42 (Game-based Abstraction). ¿e game-based abstraction ofM with
respect to Π is the SG

Ggba
M ,Π = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩

where
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» the player 1 vertices V1 = S/Π are the blocks of Π ,

» the probabilistic vertices Vp = [∆]Π are the (li ed) distributions occurring
inM,

» the player 2 vertices V2 = {[∆(s)]Π ∣ s ∈ S} are sets of probabilistic vertices,

» the initial vertices V0 = S0/Π

and the edge relation E is given as

E = {⟨vp , v1⟩ ∈ Vp × V1 ∣ vp(v1) > 0}

∪ {⟨v2 , vp⟩ ∈ V2 × Vp ∣ vp ∈ v2}
∪ {⟨v1 , v2⟩ ∈ V1 × V2 ∣ ∃s ∈ v1 . v2 = [∆(s)]Π}

Intuitively, the player 1 vertices comprise all blocks of the partition. In such a vertex,
player 1 chooses a state s ∈ S among all concrete states contained in the block. Player 2
can then choose a (li ed) probability distribution available in s that then probabilistically
determines the next player 1 state.

Example 50. Reconsider the running example SPA A from Example 49. Let the
partition Π be given as

Π =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{s0}
±
B0

, {s1 , s3 , s5}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B1

, {s2 , s4}
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

B2

, {s6}
±
B3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

and note that our target set T = {6} is trivially exactly representable in Π . Figure 6.3
shows the game-based abstraction Ggba

M ,Π where we draw player 2 vertices as squares
and probabilistic vertices as black dots. ¿emost interesting block is B1 that subsumes
three states. As s1 ∈ B1, there is a player 2 successor of B1, namely v12, that enables
all li ed distributions available in s1. In our example, this is [µ1]Π , which assigns
probability 3/100 to B2 and 97/100 to B1. ¿e latter loop is the result of treating s3 as
being equivalent to s1 by the equivalence relation associated with Π .

It is not di�cult to see that applying the value iteration transformers vi−☆2

G
gba
M ,Π ,T#

and

vi+☆2

G
gba
M ,Π ,T#

yields the desired abstract transformers vi #,☆2 , l
M ,T (w

#) and vi #,☆2 ,u
M ,T (w

#), respec-



6.3.1. Game-based Abstraction 177

B0

v02

[µ0]Π

B1

v12 v22

[µ1]Π [µ5]Π

B2

v32 [µ2]Π

B3

v42 [µ6]Π

1

97/100

3/100 1

1 1

Figure 6.3: ¿e game-based abstraction Ggba
M ,Π for Example 50.



178 Chapter 6. Game-Based Abstraction-Re�nement

tively. ¿is immediately gives rise to the following theorem.

¿eorem 2 (Correctness of Game-based Abstraction [Kat+10]). For G = Ggba
M ,Π

Pr−☆2
G
(◊T#) ≤ Pr☆2

M
(◊T) ≤ Pr+☆2

G
(◊T#).

¿is theorem asserts that the game-based abstraction fromM and Π yields lower and
upper bounds on both the minimal and maximal reachability probabilities.

Example 51. Recall the SG from Example 50. We have

Pr−−G (◊T#) = Pr−+G (◊T#) = 0
Pr+−G (◊T#) = Pr++G (◊T#) = 1

and therefore only trivial bounds for the reachability probabilities inM can be
derived from the game-based abstraction for the selected partition Π .

While game-based abstraction re�nement has been shown to reduce model sizes by
orders of magnitude [Kat+10], the same source observes that the construction of the
game typically dominates the presented abstraction-re�nement loop signi�cantly. Recall
that our ultimate goal is to build the abstraction from the symbolic representation
of the PA in terms of an SPA directly without �rst building a representation of the
concrete state space. While it is possible to derive Ggba

M ,Π from such models using
Smt solvers, it inherently requires to consider combinations of edges in the abstraction
process. Ultimately, this is rooted in the fact that the value iteration transformers for
the PA and the associated best abstract transformers optimize over all distributions
available in a speci�c state, which arise from di�erent edges of the symbolic model.
As mentioned above, this can be prohibitively expensive for the abstraction process.
Optimally, concerning the abstraction process, we would like to consider all edges
individually and combine the abstractions to obtain an abstraction of the overall model.

6.3.2 Menu-based Abstraction

Consider the concrete transformer

me☆
M ,T(w)(s) = ★

α∈Act(s)
me☆
M ,T[α](w)(s)
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that updates the value of a state by optimizing over the sub-transformerme☆
M ,T[α]. For

the case where☆ = +, the sub-transformer is given by

me+M ,T[α](w)(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ T
0 if s /∈ T ∧ α /∈ Act(s)
max

⟨α ,µ⟩∈∆(s)
∑
s′∈S

µ(s′) ⋅w(s′) otherwise.

We call these transformers menu-based (sub)transformers as the overall transformer
me☆
M ,T selects the action “from a menu”. ¿e maximizing menu-based subtransformer

�rst maximizes over all choices of a given state s with a particular action label α and
then maximizes over all available actions in s to obtain the value of s in the transformed
valuation. As it turns out, we have to be bit more careful for the minimizing counterpart
me−M ,T[α] and de�ne

me−M ,T[α](w)(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if s ∈ T ∨ α /∈ Act(s)
min

⟨α ,µ⟩∈∆(s)
∑
s′∈S

µ(s′) ⋅w(s′) otherwise.

¿e di�erence here is that the transformer also needs to return 1 in case the action is
not enabled in the selected state. Intuitively, this is because it is implicitly forbidden to
select this action in the state if it is not even enabled.

Clearly, we have vi☆
M ,T = me

☆
M ,T , so until now we have only rephrased the transformer

de�nition. However, the chosen formulation allows to consider the subtransformer
me+M ,T[α] separately. Letting

me #,☆ , l
M ,T [α] = α l ○me #,☆M ,T[α] ○ γ , and

me #,☆ ,u
M ,T [α] = αu ○me #,☆M ,T[α] ○ γ

be the best abstract transformers for the menu-based subtransformer with respect to the
lower and upper abstractions of the two Galois connections, we can de�ne the abstract
transformers as

me #,☆ , l
M ,T (w

#)(B) = min
α∈Act(B)

me #,☆ , l
M ,T [α](w

#)(B)

me #,☆ ,u
M ,T (w

#)(B) = max
α∈Act(B)

me #,☆ ,u
M ,T [α](w

#)(B).

Similar to the value iteration transformers, we have

γ(lfp
≤
(me #,☆ , l

M ,T ))(s) ≤ Pr
☆
s (◊T) ≤ γ(lfp≤(me

#,☆ ,u
M ,T ))(s)
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due to Equation (6.3). Again, we can formulate an SG such that the value iteration
transformers on the game correspond to the abstract menu-based transformers.

De�nition 43 (Menu-based Abstraction). LetM = ⟨S , S0 ,Act , ∆⟩ be a PA and
Π a partition of S . ¿emenu-based abstraction (or simplymenu-game) ofM with
respect to Π is the SG

GmbaM ,Π = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩

where

» the player 1 vertices V1 = S/Π ⊎ {v1⊥} are the blocks of Π together with a
unique trap vertex v1⊥,

» the player 2 vertices V2 = {⟨v1 , α⟩ ∈ V1 ×Act ∣ ∃α ∈ Act(v1)} ⊎ {v2⊥} are
induced by the actions enabled in the states of the PA that are contained in
the player 1 vertices,

» the probabilistic vertices Vp = [∆]Π ⊎ {v p⊥} are the (li ed) distributions
occurring inM,

» the initial vertices V0 = S0/Π

and the edge relation E is given as

E = {⟨v1 , v2⟩ ∈ V1 × V2 ∣ v2 = ⟨v1 , α⟩ ∧ α ∈ Act(v1)}
∪ {⟨v2 , vp⟩ ∈ V2 × Vp ∣ v2 = ⟨v1 , α⟩ ∧ ∃s ∈ v1 . vp ∈ [∆(s , α)]Π}

∪ {⟨v2 , v
p
⊥⟩ ∈ V2 × Vp ∣ v2 = ⟨v1 , α⟩ ∧ ∃s ∈ v1 . α /∈ Act(s)}

∪ {⟨v1⊥ , v2⊥⟩ , ⟨v2⊥ , v
p
⊥⟩}

∪ {⟨vp , v1⟩ ∈ Vp × V1 ∣ vp(v1) > 0} .

Example 52. Reconsider the running example SPA A from Example 49 and the
partition Π from Example 50. ¿e menu-based abstraction GmbaM ,Π is shown in
Figure 6.4. Again, the most interesting block is B1. Since B1 subsumes a state (s1) for
which γ is not enabled as well as a state (s5) for which β is not enabled, the two player
2 successors of B1 both have the option to move to the (probabilistic) bottom state
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B0

v02

[µ0]Π

B1

v12 v22

[µ1]Π [µ5]Π

B2

v32 [µ2]Π

B3

v42 [µ6]Π

v p⊥

v1⊥ v2⊥

α

1

β97/100

3/100
1

γ

1

δ 1 δ 1

Figure 6.4: ¿e menu-based abstraction GmbaM ,Π for Example 52.
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v p⊥ . ¿e other choices of these player 2 vertices are the same as for the game-based
abstraction and therefore correspond to [µ1]Π and [µ5]Π , respectively.

We remark that this de�nition becomes slightly more complex in the presence of dead-
lock states inM, which we ruled out by our assumptions (Section 6.2). Intuitively, this
is because they have no possible way to continue, but the abstract game does not re�ect
that. ¿at is, deadlock states are simply disregarded, which is clearly wrong. To account
for deadlock states, the blocks that contain such states can, for example, be equipped
with a self-loop.

One can show that the value iteration transformers on GmbaM ,Π correspond to the abstract
menu-based transformers in the following sense:

vi−−
Gmba
M ,Π ,T#∪{v 1⊥}

= me #,−, l
M ,T

vi−+
Gmba
M ,Π ,T#∪{v 1⊥}

= me #,−,u
M ,T

vi+−
Gmba
M ,Π ,T# = me #,+, lM ,T

vi++
Gmba
M ,Π ,T# = me #,+,uM ,T .

Note that to realize the minimizing abstract menu-based transformers me #,−, l
M ,T and

me #,−,u
M ,T , the trap vertex v

1
⊥ is considered as an additional target state. ¿is is due to the

idiosyncrasy of theme−M ,T[α] transformer that returns 1 for states that do not have α
enabled.

We can now summarize the correctness of menu-based abstraction as follows.

¿eorem 3 (Correctness of Menu-based Abstraction). For G = GmbaM ,Π

Pr−−G (◊ (T# ∪ {v1⊥})) ≤ Pr−M (◊T) ≤ Pr−+G (◊ (T# ∪ {v1⊥})) , and
Pr+−G (◊T#) ≤ Pr+M (◊T) ≤ Pr++G (◊T#) .

It is clear that menu-based abstraction is at most as precise as game-based abstraction,
because the latter is a representation of the best abstract transformers vi #,☆2 , l

M ,T (w
#) and

vi #,☆2 ,u
M ,T (w

#). [Wac11] shows that in general the menu-based abstraction may be less
precise for a given partition Π . In other words, it might be that the bounds obtained
from the menu-game provide less information than the bounds obtained from the
game-based abstraction. While losing precision is clearly not desirable, we want to
stress that the menu-game can be derived by considering edges of the SPA in isolation.
Because of this appealing property, we from now on focus solely on them.
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Example 53. As the bounds obtained from the menu-game in Example 52 can be at
most as precise as the ones obtained from the game-based abstraction in Example 50,
we trivially also obtain the bounds [0, 1] from the former for both minimal and
maximal reachability probabilities with respect to T .

6.3.3 RepresentingMenu-Games using Decision Diagrams

We now describe how to represent menu-games using DDs. Similar to representing
Markov chains, probabilistic automata and Markov automata (see Section 2.5), we use
the variable set

VarG = {x1 , . . . , xn}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

⊎{x′1 , . . . , x′n}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S′

⊎{a1 , . . . , ak}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⊎{o1 , . . . , om}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O

.

Here, we use

» S and S ′ encode the player 1 source and target vertices including v1⊥,

» the k variables inA to encode the choices of player 1, and

» the m variables inO to encode the choices of player 2.

Because of the strictly alternating fashion in which players take turns in our notion
of stochastic games, we can encode player 2 vertices over the variables S ⊎ A and
probabilistic vertices over S ⊎A ⊎O. To do this, we also assume that player 2 and
probabilistic vertices are not shared between di�erent player 1 and player 2 vertices.
¿at is, for v2 ∈ V2 and vp ∈ Vp , pred(v2) and pred(vp) are singletons. While the
former is already implied by De�nition 43, the latter can be achieved by creating copies
of probabilistic vertices without a�ecting the reachability probabilities of the game.
Because of this uniqueness, we sometimes qualify probabilistic vertices vp by their
corresponding player 2 vertex ⟨v1 , α⟩ and write ⟨v1 , α , vp⟩ instead of just vp . Similar to
before, we assume encodings ⟨v1⟩, ⟨⟨v1 , α⟩⟩, ⟨⟨v1 , α , µ⟩⟩ for player 1, 2 and probabilistic
vertices, respectively, We then encode the edge relation E enriched with the distributions
given by the probabilistic vertices as an MTBDDME such that

ME(S ← ⟨v⟩ ,A ← ⟨⟨v , α⟩⟩ ,O ← ⟨⟨v , α , µ⟩⟩ ,S ′ ← ⟨v′⟩)

=
⎧⎪⎪⎨⎪⎪⎩

µ(v′) if α ∈ Act(v) ∧ ∃s ∈ v . (µ ∈ [∆(s , α)]Π ∨ (α /∈ Act(s) ∧ µ = δv 1⊥))
0 otherwise.
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abstract game partition

solve game re�nement

model property

bounds

too imprecise

Figure 6.5: Overview of Abstraction-Re�nement using Games.

6.4 Abstraction-Re�nement using Games

In this section, we formulate an abstraction-re�nement loop. For the abstraction part,
we use the aforementionedmenu-games as a way to implement the abstract menu-based
transformers. Figure 6.5 gives an overview of the approach. First, the abstract game
is built from the current partition and the symbolic model description, which in our
case is the SPA A. Initially, the partition is derived from the target set T given by the
property. Solving the game with proper optimization directions for the two players then
yields lower and upper bounds on the minimal and maximal probabilities to satisfy
the reachability property. If the bounds are precise enough, they are returned as the
analysis result. In case the bounds are too imprecise, a re�nement needs to take place
that results in a �ner partition. ¿is loop is iterated until a desired precision is achieved
or a given veri�cation task can be conclusively answered.

6.4.1 Predicate Abstraction

Both game-based abstractions have in common that they “merge” states in the form of
player 1 vertices. In our context, we strive to derive the abstract games directly from
A rather than buildingM �rst and then extracting the game from it. To this end, we
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employ predicate abstraction [GS97]. Here, we assume that the partition Π of the state
space ofM is given implicitly by a set of predicates Φ ⊆ Bxp(Var). Every predicate
φ ∈ Φ partitions the variable valuations ν over Var into two parts: those that satisfy
the predicate (ν ⊧ φ) and those that do not (ν /⊧ φ). Hence, n predicates in Φ split the
(potentially in�nitely many) variable valuations into �nitely (up to 2n) many blocks that
are the equivalence classes of ≡Φ de�ned by

ν ≡Φ ν′ ⇐⇒ (ν ⊧ φ ⇐⇒ ν′ ⊧ φ) for all φ ∈ Φ

for two variable valuations ν , ν′ ∈ Val(Var). We li this equivalence to the state space S
by

⟨ℓ , ν⟩ ≡Φ ⟨ℓ′ , ν′⟩ ⇐⇒ ℓ = ℓ′ ∧ ν ≡Φ ν′ .

and let this de�ne the partition Π . In other words, we treat states that disagree on their
location component as not equivalent, because a di�erent location typically indicates
a signi�cantly di�erent behavior. However, this is merely a choice and may as well be
resolved di�erently.

Recall that we assume the target states to be characterized by an expression ηT (see
Section 6.2) and that for the game-based abstractions we require the target set T to be
exactly representable. ¿is can be easily achieved by including the predicate ηT in the
predicate set Φ .

For a block B ∈ Π , we let ℓ(B) denote the (unique) location of the states in B . For a set of
predicatesΦ = {φ0 , . . . , φn−1}, an equivalence class of ≡Φ can be represented using a bit
vector of length n. ¿at is, using the variablesB = {b i ∣ 0 ≤ i < n} a block corresponds
to a valuation ν ∈ Val(B) together with the location ℓ(B) and we therefore also write
a block B as a tuple ⟨ℓ , ν⟩ consisting of a location ℓ and a valuation ν ∈ Val(B). In
particular, we use the notation B(b i) ∈ {0, 1} to refer to the truth value of b i in the
block B .

Within the context of an abstraction-re�nement loop, representing partitions using
predicates also has the advantage that re�nement is amatter of adding a suitable predicate
toΦ . Note that with our assumption that all expressions inA as well as the predicates are
in LIA, an Smt solver can be used to determine whether two valuations are equivalent
with respect to ≡Φ .

For the remainder of this chapter, we assume a set of predicates Φ = {φ0 , . . . , φn−1}
that represents the partition Π of the state space S induced by ≡Φ . Furthermore, we
assume copies Var1 ,Var2 , . . . of the variables in Var with Var i = {xi ∣ x ∈ Var} and
let Var≤k = ⋃k

i=0 Var i with Var0 = Var . Similarly, we use the copiesB1 ,B2 , . . . of the
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variables inB withB j = {b j
i ∣ b i ∈B}. Here, we also letB0 = {b0i ∣ 0 ≤ i < n} with

b0i = b i , so we haveB0 =B. Finally, we letB≤k = ⋃k
i=0Bi .

Example 54. Recall the partition Π from Example 50:

Π =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{s0}
±
B0

, {s1 , s3 , s5}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B1

, {s2 , s4}
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

B2

, {s6}
±
B3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

¿is partition can be expressed using the predicates

Φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

phase = 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ0

, phase = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ1

, phase = 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ2

, phase = 3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

that distinguish all values of the domain of phase. For example, B1 consists of all the
states ⟨ℓ0 , ν⟩ for which ν ⊧ phase = 1.

We remark that the partition induced by Φ is not strictly the same as Π , because
Π is already restricted to the set of reachable states. As our goal is not to compute
the set of reachable states but derive the abstraction directly from A, in practice
we do not know which states are reachable. From now on, we assume Π to be
induced by ≡Φ and therefore to range over all states. In our case, this amounts to
B i = {⟨ℓ0 , ν⟩ ∈ S# ∣ ν ⊧ phase = i}.

6.4.2 BuildingMenu-Games from SPA

6.4.2.1 Logical Characterization of Abstract Semantics

Before we show how to phrase the derivation of menu-based abstraction in terms of
Smt queries, we illustrate the same process for the concrete semantics. ¿at is, we
derive formulas from the edges of the SPA A such that the solutions to these formulas
correspond exactly to the choices in PAM.

De�nition 44 (Semantics of an Edge). Let e = ⟨ℓ , g , α ,D⟩ ∈ E be an edge. ¿e
semantics of e is given by

JeK = {⟨s , α , µ⟩ ∣ s = ⟨ℓ , ν⟩ ∈ S ∧ µ = JDKA(ν)} .
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Using the de�nition of the semantics of a (probabilistic) edge, the transition relation ∆
of the PAM can be written as

∆ = ⋃
e∈E

JeK.

For the rest of the chapter, we order the elements of the (�nite) support of a symbolic
probability distribution D as supp(D) = {⟨aD1 , ℓ

D
1 ⟩ , . . . , ⟨a

D
h , ℓ

D
h ⟩} with h = ∣D∣.

De�nition 45 (Transition Constraint). Let e = ⟨ℓ , g , α ,D⟩ ∈ E be a (probabilistic)
edge. ¿e transition constraint for e is

φe = g ∧
∣D ∣
⋀
i=1
Var i = aDi

where Var i = aDi is a shorthand for

⋀
x∈Var ,
aDi (x)≠⊥

xi = aDi (x) ∧ ⋀
x∈Var ,
aDi (x)=⊥

xi = x .

Lemma 4. Let e = ⟨ℓ , g , α ,D⟩ ∈ E be an edge. ¿en, for ν ∈ Val(Var≤∣D ∣)

ν ⊧ φe ⇐⇒ ⟨⟨ℓ , ν ∣Var ⟩ , α , µν ⟩ ∈ JeK

where

µν(ℓ′ , ν′) =
∣D∣

∑
i=1

⎧⎪⎪⎨⎪⎪⎩

D(aDi , ℓ
D
i ) if ℓ′ = ℓDi and for all x ∈ Var . ν′(x) = ν(xi)

0 otherwise.

Consequently, φe logically characterizes the semantics of e:

JeK = {⟨⟨ℓ , ν ∣Var ⟩ , α , µν ⟩ ∣ ν ⊧ φe} .

Example 55. Reconsider the SPA from Example 49. In particular, consider the edge
eβ = ⟨ℓ0 , phase = 1 ∧ run > 0, β,Dβ⟩ with

Dβ(a , ℓ0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

97/100 if a = a1
3/100 if a = a2
0 otherwise
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and a1 = a⊥[run ↦ run − 1], a2 = a⊥[phase ↦ 3]. A corresponding transition
constraint must refer to three variable sets Var0 = Var = {phase , run}, Var1 =
{phase1 , run1} andVar2 = {phase2 , run2}, whereVar0 are the “source-state variables
instances” and the others are the “destination-state variables instances” – one instance
per assignment.

¿e transition constraint φeβ is given as

phase = 1 ∧ run > 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g(eβ)

∧ phase1 = phase ∧ run1 = run − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Var1=a1

∧ phase2 = 3 ∧ run2 = run
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Var2=a2

.

¿is constraint symbolically characterises the semantics of eβ , since its solutions
induce JeβK. For example, the solution ν with

ν(phase) = 1 ν(run) = 2
ν(phase1) = 1 ν(run1) = 1
ν(phase2) = 3 ν(run2) = 2

corresponds to the tuple ⟨s1 , β, µ1⟩ ∈ JeβK (see Figure 6.2).

Since φe characterizes the transitions ofM that are generated by the edge e, one could,
in principle, enumerate all solutions to φe for all edges e and obtain all choices ofM.

As we would like to enumerate the solutions of a formula to obtain the abstract behavior
of the edge e, we now turn to de�ne the abstract semantics of an edge.

De�nition 46 (Abstract Semantics of an Edge). Let e = ⟨ℓ , g , α ,D⟩ ∈ E be an edge.
¿e abstract semantics of e is given by

JeK# = {⟨B , α , µ′⟩ ∣ B ∈ Π ∧ ∃ ⟨ℓ , ν⟩ ∈ B . µ = JDKA(ν) ∧ µ′ = [µ]Π} .

Before formulating a formula that captures the abstract semantics of an edge, we formu-
late an essential building block. Recall that the partition Π is represented using a set
Φ = {φ0 , . . . , φn−1} of n predicates and that one block of the partition corresponds to a
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bit vector over the variablesB (together with the unique location of B). We let

B j =
n−1
⋀
i=0
(b j

i ⇐⇒ φ i)

and remark that the solutions of B0 characterize the non-empty blocks of the partition
Π in terms of the variablesB0 =B.

Let S# = Loc ×Val(B) denote the abstract state space. For a given Boolean expression
η ∈ Bxp(Var), we can logically characterize the set of blocks containing a state ⟨ℓ , ν⟩ ∈ S
with ν ⊧ η by

JηK# = {⟨ℓ , ν⟩ ∈ S# ∣ ν ⊧ φ#η} ,

where φ#η = η ∧ B0 is the abstract expression constraint for η . For convenience, we
furthermore let JηK#(ℓ) denote all blocks in JηK# that have location ℓ .

Similar to the transition constraint that expresses the semantics of an edge, we nowde�ne
the abstract transition constraint that captures the abstract semantics of an edge.

De�nition 47 (Abstract Transition Constraint). Let e = ⟨ℓ , g , α ,D⟩ ∈ E be an
edge. ¿e abstract transition constraint for e is

φ#e = g ∧ B0 ∧
∣D ∣
⋀
j=1
wp(B j , aDj ).

Here, we use the weakest precondition of B j with respect to the jth assignment aDj (x)
of the distribution D. ¿is replaces all occurrences of variables of Var in B j by their
assigned expressions according to aDj (x). Intuitively, this encodes the behavior of the
assignments with respect to the target predicates in terms of the source state variables.
Using this de�nition, the following holds.

Lemma 5. Let e = ⟨ℓ , g , α ,D⟩ ∈ E be an edge. ¿en, for ν ∈ Val(B≤∣D ∣)

ν ⊧ φ#e ⇐⇒ ⟨⟨ℓ , ν ∣B⟩ , α , µ#ν ⟩ ∈ JeK#

where

µ#ν(ℓ′ , ν′) =
∣D∣

∑
j=1

⎧⎪⎪⎨⎪⎪⎩

D(aDj , ℓ
D
j ) if ℓ′ = ℓDj and for all 0 ≤ i < n . ν

′(b i) = ν(b j
i)

0 otherwise.
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Consequently, φ#e logically characterizes the abstract semantics of e:

JeK# = {⟨⟨ℓ , ν ∣B⟩ , α , µ#ν ⟩ ∣ ν ⊧ φ#e} .

Example 56. Reconsider the edge eβ and its symbolic probability distribution Dβ
fromExample 55 and the set or predicatesΦ fromExample 54. ¿e abstract transition
constraint φ#eβ is

phase = 1 ∧ run > 0

∧ (b00 ⇐⇒ phase = 0) ∧ (b10 ⇐⇒ phase = 1)
∧ (b20 ⇐⇒ phase = 2) ∧ (b30 ⇐⇒ phase = 3)

∧ (b01 ⇐⇒ phase = 0) ∧ (b11 ⇐⇒ phase = 1)
∧ (b21 ⇐⇒ phase = 2) ∧ (b31 ⇐⇒ phase = 3)

∧ (b02 ⇐⇒ 3 = 0) ∧ (b12 ⇐⇒ 3 = 1)
∧ (b22 ⇐⇒ 3 = 2) ∧ (b32 ⇐⇒ 3 = 3)

} g(eβ)

⎫⎪⎪⎬⎪⎪⎭
B0

⎫⎪⎪⎬⎪⎪⎭
wp(B1 , a1)

⎫⎪⎪⎬⎪⎪⎭
wp(B2 , a2)

We observe that B0 and wp(B1 , a1) di�er only in the variables used to encode the
target block. ¿is is because the assignment a1 of Dβ (Example 55) only changes the
value of the variable run, but this change cannot be observed using the predicates Φ
that only refer to phase.

Now, it is easy to see that there is exactly one solution ν of this constraint over the
variablesB≤2, namely

ν(b00) = ν(b20) = ν(b30) = ν(b01 ) = ν(b21 ) = ν(b31 ) = ν(b02) = ν(b12) = ν(b22) = 0
ν(b10) = ν(b11) = ν(b32) = 1.

¿eprojection of ν to the variables inB corresponds to the source predicate valuation.
As only ν(b10) = 1, i. e. phase = 1, the source block is B1. By looking at the variablesB1
we can read o� that the �rst assignment leads back to B1. Similarly, we determine the
successor block of the second assignment to be B2, i. e. the block for which phase = 3
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is true. Consequently, we have

µ#ν(ℓ0 , ν′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

97/100 if ν′(φ i) = 1 ⇐⇒ i = 1
3/100 if ν′(φ i) = 1 ⇐⇒ i = 3
0 otherwise

and therefore µ#ν(ℓ0 , ν′) = [µ1]Π available in B1 (see Figure 6.4).

6.4.2.2 Logical Characterization of Menu-Games

We just showed that we can derive the abstract (or concrete) semantics of edges by
enumerating the solutions of logical constraints φ#e (or φe ). It remains to illustrate
that we can phrase the de�nition of the menu-game GmbaJAK,Π in terms of our logical
characterization of edges in the SPA A. ¿e following lemma [Wac11] bridges this gap.

Lemma 6. ¿e menu-game

GmbaJAK,Π = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩

can be obtained with

» V1 = Π ⊎ {v1⊥},

» V2 = ⋃
e∈E
{⟨v1 , α⟩ ∈ V1 ×Act ∣ ⟨v1 , α , µ⟩ ∈ JeK#} ⊎ {v2⊥},

» Vp = ⋃
e∈E
{µ ∣ ⟨v1 , α , µ⟩ ∈ JeK#},

» V0 = JInit0 ∧ ⋀
x∈Var

x ∈ Dom(x)K#(ℓ0),

and the edge relation

E = ⋃
e∈E
{⟨v1 , v2⟩ ∣ ℓ = src(e) ∧ v1 ∈ Jg(e)K#(ℓ) ∧ v2 = ⟨v1 , α(e)⟩}

∪ ⋃
e∈E
{⟨v2 , vp⟩ ∣ v2 = ⟨v1 , α⟩ ∧ ⟨v1 , α(e), vp⟩ ∈ JeK#}

∪ ⋃
e∈E
{⟨v2 , v

p
⊥⟩ ∣ v2 = ⟨v1 , α(e)⟩ ∧ v1 ∈ J¬g(e)K#}

∪ {⟨v1⊥ , v2⊥⟩ , ⟨v2⊥ , v
p
⊥⟩}

∪ {⟨vp , v′⟩ ∣ vp(v′) > 0} .
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In other words, the edge relation E can be expressed solely in terms of JbK# for b ∈
Bxp(Var) and JeK# for an edge e ∈ E.

6.4.2.3 Algorithmically Building Menu-Games

¿ese formulae can be dispatched to an o�-the-shelf Smt solver that supports the
required theory. More concretely, we can use AllSat procedures

» over the variables B0 to enumerate the solutions of φ#η to determine JηK# for
expressions η ∈ Bxp(Var), and

» over the variablesB≤k to enumerate the solutions of φ#e to determine JeK# for an
edge e whose symbolic probability distribution has a support of size k.

Since edges can be considered in isolation, we �rst formulate building an MTBDD char-
acterizing the choices in GmbaM ,Π that are associated with a single edge e ∈ E. Algorithm 8
uses the aforementioned AllSat enumeration in lines 3 and 18 to realize this. Lines 3
to 7 build a cache that maps source (player 1) vertices of the game to their choices in
terms of player 2, probabilistic and player 1 successor vertices. ¿e next block (lines 9
to 14) combines the entries of the cache to an MTBDDMe that represents all choices
associated with edge e without the transitions to v1⊥. ¿ese transitions are computed in
the last block (lines 17 to 20) before the overall result is constructed in line 21.

In a second step, we develop Algorithm 9 that combines the MTBDDs representing the
menu-game fragments related to single edges to the MTBDDM#

A that represents the
full menu-game. It uses Algorithm 8 as a subroutine and combines the subresults in
lines 3 and 4 before adding the “loop” at v1⊥ (via v2⊥ and v

p
⊥) in line 5.

Algorithm 9 can be easily extended to perform a reachability analysis and remove all
unreachable vertices from the game. As this is a standard procedure, we do not go into
details here and simply assume that the resulting game is restricted to its reachable
fragment.

Mostly for completeness reasons, we include Algorithm 10 that takes a Boolean ex-
pression η over the variables Var and computes the BDD representation Bη of JηK#.
Depending on the expression η , it serves several purposes. For example, choosing
η = Init0 ∧ ⋀

x∈Var
x ∈ Dom(x) yields a BDD that characterizes the initial vertices of the

abstract game. Similarly, it can be used to derive the abstract target vertices, because the
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Algorithm 8: Abstraction of a single edge.
1 function AbstractEdge(e = ⟨ℓ , g , α ,D⟩):

input: e: a (probabilistic) edge of the SPA A to abstract
output: an MTBDD representing the abstraction of the edge

2 cache← ∅
3 foreach ⟨v1 , α , µ⟩ ∈ JeK# do // enumerate abstract semantics of edge
4 Mµ ← Const (0)
5 foreach v′ ∈ supp(µ) do
6 Mµ ← Mµ + Encode (S ′ ← ⟨v′⟩) ⋅Const (µ(v′))
7 cache[v1]← cache[v1] ∪ {Mµ}
8

9 Me ← Const (0)
10 foreach ⟨v1 , {M1

µ , . . . ,Mm
µ }⟩ ∈ cache do // combine distributions toMe

11 M ← Const (0)
12 for i ∈ {1, . . . ,m} do
13 M ← M +Mi

µ ⋅ Encode (O ← ⟨i⟩)
14 Me ← Me + Encode (S ← ⟨v1⟩) ⋅M
15 Be ← ExistAbstract (A ⊎O ⊎ S ′ ,Me ≠ 0) // compute source blocks
16

17 M⊥ ← Const (0)
18 foreach v1 ∈ J¬gK# do // determine transitions to v1⊥
19 M⊥ ← M⊥ + Encode (S ← ⟨v1⟩ ,O ← ⟨⟨v1 , ⟨v1 , α⟩ , δv 1⊥⟩⟩ ,S

′ ← ⟨v1⊥⟩)
20 M⊥ ← Be ⋅M⊥
21 return (Me +M⊥) ⋅ Encode (A ← ⟨α⟩)
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Algorithm 9: Abstraction of an SPA.
1 function AbstractModel(A):

input: A: the SPA to abstract with edge set E
output: an MTBDD representing the abstraction of the SPA A

2 M#
A ← Const (0)

3 foreach e ∈ E do // combine MTBDDs for abstract behavior
4 M#

A ← M#
A +AbstractEdge(e)

5 M#
A ← M#

A ⋅ Encode (S ← ⟨v1⊥⟩ ,A ← ⟨v2⊥⟩ ,O ← ⟨v
p
⊥⟩ ,S ′ ← ⟨v1⊥⟩)

6 returnM#
A

Algorithm 10: Abstraction of an expression.
1 function AbstractExpression(η):

input: η : an expression from Bxp(Var) to abstract
output: a BDD representing the abstraction JηK#

2 Bη ← Const (0)
3 foreach v1 ∈ JηK# do // enumerate abstract blocks
4 Bη ← Bη + Encode (S ← ⟨v1⟩)
5 return Bη

target set T is given in terms of an expression ηT over the variables of A (and a target
location ℓT).

6.4.3 SolvingMenu-Games

Given the menu-based abstraction G = GmbaM ,Π ofM, ¿eorem 3 states that the minimal
and maximal reachability probabilities inM with respect to the target state T are
bounded from below and above by reachability probabilities in G. In general, the �rst
player minimizes or maximizes based on the direction of the property and the second
player minimizes or maximizes based on whether the lower or upper bound is to be
computed. In the minimizing case, the abstract target set T# is extended with v1⊥ to
account for the peculiarities of the menu-based subtransformerme−M ,T[α].

Given the MTBDD M#
A that represents the menu-based abstraction G, the next step

is to compute the corresponding reachability probabilities with respect to the target
vertices. We refer to the abstract target set by T# and pretend that it includes v1⊥ in
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case of bounding minimal reachability probabilities inM. As we use the algorithms
presented in this section in the particular context of menu-based abstraction of PA, we
choose to maintain the same notation as before, but remark that the algorithms are
applicable to general (�nite) SGs.

6.4.3.1 Qualitative Solution

Similar to standard approaches to model checking PA, we break the solution process up
into two parts. In the �rst step, we solve the game qualitatively. ¿at is, we compute all
(player 1) vertices with reachability probability 0 or 1 given the optimization directions
☆1 and☆2 of the two players. Just like for PA, the algorithms for this abstract from the
actual probabilities and only need to consider the graph structure (i. e. the edge relation
E) of the game.

We start with Algorithm 11 (Prob0) that determines the vertices that have probability 0
to reach the target states T#. ¿e approach of the algorithm is to perform a backward
search through the game starting from vertices in T# and add all vertices encountered
this way to the set V>01 . Ultimately, this set contains all vertices, which have a probability
strictly greater than 0 and the result can therefore be obtained by inverting V>01 with
respect to V1.

¿e algorithm can be understood as a �xed-point iteration that proceeds as long as
new vertices were found with probability greater than 0. In this backward iteration,
it depends on the optimization directions of the players which vertices are added.
Roughly speaking, if a player maximizes (☆ = +) it su�ces that there is at least one
successor whose reachability probability is known to be greater than 0. In contrast, when
minimizing (☆ = −), a vertex is only added if all successors have probability greater
than 0. Intuitively, this is because the minimizing player tries to avoid such successor
vertices whenever possible.

We now turn to Algorithm 12 (Prob1) that computes all (player 1) vertices from which
the probability to reach T# with the two optimization directions ☆1 and ☆2 is 1. In
contrast to Prob0, Prob1 requires a double �xed-point computation, which is not
surprising as this is already the case for PA. Intuitively, the reason for the double �xed-
point is that there may be mutual dependencies between vertices that govern whether
these vertices are in the solution or not. In particular, it is too restrictive to amend the
approach of Algorithm 11 by replacing the (implicit) existential quanti�cation in line 6
with a universal quanti�cation (and not inverting the result in line 16). ¿is would, for
example, not �nd vertices that probabilistically branch to a target state and itself even
though these vertices clearly have a reachability probability equal to 1.
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Algorithm 11: Compute vertices with probability 0.
1 function Prob0(G = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩ ,☆1 ,☆2 , T# ⊆ V1):

input: G: the SG for which to compute the vertices with probability 0,
☆1: the optimization direction of player 1,
☆2: the optimization direction of player 2,
T#: the set of abstract target vertices

output: the (player 1) vertices with probability 0
2 V>0,old1 ← ∅
3 V>01 ← T#

4 while V>01 ≠ V>0,old1 do // �xpoint iteration until no new vertices found
5 V>0,old1 ← V>01
6 V>0p ← {vp ∈ Vp ∣ V>01 ∩ succG(vp) ≠ ∅} // perform probabilistic step
7 if ☆2 = + then // perform player 2 step
8 V>02 ← {v2 ∈ V2 ∣ succG(v2) ∩ V>0p ≠ ∅}
9 else
10 V>02 ← {v2 ∈ V2 ∣ succG(v2) ⊆ V>0p }
11 if ☆1 = + then // perform player 1 step
12 V>01 ← {v1 ∈ V1 ∣ succG(v1) ∩ V>02 ≠ ∅}
13 else
14 V>01 ← {v1 ∈ V1 ∣ succG(v1) ⊆ V>02 }
15 V>01 ← V>01 ∪ T# // re-add target vertices
16 return V1 ∖ V>01 // invert solution w.r.t. player 1 vertices
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Algorithm 12: Compute vertices with probability 1.
1 function Prob1(G = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩ ,☆1 ,☆2 , T# ⊆ V1):

input: G: the SG for which to compute the vertices with probability 1,
☆1: the optimization direction of player 1,
☆2: the optimization direction of player 2,
T#: the set of abstract target vertices

output: the (player 1) vertices with probability 1
2 Vmaybe1 ← V1
3 V=11 ← T#

4 while Vmaybe1 ≠ V=11 do // outer �xpoint iteration
5 Vmaybe1 ← V=11
6 V=11 ← T#

7 V=1,old1 ← ∅
8 while V=11 ≠ V=1,old1 do // inner �xpoint iteration
9 V=1,old1 ← V=11

// perform probabilistic step
10 V=1p ← {vp ∈ Vp ∣ succG(vp) ⊆ V

maybe
1 ∧ succG(vp) ∩ V=11 ≠ ∅}

11 if ☆2 = + then // perform player 2 step
12 V=12 ← {v2 ∈ V2 ∣ succG(v2) ∩ V=1p ≠ ∅}
13 else
14 V=12 ← {v2 ∈ V2 ∣ succG(v2) ⊆ V=1p }
15 if ☆1 = + then // perform player 1 step
16 V=11 ← {v1 ∈ V1 ∣ succG(v1) ∩ V=12 ≠ ∅}
17 else
18 V=11 ← {v1 ∈ V1 ∣ succG(v1) ⊆ V=12 }
19 V=11 ← V=11 ∪ T# // re-add target vertices

20 return V=11
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Algorithm 13: Implementation of the value iteration transformers vi☆1☆2
G ,T# .

1 function ValueIterationStep(G = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩ ,☆1 ,☆2 , T# ,w#):
input: G: the SG for which perform the value iteration step,

☆1: the optimization direction of player 1,
☆2: the optimization direction of player 2,
T#: the set of abstract target vertices,
w#: the initial abstract (player 1) vertex valuation

output: the abstract valuation a er one application of vi☆1☆2
G ,T#

2 foreach v1 ∈ V1 do
3 if v1 ∈ T# then
4 w#(v1)← 1 // explicitly set values of target states
5 else
6 w#(v1)← ★1

v2∈succG(v1)
★2

vp∈succG(v2)
∑
v′1∈V1

vp(v′1) ⋅w#(v′1)

7 return w#

¿e algorithm proceeds as follows. Starting with all player 1 vertices, the outer �xed
point iteration shrinks a set of “maybe” vertices that are potentially in the solution set
until a �xed point is reached that is then returned. ¿e inner �xed point iteration
performs a backward search from the target vertices. While for Prob0, the probabilistic
“step” consisted of testing whether there is a successor in the current vertex set, for Prob1
it is additionally required that all transitions remain in the current “maybe” vertices.
Other than that, the inner �xed-point iteration proceeds very similarly to that of Prob0
in that it resolves the players’ choices in the same manner.

6.4.3.2 Quantitative Solution

It remains to solve vertices whose reachability probabilities lie strictly between 0 and 1.
Even though there are other algorithms that solve this problem, we choose to stick to
our previous presentations and approximate the desired probabilities using the value
iteration transformers vi☆1☆2

G ,T introduced in the beginning of this chapter. Algorithm 13
realizes these transformers in a straightforward manner.

Algorithm 14 embedsAlgorithm 13 in a �xed-point algorithm that approaches the desired
least �xed points from below. As pointed out earlier, the Kleene �xed-point theorem
guarantees that starting from the constant zero vector, iterating the value iteration
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Algorithm 14: Value iteration for stochastic games.
1 function ValueIteration(G = ⟨V = V1 ⊎ V2 ⊎ Vp , E ,V0⟩ ,☆1 ,☆2 ,V=11 , T# ,w#):

input: G: the SG for which perform the value iteration step,
☆1: the optimization direction of player 1,
☆2: the optimization direction of player 2,
V=11 : the set of (player 1) vertices with probability 1,
T#: the set of abstract target vertices,
w#: the initial abstract (player 1) vertex valuation

output: the abstract valuation approximating Pr☆1☆2
G
(T#)

2 foreach v1 ∈ V=11 do // set all precomputed values
3 w#(v1)← 1
4 repeat
5 w#

old ← w#

6 w# ← ValueIterationStep(G ,☆1 ,☆2 , T# ,w#
old)

7 until Converged(w# ,w#
old ,G , є) // check for convergence

8 return w#

transformers converges to the least �xed-points of the transformers, which coincide
with the corresponding reachability probabilities. ¿is �xed-point approximation has
to be aborted at some point and it turns out that it is not trivial to develop a stopping
criterion that guarantees that the solution is within є distance of the actual result. Most
implementations choose to compare the values of the current and the last step and
terminate if these two vectors are close enough to one another. ¿is, however, does
not give any guarantees regarding the preciseness of the current approximation with
respect to the target value. ¿is fundamental problem has recently drawn attention
and been approached from di�erent angles for PA [HM14; Bai+17b; QK18] as well as
for SGs [Kel+18]. We remark that in order to obtain sound lower and upper bounds
for the reachability probabilities inM using game-based or menu-based abstraction,
actual implementations need to account for this problem or choose a di�erent solution
technique such as policy iteration [Con90]. However, we do not treat this issue further
in our presentation here.

Finally, we connect Algorithms 11, 12 and 14 in a procedure that obtains both lower and
upper bounds on the reachability probabilities inM shown in Algorithm 15. Since the
upper bounds are known to be at least as large as the lower bounds, we start the value
iteration for the upper bounds from the lower values rather than 0V1 .
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Algorithm 15: Computes lower and upper bounds for the★-reachability inM.
1 function ComputeBounds(G = GmbaM ,Π ,☆ , T#):

input: G: the menu-game GmbaM ,Π ,☆: the optimization direction of the property,
T#: the set of abstract target vertices

output: a pair of (abstract) valuations that bound the reachability probabilities
// Compute lower bounds

2 V l ,=1
1 ← Prob1(G ,☆ ,−, T#)

3 w#
l ← ValueIteration(G ,☆ ,−,V l ,=1

1 , T# , 0)
4

// Compute upper bounds
5 Vu ,=1

1 ← Prob1(G ,☆ ,+, T#)
6 w#

u ← ValueIteration(G ,☆ ,+,Vu ,=1
1 , T# ,w#

l )
7 return ⟨w#

l ,w
#
u⟩

6.4.4 Re�nement

Recall the overall abstraction-re�nement loop in Figure 6.5. Until now we have treated

(i) the fully automatic abstraction of the PAM directly from the SPA A in terms of
the menu-based abstraction GmbaM ,Π , and

(ii) the algorithmic solution of GmbaM ,Π to obtain lower and upper bounds on both
minimal and maximal reachability probabilities inM with respect to a set of
target states T .

¿e result of this is one of two possible outcomes. First, the bounds may be precise
enough to answer the current query. ¿is could, for example be the case if the property
speci�es an upper bound λ on the reachability probability and the upper bound for the
initial state obtained via the abstract game lies below λ . In this case we can infer that the
bound is met inM. In case the result is inconclusive, however, the abstraction needs to
be re�ned.

As we argued earlier, predicate abstraction lends itself for obtaining the abstraction. Not
only does it enable the use of Smt solvers to build the abstract system, but re�ning the
system reduces to introducing suitable new predicates. We now show how to derive such
predicates. For this, we assume that the distributions represented by the probabilistic
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vertices Vp are additionally annotated with the assignments from the SPA A that led
to the target (player 1) vertices. For this, we let V̂p ⊆ Dist(Asg(Var) × V1) be the
extension of Vp with assignments. When building the abstraction using the approach
in Section 6.4.2.3, it is is easy to additionally maintain the assignments responsible for
the di�erent successor vertices.

To realize the re�nement, our presentation assumes that we have two strategy pairs
⟨σ l

1 , σ l
2⟩ and ⟨σu

1 , σu
2 ⟩ for G = GmbaM ,Π such that for☆ ∈ {−,+} we have

w#
l = Pr

☆−
G
(◊T#) = Pr

⟨σ l
1 ,σ

l
2⟩

G
(◊T#) and Pr☆+

G
(◊T#) = Pr⟨σ

u
1 ,σ

u
2 ⟩

G
(◊T#) = w#

u . (6.6)

¿at is, resolution of the nondeterministic choices according to ⟨σ l
1 , σ l

2⟩ results in the
lower bounds w#

l and resolution according to ⟨σ
u
1 , σu

2 ⟩ yields the upper bounds w#
u . We

refer to ⟨σ l
1 , σ l

2⟩ and ⟨σu
1 , σu

2 ⟩ as the lower and upper strategies, respectively. Here, we
also assume that w#

l and w#
u are de�ned not only on V1 but also on V2 and Vp in the

straightforward manner.

So, assuming such strategies are given, how are new predicates obtained? One tempting
direction might be to look for vertices v1 for which w#

l (v1) < w
#
u(v1). However, while

the boundsmay be imprecise, the vertex v1 is not necessarily the cause of the imprecision.
It may well be that the successor vertices of v1 were the reason for the deviation of the
lower and upper bounds at v1. A better criterion therefore is to consider the strategies
themselves. ¿e strategies are tightly linked to the abstraction, because player 2 choices
intuitively govern which states from the abstract block represented by v1 is selected to
realize the lower and upper bounds. We need to be a bit careful, though. In general,
there may be several choices for the players whose achieved values agree. If the lower
and upper strategies deviate, but ultimately represent the same value, this does not
explain the deviation of the bounds at v1. [Wac11] therefore requires that the strategies
are constructed such that the upper strategies only di�er from the lower strategies at
vertices where this is “necessary”. Formally, the authors require that for every v i ∈ Vi ,
i ∈ {1, 2} the strategies satisfy

σ l
i (v i) ≠ σu

i (v i) Ô⇒ w#
u(σ l

i (v i)) < w#
u(v i). (6.7)

Intuitively, this criterion states that player i may only make di�erent choices in v i in the
lower and upper strategies if the lower strategy successor v = σ l

i (v i) achieves a strictly
smaller value even when maximizing from v i . In this case, the deviation of the strategies
in v i is therefore regarded as “justi�ed”.

We do not dwell on the details on how to obtain such strategies, but only brie�y mention
a few intricacies. First, we observe that during the qualitative solution of the abstract
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game (Algorithm 11 and Algorithm 12), it is not di�cult to obtain strategies that realize
the values 0 and 1 for the vertices that are the result of the respective algorithm. For
Prob0, it is straightforward to select choices in vertices that stay within the set of
states with probability 0. In the case of Prob1, it is not su�cient to locally pick actions
that stay within the set of states with probability 1. Ultimately, the reason for this is
the same as the one that necessitated the double �xed-point computation in Prob1.
However, we can construct the strategy pair by requiring progress towards the target
vertex set in the same way as the algorithm in the inner �xed-point iteration. Also,
for V=1,☆1 ,☆2

1 = {v1 ∈ V1 ∣ Pr
☆1☆2
G
(◊T#) = 1} we have V=1,☆ ,−

1 ⊆ V=1,☆ ,+
1 , and we can

therefore reuse the lower strategies for all v1 ∈ V
=1,☆ ,−
1 .

Secondly, [Wac11] tries to extend the value iteration process such that the generated
strategies not only realize the computed extremal probabilities (Equation (6.6)), but also
satisfy Equation (6.7). ¿is is done by paying special attention as to when the strategy
of a vertex is updated. In a nutshell, the strategy of a vertex is only modi�ed if the value
strictly improved over successive iterations of the value iteration. ¿is ensures that
the choices do not stay within an end component of the system (relating to condition
(6.6) above). If the latter were to happen, the selected choices would not realize the
computed bounds, but rather induce zero reachability probability. Choosing such a
strategy is clearly wrong in states with probability greater than 0 and is avoided by
the more restrictive update process. However, in contrast to the claim, the extended
algorithm [Wac11] does not establish condition (6.7). ¿is issue arises from the fact
that probability mass is “propagated at di�erent speeds” through the system by value
iteration. ¿e value iteration by [Wac11] therefore may prematurely modify the strategy
in a vertex even though ultimately the previous choice achieves the same probability.

We now show that it is not possible to �rst �x the lower strategies in the game to realize
the lower bounds and then compute the upper bounds and strategies in a way that
establishes condition (6.7), even when only enforcing it for player 2 vertices.

Example 57. Consider the SG G in Figure 6.6. We refrain from giving an SPA and
suitable predicates to arrive at this game, but remark that it is possible to construct
such entities. With w#

l = Pr
+−
G (◊T#), we have w#

l (v
0
1 ) = w#

l (v
1
1) = 0. If the solution

process derives a lower strategy pair ⟨σ l
1 , σ l

2⟩ that realizes this probability for v01 and
v11 , then σ l

2(v22) = v2p . However, in v01 , there is a choice for player 1 and we might have
σ l
1 (v01 ) = v02 and σ l

1 (v11) = v22 , i. e. player 1 chooses α in v01 and γ in v11 . Similarly, for
w#

u = Pr++G (◊T#) we have w#
u(v1) = w#

u(v11) = 1 and the upper strategy pair ⟨σu
1 , σu

2 ⟩
needs to satisfy σu

1 (v01 ) = v12. However, this is not possible under Equation (6.7). To
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v01

v02 v0p

v12 v1p
v11

v22

v2p

v3p
v21

T#
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β

1

1 γ

1

1

Figure 6.6: An example SG for which Equation (6.7) is problematic.

see this, we observe v02 = σ l
1 (v01 ) ≠ σu

1 (v01 ) = v12, so Equation (6.7) requires

w#
u(σ l

1 (v01 )) = w#
u(v02) < w#

u(v12) = w#
u(v01 ).

However, this can not be satis�ed as w#
u(v02) = w#

u(v01 ) = w#
u(v12).

We now go on to show that it is not trivial to establish property (6.7) in a post-processing
step either. It might be tempting to �x the violation of Equation (6.7) in a player 2 vertex
v2 ∈ V2 by falsifying the condition’s premise. More concretely, one could argue that
w#

u(σ l
2(v2)) = w#

u(v2) is su�cient to infer that the upper choice of player 2 in v2 may be
set to the lower choice, because— intuitively speaking— the lower choice is su�cient to
realize the same upper bound w#

u(v2). ¿is is not true as the following example shows.

Example 58. Consider the SG G in Figure 6.7. Again, we refrain from giving an
SPA and suitable predicates to arrive at this game, but remark that it is possible to
construct such entities. We annotate all vertices v with the interval [w#

l (v),w
#
u(v)].

First of all, we observe that player 1 does not have choices in this SG. Now, to realize
the lower bound in v01 , the lower strategy of player 2 could pick σ l

2(v02) = v0p . Similarly,
player 2 can choose to move from v02 to v1p to realize the upper bound w#

u(v02). ¿en,
the choices of player 2 di�er in the lower and upper strategy and Equation (6.7)
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v01
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[0, 1]

v0p
[0, 1]
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Figure 6.7: An example SG for which Equation (6.7) is problematic.

therefore requires

w#
u(σ l

2(v02)) = w#
u(v0p) = 1 < 1 = w#

u(v02),

which is not satis�ed.

As previouslymentioned, itmight be tempting to “repair” condition (6.7) by switching
the upper to the lower choice in v02 since the condition seemingly implies that the
lower choice achieves an equally good upper bound. However, setting σu

2 (v02) = v0p
achieves a reachability probability of 0 and no longer realizes the upper bound
w#

u(v02) = 1.

In fact, for the given SG, all (player 2) strategies that realize the lower bound in v02
need to move to v0p and all (player 2) strategies that realize the upper bound in v02
need to move to v1p . Hence, by the reasoning above, it is impossible to both realize
the lower and upper bounds and simultaneously satisfy Equation (6.7).

Because of the aforementioned problems, we propose to consider the structurally very
similar criterion

σ l
2(v2) ≠ σu

2 (v2) Ô⇒ w#
l (σ

l
2(v2)) < w#

l (σ
u
2 (v2)) for all v2 ∈ V2 (6.8)

instead. It expresses that the value achieved when minimizing from σu
2 (v2) needs to be

strictly larger than the value obtained when minimizing from σ l
2(v2).
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Example 59. Reconsider SG in Figure 6.6 and, in particular, the lower and upper
strategies from Example 57. With criterion (6.8), we require

w#
l (σ

l
2(v02)) = w#

l (v
0
p) = 0 < 1/2 = w#

l (v
1
p) = w#

l (σ
u
2 (v02))

and therefore admit the strategies.

Criterion (6.8) not only avoids the previously mentioned problems, but it can also
e�ciently be established in a post-processing step. Roughly speaking, we redirect all
choices of the lower strategy σ l

2 in player 2 vertices v2 to the choice of the upper player
2 strategy σu

2 if this does not increase the value in v2. Formally, we construct the new
lower player 2 strategy σ l

2
′ as

σ l
2
′(v2) =

⎧⎪⎪⎨⎪⎪⎩

σu
2 (v2) if w#

l (σ
u
2 (v2)) ≤ w#

l (σ
u
2 (v2))

σ l
2(v2) otherwise

to avoid unnecessary di�erences in the player 2 strategies.

An alternative to value iteration is strategy iteration as in [Con90]. It naturally keeps track
of strategies, but su�ers from similar numerical problems in practice if the underlying
linear equation system or Lp solvers are imprecise. Using rational arithmetic, strategy
iteration provides a means to obtain the desired bounds and strategies in a sound
manner.

Re�nement for menu-games revolves around the notion of pivot block (or ver-
tex) [Wac11]. Intuitively, a pivot vertex is a player 1 vertex of the game at which
there is imprecision that is introduced by the abstraction. Formally, we de�ne pivot
vertices as follows.

De�nition 48 (Pivot Vertex). A player 1 vertex v1 ∈ V1 is a pivot vertex if

σ l
2(σ l

1 (v1)) ≠ σu
2 (σ l

1 (v1)) or σ l
2(σu

1 (v1)) ≠ σu
2 (σu

1 (v1)).

¿at is, for a pivot vertex v1, player 2 resolves the nondeterminism di�erently in either
σ l
1 (v1) or σu

1 (v1) depending on the optimization direction. Intuitively, as player 2
resolves the nondeterminism introduced by the abstraction, di�ering choices indicate
that the abstraction introduced the imprecision. It is easy to see that there is at least one
pivot vertex if the bounds obtained using the abstraction do not coincide.
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We remark that the original de�nition of a pivot vertex [Wac11] is somewhat di�er-
ent.

De�nition 49 (Pivot Vertex (as in [Wac11])). A player 1 vertex v1 ∈ V1 is a pivot
vertex if σ l

2(σ l
1 (v1)) ≠ σu

2 (σu
1 (v1)).

We will detail later why the original de�nition does not su�ce to guarantee a successful
re�nement of the partition if property (6.7) is not satis�ed and stick to our de�nition of
a pivot vertex from now on.

Recall that in our setting, player 2 and probabilistic vertices (other than v p⊥) are uniquely
associated with player 1 and player 2 vertices, respectively. In particular, this means that
both player 2 and probabilistic vertices are uniquely associated with an action α and —
because the edges of the SPA A are assumed to be labeled uniquely — also with an edge
e.

Given a pivot vertex v1 (according to De�nition 48), we consider its player 2 successors
v l2 = σ l

1 (v1) and vu2 = σu
1 (v1) under both player 1 strategies. According to our de�nition

of a pivot vertex, we have

σ l
2(v l2) ≠ σu

2 (v l2) or σ l
2(vu2 ) ≠ σu

2 (vu2 ).

As the other case is symmetric, let us assume that σ l
2(v l2) ≠ σu

2 (v l2). Let v lp = σ l
2(v l2)

and vup = σu
2 (v l2). If either one of them is equal to v p⊥ this means that player 2 chose to

move to the trap vertex and that there is some state in v1 that does not have the action
associated with v l2 enabled. ¿e partition can therefore be suitably re�ned by adding
the guard of the corresponding edge e, because this separates states in v1 in which e is
enabled from those where it is not.

If both v lp and vup are not v
p
⊥ , we proceed di�erently. Since v lp and vup are associated

with the same edge, they result from the same symbolic probability distribution and
assignments to the variables. ¿at is, v lp ≠ vup implies that there is at least one assignment
a and two successor vertices v′ , v′′ ∈ succ(v lp) ∪ succ(vup), v′ ≠ v′′ such that v lp(a , v′) =
vup(a , v′′) > 0. In the setting of predicate abstraction, v′ ≠ v′′ means that there must be
a predicate φ having a di�erent value in the two vertices. Adding wp(φ, a) re�nes the
abstraction suitably, because it eliminates the particular choice for player 2 in v l2.

Recall that for a player 1 vertex v , v(i) denotes the truth value of the predicate φ i in
v , because it corresponds to a block of the partition. Formally, we de�ne an operator
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NewPred responsible for deriving new predicates from a pivot vertex v1 by

NewPred(v1) = NewPred(v l2 = σ l
1 (v1)) ∪NewPred(vu2 = σu

1 (v1))

NewPred(v2 = ⟨s , α⟩) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ if σ l
2(v2) = vu2 (v2)

{ge} if σ l
2(v2) = v

p
⊥ ∨ σu

2 (v2) = v
p
⊥

{wp(φ i , a)} if v lp(a , v′) = vup(a , v′) > 0 ∧ v′(i) ≠ v′′(i)

where e ∈ E is the (unique) edge with action α and v lp(a , v′), vup(a , v′′) ∈ V̂p are
probabilistic vertices extended with the corresponding assignments. NewPred takes a
pivot vertex and returns a non-empty set of predicates that can be added to the current set.
¿ey re�ne the partition such that progress can be ensured [Wac11], where progress is to
be understood as separating states contained in the pivot vertex that have di�erent lower
or upper bounds with respect to the current partition. However, this result implicitly
operates under the assumption (6.7) and, as we will now show, fails to hold if the
strategy derivation process (like the one in [Wac11]) does not guarantee this condition.
For this, we illustrate that De�nition 49 of a pivot vertex from [Wac11] is insu�cient if
the aforementioned property is not satis�ed in the sense thatNewPred(v1)may return
an empty set of predicates for a pivot vertex when de�ned as in De�nition 49.

Example 60. Reconsider the SG G and the lower and upper strategy pairs ⟨σ l
1 , σ l

2⟩
and ⟨σu

1 , σu
2 ⟩ from Example 57 that do not satisfy Equation (6.7). According to

De�nition 49, v1 is a pivot vertex. However, NewPred(v1) = ∅, since NewPred
cannot �nd a deviation in any of the two player 2 successors v02 and v12.

Recall that an interpolant φ succinctly capture the essence of why the conjunction
of a pair of formulae ⟨φ1 , φ2⟩ is unsatis�able (see Section 2.6). As it turns out, this
can be leveraged to derive new predicates in our setting. More speci�cally, they can
help eliminating spurious pivot vertices. Note that the abstract game may contain
reachable blocks (player 1 vertices) such that all contained concrete states of the PA
M are in fact unreachable inM. Naturally, it may be the case that such a block is a
pivot vertex and used for the derivation of new predicates. However, we would clearly
prefer to introduce predicates that make the pivot vertex unreachable altogether. In
general, it is undecidable whether a pivot vertex is reachable or not, so we resort to
the approach in [Wac11]. Here, a er picking pivot vertex v1, the most probable path ρ
in the DTMCs induced by ⟨σ l

1 , σ l
2⟩ or ⟨σu

1 , σu
2 ⟩ is computed. ¿en, the trace formula

φρ for ρ is constructed as in [HWZ08] and its (un)satis�ability intuitively determines
whether there exists a concrete path inM that follows the choices in terms of edge
and assignment selection made by the abstract path. If φρ is satis�able there is such
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a concrete path and we proceed as presented above. However, if φρ is unsatis�able it
means that the abstraction spuriously introduced the abstract path. Note that there may
still be some state in the block v1 that is reachable, simply via a di�erent (abstract) path.
In this case, we split the trace formula φρ at di�erent positions and obtain predicates for
the resulting formula pairs via interpolation, which intuitively summarize the reason
why the abstract path is spurious.

Finally, we emphasize that the choice of the pivot vertex governs the choice of predicates
and therefore also the quality of progress. In general, only pivot blocks that are reachable
under ⟨σ l

1 , σ l
2⟩ or ⟨σu

1 , σu
2 ⟩ need to be considered, because only they actually explain the

deviation. Still, it remains unclear how to determine the pivot vertex that realizes the
“best progress” and we resort to reasonable heuristics. A �rst heuristic is to pick a pivot
vertex v1 that additionally maximizes

w#
u(v1) −w#

l (v1), (6.9)

because intuitively this pivot vertex causes the largest imprecision. Another approach is
to consider the pivot vertex with the minimal distance from the initial vertex v0. Here,
the distance can be either measured in terms of discrete steps or in terms of probability,
resulting in the notion of most-probable paths. Finally, the two approaches can be
combined. For instance, the deviations according to Equation (6.9) can be weighted
with the probabilities of the most-probable paths leading to the respective pivot vertices.
¿is results in choosing a pivot vertex that appears to be both reasonable in terms of the
local imprecision it causes as well as the global e�ect of this imprecision on the bounds
of the initial vertex.

6.4.5 Optimizing the Abstraction Process

We have shown how menu-games can be used in a fully automated abstraction-
re�nement loop. ¿e result of each iteration of the loop are lower and upper bounds
for the target reachability property. In case the bounds are not precise enough, the
abstraction is re�ned and the abstraction process is repeated. While we presented a
functional method that can be used to realize the abstraction-re�nement loop, a naive
implementation will be prohibitively expensive in terms of runtime. In this section, we
develop optimizations that speed up the presented approach by orders of magnitude.
Here, we focus on the abstraction process entirely, because it is the most speci�c to
menu-based abstraction-re�nement. Techniques to speed up the solution of the abstract
game are likely independent of the considered abstraction.

Recall that Algorithm 8 computes the abstract menu game by enumerating the solutions
of an Smt problem. More speci�cally, it enumerates the solutions of
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(i) the abstract transition constraint φ#e for an edge e ∈ E, and

(ii) the abstract expression constraint φ#η for a Boolean expression η ∈ Bxp(Var).

Since the former is combinatorially more expensive as it encodes not only source but
also several successor vertices, we exclusively focus on this part of the abstraction. Parts
of the optimizations we will now present are also applicable to the abstract expression
constraints, though.

As the following sections revolve around the abstract transition constraint, we explicitly
re-state it here for better readability. For an edge e = ⟨ℓ , g , α ,D⟩ ∈ E, the abstract
transition constraint (De�nition 47) can be simpli�ed to

φ#e ≡ g ∧
n−1
⋀
i=0
(b0i ⇐⇒ φ i) ∧

∣D ∣
⋀
j=1

n−1
⋀
i=0
(b j

i ⇐⇒ wp(φ i , aDj ))

where

» Φ = {φ0 , . . . , φn−1} is the current set of predicates,

» b j
i is the jth copy of the Boolean variable b i that corresponds to predicate φ i (with
the “exception” that b0i = b i), and

» aDj (x) is the expression that the jth assignment of the symbolic probability distri-
bution D assigns to the variable x.

Variable Ranges. A straightforward optimization to the enumeration process is the
assertion of variable ranges. As it stands, the abstract transition constraint does not
constrain the solutions to the domains of the variables. Including the constraints

x ∈ Dom(x) for every x ∈ Var

may severely limit the search space of the Smt solver.

Incrementality. Another optimization exploits the internal structure of modern Smt
solvers. More concretely, most solvers work incrementally in the sense that every solving
process derives con�ict clauses that essentially capture information that is implied by
the original problem and can help in subsequent calls (see Section 2.6). ¿is information
can easily be preserved when adding new formulae to the Smt problem, because they
are interpreted as being in conjunction with the previous formulae and the implications
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therefore remain valid. Clearly, in our context it is desirable to maintain the solver over
successive abstraction steps.

¿is can easily be achieved by (i) creating a separate Smt solver instance for each edge
e ∈ E and (ii) observing that introducing new predicates only requires adding new
conjuncts to the previous abstract transition constraint. To see the latter, let φ#e ,Φ be
the abstract transition constraint with respect to the current set of predicates Φ =
{φ0 , . . . , φn−1}. For a new predicate setΦ′ = {φ0 , . . . , φn−1 , . . . , φn′}, we can create the
new abstract transition constraint φ#e ,Φ′ as

φ#e ,Φ′ ≡ φ#e ,Φ ∧
∣D ∣
⋀
j=1

n′

⋀
i=n
(b j

i ⇐⇒ wp(φ i , aDi ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φΦ ,Φ′

and we can therefore simply add φΦ ,Φ′ to the solver when moving from Φ to Φ′.

Una�ected Edges. When introducing new predicates, it may well happen that the set
of variables occurring in the new predicates are disjoint from the variables occurring in
a particular edge e (that is, in its guard and assignments as either the written or read
variables). In this case, the previous abstraction of e in the form of the MTBDD Me
obtained via AbstractEdge(e) (Algorithm 8) can be extended with the information
that the value of the predicate is the same in all source and target blocks of the transitions
associated with e.

Relevant Predicates. Generalizing the concept of una�ected edges, [Wac11] sketches
that one can reduce the size and number of solutions of the abstract transition constraint
φ#e by reducing the number of considered predicates. For example, in order to determine
in which blocks an edge is enabled, it su�ces to consider the predicates that share a
variable with the guard. Similarly, to determine the validity of predicates in the successor
block of an assignment a of an edge, one has to consider all predicates

(i) that contain a variable that is being assigned (a potentially di�erent value) in a,
because these predicates might change value,

(ii) that share a variable with any of the expressions assigned to a variable, because
they in�uence the values of aforementioned predicates.

[Wac11] then goes on to assemble two sets of predicate indices G1 and G2 where
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G1 is equal to the predicates in (ii) plus the predicates that share a variable with the
guard, and

G2 corresponds to the union of the predicates in (i) for all assignments in the support
of the symbolic probability distribution.

¿e claim now is that the abstract transition constraint can be simpli�ed to

g ∧ ⋀
i∈G1

(b0i ⇐⇒ φ i) ∧
∣D ∣
⋀
j=1
⋀
i∈G2

(b j
i ⇐⇒ wp(φ i , aDj ))

without losing information in the sense that the solutions of the simpli�ed abstract
transition constraint can be extended with the missing predicates retaining their value
to obtain the original solutions. However, this is not true as the following example
shows.

Example 61. Consider an edge e = ⟨ℓ , true, α ,D⟩ of an SPA with a single location ℓ
where D given as

D(a , ℓ) = {
1 if a = a⊥[y ↦ 1]
0 otherwise.

Furthermore, we have the predicate set

Φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = 1
±
φ0

, x + y = 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

and determine the sets G1 and G2 according to the above de�nitions as

G1 = ∅ and G2 = {x + y = 2} = {φ1} .

We construct the simpli�ed abstract transition constraint according to [Wac11] as

φ#e ≡ (b11 ⇐⇒ x + 1 = 2) .

One solution ν of this constraint is

ν(b11) = 0.
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Extending this with the predicate identity for φ0 yields that the block characterized
by

Φ1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = 1
±
φ0

, x + y ≠ 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

¬φ1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

has a successor block characterized by

Φ2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = 1
±
φ0

, x + y ≠ 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

¬φ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

However, this clearly should not be the case since (i) x is 1 before and a er the
transition, (ii) y is 1 a er the transition as dictated by a⊥[y ↦ 1], and consequently
(iii) the predicate φ2 = (x + y = 2) needs to hold a er taking edge e. It can be easily
veri�ed that the full abstract transition constraint does not permit this solution.

¿is example shows that it is insu�cient to consider G1 and G2 as above when the goal
is to obtain the exact menu-based abstraction. In fact, the simpli�cation does not only
introduce wrong transitions, it may even add transitions to blocks that are inconsistent
and therefore do not contain any state. In principle, there are two angles to approach
this problem.

¿e �rst one is that it might be acceptable to obtain an over-approximation of the menu-
game that contains super�uous behavior or even inconsistent blocks. However, it is
not clear whether this still guarantees that for �nite models the abstraction-re�nement
process eventually terminates with a conclusive answers as the inconsistent blocks
potentially introduce imprecision inde�nitely.

¿e other option is to reduce the number of predicates less aggressively. By re�ning
the sets G1 and G2 we seek to rule out the spurious behavior and inconsistent successor
blocks. For this, we need the notion of when two predicates are indirectly related. We
call two predicates φ , φ′ indirectly related w.r.t. Φ , written φ ≡Φ φ′, if they are in the
same equivalence class of the transitive closure of the relation that connects all predicates
in Φ that share any variables. ¿e intuitive reason for the problem described above
is that the de�nition for G1 decouples predicates that are indirectly related by using
shared variables. Similarly, we call a variable x indirectly related to the predicate φ′ w.r.t.
Φ , written x ≡Φ φ′, if there is some predicate φ ∈ Φ containing x such that φ ≡Φ φ′.
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Finally, we let two variables x , x′ be indirectly related w.r.t. Φ , written x ≡Φ x′, if there
exists a predicate φ′ ∈ Φ containing x′ such that x ≡Φ φ′.

We re�ne the notion of [Wac11] by considering the following sets of relevant predicates:

G′
1 contains the predicates that are in G1 or are indirectly related to a variable that is
assigned to by aDj for any j,

G2( j) contains the predicates that contain some variable that is assigned to by aDj .

Now, we can simplify the abstract transition constraint to

φ#e ,rel = g ∧ ⋀
i∈G′1

(b0i ⇐⇒ φ i) ∧
∣D ∣
⋀
j=1
⋀

i∈G2( j)
(b j

i ⇐⇒ wp(φ i , aDj ))

and obtain the original solutions by preserving the values of the remaining predicates
along the transition. Again, strictly speaking this is not true as the above construction
may also introduce inconsistent blocks. However, it guarantees that no consistent block
has an inconsistent successor block. Performing a reachability analysis starting from
the initial states as suggested in Section 6.4.2.3 therefore removes all inconsistent blocks
and arrives at precisely the same game as without the optimization.

Lemma 7 (Correctness of Relevant Predicates Optimization). Let e = ⟨ℓ , g , α ,D⟩ ∈ E
be an edge and ν ∈ Val(B≤∣D ∣) be a variable valuation such that the block represented by
ν ∣B is consistent, i. e.

n−1
⋀
i=0
(ν(b i) = 1 ⇐⇒ φ i)

is satis�able. ¿en

ν ⊧ φ#e ⇐⇒ ν ⊧ φ#e ,rel .

Edge Decomposition. ¿e relevant predicates optimization hints at partitioning the
predicates in such a way that predicates that may in�uence each other’s truth values
belong to the same predicate class. In the following, we consider two variables x , x′ ∈ Var
to be related by the edge e = ⟨g , α ,D⟩, written x ≡∗e ,Φ x′ if they are in the transitive and
re�exive closure of the relation ≡e ,Φ where x ≡e ,Φ x′ if

» the variables are already indirectly related w.r.t. Φ , i. e. x ≡Φ x′, or
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» both variables are contained in an expression assigned to a variable x′′ by some
assignment aDj along e, i. e. there exists j and x

′′ such that

x ∈ Var (aDj (x
′′)) and x′ ∈ Var (aDj (x

′′)) , or

» the variables are connected via an assignment aDj , i. e. there exists j such that

x′ ∈ Var (aDj (x)) or x ∈ Var (a
D
j (x

′)) .

Given the relation ≡∗e ,Φ , the edge can be decomposed into sub-edges that essentially
correspond to restricting the edge e to the di�erent equivalence classes of ≡∗e ,Φ . Intu-
itively, this is because the equivalence classes are independent and the solutions of the
abstract transition constraint correspond to the Cartesian product of the solutions of
the abstract transition constraints for the sub-edges. ¿is decomposition reduces the
number of solutions that need to be enumerated from the product of the solutions for
the individual equivalence classes to their sum. We remark that this optimization can
be combined with the relevant predicates optimization by �rst decomposing the edge
and then, for the subedges restricting to the relevant predicates.

Expression Decomposition. Both, the relevant predicates and the edge decomposi-
tion optimization are strongly in�uenced by the relation ≡Φ that transitively relates
variables that appear in predicates sharing variables. ¿e optimizations tend to perform
the best if the partitioning is �ner and only few variables are related, because then the
number of solutions that need to be enumerated decreases drastically. In turn, this
relation is strongly in�uenced by which predicates are used to re�ne the abstraction. In
particular, composed predicates that are, for example, the conjunction or disjunction
of other subpredicates, may be added to the current predicate set. To maintain a �ner
partitioning induced by ≡Φ , these composite predicates may be split before adding
them to the set of predicates. However, we remark that in general this may lead to a
�ner partition Π of the states and therefore impacts the sizes and solution times of the
abstract games adversarially.

6.5 Evaluation

We have prototypically implemented the fully automated game-based abstraction ap-
proach in the framework of Storm (see Chapter 7). For the enumeration of feasible solu-
tions of the abstract transition constraints we rely on the Smt solverMathSat [Cim+13],
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because it provides dedicated e�cientAllSat enumeration as well as interpolation. Our
prototypical implementation can abstract models given in both the PRISM language
and JANI (see Chapter 3), implements all optimizations mentioned before Section 6.4.5
and is highly con�gurable. More speci�cally, there are various options that in�uence
the abstraction-re�nement process. Among other things, the user can select

» the technique used to solve the abstract games (policy iteration or value iteration),

» whether the games are solved symbolically (DD) or using sparse matrices,

» whichDD library is used for the representation of the abstract game (CUDD [Som]
or Sylvan [Dij16]),

» whether or not all guards of edges are added initially (which avoids dealing with
the special bottom vertices),

» whether or not the expression characterizing the initial states is added as a predi-
cate, and

» which data type (and precision) to use for the computation (�oating point or
rational numbers).

In particular, it is possible to obtain sound lower and upper bounds in practice when
using rational numbers and policy iteration as the solution technique. Because of the in-
herent rounding errors in �oating point arithmetic [Wim+08] and the problems related
to convergence of value iteration [HM14; Bai+17b; QK18; Kel+18], this is otherwise not
guaranteed.

In our evaluation, we choose to use the following con�guration:

» games are solved using policy iteration and �oating point arithmetic,

» the MTBDD representation of the abstract game is realized via CUDD,

» games are solved using a sparse matrix representation,

» all guards are added as predicates, and

» the expression characterizing the initial states is added as a predicate.
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Let us justify these settings. First of all, policy iteration avoids some precision issues of
value iteration and simultaneously can lead to strategies that only di�er at crucial places,
which in turn positively in�uences the progress achieved via re�nement. Secondly, it
is well known that sparse representations typically outperform symbolic ones as long
as they �t into in memory. Finally, we observe that adding more predicates (such
as the guards and initial expression) increases abstraction times, but not only yields
tighter bounds but also may result in smaller abstractions, a phenomenon that we will
revisit in the course of our evaluation. Ultimately, it is rooted in the fact that additional
predicates might constrain the reachable state space of the game, which is especially the
case for predicates obtained via interpolation. Consequently, lacking those predicates
may produce a potentially large number of unreachable player 1 vertices and since
the goal of the abstraction process is to derive interesting probability bounds on small
abstractions, we somewhat counterintuitively have to addmore predicates.

Benchmarks. To evaluate the e�ectivity of game-based abstraction usingmenu-games,
we consider seven benchmark models and several properties on each of these models.
Four of these were considered in the context of game-based abstraction in [Wac11].
Two of the three models we additionally consider (coin and zeroconf) are taken from
Prism’s benchmark suite. Finally, the coupon collector example is a modi�ed version
of the model in the repository of JANI examples available at https://github.com/
ahartmanns/jani-models/. Both, the models and the properties we used are detailed
inAppendix E. Except for one property on the coinmodel, all properties are quantitative
in nature and ask for minimal and maximal reachability probabilities. We continue
the abstraction-re�nement process until the obtained lower and upper bounds for the
initial vertex achieve a relative precision of єa = 10−3, i. e.

u − ℓ
u + ℓ

≤ 10−3

where u is the upper and ℓ the lower bound, respectively. ¿is criterion ensures that for
very small probabilities a su�cient precision is attained. We let the numerical solution
techniques involved in the solution step use a relative precision of єs = 10−6. In general,
the precision of the solution process єs should be signi�cantly higher than the precision
to be achieved by the abstraction process єa , because the latter depends crucially on
meaningful strategies to drive the re�nement. Using a coarser solution precision may
result in worse bounds and worse strategies and therefore in worse or even no progress.

E�ectiveness of the Abstraction. As a �rst step, we consider the sizes of the games
when the abstraction is �ne enough in the sense of the previously mentioned criteria

https://github.com/ahartmanns/jani-models/
https://github.com/ahartmanns/jani-models/


6.5. Evaluation 217

original abstraction
model instance states transitions states transitions

brp

(64, 5, p1) 4936 6659 4924 6647
(64, 5, p4) 5192 6915 21 27
(≥ 16, 5, p1) ∞ ∞ 4220 5715
(≥ 16, 5, p4) ∞ ∞ 21 27
(4, 6, c1) 63616 213472 63616 214368
(4, 6, c2) 63616 213472 31213 124391
(6, 2, c1) 1258240 6236736 ≥ 1237760 ≥ 6211544

coin

(6, 2, c2) 1258240 6236736 438019 2579751
(3) 4314 5569 3814 5067
(4) 11563 15355 13662 18520csma

(5) 31370 42381 35007 47894
(gp) ∞ ∞ 82655 320323

swp
(to) ∞ ∞ 3 4

(7, min3) 1299806 2688016 665 1270
(7, max3) 1299806 2688016 4763 5455
(7, max6) ≥ 1299806 ≥ 2688016 68345 163887
(8, min6) 1299806 2688016 665 1270
(8, max3) 1299806 2688016 4763 9466

wlan

(8, max6) ≥ 1299806 ≥ 2688016 68345 163887
(16, min) 5009561 11306728 164677 397242
(16, max) 5009561 11306728 ≥ 2032954 ≥ 5203808
(20, min) 5811209 13110562 210517 506874

zeroconf

(20, max) 5811209 13110562 ≥ 2615700 ≥ 6772944
(5, 3, r) ∞ ∞ 99097 161241
(5, 3, c) ∞ ∞ 56799 149379
(7, 3, r) ∞ ∞ 1281653 2309021

coupon

(7, 3, c) ∞ ∞ 1125884 3305936

Table 6.1: ¿e sizes of the models and their (�nal) game-based abstraction.
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(relative precision єa = 10−3). Table 6.1 lists the benchmark instances and their original
size. Note that the sizes of the model depend on the property, because Storm only
explores the model as long as necessary. In particular, if a reachability property is given,
the states that are only reachable from the initial state via target states do not in�uence
the probability from the initial state and are therefore directly omitted. Next to the
original model size, we give the size of the �nal abstract game in terms of player 1 states
and transitions. If the experiments timed out and we were unable to give the sizes of
models or abstractions, we indicate a lower bound based on smaller model instances or
the current state of the abstraction-re�nement process.

We observe game-based abstraction re�nement is able to obtain a result for all in�nite
models using a �nite abstraction. In the extreme case of the swp(to) instance, the �nal
abstract game only has 3 states and 4 transitions. However, as we already mentioned, the
intermediate games may be larger and in the case of swp(to) the largest intermediate
game has 9239 player 1 states and 44395 transitions.

¿e results show that there are �nite models for which the abstraction does not yield
reductions. We see this behaviour, for example, on the brp(64,5,p1) instance, for all
coin instances with property c2 and all csma instances. For the latter, the abstraction
is even larger than the original model. As previously mentioned, this is a result of the
abstraction that oblivious of unreachable concrete states in abstract vertices.

However, for all of the wlan and some of the zeroconf instances, the abstraction is
able to determine the reachability probabilities on a much smaller abstract model. ¿e
zeroconf case study further emphasizes that the game-based abstraction process is
property driven. For one of the two considered properties (min), the abstraction is more
than one order of magnitude smaller than the original model, whereas for the other
property (max) the abstraction needs to be much �ner to reach the desired precision.

Runtimes and Comparison with Regular Veri�cation. To evaluate whether the ab-
straction can also yield improvements with respect to time and memory requirements
of the veri�cation tasks, we compare our prototype to the performance of Storm’s other
veri�cation engines. More speci�cally, we use Storm’s dd and hybrid engines, because
in spirit they are the closest to game-based abstraction in the sense that both build an
MTBDD-based representation of the system prior to veri�cation to save memory. Note
that game-based abstraction is the only of these techniques that is capable of treating
in�nite models.

Table 6.2 shows a comparison of these two standard engines with our prototype in
which all runtimes are given in seconds and all runs were limited to one hour of runtime
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and 16GB of RAM. As a measure of quality of the abstraction, we additionally give the
(absolute) gap between the lower and upper bounds obtained via the abstraction.

We observe a diverse picture. For the brp, half of the coin and all csma instances,
the regular veri�cation techniques outperform the abstraction by orders of magnitude.
¿ese are also the instances where the abstraction did not achieve any state space
reductions. In the case that there was some but not a great reduction in size as for coin
instances with property c2, the runtimes of game-based abstraction approach those of
the standard techniques.

Even though the abstraction could produce a signi�cantly smaller state space for the
zeroconf models with property min, this gain is only translated to a minor gain in
runtimes. ¿is is due to the relatively costly computation of the abstraction together
with the number of re�nements, which we will shed more light on in course of the
evaluation. However, for the wlan case study, the abstraction is small and outperforms
the competing engines by far.

Finally, we want to remark that for many instances the bounds were precise in the sense
that the lower and upper bounds coincided. Also, even though the abstraction timed
out on some of the zeroconfmodels, the bounds are still rather precise and valuable.
For both instances, the absolute gap between the lower and upper bound was smaller
than 10−4 a er one hour. To get a more nuanced picture for these instances, we looked
at the quality of the bounds that were obtained up until the point where the best of
the other standard engines (hybrid) returned the answer. In both cases, the gap was
lower than 4 ⋅ 10−3 at this point. Consequently, for a lower precision, the game-based
abstraction could have beaten the established engines in terms of runtime.

Time-breakdown. To get a clearer picture regarding the distribution of (runtime)
cost for game-based abstraction, we measured the contribution of major building blocks
of the abstraction-re�nement process to the overall runtime. More speci�cally, we
distinguish the three phases:

» the extraction of the abstract game from the symbolic model (abstraction),

» the solution of the abstract game to obtain lower and upper bounds and the
strategies realizing them including the translation from the DD-based game
representation to a sparse one (solution), and

» the analysis of the strategies and derivation of new predicates (re�nement).
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dd hybrid abstraction

model instance time time time gap

brp

(64, 5, p1) 12.04 0.69 83.74 1.6 × 10−14

(64, 5, p4) 0.21 0.22 2.31 0
(≥ 16, 5, p1) - - 496.97 0
(≥ 16, 5, p4) - - 2.36 0
(4, 6, c1) 0.21 0.21 586.46 0
(4, 6, c2) 783.85 13.73 323.47 0
(6, 2, c1) 0.54 0.50 TO 7.7 × 10−1

coin

(6, 2, c2) 872.64 67.28 924.58 6.6 × 10−12

(3) 0.82 0.29 2594.02 0
(4) 0.42 1.25 1753.75 1.5 × 10−3csma

(5) 1.88 0.89 2712.22 2.0 × 10−3

(gp) - - 328.07 2.0 × 10−8
swp

(to) - - 9.27 0
(7, min3) 2932.78 2831.63 12.15 0
(7, max3) 1503.24 1338.24 109.74 0
(7, max6) TO TO 822.54 0
(8, min3) 3214.85 TO 15.32 0
(8, max3) 1820.17 1804.81 127.09 0

wlan

(8, max6) TO TO 886.20 0
(16, min) TO 277.49 171.39 0
(16, max) TO 343.00 TO 7.6 × 10−5

(20, min) TO 323.71 211.52 0
zeroconf

(20, max) TO 442.12 TO 7.8 × 10−5

(5, 3, r) - - 10.08 0
(5, 3, c) - - 21.70 0
(7, 3, r) - - 234.21 0

coupon

(7, 3, c) - - 708.07 0

Table 6.2: Game-based abstraction versus standard probabilistic model checking.
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model instance abstraction solution re�nement
brp (64, 5, p1) 50.8% 35.2% 11.7%
coin (4, 6, c2) 36.6% 60.0% 2.8%
csma (5) 86.4% 3.4% 10.1%
wlan (8, max6) 78.9% 8.0% 3.9%

zeroconf (20, min) 77.2% 19.7% 2.3%

Table 6.3: Runtime distribution of game-based abstraction.

In Table 6.3 we list the percentages for each of those phases for selected, representative
models where the remaining time is spent on setup and auxiliary operations.

As the data shows, the abstraction tends to be the most expensive task while re�nement
time typically contributes very little to the running times. Only if the underlying model is
already numerically harder to solve (in our case for brp, coin and zeroconf), the time
spent on solving the abstract games becomes noticeably larger.

Comparison with Pass. To the best of our knowledge, Pass [Wac11] is the only other
publicly available tool for the automated game-based abstraction of PRISM (or JANI)
models. Pass was developed over several years and contains sophisticated optimizations
that go beyond what we have described and implemented in our prototype. We are
thankful to the authors that they provided us with the C++ source code of the tool,
which is neither publicly available nor maintained any more. Sadly, we were unable to
build the tool from source using current compilers, due to changes in the C++ standard
and the used libraries. However, the website of Pass o�ers a binary that works on 64 bit
Linux machines and we used this version to compare the two implementations.

For the comparison with Pass, we consider all mentioned benchmark models except for
the coupon case study, which is encoded in JANI and therefore not supported by Pass.

Table 6.4 displays the results of our experiments. For both our implementation
(“Storm”) and Pass we give the number of re�nements made (“#ref ”), the number of
predicates that were used in the �nal abstraction (“#pred”) and the runtime. Entries
that are marked with a star indicate a wrong result.

Overall, we �nd that both implementations have advantages on speci�c models. For
example, Pass outperforms our implementation for the wlan instances signi�cantly.
Conversely, for the zeroconf instances, our prototype tends to obtain the answer more
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Storm Pass
model instance #ref #pred time #ref #pred time

brp

(64, 5, p1) 65 100 83.74 ≥ 4 ≥ 38 TO
(64, 5, p4) 4 39 2.31 5 36 1.41
(≥ 16, 5, p1) 21 57 496.97 0∗/≥3 29∗/≥32 0.47∗/TO
(≥ 16, 5, p4) 4 39 2.36 0∗/≥7 31∗/≥45 0.49∗/TO
(4, 6, c1) 49 75 586.46 15∗ 48∗ 50.14∗

(4, 6, c2) 45 73 323.47 36 78 2088.05
(6, 2, c1) ≥ 24 ≥ 61 TO 15∗ 56∗ 2677.00∗

coin

(6, 2, c2) 23 61 924.58 ≥ 7 ≥ 53 TO
(3) 102 138 2288.77 ≥ 48 ≥ 136 TO
(4) 104 152 1910.36 ≥ 33 ≥ 97 TOcsma

(5) 127 178 2760.38 ≥ 50 ≥ 162 TO
(gp) 16 42 328.07 6 48 24.60

swp
(to) 12 40 9.27 7 36 3.97

(7, min3) 0 71 12.15 0 78 5.68
(7, max3) 30 101 109.74 4 112 24.00
(7, max6) 58 129 822.54 2 140 28.39
(8, min3) 0 73 15.32 0 80 7.53
(8, max3) 30 103 127.09 3 113 23.01

wlan

(8, max6) 58 131 886.20 2 142 28.95
(16, min) 15 61 171.39 ≥ 30 ≥ 104 TO
(16, max) ≥ 28 ≥ 76 TO ≥ 4 ≥ 99 MO
(20, min) 19 65 211.52 ≥ 20 ≥ 110 TO

z’conf

(20, max) ≥ 31 79 TO ≥ 7 ≥ 110 MO

∗ Marked entries indicate a wrong result.

Table 6.4: Runtime comparison of Storm’s game-based abstraction with Pass.
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Storm Pass
model instance gap gap

(16, max) 7.6 × 10−5 2.7 × 10−3
zeroconf

(20, max) 7.8 × 10−5 1.4 × 10−3

Table 6.5: Interval gaps for instances that did not complete in time.

quickly. Since both tools are not able to completely solve the zeroconf instances with
the max property, we give the absolute gaps between the most precise lower and upper
bounds obtained within the resource limit in Table 6.5. As the data shows, the bounds
obtained with our prototype are roughly two orders of magnitude more precise.

We want to say a few words about the entries for Pass that are marked as being incorrect
in the table. ¿ere seem to be two separate problems. For the two a�ected coin in-
stances, it seems to be a simple bug in the logic. Having derived the probability interval
[4.5 × 10−1 , 1] for the (minimal) reachability probability, Pass incorrectly concludes that
the probability is less than 1 for some initial state. For the brp instances, we observe that
Pass returns di�erent results based on how the initial states of the models are speci�ed
even though the two ways are equivalent. Using an explicit initial construct in the Prism
program yields an incorrect result a er a very short time while using initial values for
the variables results in a time-out.

In general, we notice that Pass tends to need fewer re�nements, because its predicate
discovery strategy is more aggressive in the sense that o en several predicates are added
at once. ¿is is in contrast to our prototype that adds predicates more conservatively. For
wlan, adding more predicates does not negatively impact the size of the (reachable part
of the) abstraction and quickly results in tight bound. In contrast, for the zeroconf case
study, the abstraction tends to grow too quickly when too many predicates are added,
which results in an out-of-memory error for Pass. From this, we conclude that the
predicate synthesis strategy and the quality of the synthesized predicates is the major factor
for the performance of game-based abstraction-re�nement. To more closely examine this,
we added an option to our prototype to inject user-speci�ed predicates. We isolated the
predicates that were discovered by Pass for selected benchmark instances and injected
them into our prototype. ¿e results of this predicate injection are shown in Table 6.6
where we did not add the predicates related to the initial expression to more closely
match the behavior of Pass.

We see that the used predicates strongly in�uence the performance. Overall, our proto-
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Storm (injected) Pass
model instance #ref #pred time #ref #pred time

(7, max3) 4 104 30.19 4 112 24.00
(7, max6) 2 131 53.25 2 140 28.39
(8, max3) 3 106 35.24 3 113 23.01

wlan

(8, max6) 2 135 63.26 2 142 28.95
(16, min) 16 69 1164.44 ≥ 30 ≥ 104 TO
(16, max) ≥ 4 89 MO ≥ 4 ≥ 99 MO
(20, min) 13 72 762.93 ≥ 20 ≥ 110 TO

zeroconf

(20, max) ≥ 5 ≥ 80 MO ≥ 7 ≥ 110 MO

Table 6.6: E�ect of injecting the predicates obtained by Pass on our prototype.

type performs very similar to Pass when using the same predicates. In particular, on
the wlan instances, the predicate injection improves the running times and number
of re�nements whereas for the zeroconf instances the performance degrades in com-
parison to the previous strategy of Storm. We remark that for the wlan instances it
may be unexpected that Storm uses fewer predicates even though the predicates were
injected from Pass. However, this is simply due to our prototype eliminating equivalent
predicates where Pass does not do this.

Surprisingly, for the min instances of zeroconf, Storm terminates a er fewer iterations
than Pass even though the tools use the same predicates. A look at the sizes of the
abstractions reveals that Pass computes a larger abstraction using the same set of predi-
cates. Our guess is that this is due to the presence of spurious behavior and inconsistent
blocks (see Section 6.4.5) in the abstraction, which would also explain the less precise
bounds obtained by Pass on the same abstraction.

Evolution of Progress. We now move on to analyze the progress of the re�nement
over successive iterations. More speci�cally, we consider the evolution of the obtained
bounds together with the size of the abstraction in terms of player 1 vertices. For this,
we draw �gures that plot the progress of the bounds (le y-axis, lower bound in blue,
upper bound in red) and the size of the abstraction (right y-axis, plot in green). In
Figure 6.8, we observe that for the coin(6,2,c2) instance, the size of the abstraction
grows roughly linearly, but the bounds only become non-trivial in iteration 13. While
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Figure 6.8: coin(6,2,c2)

the lower bound then steadily approaches the solution, the upper bound is trivial until
the very last iteration.

For wlan(8,10,max3) (see Figure 6.9) the size of the abstraction grows uniformly until
iteration 27, but then predicates are found that prune parts of the abstract game and
make the bounds su�ciently precise. From the very start, the bounds improve in almost
every iteration, but in small steps.

¿is is in contrast to the progress made on the swp(gp) instance, shown in Figure 6.10.
Here, only few iterations achieve tighter bounds, but if progress is made it is substantial.
Also, we see that the size of the abstraction �uctuates and is not directly correlated
with obtaining better bounds. Finally, we consider the zeroconf(16,12k,max). Here,
the abstraction only grows moderately until the bounds are already rather precise
(in iteration 16). However, to reach the desired precision, more than 13 additional
re�nements are necessary, which increases the size of abstract game considerably. ¿is
exempli�es that the abstraction process can potentially be much cheaper when less
precision is required.



226 Chapter 6. Game-Based Abstraction-Re�nement

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

iteration

pr
ob
ab
ili
ty

0 ⋅ 100

2 ⋅ 103

4 ⋅ 103

6 ⋅ 103

nu
m
be
ro
fb
lo
ck
s

lower upper abs. size solution

Figure 6.9: wlan(8,max3)

Soundness. ¿e implementations, in Storm and Pass both su�er from numerical
imprecision and are ultimately unsound. ¿is is for two reasons. One is that the
rounding that is necessitated by �oating point arithmetic may inadmissibly in�uence
the values [Wim+08]. ¿e second is that the numerical techniques typically only achieve
a certain precision and, in the case of value iteration, do not give any guarantees regarding
the quality of the solution [HM14; Bai+17b; QK18; Kel+18].

Consider, for example the PAM(p) whose transition probabilities depend on the
parameter p shown in Figure 6.12. ¿e reachability probability inM(p) with respect
to the target state s1 is 1 for all p ∈ [0, 1). Computing the reachability probability for
the target state s1 inM(10−4), Pass returns the interval [0, 0] as the result, which is
clearly incorrect. Even forM(10−3), Pass cannot determine the probability to be 1
but rather returns [6.3 × 10−1 , 8.6 × 10−1] and that the result is inconclusive. On this
particular example, Storm returns the correct result for all values of p ∈ [0, 1), because
unlike Pass it features the precise (probability-independent) computation of states with
probability 0 and 1, respectively (see Section 6.4.3.1). Still, it is not di�cult to construct
examples for which Stormwill also fail to derive the correct result because of numerical
imprecisions when using �oating point arithmetic.
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Figure 6.10: swp(gp)

An advantageous property of our prototype is that it is highly con�gurable. In particular,
we can solve the abstract games in each iteration using policy iteration and a linear
equation solver using rational arithmetic that guarantees exact results. Together, this
results in sound bounds for reachability probabilities. To the best of our knowledge, our
prototype is the only tool capable of performing abstraction-re�nement for potentially
in�nite PA while obtaining sound bounds for both minimal and maximal reachability
probabilities. We therefore compare this con�guration of our prototype with Storm’s
hybrid engine set to produce exact results. Note that strictly speaking the two approaches
do not give the same result as our prototype does not necessarily produce an exact answer
but rather returns bounds that are exact and sound in the sense that the actual value is
guaranteed to lie in the derived interval. Since the abstract game is built as an MTBDD
and Storm only supports rational numbers in MTBDDs when using the Sylvan library,
we switch from CUDD to the latter for these experiments. Note that this a�ects not only
the abstraction but also true for the hybrid engine. As Sylvan is built formulti-threading
applications, we let Sylvan use 4 threads in all experiments.

Table 6.7 shows the measured (wall-clock) running times of the aforementioned tech-
niques. As before, it also lists the gap between the last lower and upper bounds that
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Figure 6.11: zeroconf(16,max)
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Figure 6.12: A problematic PA.

could be derived within the time and memory limits for the abstraction-re�nement
approach. Overall, the picture is similar to the �oating point case. ¿at is, for some �nite
models, abstraction-re�nement takes signi�cantly longer. In the case of coin(6,2,c1)
it even runs out of memory while the hybrid engine can solve the model very quickly.
¿is is because c1 is a qualitative property that can be solved without considering the
probabilities. In contrast, game-based abstraction needs to repeatedly solve quantitative
problems on the involved abstract games, because one of the bounds (the lower bound)
is quantitative until the abstraction is precise enough. Finally, we obtain gains for the
same models, wlan and zeroconf, as in the �oating point setting. In particular, we are
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hybrid (rational) abstraction (rational)
model instance time time gap

(64, 5, p1) 2.47 165.86 0
(64, 5, p2) 1.57 5.05 0
(≥ 16, 5, p1) - 18.77 0

brp

(≥ 16, 5, p4) - 4.34 0
(4, 6, c1) 1.68 813.30 0
(4, 6, c2) 10.49 415.81 0
(6, 2, c1) 2.83 MO 1

coin

(6, 2, c2) MO MO 9.8 × 10−1

(3) 2.28 2687.80 0
(4) 2.88 2247.80 0csma

(5) 4.42 3246.96 2.0 × 10−3

(gp) - 791.37 7.0 × 10−6
swp

(to) - 29.33 0
(7, min3) 894.49 17.50 0
(7, max3) 426.32 139.64 0
(7, max6) MO 967.85 0
(8, min3) 1705.59 20.66 0
(8, max3) 648.35 149.60 0

wlan

(8, max6) MO 1075.99 0
(16, min) MO MO 4.8 × 10−15

(16, max) MO MO 3.1 × 10−2

(20, min) MO MO 2.7 × 10−17
zeroconf

(20, max) MO TO 3.1 × 10−2

(5, 3, r) - 54.58 0
(5, 3, c) - 268.04 0
(7, 3, r) - MO 1

coupon

(7, 3, c) - MO 1

Table 6.7: Abstraction-ref. vs. standard prob. model checking (rational arithmetic).
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able to obtain rather precise bounds for the zeroconf instances despite �nally running
out of resources.

Fully Symbolic Abstraction-Re�nement. Before concluding, we want to brie�y re-
view fully symbolic abstraction-re�nement. As previously mentioned, our prototype can
be con�gured such that both the construction and the solution of the abstract games is
done fully symbolically (on DDs). However, our evaluation focused exclusively on a
hybrid approach that �rst builds the abstract games usingMTBDDs, but then transforms
them to an explicit representation prior to the numerical analysis. In a nutshell, we
observe that in its current state, fully DD-based game-based abstraction re�nement is
inferior to the hybrid approach on all models. It is to be expected that in terms of run-
time MTBDD-based numerical analysis does not outperform the analysis on an explicit
representation as long as the latter �ts into memory. ¿erefore, the only fundamental
gain is possible in terms of memory requirements. However, in our prototype this is
currently rarely the case. One reason for this is that Storm currently only supports
value iteration for symbolic games and not policy iteration. In our experiments, we
see that value iteration tends to produce less decisive predicates than policy iteration,
which results in more re�nement operations and therefore not only longer runtimes but
also larger games. ¿e latter then diminishes the potential memory savings. A second
reason is that symbolic data structures bene�t from having symmetry in the model,
but in some sense the ultimate goal of the abstraction is to detect and remove these
symmetries. Finally, for the considered models, the abstract games are small enough
to �t into memory (see Table 6.1). However, this is due to the model selection, which
is mostly based on Pass’s benchmark models and it is still conceivable that for other
models the fully symbolic approach is the best-suited one.

6.5.1 Conclusion

In this chapter, we have shown how game-based abstraction for PA can be leveraged to
obtain lower and upper bounds for bothminimal andmaximal reachability probabilities.
¿e latter sets it apart from a naive abstraction in terms of PA. ¿is is achieved through
separating the nondeterminism inherent to the model from the nondeterminism that is
introduced by the abstraction. As the abstraction process leverages predicate abstraction
and extracts the abstract games directly from a symbolic description given as either
PRISM or JANI, the technique is able to handle PA with in�nite state spaces. It is, to the
best of our knowledge, the only automated technique to compute minimal and maximal
unbounded reachability probabilities for general in�nite PA.

So, when is game-based abstraction re�nement useful in practice? ¿e most obvious
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case is the application to in�nite PA. For such models, it provides the only push-button
technique to obtain lower and upper bounds on reachability probabilities. An evaluation
of our prototypical implementation in the framework of Storm shows that game-based
abstraction is able to prove tight bounds on small abstractions for in�nite models. How-
ever, our experiments show that also for �nite state benchmark models, the abstraction
can result in signi�cant savings in both space and time. In particular, our prototype is
competitive with Pass [Hah+10b], the only other publicly available implementation of
game-based abstraction for in�nite-state PRISM programs, which is no longer main-
tained. Leveraging the infrastructure of Storm, our prototype goes beyond Pass in that
it can compute sound lower and upper bounds using rational arithmetic.

Clearly, the abstraction process is more e�ective if large parts of the state space can be
summarized into few blocks without causing a large imprecision. Also, our experiments
show that typically non-trivial bounds can be derived quickly, whereas approaching
the actual result very closely may take substantially longer and require a much �ner
abstraction. ¿is suggests that the technique may, for instance, be applied fruitfully in
a setting in which the emphasis is on a rough approximation and the precision of the
result is of less importance.

¿ere are several interesting directions for future research. Since the abstraction pro-
cess typically dominates the runtime, further optimizations could result in signi�cant
speedups. ¿is could, for example, be an on-the-�y abstraction process that does not
enumerate all solutions but builds the transitions in an on-demand manner like the
one implemented in Pass. Also, our evaluation shows that the quality and quantity of
the predicates is of utmost importance for the number of re�nements and runtime. It
therefore appears worthwhile to spend more computational e�ort on trying to derive
predicates that are more likely to improve the overall progress rather than heuristically
picking a single point of re�nement. Finally, an extension towards a richer class of
properties would clearly be desirable. In particular, reachability rewards can be com-
puted similarly to reachability probabilities on PA and could therefore be amenable to
menu-game-based abstraction. ¿is would cover many interesting properties from the
domains of performance analysis and arti�cial intelligence.
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Storm -

AModern Probabilistic Model Checker

7.1 Motivation and Goals

Prism is the most well-known probabilistic model checker. It combines sophisticated
techniques for a range of probabilistic models and properties. It has been downloaded
by more than sixty thousand users to date and its fourth tool paper [KNP11] alone is
cited by more than 1300 other scienti�c papers. Numerous ideas and algorithms have
been developed and integrated into Prism over the past two decades. Because of this
impressive success story, themain developers of Prism, Dave Parker (University of Birm-
ingham), Gethin Norman (University of Glasgow) and Marta Kwiatkowska (University
of Oxford) were awarded the prestigious HVC award in 2016. ¿e researchers were
honored for “the invention, development and maintenance of the PRISM probabilistic
model checker” and in particular for “their outstanding contributions to probabilistic
model checking and, more generally, to formal veri�cation”.

Despite the domination of Prism in the �eld and despite other existing probabilistic
model checkers such asMrmc [Kat+11], in the beginning of 2012 we decided to develop
a new model checker called Storm1.

To better motivate our decision, let us brie�y recapitulate the development goals of
Storm. First and foremost, wewanted to have an easy-to-use platform for experimenting
with new veri�cation algorithms, richer probabilisticmodels, algorithmic improvements

1http://www.stormchecker.org/
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and various new features. As this typically involves extensive experimentation, it requires
abstraction and identi�cation of building blocks that can be easily substituted for one
another at key positions within the tool. In particular, easy interfacing with other
libraries allows for reusing highly optimized code as well as integrating new functionality.
Simultaneously, modern techniques more and more move from simple model checking
queries to performing model checking “in-the-loop”. ¿is creates the o en competing
goal to consistently value high performance and not introduce potential bottlenecks.
Based on the observation that to date there is no “one-size-�ts-all” solution for the
analysis of probabilistic systems, a modern probabilistic model checker needs to o�er a
variety of engines. For example, symbolic methods (based on decision diagrams or SMT
solvers) have the potential to scale to systems with huge or even in�nite state spaces,
but not all models allow for a compact symbolic representation. Conversely, explicit
state model checking typically o�ers high performance, but su�ers from the inherent
memory barrier.

It cannot be denied that these goals could have been potentially achieved by extending
Prism orMrmc in a suitable manner. Let us start with our motivation not to continue
Mrmc. From the very beginningMrmc pursued the goal of being a maximum perfor-
mance backend. Written in highly optimized C, it was able to outperform Prism in
many cases where the model is not too large [Zap08]. Given its main focus, it does not
provide a symbolic input language but rather requires an explicit input format that lists
all transitions and their probabilities. Consequently,Mrmc only provides explicit state
probabilistic model checking. ¿at is, the systems are always internally represented by
explicit (sparse) matrices. As argued in the previous chapters, symbolic languages and
symbolic methods allow for much greater scalability for suitable models andMrmc is
not built to be easily extendible in this direction.

Let us turn to Prism. When we started developing Storm, Prism did not have support
for fully explicit state model checking. Instead, all its engines relied on multi-terminal
binary decision diagrams (MTBDDs) and were therefore somewhat susceptible to input
models that cannot be compactly represented in these data structures. We also wanted
to use the model checker as a testbed for other research activities, which entailed that
the tool had to be �exible enough to exchange solvers and model checkers for one
another and also that it can easily interface with other tools and libraries to bene�t from
new techniques and existing high-performance implementations. For example, more
and more modern (symbolic) techniques apply satis�ability modulo theories (SMT)
solvers, whose performance increased substantially over the past decade. However, for
technical reasons, Prism does not interface with an Smt solver in its current release.
Uno�cial extensions to Prism occasionally include support for Smt, but are either lim-
ited to Java-based solvers or have to make use of the comparatively slow and technically
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cumbersome Java native interface (JNI). Similarly, Prism implements the numerical
solution algorithms itself and does not bene�t from advances in the �eld of numerical
algorithms. Again, we want to stress that it would have been possible to extend Prism
in this direction. However, we set out to develop a new probabilistic model checker
Storm.

7.2 Competitors

In the following, we compare Storm with its main competitors on the level of features
as well as performance. We therefore now �rst brie�y summarize the most important
aspects for the other tools. Note that this summary is incomplete and — considering
further progress of the tools — necessarily only a snapshot.

Prism. Arguably the most famous probabilistic model checker, Prism2 [KNP11] is
developed almost since two decades. It supports discrete- and continuous-time Markov
chain, PA and PTA (and multiplayer stochastic games via an extension called Prism-
games). For these models, it supports the veri�cation of a wide range of properties such
as CTL, PLTL, PCTL and continuous stochastic logic (CSL) as well as expressive exten-
sions in the direction of expected rewards, conditional probabilities and rewards [Bai+14;
Mär+17; Bai+17a] and quantiles [Kle+18]. To handle a large range of models, Prism
o�ers four separate engines. ¿e recent explicit engine builds and veri�es the model
in an explicit state representation. All other engines (the (semi-)symbolic engines)
�rst build an MTBDD representation of the system and then di�er in the way the nu-
merical solution is conducted. While themtbdd engine carries out all computations
on MTBDDs, the sparse engine translates the transition MTBDD into a sparse matrix
format and then solves the numerical queries on the latter. Finally, the hybrid (the
default) engine builds a cross-over between these two and tries to approach the memory
requirements of themtbdd engine and preserve the performance of the sparse engine.
Prism features a dedicated graphical-user interface that improves the usability with in a
variety of ways. For instance, models can be simulated and the analysis results can be
plotted as graphs. Prism is written in Java, but the old engines invoke code written in C
at performance-critical spots and to interface with the DD library CUDD.

Epmc. Epmc3 (short for extendible probabilistic model checker) is mostly developed at
the Institute of So wareChineseAcademy of Sciences (ISCAS). It extends its predecessor
IscasMC [Hah+14] in several directions. For instance, the latter only supported PLTL

2http://www.prismmodelchecker.org/
3available at https://github.com/liyi-david/ePMC

http://www.prismmodelchecker.org/
https://github.com/liyi-david/ePMC
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and Epmc extends this to PCTL∗, CSL, expected rewards and transient properties.
Regarding model types, it can treat discrete- and continuous-time MCs, PA, multiplayer
stochastic games and probabilistic parity games (PPGs). It features two distinct engines,
namely the explicit engine that builds and veri�es the model only using an explicit
representation of the system and the dd engine that uses DDs for both steps. A static
website serves as the graphical-user interface of Epmc and allows to graphically perform
tasks such as model and property management. Just as Prism, Epmc is written in Java
but also uses natively compiled code, for instance to integrate DD libraries (by default
CUDD) written in C.

Modest Toolset. ¿eModest Toolset4 [HH14] is a collection of tools dedicated
to the analysis of networks of stochastic timed automata (SHA), a very rich formal-
ism that allows for (i) nondeterministic choices, (ii) continuous system dynamics,
(iii) stochastic choices, (iv) nondeterministic delays, and (v) stochastic delays. In par-
ticular, SHA subsume PTA, PA, MA and therefore, by extension, also discrete- and
continuous-time MCs. As the name suggests, theModest Toolset consists of several
tools. Among them is a statistical model checker called modes, a safety model checker
for SHA called prohver and, �nally, a model checker mcsta that can treat a more
limited set of models such as PTA and PA. In the performance evaluation, we focus
entirely on mcsta since it is the most comparable to the other mentioned tools. mcsta
is an explicit state model checker and does not employ symbolic data structures. Instead,
it has three modes that can be considered engines. ¿ememory engine keeps all parts
of the model and all vectors needed in the solution process in memory. In contrast,
disk writes the transition matrix and solution vectors to disk and, if memory pressure
becomes high, removes infrequently used parts to disk. Finally, hybrid is similar to disk
but keeps more information in memory during the model building step. A remarkable
property of mcsta in comparison to the other mentioned tools is its model building
technique that makes use of just-in-time compilation. In a nutshell, at runtime source
code is generated and emitted that is then executed and thereby explores the model.
¿is can speed up model building signi�cantly. ¿eModest Toolset is written in C#
and unlike Prism, Epmc and Storm, its source code is not publicly available.

7.3 Technicalities

Before we move on to a present the features and the higher-level design choices of
Storm, we want to mention a few technical details that partially a�ect the former. By
far the largest part (around 140,000 lines of code) of Storm is written in the C++

4http://www.modestchecker.net/

http://www.modestchecker.net/
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programming language and extensively uses template-based meta-programming. ¿is
has several positive and negative implications. On the one hand, it serves the purpose
of high performance for several reasons. First, C++ allows �ne-grained control over
implementation details like memory allocations. Secondly, C++ templates allow code
to be heavily reused while maintaining performance as the static polymorphism enables
type-dependent optimizations at compile-time. Finally, we observe that many high-
performance solvers and data structure libraries that are well-suited for the context
of (probabilistic) veri�cation are written in C or C++ (and also partially make use of
template meta-programming), such as

» most SMT solvers (Z3 [MB08],MathSat [Cim+13],Cvc [Det+14],Yices [Dut14],
Smt-Rat [Cor+15]),

» LP solvers (Gurobi [Gur16], glpk5),

» linear algebra libraries (Gmm++6, Eigen7 [G+10]),

» DD libraries (CUDD [Som], Sylvan [Dij16]), and

» rational numbers and function libraries (CArL [Cor+15],GMP8,GiNaC [BFK02],
CoCoALib [AB17]).

ChoosingC++ as the language for Storm therefore allows easy and fast interfacing with
these solvers. On the other hand, the advantages come at a price. Advanced templating
patterns can be di�cult to understand and increase compile-times signi�cantly. Cur-
rently, building all binaries related to Storm from source code takes about half an hour
on a modern laptop. In comparison, building Prism takes under 2 minutes even though
it contains more lines of code.

7.4 Features

In this section, we will take a glance at the features and limitations of Storm. We will
highlight how Storm di�ers from its main competitors. First and foremost, we want
to mention that the feature sets of the model checkers are incomparable in the sense
that each of them can solve some veri�cation-related tasks that the other cannot do.

5https://www.gnu.org/software/glpk/
6http://getfem.org/gmm.html
7http://eigen.tuxfamily.org/
8https://gmplib.org/

https://www.gnu.org/software/glpk/
http://getfem.org/gmm.html
http://eigen.tuxfamily.org/
https://gmplib.org/
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¿is is simply a result of the di�erent focus of the tools. For example, Storm does
currently not support PLTL model checking while Prism has support for it and Epmc
even employs sophisticated multi-layered lazy constructions to increase the scalability
of PLTL veri�cation further [Hah+15]. Similarly, Storm neither o�ers surrogates for
all of Prism’s veri�cation engines (see Section 7.4.5) nor provides veri�cation based on
discrete-event simulation (which is also known as statistical model checking) whereas
Modest and Prism do. Finally,Modest, for instance, goes beyond the other tools by
providing support for models with more general distributions and continuous behaviors
governed by di�erential equations.

In the following, we try to give an overview about what makes Storm’s characteristics
unique. For these, let us use the abstract control �ow diagram in Figure 7.1 to structure
our enumeration. We want to remark that in the following — just as for the other tools
— we abstract from certain details and that not all combinations of features are available.

7.4.1 Model Types

Storm supports the analysis of Markov chains (MCs) and probabilistic automata (PA).
More speci�cally, it can deal with discrete-time and continuous-time versions of these
formalisms. In total, this yields four di�erent model types: classical discrete-time
Markov chains and continuous-time Markov chains, as well as probabilistic automata
and Markov automata. A categorization of these models and more details can be found
in Section 2.2.

Clearly, MA are the richest model in the sense that PA (and by extension also DTMCs)
can be seen as MA without (exponentially distributed) delays, and CTMCs can be seen
as MA without nondeterminism. All these model types can be enriched with state and
transition-based reward (or dually: cost) structures. While Epmc, Prism and Storm all
support MCs and PA, only few other model checkers, such as IMCA [Guc+12] enable
the analysis of (timed properties on) MA.

7.4.2 Modeling Languages

Most probabilistic model checkers support one or two modeling languages. More
speci�cally,

» Prism supports the PRISM language as well as an input format that explicitly
enumerates the transitions of the system similar to that of Mrmc,

» Epmc supports the PRISM language as well as JANI (see Chapter 3), and
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» Modest supports theModest language as well as JANI.

With the exception of theModest language, all of these languages are also supported by
Storm. However, it supports three other modeling languages. First, the user can input
a generalized stochastic Petri net (GSPN) [MCB84], which is then translated to JANI
automatically. Secondly, dynamic fault trees (DFTs) are a means to specify the fault
behavior of systems that is widely used in industry [RS15]. Due to dedicated state space
generation and reduction techniques, Storm has been shown to signi�cantly outperform
competing tools in this domain [VJK16]. Finally, a recent trend in the analysis of
probabilistic systems is probabilistic programming. ¿e latter refers to programs written
in a probabilistic extension of regular sequential programs, such as pGCL [HSM97],
that can additionally be extended with statements expressing conditional reasoning, an
ingredient that is essential to describe Bayesian networks. Storm can parse and translate
programs written in pGCL to JANI, which makes such programs amenable to existing
probabilistic model checking techniques such as standard value iteration (for �nite state
programs) or game-based abstraction re�nement (for in�nite state programs).

7.4.3 Options

For completeness reasons, we have also included “options” as an input to Storm. In
our view, it is fair to state that all mentioned tools are highly customizable through the
options they provide. While this may be advantageous if the user can encode helpful
domain knowledge, the number of options of all tools may be overwhelming to users
that are not familiar with the inner workings of the tools. As of now, the (main) binaries
of Storm, Prism and Epmc each o�er more than ninety options. While all tools provide
reasonable defaults, they cannot be adequate for all inputs from a very wide range of
inputmodels. We therefore see an interesting direction for future research in the analysis
of the input with the goal of deriving a set of suitable options for the speci�c instance,
an approach that was already suggested in the non-probabilistic setting [Dem+17].

7.4.4 Properties

As we already mentioned, Storm lacks support for PLTL. Instead, at its core, it focuses
on branching-time logics such as PCTL for discrete-time and CSL for continuous-time
models. In particular, these logics subsume the most important properties in the form
of reachability queries. For example, similar to the non-probabilistic setting, model
checking ω-regular properties on probabilistic systems reduces to a reachability problem
on a suitable product construction where the main di�erence to the traditional setting
is that the automaton needs to satisfy certain criteria, e. g. be (limit) deterministic or
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unambiguous. ¿e properties accepted by Storm can also reason about the rewards or
costs in the system. In this regard, the tool mainly focuses on expected rewards:

» what is the expected reward that is accumulated until a set of goal states is reached?

» what is the expected reward that is accumulated until time point t?

» what is the instantaneous reward received at exactly time point t?

A class of properties that has received further attention in the past years [Bai+14; Bai+17a]
are conditional probability and reward queries, respectively. Storm can, for instance,
compute the probability that a certain set of states is reached provided that some other
state set is visited, too, and similarly for rewards. Moreover, Stormwas recently extended
with support for multi-objective queries [QJK17]. Here, the goal is to �nd good trade-
o�s between possibly con�icting objectives in models that involve nondeterministic
choices. Similarly, cost-bounded properties [Har+18] are a recent addition and allow
determining the probability to reach a set of target states within a certain cost bound.

7.4.5 Engines

We have already mentioned that in probabilistic model checking and probably in veri�-
cation in general, there is no “one-size-�ts-all” solution. Instead, it heavily depends on
the input model and the properties, which techniques and tools perform best. ¿erefore,
current model checkers opt to o�er a range of engines that drive the model building and
veri�cation steps. In this regard, Storm is not di�erent. More speci�cally, it features
two di�erent in-memory representations of probabilistic systems. First, it can use sparse
matrices, an explicit representation form that uses memory roughly proportional to
the number of transitions with non-zero probability. Sparse matrices are suited for
small and moderately-sized models and allow for fast operations also on models with
irregular structure. Secondly, it can store models symbolically using MTBDDs, which
are (sometimes) able to represent gigantic models very compactly. ¿is typically comes
at the price of more expensive operations, in particular for the numerical solution. Most
of Storm’s engines are built around these model representations. ¿e sparse engine
exclusively uses the sparse matrix-based representation. It �rst builds the matrix repre-
sentation of the reachable state space and then analyzes the model using the standard
(numerical) approaches. While the exploration engine also uses sparse matrices, it uses
ideas from machine learning to avoid building the full system [Brá+14]. Instead, it
proceeds in an “on-the-�y” manner and explores those parts of the system that appear
to be most relevant to the veri�cation task. ¿e other engines use the MTBDDs as their
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primary form of representation. Except for the concrete in-memory representation,
the dd engine is the counterpart to the sparse engine in the sense that model building
and veri�cation is done on the very same representation and no translation takes place.
Storm’s hybrid engine tries to avoid the costly numerical operations on MTBDDs by
transforming only the relevant parts of the system into a sparse matrix representation.
By this, it follows the approach of Prism’s sparse engine and is not to be confused with
the latter’s hybrid engine, which is to be classi�ed as “more symbolical”. Finally, the
abstraction-re�nement engine implements the technique described in Chapter 6 and is
able to compute bounds for both minimal and maximal reachability probabilities for
in�nite PA (and probabilistic programs).

7.4.6 MTBDDs

To realize the support for DDs-based representations of systems, Storm relies on two
di�erent libraries: CUDD [Som] and Sylvan [Dij16]. While the former is very well
established in the �eld, the latter is more recent and tries to make use of modern multi-
core CPU architectures by parallelizing costly operations. ¿is comes at the price of
more expensive bookkeeping and in general CUDD performs better if there are many
operations on smaller DDs and Sylvan is faster when fewer operations on larger DDs
are involved. Given that modern CPUs tend to have more and more cores, Sylvan
o�ers an interesting trade-o� by trying to compensate for the slower operations on DDs
(compared to explicit representations) by making e�cient use of these resources. We
want to remark that Storm implements an abstraction layer on top of the two libraries
that uses static polymorphism. ¿is way, it is possible to write code that is independent
of the underlying library and does not incur runtime costs. ¿is also means that Storm
can easily be extended with more DD libraries as they become available. ¿is sets it
apart from Prism, which, because of its long-standing history, is somewhat coupled
with CUDD.

7.4.7 BisimulationMinimization

As we have shown in Chapter 5, bisimulation minimization is able to reduce model sizes
drastically while preserving all properties of interest. Storm implements this reduction
using both the symbolic approach presented in Chapter 5 as well as its counterpart
operating on sparse matrices. ¿is allows applying the reduction on a wider range
of models: if the model is too large to be treated in an explicit representation, the
explicit bisimulation minimization cannot treat the model independent of the degree of
symmetry in the model. For large, structured models, this is overcome by building and
minimizing the model in an MTBDD-based representation.
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7.4.8 Exact Arithmetic

Several works [Wim+08; Wim10; Bau+17] observed that the numerical methods applied
by probabilistic model checkers are prone to numerical errors. ¿is has mostly two
reasons. First, the �oating point data types used by the tools are inherently imprecise.
For example, representing the probability 1

10 using IEEE 754 compliant double precision
introduces an error of 5 ⋅ 10−18. In the presence of numerical algorithms, these errors
accumulate and may lead to incorrect results. Secondly, the numerical algorithms
sometimes themselves are strictly speaking unsound. For example, value iteration
(see Chapter 6) approximates the solution in the limit, but the termination criterion
implemented by most tools does not guarantee that the obtained result is di�ering
by at most the given precision є from the actual solution. One way to combat this
is to approach the solution from both directions, a technique referred to as interval
iteration [HM14]. Storm implements the latter and additionally an even more recent
algorithm called sound value iteration [QK18]. We want to remark that using policy
iteration [How64] is also problematic in the case of numerical inaccuracies of the
underlying linear equation solver.

An alternative to the above is to employ rational arithmetic. ¿at is, probabilities and
rewards in the model are stored as rational numbers. ¿en, systems of linear equations
may be solved without introducing any errors and techniques such a policy iteration
allow for solving Bellman equations without error. Storm implements these ideas and
allows for the exact solution of many properties. ¿rough the use of C++ template
meta-programming, large parts of the code are written agnostic of the data type (�oating
point, rational number or even rational functions) and only the core parts are specialized
based on the data type. As this happens at compile-time, no runtime cost is incurred.
More speci�cally, two techniques are o�ered to solve systems of linear equations using
rational arithmetic. ¿e �rst is based on Gaussian elimination and the second on a
recent technique called rational search [Bau+17]. ¿e idea of the latter is to use an
imprecise solver to approximate the exact solution and then sharpen this to a precise
rational solution using the Kwek-Mehlhorn algorithm [KM03]. If a straightforward
check then returns that the sharpened values constitute an actual solution, the technique
can return it. Otherwise, the precision of the imprecise underlying solver is increased
and the loop is restarted.

7.4.9 Parametric Models

Storm features the analysis of models that replace one or more probabilities or rewards
in the model with parameters. ¿ey may appear at multiple positions in the model
and have a �xed but unknown value. Typically, valid ranges of all used parameters
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are assumed in the form of intervals. ¿en, for example, the probability to reach a
certain set of states in a parametric DTMC is no longer a value, but rather a rational
function [Daw04]. ¿is function returns the probability based on a concrete input
parameter valuation. ¿ere are many interesting questions that one can ask revolving
around parametric systems. One of them is parameter synthesis where the goal is to
decompose the parameter space into regions in which a prede�ned property is either
satis�ed or violated. Such a decomposition indicates all admissible parameter values
amongwhich the system engineermight choose, possibly according to additional criteria.
Storm is used as a backend of the parameter synthesis tool PROPhESY [Deh+15] that
provides a web-based user interface to visualize the behavior of the system over the
parameter space. It provides two modes to perform parameter synthesis. One is based
on computing the aforementioned rational function through state elimination [Daw04]
that can also be seen as Gaussian elimination. ¿e other avoids computing a potentially
large rational function and determines validity of a formula over a region of parameter
valuations through a reduction to a non-parametric system and is referred to as the
parameter li ing approach [Qua+16]. In contrast to other approaches, the latter extends
naturally to parametric PA and for both techniques, Storm has proven to outperform
other state-of-the-art tools such as Prism or Param [Hah+10a]. In the case of computing
rational functions, Storm follows the same principle as the other tools, but obtains
speedups of up to two orders of magnitude through an optimized implementation
as well as the use of rational function representation provided by the library CArL 9.
It uses a partially factorized representation of rational functions that allows for faster
cancellation of terms in the numerator and denominator of the function through cheaper
computations of the greatest common divisor. Recently, Epmc was extended with a
technique to compute rational functions for the purpose of sampling the model [GHS18]
where it is less important to cancel rational functions as far as possible.

7.4.10 Counterexample generation and Permissive Scheduler Synthesis

In the past decade, the feature portfolios of probabilistic model checkers have increased
signi�cantly. Initially, the focus lay mostly on computing the probability that a certain
event happens. However, as witnessed by parameter synthesis there are many other
valuable results a probabilistic model checker can produce. Among them is also the
synthesis of counterexamples as a feedback for the developer of the system under
analysis. Counterexamples are essential to the acceptance of formal methods among
engineers and help drive the design cycle. Storm supports the generation of high-level
counterexamples for both Prism and JANI input models as presented in Chapter 4.

9available at https://github.com/smtrat/carl

https://github.com/smtrat/carl
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In a similar spirit, scheduler synthesis aims at constructing a strategy to resolve the
nondeterminism that is optimal with respect to a given objective. ¿is can be leveraged
to solve (stochastic) planning problems as they, for instance, arise in robotics. Here, the
choices are modeled as nondeterminism and an optimal scheduler in a stochastic model
enriched with costs corresponds to a plan that is optimal with respect to the incurred
costs. As robots need to be able to adapt to unknown terrain, it may be the case that
the cost function is not known a-priori but is learned by the robot as it explores its
surroundings. However, the robot must not perform any actions that risk its safety, such
as moving to a dangerous position. ¿is e�ectively means that the synthesized optimal
scheduler needs to respect a set of safety constraints resulting in a multi-objective
problem. Storm implements the synthesis of permissive schedulers [Drä+15] that satisfy
a set of safety constraints but try to remain as permissive as possible in the sense that as
little behavior as possible is ruled out. More details on the two supported techniques
(oneMilp-based and one Smt-based) can be found in [Jun+16].

7.4.11 Application programming interfaces (APIs)

¿ere are three ways to access the features of Storm. Just like all mentioned tools, it
o�ers a command-line interface in the form of a set of binaries. ¿ey group the features
and settings for better usability. For example, the functionality related to DFTs or the
veri�cation of parametric models are placed in separate executables. In contrast to
Prism, Storm does not have a graphical user interface.

One of the two real APIs Storm o�ers to developers isC++-based. It allows �ne-grained
and performance-oriented access to all of its features. However, because of the involved
templating mechanisms, this API is clearly dedicated to advanced developers. If perfor-
mance is a subordinate goal and the ease of use is a primary concern, a better choice is to
use the Python API dubbed Stormpy10. ¿e latter abstracts from many technicalities
and therefore o�ers a much better user experience. ¿is allows for rapid prototyping
while bene�ting from the encapsulated high-performance C++ implementations.

7.5 Solvers

Probably the most outstanding trait of Storm’s architecture is the concept of solvers.
Ultimately, many tasks related to (probabilistic) veri�cation revolve around solving
subproblems. For example, computing reachability probabilities or expected rewards
in a DTMC reduces to solving a system of linear equations. ¿is is similar for PA in

10available at https://github.com/moves-rwth/stormpy

https://github.com/moves-rwth/stormpy
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that a system of equations needs to be solved with the di�erence that the equations
are Bellman equations and involve minima and maxima. However, these are by no
means the only kinds of problems appearing in probabilistic veri�cation. Figure 7.2
illustrates which functionalities of Storm have a dependency to one ormore solvers. For
example, (explicit) model building employs Smt solving. As the initial states of symbolic
models (e. g. Prism or JANI) are given by the satisfying assignments of an expression,
Storm uses Smt solvers to enumerate the possible initial states. Similarly, the extraction
of the abstract model from the symbolic model (as presented in Chapter 6) in the
abstraction re�nement engine crucially depends on enumerating satisfying assignments
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and therefore Smt solvers. As yet another example, consider the synthesis of high-level
counterexamples as in Chapter 4. Here, one of the o�ered techniques relies on the
solution of a MILP while the other uses SMT solvers.

Recall that two of the main goals in the development of Storm were the ability to
exchange central building blocks (like solvers) and to bene�t from (re)using high-
performance implementations provided by other libraries. It therefore o�ers abstract
interfaces for the solver types mentioned above that are oblivious to the underlying
implementation. O�ering these interfaces has several key advantages. First, it provides
easy and coherent access to the tasks commonly involved in probabilisticmodel checking.
Secondly, it enables the use of dedicated state-of-the-art high-performance libraries
for the task at hand. More speci�cally, as the performance characteristics of di�erent
backend solvers can vary drastically for the same input, this permits choosing the best
solver for a given task. Licensing problems are avoided, because implementations can
be easily enabled and disabled, depending on whether or not the particular license �ts
the requirements. Finally, implementing new solver functionality is easy and can be
done without detailed knowledge of the global code base. ¿is allows to embed new
state-of-the-art solvers in the future. For each of the solver interfaces, several actual
implementations exist. For example, Storm currently has four implementations (each
of which with a range of further options) of the linear equation solver interface for
problems given as sparse matrices: one is based on Gmm++, one on Eigen, one uses its
internal data structures and algorithms for numerical algorithms and another one is
based on Gaussian elimination [Daw04]. Table 7.1 gives an overview over the currently
available implementations. Here, all solvers that are purely implemented in terms of
Storm’s data structures and do not use libraries are marked with an asterisk to indicate
that they are “built-in”.

7.6 Evaluation

As previously mentioned, all tools have their strengths and weaknesses regarding the set
of features they o�er. In this section, we want to compare how the tools Prism, Epmc,
Modest (more speci�cally: mcsta) and Storm perform on standard probabilistic
model checking tasks, such as computing reachability probabilities or expected rewards.

Before we move on, we want to say some words about the meaning of the following
�gures. We already pointed out that the tools come with a large number of options, some
of which have a continuous domain. For the evaluation, we only modify key settings like
the selected engines and leave the rest as they are by default. Self-evidently, this need
not be the optimal settings for the tools for the selected benchmark models and it may
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solver type available solvers
linear equations (sparse) Eigen, Gmm++, Gaussian elimination∗, native∗

linear equations (MTBDD) CUDD, Sylvan
Bellman equations (sparse) Eigen, Gmm++, native∗

Bellman equations (MTBDD) CUDD, Sylvan
stochastic games (sparse) native∗

stochastic games (MTBDD) CUDD, Sylvan
(MI)LP Gurobi, glpk

SMT Z3,MathSat, SMT-LIB [BFT15]

Table 7.1: ¿e solvers Storm provides out-of-the-box.

well be the case that performance varies drastically with a di�erent set of options and or
benchmarks. A er all, seemingly minor options may have a huge e�ect on performance.
For instance, when performing state elimination for parametric systems, the runtime
may vary between few seconds and hours depending on the selected heuristic for
ordering the states [Deh+15].

Furthermore, the selection of models plays a crucial role. To remain as unbiased as
possible, we draw all models from Prism’s benchmark suite [KNP12]. In particular,
we take all 7 DTMCs, 7 CTMCs and 9 PA models from this suite (23 in total). Most
of these models are scalable in one or more parameters. For each of the models, we
therefore consider several parameter instances. Furthermore, every model comes with
a set of properties and we consider at least one instance of each model for each property
associated with the model (13 properties on DTMCs, 37 on CTMCs and 31 on PA). Over-
all, the properties cover unbounded and bounded reachability probabilities, expected
rewards (reachability, cumulative and instantaneous) as well as long-run probabilities
and rewards. In total, we have 330 veri�cation tasks: 60 on DTMCs, 149 on CTMCs and
121 on PA. More details can be found in Appendix F.

A little less obvious is the e�ect of the operating system and hardware on the results. ¿e
appendix of the extended version of [Mär+17] 11 impressively showcases how runtimes
are a�ected by the concrete system the experiments are run on. Here, runtimes vary
as much as 300% between systems even though the underlying hardware is roughly
comparable. ¿e authors conclude that comparisons need to be taken with a grain of

11available at https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17
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salt and only carry over to other systems on a coarse level. Even on the same system, the
results can vary over separate runs of the tools and it would in principle be advised to
average over a large number of runs. However, we decided to rather have a very broad
comparison on a large number of models and due to the sheer number of experiments
(we run several con�gurations of the tools on every veri�cation task), it was not practical
to repeat individual experiments su�ciently o en to rule out noise in the data. In any
case, we believe that for instances that are not solved within a few seconds, the noise
will overall be negligible.

Finally, we compare the tools mostly in terms of runtime. While this is an interesting
metric, it is certainly not the only one. As probabilistic model checking tends to not
only be time-consuming but also memory-intensive, another comparison metric would
be the memory requirements of the tools. ¿is is somewhat di�cult since Prism, Epmc
andModest are mainly written in garbage-collected languages. In practice, the virtual
machines (in particular the Java VMs) running the executables quickly use all available
memory and only free memory as necessary. ¿e peak memory usage is therefore not
representative of the memory that would have been necessary to successfully complete
the veri�cation task. Similarly, for all DD-based tasks, the sizes reserved for the libraries
(CUDD and Sylvan) need to be given a-priori (for all the tools) and peakmemory usage
does not re�ect the actual requirements. We therefore resort to setting an identical time
and memory limit for all tools and determine which of the tools was able to complete
the task within the resource limit. If a task could not be completed because of missing
resources, we indicate whether it ran out of memory (MO) or it timed out (TO).

We hope that the evaluation provides a rough idea of the strengths and weaknesses of
the tools, but ultimately it depends on the concrete model, property, OS and hardware
which of the tools performs best.

7.6.1 Technical Setup

For the experiments, we use an HP BL685C G7 blade with 192GB of memory and 48
cores (each clocked at 2.0GHz) running 64-bit Debian 9 (“Stretch”). Every experiment
was restricted to 16GB of memory and one hour. Both Java-based tools (Prism v4.4dev
12 and the most recent Epmc revision13) were compiled and run using Oracle’s Java
development kit14 v10.0.2 whereas mcsta (v3.0.104-g6e5bc65) was run under Mono15
v5.4.1.6. With the exception of the parallel garbage collection of the Java virtual machine,

12commit dc5a8b6f7e2b02093d986a52ee344bc183e40cd0 in Prism’s github repository
13commit a6b2c87e034a20f5775e7ca62f67eed52d325994 in Epmc’s github repository
14available at http://www.oracle.com/technetwork/java/javase/downloads/
15available at https://www.mono-project.com/

http://www.oracle.com/technetwork/java/javase/downloads/
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which we limited to 4 threads, all experiments were limited to one thread. As we already
mentioned, we set a minimum number of options for the tools and otherwise rely on
the defaults. Among the speci�ed options is the (relative) precision є = 10−6 since the
tools’ default behaviors regarding precision di�er signi�cantly and the results can then
not be compared in a meaningful way. While it is known that the (default) techniques
used by all tools are not sound in the sense that they guarantee to be at most є away
from the actual solution, some of the results were too imprecise. We therefore mark
all incorrect results as “error” where incorrect is de�ned as not achieving a (relative)
precision of 10−2 with respect to the reference result. For a given veri�cation task the
latter is determined as follows:

» if at least one of themodel checkers (of the ones that support it, i. e. Storm, Prism)
was able to compute an exact result in rational arithmetic, use it as the reference
result (and also compare it to the other exact results that could be obtained),

» if no exact result could be obtained, but at least one of the model checkers (of
the ones that support it, i. e. Storm, Prism, mcsta) was able to compute a result
using a soundmethod ([Bai+17b; QK18]), use it as the reference result (and also
compare it to the other sound results that could be obtained),

» if none of the above was successful, determine for each model checker with
how many of the other model checkers it agrees and �nally allow all (potentially
di�erent) results of the model checkers with the highest scores as reference results.

We do realize that it is not strictly guaranteed that this procedure arrives at a reference
result that is within є-distance of the actual result, but we argue that it is the best
approximation with the data we have.

7.6.2 Methodology

In our comparison, we �rst compare only those engines of the tools that are similar
in spirit and only then compare the performances of the tools when selecting the best
engine for each instance. We focus on runtimes and measure the wall-clock runtimes
(including model building and model checking) for all experiments. Note that each
experiment is run in isolation and no information (such as state spaces or previous
results) is reused by any of the tools between di�erent experiments. For each of the
comparisons, we provide two classes of graphs that visualize the experimental results.
First, we compare the performance of Storm with each of the other tools one-by-one
separately and give the results in the form of scatter plots. ¿e latter indicate the type
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(DTMC, CTMC or PA) of the veri�cation task by means of di�erent marks. ¿e scatter
plots use logarithmic scales on both axes and indicate speedups of 10 and 100 by means
of dotted lines. Moreover, points for experiments that ran out of resources (time-out
or memory-out), resulted in an error or are not supported are drawn on separate lines.
Here, “error” does not only refer to incorrect results but may also refer to any other
problem that prevented the tools from returning an answer. Secondly, we measure the
overall performances of the (comparable) engines of the tools and draw them in quantile
plots similar to those used by popular competitions, for example the Competition
on So ware Veri�cation (SVComp). Such a graph expresses how many benchmark
instances (measured on the x-axis) each were solved in at most the time given on the
y-axis. In other words, the point ⟨x , y⟩ is contained in the quantile plot for tool Z if
the maximal runtime of Z on the x fastest instances (for Z) that could be solved is y
seconds. In particular, this means that times are not cumulative and do therefore not
count the start-up times of tools repeatedly. To not over-emphasize very low runtimes
(e. g. resulting from di�erent start-up), we adopt the strategy of SVComp and use a
linear scale (on the y-axis) for the points representing runtimes up to one second and a
logarithmic scale (also on the y-axis) for the runtimes higher than one second. Note
that time- and memory-outs, errors and unsupported experiments may skew the lines
of the a�ected tools as all these outcomes do not count as solved.

7.6.3 Explicit-State Probabilistic Model Checking

We start with a comparison of those engines of the tools that build an explicit represen-
tation of the system (typically in terms of a matrix) and perform veri�cation using this
representation, an approach that is typically referred to as explicit state model checking.
More concretely, these are

» Prism’s explicit engine,

» Epmc’s explicit engine,

» all of mcsta’s engines (memory, hybrid, disk), and

» Storm’s sparse engine.

Figures 7.3(a) and 7.3(b) show the scatter plots for the comparison of Storm’s explicit
engine with Prism’s and Epmc’s explicit engines, respectively. We observe that in both
cases, Storm outperforms the competing tools for most instances. In the comparison
with Prism, the highest speedups are achieved for CTMCs and PA and for DTMCs the
tools tend to be on par. ¿e points on the “error” line are mostly the result of Prism’s
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Figure 7.3: Comparison of explicit-state model checking.
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Figure 7.4: Storm’s sparse engine vs. mcsta’s best engine.

explicit engine not supporting some of the reward objectives. When comparing with
Epmc, it is the CTMCs for which the tools behave comparably and for the other model
classes Storm tends to be faster. However, we notice that Epmc produces 8 incorrect
results (only DTMCs and PA), which is responsible for most points on the “error” line.
Figure 7.4 shows the comparison of the sparse engine of Storm with the best (for each
individual veri�cation task) of the three engines of mcsta. Overall, the model checkers
perform similarly. mcsta is typically faster on DTMCs since for these models the
model building times o en outweigh the veri�cation times and mcsta’s model building
step is roughly twice as fast as Storm’s (in the sparse engine). Conversely, Storm has
advantages when it comes to (i) CTMCs and (ii) models that are harder to solve such as
some of the larger PA.

Figure 7.5 shows the quantile plots of the performances of the tools. We observe that
Storm is able to solve the most instances for any given time and Prism, Epmc and
mcsta perform similarly.
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7.6.4 Symbolic Probabilistic Model Checking

Now, we compare the symbolic engines of the tools. By symbolic we refer to approaches
that perform the model building and veri�cation steps mostly on MTBDDs. More
speci�cally, these are

» Prism’s hybrid andmtbdd engines and

» Storm’s dd engine.

Although the hybrid engine of Prismmakes some of the information in the MTBDDs
explicit, regarding memory requirements it is similar to fully DD-based veri�cation and
we therefore consider it here.

Figure 7.6 shows the scatter plots of the experimental results. When comparing Storm’s
dd engine with Prism’s dd engine, we see that they show similar behavior except for
a few outliers. ¿is picture becomes di�erent when comparing with Prism’s hybrid
engine. Here, we see a lot of variance but no clear trend. We can see that for some
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Figure 7.6: Comparison of symbolic model checking.
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models, Prism’s hybrid clearly signi�cantly improved runtimes whereas for (a few) other
it decreased performance.

In Figure 7.7 we show the number of solved instances in a given time limit, once with and
once without CTMCs since they are not supported by Storm’s dd engine. In the former
case, Prism solves signi�cantly more instances within the time limit with either engine,
but there are clear (runtime) advantages for its hybrid engine. When disregarding the
unsupported (by Storm) CTMCs, the tools perform similarly, but ultimately Prism
hybrid outperforms Storm dd.

7.6.5 Hybrid Probabilistic Model Checking

Next, we compare the engines of the tools thatmake some (or even all) of the information
stored in MTBDDs explicit during the numerical solution phase. Even though we have
considered it for the symbolic comparison as well, we also count Prism’s hybrid engine
to this category. ¿erefore, we now consider:

» Prism’s sparse and hybrid engines,

» Epmc’s dd engine, and

» Storm’s hybrid engine.

We give the scatter plots comparing Storm with Prism’s two engines in Figure 7.8. In
both comparisons, the majority of instances are solved quicker by Storm than by Prism.
¿e comparison of Storm and Epmc’s dd engine is depicted in Figure 7.9(a). Again,
Storm solves most instances faster. We remark that Epmc returned incorrect results on
23 veri�cation tasks, which causes most of the “error” results.

Finally, Figure 7.9(b) plots the performances of all engines of this category in which
Storm consistently solves the most instances in any given time limit.

7.6.6 Best Engine

Finally, we compare the tools’ best engines for each veri�cation task. Even in the non-
probabilistic setting, many tools have a variety of engines and are typically referred to
as portfolio solvers. Assuming a moderate number of such engines, their strengths can
in practice be combined without knowing which engine is best suited for a particular
instance by running them in parallel. In this spirit, [Dem+17] suggests that heuristics
may be used to build well-performing portfolio solvers. We therefore argue that also in
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the probabilistic setting it makes sense to compare the performances of the tools when
selecting the best engine for each speci�c veri�cation task.

Figure 7.10(a) shows that Storm is faster than Prism in the majority of cases. Storm
solves some of the veri�cation tasks one to two orders of magnitude faster. ¿e same
observations can be made when comparing Storm with Epmc’s best engine (see Fig-
ure 7.10(b)). Here, we also see that Epmc can solve a number of CTMCs faster than
Storm. At the same time, however, Epmc returns incorrect results for other CTMCs.
Finally, Figure 7.11 shows the comparison of Storm and mcsta. For the instances that
can be solved within less than (around) 500 seconds, the tools overall perform rather
similarly. For the larger PA instances, we see that Storm tends to solve them roughly
one order of magnitude faster.

Figure 7.12 summarizes the performances of the best engines of the tools: Storm solves
more instances in a given time than any other competitor.

7.6.7 SoundModel Checking

We already mentioned several times that the tools technically do not give guarantees
concerning the accuracy of (most of) their results even when assuming the absence of
bugs. One of the fundamental reasons for this are the iterative techniques like value
iteration that are used to compute probabilities and rewards. Recent work [HM14;
Bai+17b; QK18] proposes to address this problem by bounding the target value from
below and above and therefore guarantee that the actual solution lies within a certain
interval. Storm, Prism and mcsta o�er “sound” modes based on the aforementioned
algorithms that achieve the target precision (relative є = 10−6). More speci�cally, Prism
and mcsta o�er interval iteration in all of their engines whereas Storm supports sound
value iteration in the sparse and hybrid engines.

Figure 7.13 shows the experimental results when selecting the sound techniques and
the best engine for each instance for all three tools. Except for few instances, Storm
outperforms both Prism and mcsta and can solve more instances within the resource
limit. ¿is is manifested in the corresponding quantile plot in Figure 7.14.

7.6.8 Exact Model Checking

Another source of inaccuracies is the use of �oating point arithmetic [Wim+08; Bau+17].
In certain cases, for example the presence of very small probabilities or nested spec-
i�cations with precise bounds, it may not be enough to use the techniques referred
to in Section 7.6.7. Instead, it may be necessary to compute probabilities and rewards
exactly. Prism and Storm o�er to compute exact values for many types of queries. In



7.6.8. Exact Model Checking 261

1 60 600
1800
3600

1

60

600

1800
3600

TO
/M

O
error
unsupp.

TO/MO
error

unsupp.

Storm

Pr
is
m

DTMC
PA

CTMC

(a) Storm’s best engine vs. Prism’s best engine.

1 60 600
1800
3600

1

60

600

1800
3600

TO
/M

O
error
unsupp.

TO/MO
error

unsupp.

Storm

Ep
m
c

DTMC
PA

CTMC

(b) Storm’s best engine vs. Epmc’s best engine.

Figure 7.10: Comparison of best engines.
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Figure 7.11: Storm’s best engine vs. mcsta’s best engine.

Figure 7.15(a), we compare the “exact” modes modes of both tools building on their
explicit-state engines (sparse for Storm, (a parametric extension of) explicit for Prism).
We see that Storm signi�cantly outperforms Prism and achieves speedups of more
than two orders of magnitude for many examples, in particular on CTMCs and PA.

In fact, in contrast to Prism, Storm can also store rational numbers in MTBDDs, which
entails that Storm’s hybrid engine can also compute exact results. In Figure 7.15(b) we
compare both of Storm’s “exact” engines with Prism’s exact mode and see that Storm
can solve more than twice as many instances within the resource limit.

7.7 Conclusion

Six years ago, we started to build a new probabilistic model checker from scratch.
Today, Storm can determine a broad range of interesting measures on models involving
nondeterminism, randomization and (randomized) timing. By o�eringmultiple engines,
it can e�ciently treat a wide range of input models. Storm goes beyond “simple”
probabilistic model checking in numerous ways such as parameter synthesis, permissive
scheduler synthesis, counterexample generation, and the computation of reachability
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Figure 7.12: Quantile plots comparing the best engines of the tools.

probabilities in in�nite-state PA. From a developer point of view, Storm o�ers abstract
solver interfaces with various concrete implementations. ¿is makes it easy to reuse
high-performance libraries as well as plugging in new solvers. ¿rough its Python API,
Storm allows rapid prototyping using high performance routines.

In an extensive evaluation with three other state-of-the-art probabilistic model checkers,
we showed that Storm’s performance compares favorably for many instances from
the well-known Prism benchmark suite across all veri�cation approaches. ¿is lead
becomes even clearer when the veri�cation result needs to achieve a speci�ed precision
or be exact.

However, as ever so o en is the case, there is no “one-size-�ts-all” solution in probabilistic
model checking and it ultimately depends on the problem at hand which approach
and tool will deliver the best results. All of the state-of-the-art model checkers have
unique feature sets that comewith certain strengths andweaknesses. We believe Storm’s
characteristics to be unique in the current model checker landscape.
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Figure 7.13: Comparison of the sound modes.
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Chapter8
Conclusion

¿e fundamental challenge concerning the scalability of probabilistic model checking
is the state space explosion problem. ¿rough the curse of dimensionality, systems
quickly become too large to be e�ectively analyzable. Symbolic methods try to exploit
the structure of the model by considering sets of states and transitions rather than
individual entities. ¿ey o en obtain succinct representations, because of the structured
nature of many models.

In this thesis, we have covered the symbolic treatment of models exhibiting nonde-
terministic, probabilistic, and randomly timed behavior. In Chapter 3, we showed
how the JANI language allows to succinctly and in a structured manner cover a wide
range of models and yet is easy to parse and extend. To substantiate the attempt JANI
makes at unifying a divided tool landscape, we formalized the semantics of the fragment
corresponding to Markov reward automata.

Counterexamples are key to increasing the acceptance of formal methods among engi-
neers. Chapter 4 presented an approach to synthesize high-level counterexamples in
terms of JANI (sub)speci�cations. ¿rough a smart enumeration of solutions to a satis-
�ability problem and by leveraging the high performance of o�-the-shelf probabilistic
model checkers, we obtained speedups of several orders of magnitude and were able to
treat models with millions of states and decisions

In Chapter 5 we presented how symbolic bisimulation minimization combines the
strengths of decision diagrams for the compact representation of probabilistic systems
and and bisimulation minimization. We extended previously existing approaches to
e�ciently deal with cost structures and nondeterminism and speed up the model
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extraction step. In an extensive evaluation, we showed that bisimulation minimization
can reduce the sizes of models drastically.

To push the boundaries regarding the model sizes even further, we discussed how to
automatically tailor abstractions to speci�c models and target objectives in Chapter 6.
We showed how stochastic games can serve as a representation of the abstraction
and be extracted directly from a high-level speci�cation in JANI. By analyzing these
abstractions, we obtained both lower and upper bounds on reachability probabilities
in in�nite probabilistic automata. Apart from amending the re�nement procedure of
previous work, we discuss crucial optimizations and show that our implementation is
competitive and the only one that is able to achieve strictly sound bounds.

Finally, we presented Storm, a modern probabilistic model checker. It features a wide
range of input formalisms and veri�cation approaches and goes beyond standard model
checking queries by, for instance, supporting the synthesis of counterexamples (as above)
and permissive schedulers. In particular, all the techniques developed in this thesis have
been integrated in Storm. Together with its strong focus on performance, this makes
Storm’s feature set unique in the current tool landscape. A performance comparison
with three other state-of-the-art probabilistic model checkers revealed that Storm
performs favorably across all supported model classes and veri�cation approaches.

Despite the major advances in the �eld, more than enough challenges remain to be
tackled. Since we already included detailed descriptions of further work in the indi-
vidual chapters, we refrain from restating them here. Rather, we point out two general
directions of research that appear to be promising to us.

A few years ago, IC3 [Bra11] constituted a breakthrough for the veri�cation of hardware
circuits. By formulating the problem as a series of small satis�ability problems, it
bene�ts directly from the substantial improvements of solvers over the past decade.
Substantial research e�ort has been spent on adapting the approach to so ware model
checking [CG12; LNN15; GLW16]. ¿e scalability of probabilistic model checking could
potentially be pushed signi�cantly through a similar approach, but ultimately it remains
unclear how to move all crucial aspects of the algorithm to the probabilistic realm.

Finally, to better assess the strengths and weaknesses of the state-of-the-art, we feel that
more research regarding the applicability of probabilistic model checking in industrial
scenarios should be conducted. While improving the performance of algorithms and
tools using benchmark models is certainly valuable, real-world models beyond the
academic context could help identifying more important shortcomings and bottlenecks
that in turn may steer future work more e�ciently. We hope that JANI improves this
process by providing a common modeling and interfacing language among tools.
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AppendixA
JANI

¿e full JANI speci�cation of the NSMA containing the SMAAS andAR fromChapter 3
is listed below.

{
"jani -version": 1,
"features": [

"derived -operators"
],
"name": "nsma",
"actions": [

{ "name": "reject" },
{ "name": "accept" }

],
"type": "ma",
"constants": [

{
"name": "λ",
"type": { "base": "real", "kind": "bounded", "lower -bound"

: 0 }
}

],
"automata": [

{
"name": "AS ",
"locations": [

{ "name": "wait" },
{

"name": "send",
"transient -values": [ { "ref": "p", "value": 1 } ]

}

293



294 Appendix A. JANI

],
"initial -locations": [

"wait"
],
"edges": [

{
"location": "wait",
"rate": "λ",
"destinations": [ { "location": "send" } ]

},
{

"location": "send",
"action": "send",
"destinations": [

{
"probability": { "exp": { "left": 2, "op":

"/", "right": 3 } },
"assignments": [ { "ref": "t", "value": 1 }

]
},
{

"probability": {
"exp": { "left": 1, "op": "/", "right":

3 }
},
"assignments": [

{ "ref": "t", "value": 2 },
{

"ref": "p",
"value": { "exp": { "left": "p", "

op": "+", "right": 1 } },
"index": 1

}
]

}
]

}
]

},
{

"name": "AR",
"locations": [ { "name": "idle" }, { "name": "busy" } ],
"initial -locations": [ "idle" ],
"variables": [ { "name": "m", "type": "int" } ],
"restrict -initial": { "exp": { "left": "m", "op": "=", "

right": 0 } },
"edges": [

{
"location": "idle",
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"action": "reject",
"destinations": [

{
"assignments": [ { "ref": "p", "value": "3"

} ],
"location": "idle"

}
]

},
{

"location": "idle",
"action": "accept",
"destinations": [

{
"probability": { "exp": { "left": 9, "op":

"/", "right": 10 } },
"assignments": [ { "ref": "m", "value": "t"

, "index": 1 } ],
"location": "busy"

},
{

"probability": { "exp": { "left": 1, "op":
"/", "right": 10 } },

"location": "idle"
}

]
},
{

"location": "busy",
"guard": { "exp": { "left": "m", "op": ">", "right"

: 0 } },
"rate": { "exp": { "left": 1, "op": "/", "right": "

m" } },
"destinations": [

{
"assignments": [ { "ref": "m", "value": 0 }

],
"location": "idle"

}
]

}
]

}
],
"restrict -initial": {

"exp": true
},
"system": {

"elements": [ { "automaton": "AS " },{"automaton": "AR" }],
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"syncs": [
{

"synchronise": [ "send", "accept" ]
},
{

"synchronise": [ "send", "reject" ]
}

]
},
"variables": [

{
"name": "t",
"transient": true,
"initial -value": 0,
"type": "int"

},
{

"name": "p",
"transient": true,
"initial -value": 0,
"type": "real"

}
]

}



AppendixB
Notation

To state the properties used in the experiments, we brie�y introduce their syntax. ¿ere
are three di�erent operators: P(⋅), R(⋅) and S(⋅). P(φ)measures the probability of the
contained path formula φ . R(φ) reasons about the reward whose type is described by φ .
Finally, S(φ) denotes the long-run (or steady state) probability to be in a state satisfying
φ . All operatorsmay be subscriptedwith a bound on themeasure or with “=?” to indicate
that the measure is to be computed without a subsequent comparison. For models
involving nondeterminism, the superscript may specify how the the nondeterminism is
to be resolved (− or +) unless that is implicitly given by the bound.

¿e path formulae that may appear within the probability operator are the usual
(bounded or unbounded) until or (bounded or unbounded) eventually modalities
and we do not detail them further.

As reward formulae φ we use

» I=t to denote the expected reward at exactly time step (or point) t,

» C≤t to denote the expected reward accumulated until time step (or point) t,

» ◊T to denote the expected reward accumulated until reaching the set T , and

» S to denote the expected long-run reward.

If there are multiple reward models associated with a benchmark model, we mention
the concrete reward model as an additional subscript of the R operator.
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Fast Debugging of JANI Models

All models used for the evaluation in Chapter 4 were taken from the Prism benchmark
suite [KNP12] available at

https://github.com/prismmodelchecker/prism-benchmarks/.

For every model, we match the parameters with (the names of) the constants of the
model �le and state the property in the syntax described in Appendix B.

coin. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant K. We consider the property

» P<λ(◊ “�nished” ∧ “all_coins_equal_1”).

csma. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant K. We consider the property

» P<λ(¬“collision_max_backo�” U “all delivered”).

�rewire. ¿e parameter of an instance refers to the constant delay. We consider the
property

» P<λ(◊ “done”).
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wlan. ¿e �rst parameter of an instance refers to the constantMAX_BACKOFF and
the second parameter refers to the constant COL. We consider the property

» P<λ(◊ col = COL).



AppendixD

Symbolic BisimulationMinimization of
Markov Reward Automata

Models and Properties

Mostmodels used for the evaluation in Chapter 5 were taken from the Prism benchmark
suite [KNP12] available at

https://github.com/prismmodelchecker/prism-benchmarks/.

Since this suite does not contain MA, we took these models from [QJK17] and [Guc+13]
most of which can be found at

https://github.com/moves-rwth/storm-examples.

For every model, we match the parameters with (the names of) the constants of the
model �le and state the property in the syntax described in Appendix B.

bluetooth. ¿is model is taken from the Prism benchmark suite. ¿e parameter of
an instance refers to the constantmrec. We consider the property

» R=?(◊ rec = mrec).
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crowds. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter
of an instance refers to the constant CrowdSize and the second parameter refers to the
constant TotalRuns. We consider the property

» P=?(◊ observe0 > 1).

leader. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter of
an instance refers to the constant CrowdSize and the second parameter refers to the
constant TotalRuns. We consider the property

» Rnum_rounds=?(◊ “elected”).

embedded. ¿is model is taken from the Prism benchmark suite. ¿e parameter of
an instance refers to the constantMAX_COUNT. We consider the property

» Rdown=?(C≤168∗3600).

polling. ¿is model is taken from the Prism benchmark suite. ¿e parameter of an
instance refers to the constant N. We consider the property

» Rwaiting=?(C≤40).

p2p. ¿is model is taken from the Prism website1. ¿e �rst parameter of an instance
refers to the constant N and the second parameter refers to the constant K. We consider
the property

» P=?(◊≤1 “done”).

coin. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter of an
instance refers to the constant N and the second parameter refers to the constant K. We
consider the property

» R+steps=?(◊ “�nished”).

1http://www.prismmodelchecker.org/casestudies/peer2peer.php

http://www.prismmodelchecker.org/casestudies/peer2peer.php
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csma. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter of an
instance refers to the constant N and the second parameter refers to the constant K. We
consider the property

» R+time=?(◊ “all_delivered”).

wlan_dl. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter of
an instance refers to the constantMAX_BACKOFF and the second parameter refers to
the constant deadline. We consider the property

» P−=?(◊ s1 = 12 ∧ s2 = 12).

mutex. ¿ismodel is taken from [QJK17] and can be found in the repository located at
https://github.com/moves-rwth/storm-examples. ¿e parameter of an instance
refers to the constant N. We consider the property

» P+=?(◊≤5 “crit”).

polling. ¿ismodel is taken from [Guc+13] and can be found in the repository located
at https://github.com/moves-rwth/storm-examples. ¿e �rst parameter of an
instance refers to the constant N and the second parameter refers to the constant Q. We
consider the property

» P−=?(◊≤5 “q1full”).

jobs. ¿is model is a slight variation of the model from [QJK17]. ¿e original
model can be found in the repository located at https://github.com/moves-rwth/
storm-examples. Our variation concerns the number of di�erent rates. In our model,
only three di�erent rates for the jobs are used. ¿e �rst parameter of an instance refers
to the constant N and the second parameter refers to the constant K. We consider the
property

» P+=?(◊≤
N
4K “all_jobs_�nished”).

https://github.com/moves-rwth/storm-examples
https://github.com/moves-rwth/storm-examples
https://github.com/moves-rwth/storm-examples
https://github.com/moves-rwth/storm-examples
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Additional Data

In this section, we give additional experimental data. Table D.1 shows the number of
nodes of the MTBDDs representing the transition matrices of the original model and
the quotients. Furthermore, it give the number of iterations of the partition-re�nement
algorithm until it reached a �xed point.

Table D.2 gives the runtimes of symbolic versus (direct) sparse quotient extraction for
all considered benchmark models.
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model instance ∣M∆ ∣ ∣M∆/∼ ∣ iterations
(1) 1.5 × 104 6.2 × 102 44

bluetooth
(2) 1.8 × 106 1.6 × 106 307

(30, 20) 3.2 × 105 3.4 × 103 138
crowds

(30, 30) 5.0 × 105 3.6 × 103 208
(6, 8) 1.1 × 107 3.6 × 102 7

D
TM

C

leader
(7, 7) 3.0 × 107 4.2 × 102 8
(1000) 4.2 × 103 9.9 × 104 1004

embedded
(2000) 4.6 × 103 1.2 × 105 2004
(16) 2.2 × 103 9.4 × 106 31

polling
(17) 2.5 × 103 2.0 × 107 33
(7, 5) 5.5 × 104 1.1 × 104 34

CT
M
C

p2p
(8, 5) 6.9 × 104 1.3 × 104 39
(6, 4) 7.1 × 103 3.2 × 104 85

coin
(6, 6) 7.2 × 103 3.6 × 104 121
(3, 4) 7.5 × 104 1.1 × 105 42

csma
(4, 4) 5.5 × 105 1.5 × 106 48
(7, 140) 2.2 × 105 2.1 × 106 248

PA

wlan_dl
(8, 140) 2.5 × 105 2.1 × 106 248
(10) 1.5 × 104 4.0 × 105 10

mutex
(15) 2.1 × 104 1.1 × 106 31
(3, 4) 2.9 × 103 2.8 × 105 10

polling
(4, 4) 3.5 × 103 1.8 × 106 10
(15, 3) 2.9 × 106 3.7 × 106 12

M
A

jobs
(16, 3) 6.7 × 106 6.8 × 106 12

Table D.1: Sizes of the quotient transient matrices and number of iterations.
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model instance symbolic sparse
(1) 0.65 0.18

bluetooth
(2) 221.89 52.69

(30, 20) 20.88 3.46
crowds

(30, 30) 54.44 8.16
(6, 8) 41.75 8.44

D
TM

C

leader
(7, 7) 137.04 49.93
(1000) 13.01 1.11

embedded
(2000) 46.24 2.44
(16) 488.26 17.16

polling
(17) 1398.98 38.46
(7, 5) 48.39 0.38

CT
M
C

p2p
(8, 5) 71.93 0.57
(6, 4) 2.75 0.27

coin
(6, 6) 3.92 0.39
(3, 4) 12.01 2.29

csma
(4, 4) 409.41 66.12
(7, 140) 122.40 7.41

PA

wlan_dl
(8, 140) 79.82 8.60
(10) 31.63 4.40

mutex
(15) 89.51 12.39
(3, 4) 12.55 2.51

polling
(4, 4) 136.12 25.54
(15, 3) 180.05 29.71

M
A

jobs
(16, 3) 423.10 87.85

Table D.2: Comparison of symbolic and sparse quotient extraction.



AppendixE

Game-Based Abstraction-Re�nement

Mostmodels used for the evaluation in Chapter 5 were taken from the Prism benchmark
suite [KNP12] available at

https://github.com/prismmodelchecker/prism-benchmarks/.

¿e other models are taken from [Jan+16] and Pass’ benchmark models, which are
available at

https://depend.cs.uni-saarland.de/tools/pass/casestudies/.

For every model, we match the parameters with (the names of) the constants of the
model �le and state the property in the syntax described in Appendix B.

brp. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter of an
instance refers to the constant N and the second parameter refers to the constantMAX.
¿e third parameter identi�es the property:

» p1: P=?(◊ s = 5),

» p4: P=?(◊ srep ≠ 0 ∧ ¬recv).

coin. ¿is model is taken from the Prism benchmark suite. ¿e �rst parameter of an
instance refers to the constant N and the second parameter refers to the constant K. ¿e
third parameter identi�es the property:
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» c1: P≥1(◊ “�nished”),

» c2: P−=?(◊ “�nished” ∧ “all_coins_equal_1”).

csma. ¿is model is taken from Pass’ benchmark suite and ultimately originates from
Prism’s benchmark suite. One of the modi�cations is setting the (internal) model
constant λ to 50. ¿e parameter of an instance refers to the constant K. ¿e considered
property is

» p2: P−=?(◊ bc1 = 5 ∨ bc2 = 5).

wlan. ¿is model is taken from the Prism benchmark suite where we �x the value
of the constant COL to 10. ¿e �rst parameter of an instance refers to the constant
MAX_BACKOFF and the second parameter identi�es the property:

» min3: P−=?(◊ bc1 = 3 ∨ bc2 = 3),

» max3: P+=?(◊ bc1 = 3 ∨ bc2 = 3),

» max6: P+=?(◊ bc1 = 6 ∨ bc2 = 6).

zeroconf. ¿is model is taken from the Prism benchmark suite where we �x the value
of the constants N to 12000 and reset to false, respectively. ¿e �rst parameter of an
instance refers to the constant K and the second parameter identi�es the property:

» min: P−=?(◊ l = 4 ∧ ip = 1),

» max: P+=?(◊ l = 4 ∧ ip = 1).

swp. ¿is model is taken from Pass’ benchmark suite. ¿e parameter of the instance
identi�es the property:

» gp: P−=?(◊ sent > expected + 2),

» to: P+=?(◊ clock ≥ 8).
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coupon. ¿is model is taken from [Jan+16] and was inspired by the famous coupon
collector problem1 from textbooks on randomized algorithms. ¿e �rst parameter of
an instance refers to the number of coupons to be collected and the second parameter
refers to the number of coupons drawn in each round. ¿e third parameter determines
whethermultiple identical coupons can be drawnwithin a round (r = regular) or whether
the coupons are guaranteed to be distinct (c = conditional).

¿e pGCL code for two of the instances is given in Figures E.1 and E.2. We considered
the property

» P=?(◊ numberDraws > 5).

1https://en.wikipedia.org/wiki/Coupon_collector%27s_problem

https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
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function coupon() {
var {

bool coup0 := false;
bool coup1 := false;
bool coup2 := false;
bool coup3 := false;
bool coup4 := false;
int draw0 := 0;
int draw1 := 0;
int draw2 := 0;
int numberDraws := 0;

}

while (!coup0 | !coup1 | !coup2 | !coup3 | !coup4) {
draw0 := unif(0, 4);
draw1 := unif(0, 4);
draw2 := unif(0, 4);
numberDraws := numberDraws + 1;
if (draw0 = 0 | draw1 = 0 | draw2 = 0) {

coup0 := true;
}
if (draw0 = 1 | draw1 = 1 | draw2 = 1) {

coup1 := true;
}
if (draw0 = 2 | draw1 = 2 | draw2 = 2) {

coup2 := true;
}
if (draw0 = 3 | draw1 = 3 | draw2 = 3) {

coup3 := true;
}
if (draw0 = 4 | draw1 = 4 | draw2 = 4) {

coup4 := true;
}

}
}

Figure E.1: ¿e pGCL code for instance coupon(5,3,r).
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function coupon() {
var {

bool coup0 := false;
bool coup1 := false;
bool coup2 := false;
bool coup3 := false;
bool coup4 := false;
int draw0 := 0;
int draw1 := 0;
int draw2 := 0;
int numberDraws := 0;
bool first := true;

}

while (!coup0 | !coup1 | !coup2 | !coup3 | !coup4) {
first := true;
while (first | draw0 = draw1 | draw0 = draw2 | draw1 = draw2) {

first := false;
draw0 := unif(0, 4);
draw1 := unif(0, 4);
draw2 := unif(0, 4);

}
numberDraws := numberDraws + 1;
if (draw0 = 0 | draw1 = 0 | draw2 = 0) {

coup0 := true;
}
if (draw0 = 1 | draw1 = 1 | draw2 = 1) {

coup1 := true;
}
if (draw0 = 2 | draw1 = 2 | draw2 = 2) {

coup2 := true;
}
if (draw0 = 3 | draw1 = 3 | draw2 = 3) {

coup3 := true;
}
if (draw0 = 4 | draw1 = 4 | draw2 = 4) {

coup4 := true;
}

}
}

Figure E.2: ¿e pGCL code for instance coupon(5,3,c).
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AModern Probabilistic Model Checker

All models used for the evaluation in Chapter 7 were taken from the Prism benchmark
suite [KNP12] available at

https://github.com/prismmodelchecker/prism-benchmarks/.

Below, we list all considered models and and state the properties in the syntax described
in Appendix B.

DTMCs

bluetooth. ¿e parameter of an instance refers to the constantmrec. ¿e considered
property is:

» time: R=?(◊ rec = mrec).

We considered the instances

» bluetooth(0) » bluetooth(1) » bluetooth(2)

brp. ¿e �rst parameter of an instance refers to the constant N and the second param-
eter refers to the constantMAX. ¿e third parameter identi�es the property:

313
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» p1: P=?(◊ s = 5),

» p2: P=?(◊ s = 5 ∧ srep = 2),

» p4: P=?(◊ srep ≠ 0 ∧ ¬recv).

We considered the instances

» brp(256,3,p1)

» brp(256,3,p2)

» brp(256,3,p1)

» brp(1024,4,p1)

» brp(1024,4,p2)

» brp(1024,4,p1)

» brp(4096,5,p1)

» brp(4096,5,p2)

» brp(4096,5,p1)

» brp(8192,6,p1)

» brp(8192,6,p2)

» brp(8192,6,p1)

crowds. ¿e �rst parameter of an instance refers to the constant CrowdSize and the
second parameter refers to the constant TotalRuns. ¿e considered property is:

» positive: P=?(◊ observe0 > 1).

We considered the instances

» crowds(5,4)

» crowds(20,4)

» crowds(30,4)

» crowds(15,5)

» crowds(20,5)

» crowds(30,5)

» crowds(15,6)

» crowds(20,6)

» crowds(30,6)

» crowds(15,7)

» crowds(20,7)

» crowds(30,7)

egl. ¿e �rst parameter of an instance refers to the constant N and the second param-
eter refers to the constant L. ¿e third parameter identi�es the property:

» messagesA: Rmessages_A_needs=?(◊ phase = 4),

» messagesB: Rmessages_B_needs=?(◊ phase = 4),

» unfairA: P=?(◊ ¬“knowA” ∧ “knowB”),

» unfairB: P=?(◊ ¬“knowB” ∧ “knowA”).
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We considered the instances

» egl(5,8,messagesA)

» egl(5,8,messagesB)

» egl(5,8,unfairA)

» egl(5,8,unfairB)

» egl(10,8,messagesA)

» egl(10,8,messagesB)

» egl(10,8,unfairA)

» egl(10,8,unfairB)

» egl(20,8,messagesA)

» egl(20,8,messagesB)

» egl(20,8,unfairA)

» egl(20,8,unfairB)

herman. ¿e parameter of an instance refers to the number of processes. ¿e consid-
ered property is:

» steps: R=?(◊ “stable”).

We considered the instances

» herman(9)

» herman(11)

» herman(13)

» herman(15)

» herman(17)

» herman(19)

leader. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant K. ¿e third parameter identi�es the property:

» eventually_elected: P≥1(◊ “elected”),
» time: Rnum_rounds=?(◊ “elected”).

We considered the instances

» leader(5,8,eventually_elected)

» leader(5,8,time)

» leader(6,5,eventually_elected)

» leader(6,5,time)

» leader(6,6,eventually_elected)

» leader(6,6,time)
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» leader(6,8,eventually_elected)

» leader(6,8,time)

nand. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant K. ¿e considered property is:

» reliable: P=?(◊ s = 4 ∧ z/N < 1/10).

We considered the instances

» nand(20,1)

» nand(40,5)

» nand(40,7)

» nand(40,10)

» nand(60,5)

» nand(60,7)

» nand(60,10)

CTMCs

cluster. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant T. ¿e third parameter identi�es the property:

» below_min: Rtime_not_min=?(C≤T),
» operational: Rpercent_op=?(I=T),
» premium_steady: S=?(“premium”),
» qos1: P=?(◊≤T ¬“minimum”),
» qos2: P=?(◊=T ¬“minimum”),
» qos3: P=?(“minimum” U≤T “premium”),
» qos4: P=?(¬“minimum”U≥T“minimum”),
» repairs: Rnum_repairs=?(C≤T).

We considered the instances

» cluster(16,20,below_min)

» cluster(16,20,operational)

» cluster(16,20,premium_steady)
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» cluster(16,20,qos1)

» cluster(16,20,qos2)

» cluster(16,20,qos3)

» cluster(16,20,qos4)

» cluster(16,20,repairs)

» cluster(256,20,below_min)

» cluster(256,20,operational)

» cluster(256,20,premium_steady)

» cluster(256,20,qos1)

» cluster(256,20,qos2)

» cluster(256,20,qos3)

» cluster(256,20,qos4)

» cluster(256,20,repairs)

» cluster(512,20,below_min)

» cluster(512,20,operational)

» cluster(512,20,premium_steady)

» cluster(512,20,qos1)

» cluster(512,20,qos2)

» cluster(512,20,qos3)

» cluster(512,20,qos4)

» cluster(512,20,repairs)

embedded. ¿e �rst parameter of an instance refers to the constantMAX_COUNT
and the second parameter refers to the constant T. ¿e third parameter identi�es the
property:

» actuators: P=?(¬“down” U “fail_actuators”),

» actuators_T: P=?(¬“down” U≤T ⋅3600 “fail_sensors”),

» danger_T: Rdanger=?(C≤T ⋅3600),
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» danger_time: Rdanger=?(◊ “down”),
» down_T: Rdown=?(C≤T ⋅3600),
» failure_T: P=?(◊≤T ⋅3600 “down”),
» io: P=?(¬“down” U “fail_io”),
» io_T: P=?(¬“down” U≤T ⋅3600 “fail_io”),
» main: P=?(¬“down” U “fail_main”),
» main_T: P=?(¬“down” U≤T ⋅3600 “fail_main”),
» sensors: P=?(¬“down” U “fail_sensors”),
» sensors_T: P=?(¬“down” U≤T ⋅3600 “fail_sensors”),
» up_T: Rup=?(C≤T ⋅3600),
» up_time: Rup=?(◊ “down”).

¿e attentive reader might have noticed that the properties actuators_T and sensors_T
are identical. We have contacted the authors of the benchmark suite to clarify whether
this is by choice or an oversight. We considered the instances

» embedded(2,20,actuators)

» embedded(2,20,actuators_T)

» embedded(2,20,danger_T)

» embedded(2,20,danger_time)

» embedded(2,20,down_T)

» embedded(2,20,failure_T)

» embedded(2,20,io)

» embedded(2,20,io_T)

» embedded(2,20,main)

» embedded(2,20,main_T)

» embedded(2,20,sensors)

» embedded(2,20,sensors_T)

» embedded(2,20,up_T)

» embedded(2,20,up_time)

» embedded(4,20,actuators)

» embedded(4,20,actuators_T)

» embedded(4,20,danger_T)

» embedded(4,20,danger_time)

» embedded(4,20,down_T)

» embedded(4,20,failure_T)

» embedded(4,20,io)

» embedded(4,20,io_T)

» embedded(4,20,main)

» embedded(4,20,main_T)

» embedded(4,20,sensors)

» embedded(4,20,sensors_T)
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» embedded(4,20,up_T)

» embedded(4,20,up_time)

» embedded(7,20,actuators)

» embedded(7,20,actuators_T)

» embedded(7,20,danger_T)

» embedded(7,20,danger_time)

» embedded(7,20,down_T)

» embedded(7,20,failure_T)

» embedded(7,20,io)

» embedded(7,20,io_T)

» embedded(7,20,main)

» embedded(7,20,main_T)

» embedded(7,20,sensors)

» embedded(7,20,sensors_T)

» embedded(7,20,up_T)

» embedded(7,20,up_time)

» embedded(100,20,actuators)

» embedded(100,20,actuators_T)

» embedded(100,20,danger_T)

» embedded(100,20,danger_time)

» embedded(100,20,down_T)

» embedded(100,20,failure_T)

» embedded(100,20,io)

» embedded(100,20,io_T)

» embedded(100,20,main)

» embedded(100,20,main_T)

» embedded(100,20,sensors)

» embedded(100,20,sensors_T)

» embedded(100,20,up_T)

» embedded(100,20,up_time)

» embedded(1000,20,actuators)

» embedded(1000,20,actuators_T)

» embedded(1000,20,danger_T)

» embedded(1000,20,danger_time)

» embedded(1000,20,down_T)

» embedded(1000,20,failure_T)

» embedded(1000,20,io)

» embedded(1000,20,io_T)

» embedded(1000,20,main)

» embedded(1000,20,main_T)

» embedded(1000,20,sensors)

» embedded(1000,20,sensors_T)

» embedded(1000,20,up_T)

» embedded(1000,20,up_time)

fms. ¿e parameter of an instance refers to the constant N. ¿e considered property
is:

» productivity: Rproductivity=?(S).
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We considered the instances

» fms(2)

» fms(4)

» fms(6)

» fms(8)

» fms(10)

kanban. ¿eparameter of an instance refers to the constant t. ¿e considered property
is:

» throughput: Rthroughput=?(S).

We considered the instances

» kanban(2)

» kanban(4)

» kanban(6)

» kanban(7)

mapk_cascade. ¿e �rst parameter of an instance refers to the constant N and the
second parameter refers to the constant T. ¿e third parameter identi�es the property:

» activated_T: Ractivated=?(I=T),
» activated_time: Rtime=?(◊ kpp = N),
» reactions: Rreactions=?(C≤T).

We considered the instances

» mapk_cascade(4,20,activated_T)

» mapk_cascade(4,20,activated_time)

» mapk_cascade(4,20,reactions)

» mapk_cascade(6,20,activated_T)

» mapk_cascade(6,20,activated_time)

» mapk_cascade(6,20,reactions)

» mapk_cascade(8,20,activated_T)

» mapk_cascade(8,20,activated_time)

» mapk_cascade(8,20,reactions)
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polling. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant T. ¿e third parameter identi�es the property:

» s1: S=?(s1 = 1 ∧ ¬(s = 1 ∧ a = 1)),
» s1_before_s2: P=?(¬(s = 2 ∧ a = 1) U (s = 1 ∧ a = 1)),
» served: Rserved=?(C≤T),
» station1_polled: P=?(◊≤T s = 1 ∧ a = 0),
» waiting: Rwaiting=?(C≤T).

We considered the instances

» polling(7,20,s1)

» polling(7,20,s1_before_s2)

» polling(7,20,served)

» polling(7,20,station1_polled)

» polling(7,20,waiting)

» polling(9,20,s1)

» polling(9,20,s1_before_s2)

» polling(9,20,served)

» polling(9,20,station1_polled)

» polling(9,20,waiting)

» polling(14,20,s1)

» polling(14,20,s1_before_s2)

» polling(14,20,served)

» polling(14,20,station1_polled)

» polling(14,20,waiting)

» polling(16,20,s1)

» polling(16,20,s1_before_s2)

» polling(16,20,served)

» polling(16,20,station1_polled)

» polling(16,20,waiting)
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tandem. ¿e �rst parameter of an instance refers to the constant c and the second
parameter refers to the constant T. ¿e third parameter identi�es the property:

» customers: Rcustomers=?(S),
» customers_T: Rcustomers=?(I=T),
» �rst_queue: P=?(◊≤T sc = c),
» network: P=?(◊≤T sc = c ∧ sm = c ∧ ph = 2),
» second_queue: P=? [ sm=c U<=T sm<c ]; P=?(sc = c U≤T sm < c).

We considered the instances

» tandem(15,0.2,customers)

» tandem(31,0.2,customers)

» tandem(511,0.2,customers)

» tandem(511,0.2,customers_T)

» tandem(511,0.2,first_queue)

» tandem(511,0.2,network)

» tandem(511,0.2,second_queue)

» tandem(1023,0.2,customers)

» tandem(1023,0.2,customers_T)

» tandem(1023,0.2,first_queue)

» tandem(1023,0.2,network)

» tandem(1023,0.2,second_queue)

» tandem(2047,0.2,customers)

» tandem(2047,0.2,customers_T)

» tandem(2047,0.2,first_queue)

» tandem(2047,0.2,network)

» tandem(2047,0.2,second_queue)

PA

coin. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant K. ¿e third parameter identi�es the property:

» c1: P≥1(◊ “�nished”),
» c2: P−=?(◊ “�nished” ∧ “all_coins_equal_1”),
» disagree: P+=?(◊ “�nished” ∧ ¬“agree”),
» steps_max: R+steps=?(◊ “�nished”),
» steps_min: R−steps=?(◊ “�nished”).
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We considered the instances

» coin(4,4,c1)

» coin(4,4,c2)

» coin(4,4,disagree)

» coin(4,4,steps_max)

» coin(4,4,steps_min)

» coin(4,32,c1)

» coin(4,32,c2)

» coin(4,32,disagree)

» coin(4,32,steps_max)

» coin(4,32,steps_min)

» coin(6,4,c1)

» coin(6,4,c2)

» coin(6,4,disagree)

» coin(6,4,steps_max)

» coin(6,4,steps_min)

» coin(6,6,c1)

» coin(6,6,c2)

» coin(6,6,disagree)

» coin(6,6,steps_max)

» coin(6,6,steps_min)

csma. ¿e �rst parameter of an instance refers to the constant N and the second
parameter refers to the constant K. ¿e third parameter identi�es the property:

» all_before_max: P+=?(¬“collision_max_backo�” U “all_delivered”),
» all_before_min: P−=?(¬“collision_max_backo�” U “all_delivered”),
» some_before: P−=?(◊ min_backo� _a er_success < K),
» time_max: R+time=?(◊ “all_delivered”),
» time_min: R−time=?(◊ “all_delivered”).

We considered the instances

» csma(3,2,all_before_max)

» csma(3,2,all_before_min)

» csma(3,2,some_before)

» csma(3,2,time_max)

» csma(3,2,time_min)

» csma(3,6,all_before_max)

» csma(3,6,all_before_min)

» csma(3,6,some_before)

» csma(3,6,time_max)

» csma(3,6,time_min)

» csma(4,2,all_before_max)

» csma(4,2,all_before_min)

» csma(4,2,some_before)

» csma(4,2,time_max)
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» csma(4,2,time_min)

» csma(4,4,all_before_max)

» csma(4,4,all_before_min)

» csma(4,4,some_before)

» csma(4,4,time_max)

» csma(4,4,time_min)

�rewire. ¿e �rst parameter of an instance refers to the constant delay and the second
parameter refers identi�es the property:

» elected: P≥1(◊ “done”),
» time_max: R+time=?(◊ “done”),
» time_min: R−time=?(◊ “done”),
» time_sending: R+time_sending=?(◊ “done”).

We considered the instances

» firewire(36,elected)

» firewire(36,time_max)

» firewire(36,time_min)

» firewire(36,time_sending)

» firewire(100,elected)

» firewire(100,time_max)

» firewire(100,time_min)

» firewire(100,time_sending)

�rewire_abst. ¿e �rst parameter of an instance refers to the constant delay and the
second parameter refers identi�es the property:

» elected: P≥1(◊ “done”),
» time_max: R+time=?(◊ “done”),
» time_min: R−time=?(◊ “done”),
» rounds: R−rounds=?(◊ “done”).

We considered the instances

» firewire_abst(36,elected)

» firewire_abst(36,time_max)

» firewire_abst(36,time_min)

» firewire_abst(36,rounds)

» firewire_abst(100,elected)

» firewire_abst(100,time_max)
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» firewire_abst(100,time_min) » firewire_abst(100,rounds)

�rewire_dl. ¿e �rst parameter of an instance refers to the constant delay and the
second parameter refers to the constant deadline. ¿e considered property is:

» deadline: P−=?(◊ s = 9).

We considered the instances

» firewire_dl(3,200)

» firewire_dl(3,800)

» firewire_dl(3,1000)

» firewire_dl(36,400)

» firewire_dl(36,800)

» firewire_dl(36,1000)

» firewire_dl(36,10000)

�rewire_impl_dl. ¿e �rst parameter of an instance refers to the constant delay and
the second parameter refers to the constant deadline. ¿e considered property is:

» deadline: P−=?(◊ (s1 = 8 ∧ s2 = 7) ∨ (s1 = 7 ∧ s2 = 8)).

We considered the instances

» firewire_impl_dl(36,1000)

» firewire_impl_dl(50,1000)

» firewire_impl_dl(100,1000)

wlan. ¿e �rst parameter of an instance refers to the constantMAX_BACKOFF and
the second parameter refers to the constant COL. ¿e third parameter identi�es the
property

» collisions: P+=?(◊ col = COL),
» cost_max: R+cost=?(◊ s1 = 12 ∧ s2 = 12),
» cost_min: R−cost=?(◊ s1 = 12 ∧ s2 = 12),
» num_collisions: R+collisions=?(◊ s1 = 12 ∧ s2 = 12),
» sent: P≥1(◊ s1 = 12 ∧ s2 = 12),
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» time_max: R+time=?(◊ s1 = 12 ∧ s2 = 12),
» time_min: R−time=?(◊ s1 = 12 ∧ s2 = 12).

We considered the instances

» wlan(3,0,collisions)

» wlan(3,0,cost_max)

» wlan(3,0,cost_min)

» wlan(3,0,num_collisions)

» wlan(3,0,sent)

» wlan(3,0,time_max)

» wlan(3,0,time_min)

» wlan(5,0,collisions)

» wlan(5,0,cost_max)

» wlan(5,0,cost_min)

» wlan(5,0,num_collisions)

» wlan(5,0,sent)

» wlan(5,0,time_max)

» wlan(5,0,time_min)

» wlan(6,0,collisions)

» wlan(6,0,cost_max)

» wlan(6,0,cost_min)

» wlan(6,0,num_collisions)

» wlan(6,0,sent)

» wlan(6,0,time_max)

» wlan(6,0,time_min)

wlan_dl. ¿e �rst parameter of an instance refers to the constantMAX_BACKOFF
and the second parameter refers to the constant deadline. ¿e considered property is

» deadline: P−=?(◊ s1 = 12 ∧ s2 = 12).

We considered the instances

» wlan(4,200,deadline)

» wlan(4,500,deadline)

» wlan(5,200,deadline)

» wlan(5,500,deadline)

» wlan(6,200,deadline)

» wlan(6,500,deadline)

zeroconf. ¿e �rst parameter of an instance refers to the constant N, the second
parameter refers to the constant K and the third to the constant reset. ¿e fourth
parameter identi�es the property:

» correct_max: P+=?(◊ l = 4 ∧ ip = 1),
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» correct_min: P−=?(◊ l = 4 ∧ ip = 1).

We considered the instances

» zeroconf(2000,2,false,correct_max)

» zeroconf(2000,2,false,correct_min)

» zeroconf(2000,2,true,correct_max)

» zeroconf(2000,2,true,correct_min)

» zeroconf(8000,8,false,correct_max)

» zeroconf(8000,8,false,correct_min)

» zeroconf(8000,8,true,correct_max)

» zeroconf(8000,8,true,correct_min)

» zeroconf(16000,16,false,correct_max)

» zeroconf(16000,16,false,correct_min)

» zeroconf(16000,16,true,correct_max)

» zeroconf(16000,16,true,correct_min)

zeroconf_dl. ¿e �rst parameter of an instance refers to the constant N, the second
parameter refers to the constant K, the third parameter refers to the constant reset and
the fourth parameter refers to the constant deadline. ¿e � h parameter identi�es the
property:

» deadline_max: P+=?(¬(l = 4 ∧ ip = 2) U t ≥ deadline),

» deadline_min: P−=?(¬(l = 4 ∧ ip = 2) U t ≥ deadline).

We considered the instances

» zeroconf_dl(2000,2,false,50,deadline_max)

» zeroconf_dl(2000,2,false,50,deadline_min)

» zeroconf_dl(2000,2,true,50,deadline_max)

» zeroconf_dl(2000,2,true,50,deadline_min)
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» zeroconf_dl(8000,8,false,50,deadline_max)

» zeroconf_dl(8000,8,false,50,deadline_min)

» zeroconf_dl(8000,8,true,50,deadline_max)

» zeroconf_dl(8000,8,true,50,deadline_min)

» zeroconf_dl(16000,16,false,50,deadline_max)

» zeroconf_dl(16000,16,false,50,deadline_min)

» zeroconf_dl(16000,16,true,50,deadline_max)

» zeroconf_dl(16000,16,true,50,deadline_min)

» zeroconf_dl(16000,16,false,70,deadline_max)

» zeroconf_dl(16000,16,false,70,deadline_min)

» zeroconf_dl(16000,16,true,70,deadline_max)

» zeroconf_dl(16000,16,true,70,deadline_min)
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